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Abstract: In this paper, we consider the generalized sine-Gordon equation ψtx = (1 + a∂2
x)sinψ and

the sinh-Poisson equation uxx + uyy + σsinhu = 0, where a is a real parameter, and σ is a positive
parameter. Under different conditions, e.g., a = 0, a ̸= 0, and σ > 0, the periods of the periodic
wave solutions for the above two equations are discussed. By the transformation of variables, the
generalized sine-Gordon equation and sinh-Poisson equations are reduced to planar dynamical
systems whose first integral includes trigonometric terms and exponential terms, respectively. We
successfully handle the trigonometric terms and exponential terms in the study of the monotonicity
of the period function of periodic solutions.
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1. Introduction

The sine-Gordon (sG) equation is a non-linear partial differential equation mainly
applied in various fields of theoretical physics, including condensed matter physics, particle
physics, and non-linear optics [1–4]. The sinh-Poisson (sP) equation has been used to study
steady-state flows in an ideal incompressible liquid [5] and the dynamic behaviors of
Kolmogorov flow. Cellular structures with square or hexagonal cells and quasi-crystal
patterns of the sP equation are investigated in [6]. In this paper, we consider the generalized
sG equation

ψtx = (1 + a∂2
x)sinψ, (1)

and the sP equation
uxx + uyy + σsinhu = 0, (2)

where a is a real parameter, ψ(x, t), is a scalar valued function, u(x, y) represents the
electrostatic potential, and σ is a positive parameter related to the plasma density and
temperature.

In 1995, Fokas [7] first derived Equation (1) using the bi-Hamiltonian method. When
a = 0, Equation (1) becomes the standard sG equation. Ling and Sun [8] found multi-elliptic
localized solutions, such as multi-elliptic kink solutions, multi-elliptic breather solutions,
and multi-elliptic kink–breather solutions, using the Darboux–Bäcklund transformation
method for a = 0. When a ̸= 0, many scholars have been devoted to study the dynamic
behaviors of solitary waves in Equation (1). In the case where a < 0, Equation (1) can
be transformed into the sG equation using an appropriate Liouville-type transformation,
and the behaviors of cusped and anti-cusped traveling-wave solutions to Equation (1) are
discussed using conservation laws [9]. For a = −1, Matsuno [10] constructed multi-soliton
solutions in the form of parametric representation, and obtained many different solutions
such as kinks, loop solitons, and breathers. For a = 1, Matsuno [11] found that Equation (1)
has kink and breather solutions but cannot have multi-valued solutions like loop solitons,
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as obtained in Ref. [10]. Gatlik et al. [12] studied the kink–inhomogeneity interaction for an
sG equation. Carretero-González et al. [13] analyzed the interaction dynamics between kink
and anti-kink stripes in a 2D sG equation. The integrable discretized system of Equation (1)
has also been investigated. For instance, Feng et al. [14] constructed N-soliton solutions for
the semi-discrete analogues of Equation (1) in the determinant form. In the continuous limit,
they showed that the semi-discrete, generalized sG equation converged to the continuous
generalized sG Equation (1). Sheng et al. [15] further found that in continuous, semi-
discrete, and fully discrete cases, the generalized sG equation can be reduced into a short
pulse equation. Xiang et al. [16] obtained some solutions and continuum limits to non-local,
discrete sG equations using the bilinearization reduction method. Recently, Lührmann
and Schlag [17] discussed the asymptotic stability of the kink solution for the sG equation
under odd perturbations.

The sP Equation (2) originates from the mean field limit of ideal parallel line vortices
with numerous interactions, and this model depicts a stream function configuration of a sta-
tionary 2D Euler flow [18]. Moreover, the sP Equation (2) is closely related to the long-time
state of the 2D Navier–Stokes flow and some integrable soliton models, and the exact solu-
tions of this equation play an important role in theoretic study and practice applications [19].
In past decades, the existence and multiplicity of solutions for Equation (2) have been inves-
tigated extensively, and the research topics involved equilibria and stability [20], boundary
value problems [21,22], numerical calculations [23], and sign-changing solutions [24,25].
When σ was a sufficiently small positive constant, Bartolucci and Pistoia [26] obtained that
Equation (2) has two pairs of nodal solutions under Dirichlet boundary conditions.

