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Abstract: Spatial models are essential in the prediction of climate phenomena because they can
model the complex relationships between different locations. In this study, we discuss an expanded
spatial Durbin model with ordinary kriging on unobserved locations (ESDMOK) to predict rainfall
patterns in Java Island. The classical spatial Durbin model needed to be expanded to obtain a
parameter estimation for each location. We combined this with ordinary kriging because the data
were not available in some locations. The data were taken from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER) website. Since climate
data are big data, we implement a big data analytics approach, namely the data analytics life cycle
method. As the exogenous variables, we used air temperature, humidity, solar irradiation, wind
speed, and surface pressure. The authors developed an R-Shiny web applications to implement
our proposed technique. Using our proposed technique, we obtained more accurate and reliable
climate data prediction, indicated by the mean absolute percentage error (MAPE), which was equal
to 1.956%. The greatest effect on rainfall was given by the surface pressure variable, and the smallest
was wind speed.

Keywords: expanded spatial Durbin model; ordinary kriging; data analytics life cycle; climate data

MSC: 6208; 62H11; 86A32

1. Introduction

Climate is the long-term average weather and atmospheric conditions in a specific
region, typically measured for 30 years or more, both regionally and globally [1]. These
climate phenomena have significant effects on various aspects of human life, including
agriculture, health, coastal ecosystems, and water quality [2]. One notable impact is La
Nina, which increases rainfall in the Western Pacific region. Empirical data from BMKG
indicates that La Nina can increase rainfall on Java Island by 20% and 70% [3]. Extreme
rainfall causes landslides and floods, among other natural disasters [4,5]. The community
suffers greatly from the financial and health effects of these natural disasters, and those
who depend on rainfall conditions, like farmers and fishermen, truly need information
related to rainfall prediction. The intensity of rainfall has a significant impact on every
aspect of life, and exceptionally high rainfall has an impact on the occurrence of natural
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disasters and so should be warned of before the event. People who depend on rainfall
conditions, such as fishermen and farmers, really need information related to rainfall
prediction. Rainfall is closely linked to Sustainable Development Goal (SDG) 13, which
focuses on “Climate Action”. This goal emphasizes urgent action to combat climate change
and its impacts [4]. Understanding and managing rainfall patterns are crucial for achieving
SDG 13. Effective climate action requires addressing the impacts of changing rainfall on
various sectors, enhancing resilience to extreme weather events, and ensuring sustainable
water and land management.

The spatial model is an effective tool for predicting rainfall and climate. Creating
statistical or computational models to represent spatial relationships or patterns in data
is a prevalent practice in spatial modelling [5]. Spatial models are widely used in various
fields to analyse patterns, relationships, and phenomena related to the spatial dimension
in data [6]. Rainfall is closely related to other climate elements, such as air temperature,
humidity, solar irradiation, wind speed and surface pressure, which vary from region
to region [7]. These climate variables are observed and modelled using spatial analysis.
Falah et al. (2023) conducted hybrid modelling of the Spatial Autoregressive Exogenous
(SAR-X) model using Casetti’s model approach for the prediction of rainfall in West Java,
Indonesia [8]. The weakness of the SAR-X model is that it only facilitates spatial dependence
on the response variable, not paying attention to spatial dependence on the exogenous
variables. Discussing spatial aspects, there is a possibility that there is spatial dependency
not only on the response variable but also on exogenous variables. Thus, a model approach
is needed that can facilitate the existence of spatial dependencies between these variables.
Therefore, to overcome these problems, the expanded spatial Durbin model (ESDM) was
used to overcome spatial dependence on exogenous variables [9].

In various phenomena, there are often unknown values at observation locations. A
linear interpolation model called the ordinary kriging (OK) model is utilized to predict
these values at unobserved locations [10]. The OK method is a spatial interpolation method
that uses the spatial variability of data to estimate values at unobserved locations [11]. The
advantage of the OK method is that it produces an optimal estimate by taking into account
the spatial information and covariance structure of the data [12]. This is to obtain the most
accurate prediction at unobserved locations [13]. The predictions generated by OK often
produce smooth maps without any sharp spikes or dips between observation points [14].

The ongoing expansion of data poses a challenge to the prediction of climate and
rainfall patterns. We discovered a gap in rainfall prediction utilizing the ESDM with OK
of climate data based on the summary above. These climate data were collected from
119 districts/cities in Java Island using the National Aeronautics and Space Administration
Prediction of Worldwide Energy Resources (NASA POWER) website. In this research, the
data analytics life cycle was the big data approach methodology, which was utilized to
predict rainfall using big climate data. Rainfall description and prediction have a more
in-depth stage in the data analytics life cycle. The application study in this research is
supported by computing an integrated R script for the development of the ESDM using an
R-Shiny web application to facilitate the prediction process.

2. Materials and Methods
2.1. Experimental Semivariogram

The OK method was used to analyse geostatistical data and interpolate values based
on observed data. It is worth noting that D. G. Krige, a gold mining expert from South
Africa, first introduced the model. Furthermore, OK relies on the assumption that there
is a spatial correlation between observed data as determined by the distance between the
entities [15]. To perform the interpolation, the model employs a semivariogram calculation
representing the spatial differences and values between all pairs of observed data. The
semivariogram also shows the weights used in the interpolation process, which is calculated
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based on a sample semivariogram with distance h, different z values, and n data samples.
The experimental semivariogram at distance h can be expressed as follows [16]:

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

[Z(si + h)− Z(si)]
2 (1)

where:

γ̂(h): experimental semivariogram value with distance h;
Z(si): observation value in location si;
Z(si + h): observation value in location si + h;
N(h): many pairs of data with the same distance h;
h: distance.