Currently, there is relatively little research on the behaviors of the periodic solutions
of the sG equation and the sP equation. An important feature of the sG equation and sP
equation is that both equations have soliton solutions and periodic solutions. A periodic
solution is a special type of solution for non-linear wave equations, which is essentially
different from the propagation of solitary wave solutions. In 2015, Li and Qiao [27] dis-
cussed the bifurcation and traveling wave solutions of Equation (1) and constructed some
periodic wave solutions using the elliptic integral method. Recently, Zhang and Lou [28]
considered the sG equation with some types of non-localities, and obtained two types of
N-soliton solutions and six types of periodic solutions. Novkoski et al. [29] constructed
periodic solutions of the sG equation and discussed their spectral signatures under both the
large-amplitude and low-amplitude limits. Some authors have also discussed the existence
of periodic solutions and quasi-periodic solutions for the sP equation [30–33]. Particularly,
Wang and Zhou [34] discovered the existence of the periodic solutions for a discretized
system of Equation (2) using critical point theory. In the current paper, our aim is to study the
monotonicity of the period function of periodic solutions for Equations (1) and (2).

Consider a plane differential system
dx
dζ

= A1(x, y)

dy
dζ

= A2(x, y)
(3)

with the first integral H(x, y) = λ, where λ is a parameter called energy. Suppose that the
origin O is the center (3). Let UO ⊂ R2 be the largest punctured neighborhood of O, which
is filled with periodic orbits Υλ encircling O. Define the period function by P(λ) :=

∮
Υλ

dζ.
The monotonicity of P(λ) is closely related to the existence and uniqueness of solutions of
some boundary value, bifurcation, and the stability of periodic waves [35–40]. Many classical
results regarding the monotonicity of the period function P(λ) have been obtained under
the assumption that A1(x, y) and A2(x, y) are polynomials of x and y [41–47]. The knowl-
edges of the Abelian integral, Picard–Fuchs equation, and structural features of polynomial
are powerful tools for dealing with the monotonicity problems of the period function for
polynomial systems. However, in our present paper, using traveling wave transformations,
Equation (1) with a = 0 and Equation (2) can be written into Hamiltonian systems, in
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which trigonometric terms and exponential terms appear in the Hamiltonian function,
respectively. When a ̸= 0, Equation (1) can be written into a plane differential system
that is not Hamiltonian, and the first integral contains trigonometric terms. Although
the integrable system (1) can be transformed into a Hamiltonian form, the transformed
Hamiltonian function is an implicit function for a ̸= 0. The emergences of exponential
terms, trigonometric terms, and implicit functions bring some difficulties for discussing
the monotonicity of the period function. We handle these problems by utilizing some lemmas
proposed by Chicone [48] and Sabatini [49].

The rest of this paper is arranged as follows. In Section 2, some criteria for the
monotonicity of the period function are listed. In Section 3, the monotonicity of the
period function for Equation (1) with a = 0 is discussed. In Section 4, the monotonicity
of the period function for Equation (1) with a ̸= 0 is revealed. In Section 5, we study
the monotonicity of the period function for Equation (2). In Section 6, the conclusion
is summarized.

2. Criteria for the Monotonicity of the Period Function

In order to more logically prove the main results (Theorems 1–4) of the monotonicity
of the period function for Equations (1) and (2), we first introduce some technical lemmas.

Lemma 1 ([48]). Consider a plane Hamiltonian system
dz
dζ

= y,

dy
dζ

= −S′(z)
(4)

with Hamiltonian H(z, y) = 1
2 y2 + S(z), where S(z) is a smooth potential function with a non-

degenerate relative minimum at the origin. Let

K(λ) =
{

z ∈ R
∣∣ S(z) ≤ λ

}
,

where λ is energy defined as (0, λ∗). Set

L(z) :=
S(z)

(S′(z))2 .

Then, one has the following:
(1) If function L′′(z) ≥ 0 for all z ∈ K(λ), the period function P(λ) satisfies P′(λ) ≥ 0 for

λ ∈ (0, λ∗).
(2) If function L′′(z) ≤ 0 for all z ∈ K(λ), the period function P(λ) satisfies P′(λ) ≤ 0 for

λ ∈ (0, λ∗).

Lemma 2 ([49]). Consider a plane Hamiltonian system:
dx
dζ

= G(y),

dy
dζ

= Q(x),
(5)

where G(y) and Q(x) are C1 in a neighborhood of the origin O. Suppose that the origin O is the
center (5). Let x = r cos θ, y = r sin θ. Then, Equation (5) becomes
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
dr
dζ

= ρ(r, θ),

dθ

dζ
= ω(r, θ).

(6)

Assume that there exists a star-shaped set ∆ ⊂ UO, such that ω(r, θ) ̸= 0 for all (r, θ) ∈ ∆ρ,
where ∆ρ is a set in the polar coordinate corresponding to ∆. Let r∆(θ) := sup{r|(r, θ) ∈ ∆ρ}.
Denote Υ∆ := {λ|λ ∈ Υλ} by the set of cycles contained in ∆. Then, one has the following:

(1) If there exist a zero-measure set A ⊂ [0, 2π), such that for all θ ∈ [0, 2π)\A, ∂|ω(r,θ)|
∂r ≥ 0

for r ∈ (0, r∆(θ)), then P′(λ) ≤ 0 for λ ∈ Υ∆.
(2) If there exist a zero-measure set A ⊂ [0, 2π), such that for all θ ∈ [0, 2π)\A, ∂|ω(r,θ)|

∂r ≤ 0
for r ∈ (0, r∆(θ)), then P′(λ) ≥ 0 for λ ∈ Υ∆.

Remark 1. In the following, we introduce two simple examples to illustrate the application of the
above two lemmas.

Example 1. Consider the cubic potentials system
dz
dζ

= y,

dy
dζ

= −2z − 3z2

with Hamiltonian H(z, y) = 1
2 y2 + z2 + z3 = λ. It is easy to verify that the origin is the center point.

There exists a set of periodic orbits encircling the center at the origin. Taking L(z) = z2+z3

(2z+3z2)2 =

1+z
(2+3z)2 , it yields that L′′(z) = 6(3z+5)

(3z+2)4 . Thus, we obtain L′′(z) ≥ 0 for z > − 2
3 . Since the periodic

orbits encircling the origin are confined to the region z > − 2
3 , using Lemma 1, we obtain that the

period function P′(λ) > 0 for λ ∈ (0, 27
4 ).

Example 2. Consider the polynomial system
dx
dζ

= y,

dy
dζ

= −2x − 4x3,
(7)

with Hamiltonian H(x, y) = 1
2 y2 + x2 + x4 = λ. We can verify that the origin is the center point

as there exists a set of periodic orbits encircling the center at the origin. Let x = r cos θ, y = r sin θ.
Then, Equation (7) becomes

dr
dζ

= ρ(r, θ) = −r sin θ cos θ
(

4r2 cos2 θ + 1
)

,

dθ

dζ
= ω(r, θ) = −4r2 cos4 θ − sin2 θ − 2 cos2 θ.

Obviously, ∂|ω(r,θ)|
∂r = 8r(cos θ)4 ≥ 0 for all r ∈ (0,+∞), and by using Lemma 2, we obtain

that the period function P′(λ) ≤ 0 for λ ∈ (0,+∞).

3. The Monotonicity of the Period Function for the Generalized sG Equation in the Case
of a = 0

When a = 0, Equation (1) becomes the standard sG equation [8], which can be directly
written into a Hamiltonian system. For this, in the following we consider the case with
a = 0 for Equation (1).
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Let
ψ(x, t) = ψ(x − ct) = z(ζ), (8)

where ζ = x − ct and c is a real constant. Then, Equation (1) yields

sinz + cz′′ = 0 (9)

at a = 0, where z′ = dz
dζ and z′′ = d2z

dζ2 . We write Equation (9) as


dz
dζ

= y,

dy
dζ

=
−sinz

c
,

(10)

with Hamiltonian
H(z, y) =

1
2

y2 − 1
c

cosz +
1
c
= λ. (11)

System (10) has infinite equilibrium points Ok(kπ, 0), where k ∈ Z, and Z represents
the set of integers.

In the following, we provide the main result of this section.

Theorem 1. In the case that a = 0 and c > 0, there are corresponding period annulus of the infinite
number of centers at the points O2k(2kπ, 0) for Equation (9). The period function P(λ) satisfies
P′(λ) ≥ 0 for λ ∈ (0, 2

c ). Moreover, lim
λ→0

P(λ) = 2
√

cπ and lim
λ→ 2

c

P(λ) = +∞.