All possible pairs of distances were calculated using a Euclidean distance equation as
follows:

|h| =
√(

si(ui)− sj
(
uj
))2 −

(
si(vi)− sj

(
vj
))2 (2)

The results of the Euclidean distance calculation were converted to kilometres with∣∣dij
∣∣ × 111.319. A value of 111.319 was obtained by converting 1 degree longitude to

kilometres [17]. A location can be determined as sij
(
uij, vij

)
, where sij is the symbol of

the location i and j, with i = 1, 2, 3 . . . , N and j = 1, 2, 3 . . . , N, while u and v indicate the
latitude and longitude coordinates.

2.2. Theoretical Semivariogram Model

There are three commonly used theoretical semivariogram models in kriging: the
spherical, the Gaussian, and the exponential [16]. Furthermore, theoretical semivariogram
values can be divided into three using the equations in Table 1: h is the location distance
between samples, c is the sill value, and a is the range [18]. Theoretical semivariogram
models can be seen in Table 1, and a theoretical semivariogram plot can be seen in Figure 1.
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Table 1. Theoretical semivariogram model.

Model Function

Spherical γ(h) =

c
[(

3h
2a

)
−
(

h
2a

)3
]

, h ≤ a

c, h > a
(3)

Exponential γ(h) =

{
c
[
1 − exp

(
−h
a

)]
, h ≤ a

c, h > a
(4)

Gaussian γ(h) =

c
[

1 − exp
(
−h
a

)2
]

, h ≤ a

c, h > a
(5)

2.3. Ordinary Kriging (OK) Method

The kriging method is a prediction method that provides a BLUE (best linear unbiased
estimation) estimator of point values or averages for prediction at unobserved locations.
This method uses a semivariogram calculation that represents the spatial and value dif-
ferences between all pairs of data samples. According to [19], the kriging estimator Ẑ(x),
where s is the location at the unsampled point, is a linear combination of random variables;
this can be seen in the kriging estimation formulated in the following equation:

Ẑ(s)− m(s) =
n

∑
i=1

λi[Z(si)− m(si)] (6)

with:

s: predicted locations;
si: i-th data location adjacent to the predicted location;
m(s): the expected or average value of Z(s);
m(si): the expected or average value of Z(si);
n: the number of data used for prediction;
λi: weight value at i-th location.

The objective of the kriging method is to determine the weight values λi that result in
minimum estimator variance and an unbiased estimator. The estimator variance can be
expressed as follows [20]:

σ2
e (s) = Var

[
Ẑ(s)− Z(s)

]
(7)

while the requirement to produce an unbiased estimator is:

E
[
Ẑ(s)− Z(s)

]
= 0 (8)

The OK method is one of the kriging methods that assumes that the mean is unknown.
If Z(s) = m(s) and Z(si) = m(si), then m(s) = m(si) = m, and then Equation (6) becomes:

Ẑ(s)− m =
n

∑
i=1

λi[Z(si)− m]

Ẑ(s) = m +
n

∑
i=1

λi[Z(si)− m]

Ẑ(s) =
n

∑
i=1

λiZ(si)− m

(
n

∑
i=1

λi − 1

)
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Since m is assumed to be unknown, the OK estimator is obtained as Ẑ(s) =
n
∑

i=1
λiZ(si)

with the condition
n
∑

i=1
λi = 1.

The BLUE (best linear unbiased estimation) properties of the OK method are shown
as follows:

• Linear
The OK estimator obtained from n observations of the data used forms a linear model,
namely:

Ẑ(s) =
n

∑
i=1

λiZ(si) (9)

• Unbiased
The OK estimator is unbiased if it satisfies Equation (8)

E
[
Ẑ(si)− Z(s)

]
= E

[
n
∑

i=1
λiZ(si)− Z(s)

]
=

n
∑

i=1
λiE[Z(si)− Z(s)] (∵ E[Z(si)− Z(s)] = 0)

= 0

since the mean is assumed to be unknown, E[Z(si)− Z(s)] = 0, and the unbiased
estimator property is satisfied by the OK method.

• Best

The best here means that the OK estimator has the minimum error variance. The
variance of the estimator of OK is as follows:

σ2
OK = Var

[
Ẑ(s)− Z(s)

]
σ2

OK = Var
[
Ẑ(s)

]
+ Var[Z(s)]− 2Cov

[
Ẑ(s), Z(s)

]
(10)

to describe Var
[
Ẑ(s)

]
in Equation (10), it is known that Ẑ(s) =

n
∑

i=1
λiZ(si), which can be

expressed as follows:

Var
[
Ẑ(s)

]
= Var

[
n

∑
i=1

λiZ(si)

]

Var
[
Ẑ(s)

]
=

n

∑
i=1

n

∑
j=1

λiλjCov
[
Z(si), Z(sj)

]
(11)

to describe Cov
[
Ẑ(s), Z(s)

]
in Equation (11):

Cov
[
Ẑ(s), Z(s)

]
= E

[
Ẑ(s)Z(s)

]
− E

[
Ẑ(s)

]
E[Z(s)]

Cov
[
Ẑ(s), Z(s)

]
= E

[(
n
∑

i=1
λiZ(si)

)
Z(s)

]
− E

[
n
∑

i=1
λiZ(si)

]
E[Z(s)]

Cov
[
Ẑ(s), Z(s)

]
=

n
∑

i=1
λiE[Z(si)Z(s)]−

n
∑

i=1
λiE[Z(si)]E[Z(s)]

Cov
[
Ẑ(s), Z(s)

]
=

n

∑
i=1

λiCov[Z(si), Z(s)] (12)

Supposing that Var[Z(s)] = σ2, Equations (11) and (12) can be substituted into Equa-
tion (10), and the following equation can be obtained:

σ2
OK =

n

∑
i=1

n

∑
j=1

λiλjCov
[
Z(si), Z(sj)

]
+ σ2 − 2

n

∑
i=1

λiCov[Z(si), Z(s)] (13)
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with the condition
n
∑

i=1
λi = 1.

Based on Equation (13), to obtain the minimum value of the estimator variance, the
Lagrange multiplier (LM) method was used with the parameter µ. The LM equation is
expressed as follows:

F(λi, µ) =
n

∑
i=1

n

∑
j=1

λiλjCov
[
Z(si), Z(sj)

]
+ σ2 − 2

n

∑
i=1

λiCov[Z(si), Z(s)] + 2µ

[
n

∑
i=1

λi − 1

]
(14)

By deriving Equation (14) for the following variables λi:

∂F(λi, µ)

∂λi
= 2

n

∑
j=1

λjCov
[
Z(si), Z(sj)

]
− 2Cov[Z(si), Z(s)] + 2µ = 0

Because ∂F(λi ,µ)
∂λi

= 0, the following is obtained:

n

∑
j=1

λjCov
[
Z(si), Z(sj)

]
= Cov[Z(si), Z(s)]− µ (15)

By deriving Equation (14) with respect to the parameter µ, we obtain:

∂F(λi, µ)

∂µ
= 2

[
n

∑
i=1

λi − 1

]
= 0

Because ∂F(λi ,µ)
∂µ = 0, the following is obtained:

2
[

n
∑

i=1
λi − 1

]
= 0

n
∑

i=1
λi − 1 = 0

n

∑
i=1

λi = 1 (16)

Equations (15) and (16) compose an OK system. By solving the equation, the following
matrix can be formed:

λ1C11 + λ2C12 + λ3C13 + . . . + λnC1n + µ = C10
λ1C21 + λ2C22 + λ3C23 + . . . + λnC2n + µ = C20
λ1C31 + λ2C32 + λ3C33 + . . . + λnC3n + µ = C30
...
λ1Cn1 + λ2Cn2 + λ3Cn3 + . . . + λnCnn + µ = Cn0
λ1 + λ2 + λ3 + . . . + λn + 0 = 1

C11 C12 C13 · · · C1n 1
C21 C22 C23 · · · C2n 1
C31 C32 C33 · · · C3n 1

...
...

...
. . .

...
...

Cn1 Cn2 Cn3 · · · Cnn 1
1 1 1 1 1 0





λ1
λ2
λ3
...

λn
µ


=



C10
C20
C30

...
Cn0

1


(17)
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Meanwhile, to determine the weight value of each observed point against the unob-
served point, this can be expressed as follows:



λ1
λ2
λ3
...

λn
µ


=



C11 C12 C13 · · · C1n 1
C21 C22 C23 · · · C2n 1
C31 C32 C33 · · · C3n 1

...
...

...
. . .

...
...

Cn1 Cn2 Cn3 · · · Cnn 1
1 1 1 1 1 0



−1

C10
C20
C30

...
Cn0

1


(18)

λ = Cnn
−1Cn0

where:

Cnn: the variance covariance matrix between the variables sampled at the location n and
the sampled variable at location n;
Cn0: the variance vector of the covariance between the sampled variable at the location n
and the predicted variable;
µ: the Lagrange multiplier parameter.

To obtain the variance equation of the OK estimator in Equation (13), Equation (15)
can be substituted, and the following is obtained:

σ2
OK =

n
∑

i=1

n
∑

j=1
λiλjCov

[
Z(si), Z(sj)

]
+ σ2 − 2

n
∑

i=1
λiCov[Z(si), Z(s)]

σ2
OK =

n
∑

i=1
λi

n
∑

j=1
λjCov

[
Z(si), Z(sj)

]
+ σ2 − 2

n
∑

i=1
λiCov[Z(si), Z(s)]

σ2
OK =

n
∑

i=1
λiCov[Z(si), Z(s)]− µ + σ2 − 2

n
∑

i=1
λiCov[Z(si), Z(s)]

σ2
e = σ2 −

n

∑
i=1

λiCov[Z(si), Z(s)]− µ

σ2
OK = σ2 − (λ1C10 + λ2C20 + λ3C30 + . . . + λnCn0)− µ

σ2
OK = σ2 −

(
C10 C20 C30 · · · Cn0 1

)


λ1
λ2
λ3
· · ·
λn
µ

 (19)

The minimum estimator variance is commonly referred to as the OK estimator variance;
thus, the best estimator satisfied the OK method.

2.4. Expanded Spatial Durbin Model (ESDM)

The ESDM was used to overcome spatial dependence on the exogenous variables. The
ESDM is formulated as follows [9]:

y = ρWy + α1n + XZJβ0 + WX̃θ+ εwithε
iid∼ N(0, σ2I) (20)

Letting A = XZJ, it follows that:

y = ρWy + α1n + Aβ0 + WX̃θ+ εwithε
iid∼ N(0, σ2I) (21)

y = ρWy + Uδ + ε (22)
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where:
U =

[
1n A WX̃

]
,

δ =

 α
β0
θ

,

with:

y: vector of dependent variables of size (n × 1);
X̃: matrix of independent variables of size (n × k);
X: matrix of independent variables of size (n × nk);
ρ: spatial lag coefficient of the dependent variable;
α: constant parameter;
W: spatial weight matrix of size (n × n);
Z: location information that contains elements Zxi, Zyi with i = 1, . . . , n, representing the
latitude and longitude of each observation, of size (nk × 2nk);
J: expansion of the identity matrix of size (2nk × 2k);
β: matrix of size (nk × 1), which contains parameter estimators for all explanatory k
variables at each observation;
β0: parameter expressed by βlatitude,βlongitude of size (2k × 1);
θ: spatial lag parameter vector of covariate variable of size (k × 1);
⊗: Kronecker product;
ε: error vector of size (n × 1);
si: location matrix with i = 1, . . . , n.