Proof. Let M0(0, 0) be the coefficient matrix of the linearized system (10) at equilibrium
point O0(0, 0) and define J = detM0(0, 0). Then,

M0(0, 0) =
(

0 1
− 1

c 0

)
, J =

1
c

.

Using the theory of planar dynamical systems [50], we know that for an equilibrium
point O0(0, 0) of a planar dynamical system, if J < 0, then the equilibrium point is a saddle
point; if J > 0 and Trace(M0(0, 0)) = 0, then the equilibrium point is the center point.

When c > 0, we have J > 0 and Trace(M0(0, 0)) = 0, which implies the equilibrium
point O0(0, 0) is the center point. Using trigonometric identity sin 2kπ = sin 0 = 0, it
follows that the equilibrium points O2k(2kπ, 0) are centers. Similarly, we obtain that the
points O2k+1(2kπ + π, 0) are saddles for c > 0. The phase portrait of system (10) is shown
in Figure 1, and we can see that there exists a class of periodic orbits surrounding the
infinite number of centers O2k(2kπ, 0) if λ satisfies λ ∈ (0, 2

c ). When c > 0, the numerical
simulation of periodic waves of system (10) is plotted in Figure 2.

Since sinz is the function with a period of 2π with respect to z, the monotonicity of the
period function of periodic solutions surrounding the centers O2k(2kπ, 0) are the same, we
only need to consider the center point O0(0, 0). Let

S(z) = −1
c

cosz +
1
c

, L(z) =
S(z)

(S′(z))2 =
c

1 + cos z
.
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Figure 1. The phase portrait of system (10) for c > 0 .
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Figure 2. Periodic waves of system (10) for c > 0 .

A straightforward computation shows that

L′′(z) = −1
4

c(cos z − 2) sec4
( z

2

)
≥ 0

holds for all z ∈ (−π, π). Using Lemma 1, we complete the proof of the first part of
Theorem 1.

Next, we consider the asymptotic analysis. Recall that

1
2

y2 − 1
c

cos z +
1
c
= λ (12)

is a first integral of system (10). Let y = 0, then Equation (12) yields z1,2 = ± arccos(1− cλ).

P(λ) =
√

2
∫ z2

z1

dz√
λ + 1

c cos z − 1
c

=
√

2c
∫ arccos(1−cλ)

− arccos(1−cλ)

dz√
cλ + cos z − 1

. (13)

Let
z = w arccos(1 − cλ), (14)

then

P(λ) =
√

2c
∫ 1

−1

arccos(1 − cλ)√
cλ + cos

(
w arccos(1 − cλ)

)
− 1

dw. (15)
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Let cλ = h. Then, we have h → 0 as λ → 0. Using the Taylor series in h, we have

arccos(1 − cλ)√
cλ + cos

(
w arccos(1 − cλ)

)
− 1

=

√
2√

1 − w2
+

h
(√

2w2 +
√

2
)

12
√

1 − w2
+ O

(
h2
)

. (16)

Therefore,

lim
λ→0

P(λ) = lim
h→0

√
2c

∫ 1

−1

√
2√

1 − w2
+ O(h)dw = 2

√
cπ.

Let arccos(1 − cλ) = l, then we obtain l → π as λ → 2
c . Let lw = q. Then, using (15),

we have

lim
λ→ 2

c

P(λ) = lim
l→π

√
2c

∫ 1

−1

l√
cos

(
wl

)
− cos l

dw = lim
l→π

√
2c

∫ l

−l

1√
cos q − cos l

dq = +∞.

This completes the proof of the second part of Theorem 1.

When c = 1, the graph of the period function P(λ) of system (10) at λ ∈ (0, 2) is shown
in Figure 3, and it indicates that the numerical result is consistent with the theoretical
analysis result.

0.5 1.0 1.5 2.0
λ

6

7

8

9

10

11

12

Figure 3. The graph of the period function P(λ) of system (10) for c = 1.

4. The Monotonicity of the Period Function for the Generalized sG Equation in the Case
of a ̸= 0

In this section, we consider the generalized sG Equation (1) in the case with a ̸= 0.
When acosz + c ̸= 0, using the traveling wave transformation (8), Equation (1) can be
written as

sinz
acosz + c

− (z′)2 asinz
acosz + c

+ z′′ = 0. (17)

Equation (17) is equivalent to the following planar dynamical system:
dz
dζ

= y,

dy
dζ

=
(ay2 − 1) sin z

c + a cos z
,

(18)

with the first integral

H(z, y) = y2(c + a cos z)2 − (a cos2 z + 2c cos z − 2c − a) = λ. (19)
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It should be mentioned that system (18) is not a Hamiltonian system but it can be
transformed into the form of a Hamiltonian. Note that z(ζ) is a solution of (18) if and only
if v(ζ) is a solution of the following planar Hamiltonian system

dv
dζ

= y,

dy
dζ

= −W(v),
(20)

where the implicit function W(v) = sin z
c+a satisfies the equation

cz + a sin z = (c + a)v. (21)

Since W(v) in Hamiltonian system (20) is an implicit function and it cannot be rep-
resented explicitly, it is difficult to analyze the monotonicity of the period function using
Lemma 1. However, we can tackle this problem using Lemma 2.

Theorem 2. In the case that a + c > 0, there are corresponding period annulus surrounding the
center points O2k(2kπ, 0) for Equation (18), where k ∈ Z.

(1) If c > a > 0, or in the case that c > −a > 0, the corresponding period function P(λ) satisfies
P′(λ) ≥ 0 for 0 < λ < 4c.

(2) If a > c > 0, then P′(λ) ≥ 0 for 0 < λ < (a+c)2

a .

(3) If a > −c > 0, then P′(λ) ≤ 0 for 0 < λ < (a+c)2

a .

Proof. Obviously, the points O2k(2kπ, 0) are equilibria of (18). Since

sin z = sin(z + 2kπ), cos z = cos(z + 2kπ),

from the expression of (18), we only need to consider the point O0(0, 0). Since the linear
coefficient matrix of (18) at the origin is(

0 1
− 1

a+c 0

)
,

using the theory of planar dynamical system, it follows that the point O0(0, 0) is the center
of a + c > 0. The phase portrait of system (18) is shown in Figure 4 under different
parametric conditions.

Using identities

sin z = 2 sin
z
2

cos
z
2

, 1 − cos2 z = sin2 z, cos z − 1 = −2 sin2 z
2

,

Equation (19) can be rewritten as

H(z, y) = y2(c + a cos z)2 + (4a + 4c) sin2 z
2
− 4a sin4 z

2
= λ. (22)

When c > a > 0, or in the case that c > −a > 0, there exists a set of period orbits
surrounding the center O0(0, 0) for 0 < λ < 4c, and the abscissa of the intersection point
between the periodic orbit and the z-axis satisfies −π < z < π; see Figure 4a,c.
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Figure 4. Phase portraits of system (18) for a + c > 0.

Since systems (18) and (20) have the same monotonicity of the period function defined
in the neighborhood of origin, we only consider system (20). Since W(0) = 0, one can set

W(v) = W ′(0)v + W1(v). (23)

Using polar coordinate transformation v = r cos θ, y = r sin θ, system (20) becomes
dr
dζ

= r cos θ sin θ − sin θW(r cos θ) = ρ(r, θ),

dθ

dζ
= −W ′(0) cos2 θ − sin2 θ − cos θW1(r cos θ)

r
= ω(r, θ).

(24)

Note that

r2ω(r, θ) = r2 dθ

dζ
= −W ′(0)v2 − y2 − vW1(v) = −vW(v)− y2. (25)



Mathematics 2024, 12, 2474 10 of 20

Using (21), we obtain

vW(v) = v
sin z
c + a

=
(cz + a sin z) sin z

(c + a)2 .

When c > a > 0, or in the case that c > −a > 0, we obtain that vW(v) > 0 for
z ∈ (−π, 0) ∪ (0, π).