2.5. Mean Absolute Percentage Error (MAPE)

To evaluate the model’s performance, the mean absolute percentage error (MAPE) is
calculated as follows:

MAPE =

(
1
n

n

∑
i=1

∣∣∣∣y(si)− ŷ(si)

y(si)

∣∣∣∣
)
× 100% (23)

with

y(si): the values in the actual data at the location si;
ŷ(si): the values in the prediction data at the location si;
n: the number of observation locations.

According to Lawrence’s criteria (2009) [21], MAPE values can be categorized as
follows (Table 2):

Table 2. MAPE score scale.

Scale MAPE Accuracy Score

≤10% Very accurate prediction
10 < MAPE ≤ 20% Good prediction
20 < MAPE ≤ 50% Reasonable prediction

>50% Inaccurate prediction

2.6. Data Analytics Life Cycle

Large data quantities, a variety of data architectures, and rapid growth in data were the
challenges faced by big data and data science, which led to the creation of the data analytics
life cycle. There are six stages in this life cycle, which might happen simultaneously in some
circumstances. This analysis could typically proceed both forward and backward, enabling
an iterative process that takes into account newly discovered information as it becomes
available [22]. This makes it possible to solve problems and go through the procedure
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repeatedly, which also makes it easier to operationalize research objectives. Best practices
for the analytical process, from discovery to research work completion, are defined by the
data analysis life cycle. The data analytics life cycle consists of six stages that apply looping
or backward/forward. The following is a summary of the six stages of the data analysis
life cycle [23]:

• Discovery (Problem Formulation): At this point, a literature review was conducted
to prepare for the research problem analysis phase. This phase required assembling
resources, including data, technology, references, and time. Developing a problem
framework as an analytical task to be tackled in the following stage and developing
preliminary hypotheses to investigate and evaluate the data were crucial tasks in
this phase.

• Data Preparation: Initial data analysis was part of the data pre-processing performed
at this stage. A necessary step before building the model was to prepare the data for
collection in the database repository, which included procedures such as data cleaning,
extraction, transformation, and integration.

• Model Planning: This stage focuses on planning the model by determining the meth-
ods, techniques, and research flow to be followed during the model-building stage.

• Model Building: At this stage, this research focused on creating datasets for test-
ing, training, and creating output models. The model’s efficiency in running on the
current hardware, such as its quick hardware and parallel processing capabilities,
was considered.

• Communicating Results: This step entailed testing the data model and any modi-
fications with the user or in an experimental environment to ascertain whether the
output complied with the development criteria. Should the model fail to satisfy the
specifications, an assessment was carried out, and the procedure could revert to the
earlier phase for further improvement.

• Operationalizing (Operationalization): At this point, the final report, instructions,
codes, and technical documents had to be submitted. To guarantee a wider application,
this stage can also include implementing the model as a pilot project.

If more enhancements are needed, the data analytics life cycle might be carried out
again from phases 1 through 5. The evaluation of the modelling process, from steps 6 to 1,
was indicated by dotted lines, highlighting the possibility of revisiting certain stages if the
modelling results did not meet the desired criteria.

3. Results
3.1. Data Description

The objective of this study was to predict big climate data using the ESDMOK in Java
Island, Indonesia. The model was applied to secondary data obtained from the National
Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources
(POWER). The POWER project provides solar and meteorological data generated by NASA
to support renewable energy, building energy efficiency, and agricultural needs. The
POWER project started in 2003 as an outgrowth of Surface meteorology and Solar Energy
(SSE). NASA-generated satellite data are essential in supporting researchers and the public
in studying Earth’s climate and climate processes [24]. The POWER project provides long-
term climatological mean estimates of meteorological data and solar energy flux surface
data. In addition to these long-term climatological averages, daily data in the form of time
series are also available. Solar data are based on satellite observations, and meteorological
data are derived from the MERRA-2 assimilation model. These satellite and model-based
products have proven to be quite accurate in providing reliable solar and meteorological
resource data in regions where surface measurements could be more sparse or non-existent.
The uncertainty estimates of POWER data are based on comparisons with measurement
data [25–27].

In addition, POWER also provides high-resolution precipitation data derived from
NASA’s Global Precipitation Measurement (GPM) mission’s Integrated Multi-satellite
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Retrievals for GPM (IMERG) with a resolution of 0.5◦ × 0.625◦ latitude–longitude grid
(approximately 50 km) [28]. NASA POWER data can be downloaded free via the web at
https://power.larc.nasa.gov/ (accessed on 5 July 2023). The data retrieval process began
with inputting the latitude and longitude coordinates of the location and determining the
time interval. In this study, the daily data interval was taken from 1 January 1982 to 5 July
2023 and was recorded in a daily data format. The selected climate variables included
rainfall, air temperature, humidity, wind speed, solar irradiation, and surface pressure,
along with latitude and longitude coordinate information. The output data obtained were
stored in files of comma-separated value (.csv) format.

3.2. Data Analytics Life Cycle for the ESDMOK

In this research, rainfall prediction with ESDMOK uses the data analytics life cycle
methodology shown in Figure 2. The process begins with formulating research problems,
including natural disasters caused by rainfall, problem identification, climate variables
affecting rainfall levels, and initial hypotheses based on theories that support ESDMOK.
Furthermore, the data preparation stage includes determining the source of climate data to
be analyzed and data pre-processing. The data collection process begins with inputting in-
formation on the location coordinates of 119 districts/cities on the Java Island, determining
the observation time interval in the form of daily data, and selecting climate variables. In
the data collection process, this research utilizes the application programming interface
(API) by running the “pynasapower” package in Python. The data pre-processing stage
includes; removing missing values, aggregating daily data to monthly data, selecting the
climate variables. The model planning stage integrates location data with climate variables
to provide input data for ESDMOK, such as spatial modelling. Furthermore, at the model
development stage, based on the NASA POWER grid resolution of latitude-longitude 0.5◦