Using (25), we have r2ω(r, θ) < 0 for z ∈ (−π, 0) ∪ (0, π). Thus,

∂|ω(r, θ)|
∂r

= −∂ω(r, θ)

∂r
= cos θ

∂
(

W1(r cos θ)
r

)
∂r

=
r2 cos2 θW ′

1(r cos θ)− r cos θW1(r cos θ)

r3

=
v2W ′

1(v)− vW1(v)

(v2 + y2)
3
2

(26)

for θ ∈ [0, 2π) and θ ̸= π
2 , 3π

2 . Using (21) and (23), it can be deduced that

W ′
1(v) = W ′(v)− W ′(0) =

cos z
c + a cos z

− 1
c + a

. (27)

Hence,

v2W ′
1(v)− vW1(v) = v2

(
cos z

c + a cos z
− 1

c + a

)
− v

(
sin z
c + a

− 1
c + a

v
)

= v
(

v
cos z

c + a cos z
− sin z

c + a

)
=

c
(a + c)2

(z cos z − sin z)(a sin z + cz)
a cos z + c

.

(28)

When c > a > 0, or in the case that c > −a > 0, we can directly verify that v2W ′
1(v)−

vW1(v) < 0 for z ∈ (−π, 0) ∪ (0, π). Using (26), we obtain ∂|ω(r,θ)|
∂r ≤ 0 for almost all

θ ∈ [0, 2π). From Lemma 2, we have P′(λ) ≥ 0 for 0 < λ < 4c.
Similarly, when a > c > 0, we have v2W ′

1(v)− vW1(v) < 0 for z ∈ (− arccos(− c
a ), 0)∪

(0, arccos(− c
a )). Using (26) again, we obtain ∂|ω(r,θ)|

∂r ≤ 0 for z ∈ (− arccos(− c
a ), 0) ∪

(0, arccos(− c
a )). From Lemma 2, we have P′(λ) ≥ 0 for 0 < λ < (a+c)2

a .
When a > −c > 0, we have v2W′

1(v) − vW1(v) > 0 for z ∈ (− arccos(− c
a), 0) ∪

(0, arccos(− c
a)). Using (26), it yields ∂|ω(r,θ)|

∂r ≥ 0 for z ∈ (− arccos(− c
a), 0)∪ (0, arccos(− c

a)).

From Lemma 2, we obtain P′(λ) ≤ 0 for 0 < λ < (a+c)2

a .

Taking c = 2 and a = 1, the plot of P(λ) for λ ∈ (0, 4c) is presented in Figure 5a.
Taking c = 2 and a = −1, the plot of P(λ) for λ ∈ (0, 4c) is shown in Figure 5b. Taking

a = 2 and c = 1, the plot of P(λ) for λ ∈ (0, (a+c)2

a ) is presented in Figure 5c. Taking a = 2

and c = −1, the plot of P(λ) for λ ∈ (0, (a+c)2

a ) is shown in Figure 5d. The numerical
simulation verifies the qualitative analytical results of Theorem 2.
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Figure 5. When a + c > 0, the plots of P(λ) are associated with the center O0(0, 0) for system (18).

Theorem 3. In the case that a > −c > 0, there are corresponding period annulus surrounding
the center points O2k+1(2kπ + π, 0) for Equation (18), where k ∈ Z. The corresponding period

function P(λ) satisfies P′(λ) ≥ 0 for 4c < λ < (a−c)2

a .

Proof. It is straightforward to verify that the points O2k+1(2kπ + π, 0) are equilibria of (18).
We make a translation to move the equilibrium points O2k+1(2kπ + π, 0) to the origin. Let
z − (2kπ + π) = ẑ and y − 0 = ŷ. Then, system (18) becomes

dẑ
dζ

= ŷ,

dŷ
dζ

=
(1 − aŷ2) sin ẑ

c − a cos ẑ
.

(29)

The linear coefficient matrix of (29) at the origin is as follows:(
0 1

1
c−a 0

)
.

Using the theory of the planar dynamical system, it follows that the points O2k+1(2kπ +
π, 0) are centers for a > −c > 0. From Figure 4d, we can see that there are corresponding
period annulus surrounding the center points O2k+1(2kπ + π, 0) for Equation (18).

Note that ẑ(ζ) is a solution of (29) if and only if v̂(ζ) is a solution of the planar
Hamiltonian system: 

dv̂
dζ

= ŷ,

dŷ
dζ

= −Ŵ(v̂),
(30)

where the implicit function Ŵ(v̂) = sin ẑ
a−c satisfies the following equation:

−cẑ + a sin ẑ = (a − c)v̂. (31)

Since Ŵ(0) = 0, we set

Ŵ(v̂) = Ŵ ′(0)v̂ + Ŵ1(v̂). (32)
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Let v̂ = r̂ cos θ̂, y = r̂ sin θ̂. Then, system (30) becomes
dr̂
dζ

= r̂ cos θ̂ sin θ̂ − sin θ̂Ŵ(r̂ cos θ̂) = ρ̂(r̂, θ̂),

dθ̂

dζ
= −Ŵ ′(0) cos2 θ̂ − sin2 θ̂ − cos θ̂Ŵ1(r̂ cos θ̂)

r̂
= ω̂(r̂, θ̂).

(33)

Obviously,

r̂2ω̂(r̂, θ̂) = r̂2 dθ̂

dζ
= −v̂Ŵ(v̂)− ŷ2. (34)

Using (31), we obtain

v̂Ŵ(v̂) = v̂
sin ẑ
a − c

=
(−cẑ + a sin ẑ) sin ẑ

(a − c)2 .

When a > −c > 0, we obtain that v̂Ŵ(v̂) > 0 for ẑ ∈ (−π, 0) ∪ (0, π). Using (34), we
have r̂2ω̂(r̂, θ̂) < 0 for ẑ ∈ (−π, 0) ∪ (0, π). Thus,

∂|ω̂(r̂, θ̂)|
∂r̂

= −∂ω̂(r̂, θ̂)

∂r̂
=

v̂2Ŵ ′
1(v̂)− v̂Ŵ1(v̂)

(v̂2 + ŷ2)
3
2

(35)

for ẑ ∈ (−π, 0) ∪ (0, π). Using (31), we have

Ŵ ′
1(v̂) = Ŵ ′(v̂)− Ŵ ′(0) =

cos ẑ
−c + a cos ẑ

− 1
a − c

. (36)

Therefore,

v̂2Ŵ ′
1(v̂)− v̂Ŵ1(v̂) =

−c
(a − c)2

(ẑ cos ẑ − sin ẑ)(a sin ẑ − cẑ)
a cos ẑ − c

. (37)

When a > −c > 0, we can verify that v̂2Ŵ′
1(v̂)− v̂Ŵ1(v̂) < 0 for ẑ ∈ (−arccos(− c

a), 0)∪
(0, arccos(− c

a)). Using (35), we obtain ∂|ω̂(r̂,θ̂)|
∂r̂ < 0 for ẑ ∈ (−arccos(− c

a), 0)∪ (0, arccos(− c
a)).

Returning to Equations (18) and (19), using Lemma 2, we have P′(λ) ≥ 0 for 4c < λ < (a−c)2

a .

Taking a = 2 and c = −1, the plot of P(λ) for λ ∈ (4c, (a−c)2

a ) is presented in Figure 6.
The numerical simulation verifies the qualitative analytical results of Theorem 3.

-4 -2 2 4 6
�

10.6

10.8

11.0

11.2

11.4

11.6

11.8

P(�)

Figure 6. When a = 2 and c = −1, the plot of P(λ) associated with the center O1(π, 0) for system (18).
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5. The Monotonicity of the Period Function for the sP Equation

Let
ξ = k1x + k2y, (38)

where k1 and k2 are constants. Substituting (38) into Equation (2) yields

k2
1

d2u
dξ2 + k2

2
d2u
dξ2 = −σ

eu − e−u

2
. (39)

Equation (39) can be written as a plane Hamiltonian system:
du
dξ

= p,

dp
dξ

= −N(u),
(40)

with Hamiltonian
H(u, p) =

1
2

p2 − b
2
(eu + e−u) + b = λ, (41)

where N(u) = −b eu−e−u

2 , b = − σ
k2

1+k2
2
, and k2

1 + k2
2 ̸= 0. Since σ > 0, we have b < 0.

Theorem 4. In the case that b < 0, there is a class of periodic solutions in a neighborhood of
the point O(0, 0) for Equation (40). The period function satisfies P′(λ) ≤ 0 for λ ∈ (0,+∞).
Moreover, lim

λ→0
P(λ) = 2π√

−b
and lim

λ→+∞
P(λ) = 0.

Proof. When b ̸= 0, there is an equilibrium point O(0, 0) of system (40). Since the linear
coefficient matrix of (40) at equilibrium point O(0, 0) is(

0 1
b 0

)
,

by the theory of the planar dynamical system, we know that the equilibrium point O(0, 0)
is a center point for b < 0. With numerical simulations, the phase portrait of system (40) is
plotted in Figure 7, and the periodic waves are plotted in Figure 8.