× 0.625◦ (approximately 50 km), 55 locations with the same data were generated. Thus,
the locations were split into 64 observed locations and 55 unobserved locations, and the
prediction stage was performed using ESDMOK. The communication results stage includes
the model evaluation stage, which calculates accuracy using the MAPE calculation, the
post-processing stage, which visualizes spatial mapping for rainfall prediction, and the
interpretation of results to gain knowledge that can be used as a recommendation. The last
stage is operationalization, which involves documenting research results and disseminating
scientific papers in journals.
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3.3. Framework ESDMOK for Prediction

Based on the gap analysis, ESDMOK is a spatial model that can predict unobserved
locations and considers spatial dependencies in exogenous variables. Figure 3 shows
the framework diagram for ESDMOK planning as part of the model-building stage. As
mentioned in the data preparation stage, the process starts with inputting climate data
sourced from NASA POWER. Next, in the data pre-processing stage, removing missing
values (−999), aggregating daily data into monthly data, and selecting duplicate data. In
this study, climate data from NASA POWER went through a pre-processing data stage
using an R-Shiny web application, available at the following link: https://annisanurfalah.
shinyapps.io/Pre-ProcessingData/ (accessed on 26 September 2023). The resulting pre-
processed data were split into observed and unobserved locations, which can be seen in
Appendix A. The observed locations were used as an input in the OK method for predicting
climate data at unobserved locations. In this study, predictions at unobserved locations
were calculated with an OK method using an R-Shiny web application, available at the
following link: https://annisanurfalah.shinyapps.io/Ordinary-Point-Kriging/ (accessed
on 7 May 2024). The integration results of climate data at observed and unobserved
locations were used to construct an inverse distance weight matrix and spatial autocorre-
lation was assessed using the Moran Index and Scatterplot. If spatial autocorrelation is
detected, the process continues with ESDM, using the Maximum Likelihood Estimation
(MLE) method. Parameter estimates for ESDM are then calculated, followed by evaluat-
ing prediction accuracy using Mean Absolute Percentage Error (MAPE).The prediction
calculations used the ESDM via an R-Shiny web application, available at the following
link: https://andriyanafalah.shinyapps.io/SDM-Expansion/ (accessed on 11 June 2024).
The prediction results are then processed by visualizing the spatial mapping in the form
of web application-based maps, choropleth maps and providing interpretation to gain
valuable insights.
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3.4. Prediction Result of OK Method at Unobserved Locations

Semivariogram values were calculated based on all possible distance pairs, where
the distance function used was the Euclidean distance, a function of the distance h, which
describes the difference between the main variable and the difference in the additional
variable h. Equation (1) was used to determine the semivariogram value and the number
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of distance pairs. The research data that were observed consisted of 64 districts/cities for
six climate data categories, including rainfall, air temperature, humidity, wind speed, solar
irradiation, and surface pressure. The calculation results of the experimental semivariogram
values are shown in Table 3.

Table 3. Experimental semivariogram values.

No.
The Number of Data
Points with the Same

Distance
Distance

Experimental Semivariogram Values

Rainfall Air
Temperature Humidity Wind

Speed
Solar

Irradiation
Surface
Pressure

1 9 16,986.956 12.612 0.865 1.904 0.186 0.033 2.442
2 40 32,999.848 68.209 1.389 4.282 0.358 0.074 3.495
3 76 54,226.021 72.565 1.429 5.398 0.232 0.107 3.252
4 99 74,327.202 90.908 1.789 5.820 0.285 0.144 4.465
5 96 96,082.271 168.067 2.390 8.202 0.400 0.133 5.657
6 109 117,949.815 159.668 2.880 9.046 0.327 0.180 7.131
7 94 138,289.058 169.586 2.650 8.612 0.386 0.204 5.904
8 90 159,416.873 219.595 2.116 9.571 0.299 0.295 4.560
9 86 181,276.821 265.071 3.191 10.495 0.388 0.297 7.804

10 76 202,391.4 335.187 2.184 9.989 0.399 0.264 4.687
11 83 223,437.78 377.226 2.491 12.527 0.346 0.340 5.015
12 72 244,803.453 371.607 2.246 11.461 0.280 0.419 4.565
13 84 268,191.079 510.885 1.918 12.129 0.429 0.482 3.515
14 55 287,619.435 534.357 3.059 18.205 0.300 0.424 5.342
15 63 309,682.512 581.690 2.848 14.276 0.359 0.488 6.496

The experimental semivariogram is used for fitting the theoretical semivariogram
model. Reference to Table 1, the theoretical semivariogram model with varying sill and
range values in each climate data set was fitted to the experimental semivariogram values.
The theoretical semivariogram was fit for climate data, and the results are plotted in
Appendix B. The sum square error (SSE) number was used to determine which theoretical
semivariogram model was the best. The SSE values for the spherical, exponential, and
Gaussian models are shown in Table 4. Based on the lowest SSE values, indicated by bold
numbers, the optimal models for the rainfall, air temperature, humidity, solar irradiation,
wind speed, and surface pressure are chosen.

Table 4. Theoretical semivariogram for OK method.

SSE Spherical Exponential Gaussian

Rainfall 0.0001093 0.0001135 8.86 × 10−5

Air Temperature 6.96 × 10−9 8.56 × 10−9 8.93 × 10−9

Humidity 1.35 × 10−7 8.59 × 10−8 6.28 × 10−8

Wind Speed 1.92 × 10−8 5.35 × 10−10 4.47 × 10−10

Solar Irradiation 6.76 × 10−10 8.82 × 10−11 4.27 × 10−11

Surface Pressure 7.11 × 10−8 7.82 × 10−8 7.33 × 10−8

Based on Table 4, the Gaussian semivariogram model had the minimum SSE value for
rainfall and air temperature. Then, the exponential semivariogram model had the minimum
SSE value for humidity, wind speed, solar irradiation and surface pressure. Therefore,
these models were selected as the input for the calculation prediction of the OK method
at unobserved locations (55 districts/cities). The integration results at observed locations
(64 districts/cities) and unobserved locations are presented in the form of spatial mapping
visualization, which can be seen in Figure 4. Climate variables in this data visualization
include rainfall, air temperature, humidity, wind speed, solar irradiation, and surface
pressure, which are variables in 119 districts/cities in Java Island, Indonesia. The data of
these climate variables are represented in colours and bars, namely in several colours or
one colour with different levels of intensity, to provide information on the level of value
of the data. This data visualization aims to convey the value of climate variables so that
data visualization can be classified into the explanation category. Still, with the addition
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of several interactive features and for easy use, this data visualization was made in the
form of a web application. Data visualization in the form of spatial mapping based on
web applications was developed using the Javascript programming language, HyperText
Markup Language (HTML), and Cascade Style Sheets (CSS) style sheet language. Javascript
was used to modify the display to handle data processing and data structures, while HTML
and CSS were used for the content of the webpage, namely the layout and structure of the
display. Several libraries were used in this data visualization, namely the leaflet library as a
base map, map features such as overlay, zoom in, zoom out, and pan, and another library
including highchart for data representation in the form of bar charts.
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3.5. Prediction Result of the ESDM

The estimation of prediction parameters in the ESDM was conducted using an R-Shiny
web application. An estimated ρ̂ value of 0.999 was obtained, producing an optimum spatial
lag with a positive value (ρ̂ > 0) and indicating spatial lag dependence. It signified the
influence of adjacent locations within the Java Island region on rainfall prediction data. It
shows that the phenomenon of rainfall on Java Island has a positive spatial autocorrelation,
meaning that if districts/cities on Java Island have high rainfall, then other districts/cities
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around it have high rainfall as well or are not much different from the other districts/cities.
The results of the parameter estimate calculation β̂0 and θ̂ are shown in Table 5.

Base on Table 5, the estimate β̂0 measures the direct impact of the exogenous variables
on rainfall level in the same region, and the estimate θ̂ captures the spillover effects of the
exogenous variables on rainfall level. Based on the estimate β̂0, we can obtain the estimate
β̂ from which different parameter estimates were obtained for each exogenous variable in
119 districts/cities. It explains that the ESDM produces different parameter estimates for
each exogenous variable at each location due to the expansion of the exogenous variable
matrix involving latitude and longitude information at each location. The highest effect on
the rainfall is given by the surface pressure and the lowest is humidity. The ESDM equation
for each location can be found in Appendix C. A visualization of rainfall prediction in
119 districts/cities of Java Island is shown in Figure 5.

Based on Figure 5, the highest monthly rainfall predictions, with values above 220 mm,
were in West Java, such as in Ciamis, Tasikmalaya, and Pangandaran, while the lowest
monthly rainfall predictions, with values below 140 mm, were in East Java, such as in
Probolinggo, Probolinggo City, Situbondo, and Bondowoso. The proposed model resulted
in a MAPE value of 1.956%, indicating very accurate prediction.

Table 5. Parameter-estimated value of SDM.

Coefficient
Parameter-Estimated Value

^
β0

^
θ

X1 (air temperature)
β̂latitude 1.602

−9.262
β̂longitude 2.963

X2 (humidity)
β̂latitude 0.197

−3.725
β̂longitude 0.427

X3 (wind speed)
β̂latitude 0.838

−9.497
β̂longitude 0.143

X4 (solar irradiation)
β̂latitude 6.598

−0.499
β̂longitude −0.416

X5 (surface pressure)
β̂latitude −5.551

3.015
β̂longitude 10.844
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4. Discussion

Data analytics life cycle methodology consists of six stages and is used to analyze big
climate data sourced from NASA POWER. The initial step taken is formulating research
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problems regarding the impact of rainfall on natural disasters. Problem identification
includes spatial dependencies on climate variables that affect rainfall on the island of
Java, Indonesia and initial hypotheses based on the theory that supports ESDMOK. Data
preparation begins with collecting climate variable data containing location coordinate
information, determining the observation time interval in the form of daily data, and
selecting six climate variables: rainfall, air temperature, humidity, wind speed, solar
irradiation, and surface pressure. Furthermore, the data pre-processing stage includes
cleaning missing values, aggregating daily data to monthly data, and selecting duplicate
data. Model planning integrates location data with climate variables as inputs in ESDMOK.
Model development is one of the main objectives of our proposed technique for rainfall
prediction. In the model-building stage, climate variables were predicted at 55 unobserved
locations using the OK method based on 64 observed locations. The OK method uses
the experimental semivariogram to fit the theoretical semivariogram model. The best
theoretical semivariogram models for fitting are Gaussian and exponential models, with
minimum SSE. Furthermore, based on the spatial autocorrelation test, spatial dependency
exists in both rainfall and exogenous variables, contributing significantly to the accuracy of
prediction results using ESDM. Communication of results gives very accurate prediction
results, as shown by MAPE of 1.956%. The surface pressure variable has the largest
influence on rainfall, and the smallest is wind speed. Furthermore, the post-processing
stage is a visualization of spatial mapping for rainfall prediction and the interpretation of
results to gain knowledge that can be used as a recommendation.

The ESDMOK was applied to predict rainfall in 119 districts/cities in Java Island,
Indonesia, which is influenced by exogenous variables in the form of climate variables. Rain-
fall prediction is important in climate change in accordance with goal 13 of the Sustainable
Development Goals (SDGs) concerns climate action. The summary of this research under-
scored that the level of rainfall in each region, based on the data from 119 districts/cities in
Java Island, Indonesia, was significantly influenced by other climate-variable factors, such
as air temperature, humidity, solar irradiation, wind speed and surface pressure [7]. The
data complexity implies the need for a more effective technique. The incorporation of deep
learning approaches and leveraging of big data should be considered to further enhance
the prediction and analysis of rainfall in the study region.

5. Conclusions

In conclusion, this study proposes an ESDM and an interpolation technique with the
OK method to calculate predictions at unobserved locations. ESDMOK can be used for
rainfall prediction in spatial dependence on exogenous variables. Our proposed technique
can identify spatial rainfall patterns, capture spatial dependence between observation
units within the region and incorporate relevant exogenous variables; the model improves
rainfall prediction accuracy. The surface pressure variable effects the most significant
influence of exogenous variables on rainfall, and the smallest is wind speed.

The results of this model support disaster mitigation, water resources management,
and infrastructure development that is resilient to natural disasters. The prediction results
of the ESDMOK in all districts and cities in Java Island can be used as a recommendation
by the Meteorology Climatology and Geophysics Agency (BMKG), Indonesia, agribusiness
companies, and the general public in improving agricultural planning and planting seasons
and providing climate information for the general public, especially related to rainfall in
areas that have Monsoonal patterns.

6. Patents

Granted Copy Right: Copy Right for Computer Program, number 000484474.
Entitled “Application of RShiny Program for Ordinary Point Kriging Method on

Rainfall Data in West Java”, Ministry of Law and Human Rights of the Republic of Indonesia
(Falah, A. N., Ruchjana, B. N., Abdullah, A. S., Rejito, J.), 2023. https://annisanurfalah.
shinyapps.io/Ordinary-Point-Kriging/ (accessed on 7 May 2024).
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Appendix A

Table A1. Observed Locations (64 districs/cities) in Java Island, Indonesia.

Locations Districts/Cities Latitude Longitude Locations Districts/Cities Latitude Longitude

1 Serang City −6.11493 106.152694 33 Pemalang −6.89214 109.378232
2 Pandeglang −6.3092 106.1047 34 Brebes −6.86278 109.037757
3 Tangerang City −6.17139 106.640556 35 Wonosobo −7.36793 109.900846

4 Tangerang Selatan
City −6.28578 106.712261 36 Magelang City −7.48054 110.217695

5 Kepulauan Seribu −5.6629 106.5683 37 Banjarnegara −7.43482 109.566706
6 Jakarta Pusat −6.17 106.82 38 Cilacap −7.69801 109.024769
7 Bekasi City −6.24159 106.992416 39 Sleman −7.68167 110.32333
8 Bogor City −6.59763 106.799568 40 Yogyakarta City −7.80046 110.39128
9 Indramayu −6.32758 108.324936 41 Kulon Progo −7.8596 110.1579
10 Karawang −6.32273 107.337579 42 Situbondo −7.71667 114.05
11 Kuningan −7.01381 108.570064 43 Probolinggo −7.7353 113.4717
12 Kota Cirebon −6.73725 108.550659 44 Sumenep −7.02 113.87
13 Majalengka −6.83638 108.227373 45 Jember −8.1689 113.7022
14 Sumedang −6.83812 107.927532 46 Bondowoso −7.9404 113.9834
15 Garut −7.22791 107.908699 47 Banyuwangi −8.21861 114.366944
16 Cianjur −6.82076 107.14296 48 Pasuruan City −7.63333 112.9
17 Sukabumi −7.06667 106.7 49 Probolinggo City −7.75 113.216667
18 Bandung −7.02525 107.51976 50 Lumajang −8.13 113.22
19 Bandung City −6.91486 107.608238 51 Sampang −7.05 113.25
20 Pangandaran −7.61506 108.498827 52 Mojokerto City −7.47222 112.433611
21 Tasikmalaya City −7.31956 108.202972 53 Surabaya City −7.2458 112.7378
22 Sragen −7.42028 111.023247 54 Blitar −8.13333 112.25
23 Karanganyar −7.60692 110.984515 55 Malang City −7.98 112.62
24 Pati −6.74905 111.037719 56 Nganjuk −7.6 111.9333
25 Wonogiri −7.79826 110.940606 57 Tuban −6.9 112.1
26 Blora −6.96874 111.418254 58 Bojonegoro −7.15 111.88
27 Kudus −6.80739 110.840369 59 Tulungagung −8.0667 111.9
28 Semarang City −7.00223 110.434226 60 Blitar City −8.09861 112.165278
29 Surakarta City −7.58104 110.826678 61 Kediri City −7.81661 112.011917
30 Jepara −6.57941 110.678479 62 Madiun City −7.63 111.5231
31 Batang −6.90668 109.733927 63 Pacitan −8.13333 111.16667
32 Kendal −6.93268 110.203074 64 Ponorogo −7.8686 111.4619
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Table A2. Unobserved Locations (55 districts/cities) in Java Island, Indonesia.

Locations Districts/Cities Latitude Longitude Locations Districts/Cities Latitude Longitude

1 Serang −6.15 106 29 Pekalongan −6.89032 109.677
2 Cilegon City −6.0204 106.0541 30 Tegal −6.87027 109.1602
3 Lebak −6.65 106.2167 31 Pekalongan City −6.88981 109.6738
4 Tangerang −6.3 106.5 32 Tegal City −6.86728 109.1379
5 Jakarta Barat −6.16717 106.7657 33 Magelang −7.47986 110.2176
6 Jakarta Selatan −6.25 106.8 34 Purworejo −7.71297 110.01
7 Jakarta Timur −6.2248 106.9011 35 Temanggung −7.31343 110.1693
8 Jakarta Utara −6.15225 106.8755 36 Banyumas −7.47536 109.1615
9 Bekasi −6.24667 107.1083 37 Kebumen −7.6708 109.6614
10 Bogor −6.59504 106.8166 38 Purbalingga −7.38559 109.3617
11 Kota Depok −6.38559 106.8307 39 Bantul −7.88461 110.3341
12 Purwakarta −6.53868 107.4499 40 Gunung Kidul −7.96668 110.6026
13 Subang −6.57159 107.7587 41 Pamekasan −7.0667 113.5
14 Cirebon −6.8 108.5667 42 Pasuruan −7.73333 112.8333
15 Sukabumi City −6.9237 106.9287 43 Jombang −7.47 112.23
16 Bandung Barat −6.8333 107.4833 44 Mojokerto −7.55 112.5
17 Cimahi City −6.89954 107.5339 45 Sidoarjo −7.45303 112.7173
18 Banjar City −7.37459 108.5582 46 Bangkalan −7.02919 112.7461
19 Ciamis −7.32622 108.3293 47 Gresik −7.1933 112.553
20 Tasikmalaya −7.5 108.1333 48 Lamongan −7.12 112.42
21 Rembang −6.70915 111.3421 49 Malang −7.96688 112.6331
22 Demak −6.89228 110.637 50 Batu City −7.86667 112.5167
23 Grobogan −7.02424 110.9187 51 Madiun −7.61667 111.65
24 Semarang −7.2486 110.4689 52 Trenggalek −8.05 111.72
25 Boyolali −7.51847 110.5932 53 Kediri −7.83333 112.1667
26 Klaten −7.74432 110.6678 54 Magetan −7.65 111.37
27 Sukoharjo −7.68017 110.8326 55 Ngawi −7.4019 111.445
28 Salatiga City −7.33102 110.51

Appendix B

Theoretical semivariogram plot for climate variables, including rainfall, air tempera-
ture, humidity, solar irradiation, wind speed, and surface pressure.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 22 
 

 

Appendix B 
Theoretical semivariogram plot for climate variables, including rainfall, air tempera-

ture, humidity, solar irradiation, wind speed, and surface pressure. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A1. Theoretical semivariogram plot for rainfall. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A2. Theoretical semivariogram plot for air temperature. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A3. Theoretical semivariogram plot for humidity. 

Figure A1. Theoretical semivariogram plot for rainfall.



Mathematics 2024, 12, 2447 18 of 21

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 22 
 

 

Appendix B 
Theoretical semivariogram plot for climate variables, including rainfall, air tempera-

ture, humidity, solar irradiation, wind speed, and surface pressure. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A1. Theoretical semivariogram plot for rainfall. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A2. Theoretical semivariogram plot for air temperature. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A3. Theoretical semivariogram plot for humidity. 

Figure A2. Theoretical semivariogram plot for air temperature.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 22 
 

 

Appendix B 
Theoretical semivariogram plot for climate variables, including rainfall, air tempera-

ture, humidity, solar irradiation, wind speed, and surface pressure. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A1. Theoretical semivariogram plot for rainfall. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A2. Theoretical semivariogram plot for air temperature. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A3. Theoretical semivariogram plot for humidity. Figure A3. Theoretical semivariogram plot for humidity.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 22 
 

 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A4. Theoretical semivariogram plot for solar irradiation. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A5. Theoretical semivariogram plot for wind speed. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A6. Theoretical semivariogram plot for surface pressure. 

  

Figure A4. Theoretical semivariogram plot for solar irradiation.



Mathematics 2024, 12, 2447 19 of 21

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 22 
 

 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A4. Theoretical semivariogram plot for solar irradiation. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A5. Theoretical semivariogram plot for wind speed. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A6. Theoretical semivariogram plot for surface pressure. 

  

Figure A5. Theoretical semivariogram plot for wind speed.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 22 
 

 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A4. Theoretical semivariogram plot for solar irradiation. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A5. Theoretical semivariogram plot for wind speed. 

 
(a) Fitting with spherical model (b) Fitting with exponential model (c) Fitting with Gaussian model 

Figure A6. Theoretical semivariogram plot for surface pressure. 

  

Figure A6. Theoretical semivariogram plot for surface pressure.

Appendix C

Table A3. The ESDM equations for predicting rainfall in 119 districts/cities of Java Island, Indonesia.

No Locations ESDM Equation for Predicting Rainfall

1 Serang City
ŷ(s1) = 0.999

64
∑

i=1
w1iy(s1) + 300.639 × 1(s1) + 2.903X1 − 0.340X2 + 16.948X3 − 5.394X4 − 10.201X5

−9.262
64
∑

i=1
w1iX1 − 3.725

64
∑

i=1
w1iX2 − 9.497

64
∑

i=1
w1iX3 − 0.499

64
∑

i=1
w1iX4 + 3.015

64
∑

i=1
w1iX5

2 Pandeglang
ŷ(s1) = 0.999

64
∑

i=1
w1iy(s1) + 300.639 × 1(s1) − 2.135X1 + 4.572X2 + 4.572X3 + 2.859X4 + 22.605X5

−9.262
64
∑

i=1
w1iX1 − 3.725

64
∑

i=1
w1iX2 − 9.497

64
∑

i=1
w1iX3 − 0.499

64
∑

i=1
w1iX4 + 3.015

64
∑

i=1
w1iX5

3 Tangerang City
ŷ(s1) = 0.999

64
∑

i=1
w1iy(s1) + 300.639 × 1(s1) + 8.362X1 − 4.063X2 + 1.187X3 + 5.062X4 + 5.351X5

−9.262
64
∑

i=1
w1iX1 − 3.725

64
∑

i=1
w1iX2 − 9.497

64
∑

i=1
w1iX3 − 0.499

64
∑

i=1
w1iX4 + 3.015

64
∑

i=1
w1iX5

. . . . . . . . .

119 Ponorogo
ŷ(s1) = 0.999

64
∑

i=1
w1iy(s1) + 300.639 × 1(s1) + 3.881X1 + 22.807X2 − 1.230X3 − 7.267X4 + 1.912X5

−9.262
64
∑

i=1
w1iX1 − 3.725

64
∑

i=1
w1iX2 − 9.497

64
∑

i=1
w1iX3 − 0.499

64
∑

i=1
w1iX4 + 3.015

64
∑

i=1
w1iX5
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