-1.0 -0.5 0.5 1.0
u

-2

-1

1

2

Figure 7. Phase portrait of (40) for b < 0 .
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-0.5

0.5

1.0

Figure 8. Periodic waves of (40) for b < 0 .

From Figure 7, we can see that if b < 0 and λ > 0, then there is a class of periodic
orbits in a neighborhood of the center O(0, 0). Using (41), we have

P(λ) =
∮

Υλ

du
p

=
√

2
∫ u2

u1

du√
λ + b

2 (e
u + e−u)− b

, (42)

where u1 and u2 are the roots of equation − b
2 (e

u + e−u) + b = λ, and u1 < 0 < u2. Since
H(u, p) is an even function with respect to u and p, it yields that u1 = −u2.

Since N(0) = 0, we set
N(u) = N′(0)u + N1(u). (43)

Using the polar coordinate transformation u = r̃ cos θ̃, p = r̃ sin θ̃, system (40) becomes
dr̃
dξ

= r̃ cos θ̃ sin θ̃ − sin θ̃N(r̃ cos θ̃) = ρ̃(r̃, θ̃),

dθ̃

dξ
= −N′(0) cos2 θ̃ − sin2 θ̃ − cos θ̃N1(r̃ cos θ̃)

r̃
= ω̃(r̃, θ̃).

(44)

Note that

r̃2ω̃(r̃, θ̃) = r̃2 dθ̃

dξ
= −N′(0)u2 − p2 − uN1(u) = −uN(u)− p2. (45)

When b < 0, we have

uN(u) = −bu
eu − e−u

2
> 0

for u ∈ R\{0}. Using (45), we obtain r̃2ω̃(r̃, θ̃) < 0 for u ∈ R\{0}.
Thus,

∂|ω̃(r̃, θ̃)|
∂r̃

= −∂ω̃(r̃, θ̃)

∂r̃
= cos θ̃

∂
(

N1(r̃ cos θ̃)
r̃

)
∂r̃

=
u2N′

1(u)− uN1(u)

(u2 + p2)
3
2

(46)
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for θ̃ ∈ [0, 2π) and θ̃ ̸= π
2 , 3π

2 . Obviously,

N′
1(u) = N′(u)− N′(0) = −b

eu + e−u

2
+ b. (47)

Thus,

u2N′
1(u)− uN1(u) = u2

(
−b

eu + e−u

2
+ b

)
− u

(
−b

eu − e−u

2
+ bu

)
= bu

(
sinh u − u cosh u

)
.

(48)

When b < 0, we have u2N′
1(u)− uN1(u) > 0 for u ∈ R\{0} . Using (46), we obtain

∂|ω̃(r̃,θ̃)|
∂r̃ ≥ 0 for θ̃ ∈ [0, 2π) and θ̃ ̸= π

2 , 3π
2 . From Lemma 2, we have P′(λ) ≤ 0 for

λ ∈ (0,+∞).
Next, we discuss the asymptotic behavior of P(λ). Recall that

P(λ) =
√

2
∫ u2

u1

du√
λ + b

2 (e
u + e−u)− b

(49)

and u1 = −u2. Since u1 and u2 are the roots of equation

− b
2
(eu + e−u) + b = λ (50)

and u1=−u2, it deduces that lim
λ→0

u1 = 0 = lim
λ→0

u2. Let

u = u2w.

Then, Equation (49) becomes

P(λ) =
√

2
∫ 1

−1

u2dw√
λ + b

2 (e
wu2 + e−wu2)− b

. (51)

Using (50) and the Taylor expansion with respect to u2, we have

u2√
λ + b

2 (e
wu2 + e−wu2)− b

=

√
2√

−b(1 − w2)
−

u2
2
(
w2 + 1

)
12

(√
2
√
−b(1 − w2)

) + O
(

u2
2

)
. (52)

Thus, using (51) and (52), we obtain

lim
u2→0

P =
√

2
∫ 1

−1

√
2dw√

−b(1 − w2)
=

2√
−b

π. (53)

It follows that P → 2√
−b

π as λ → 0.
We also can obtain that lim

λ→+∞
P(λ) = 0. The proof process of the asymptotic property

of λ → +∞ is similar to that of λ → 0, so we omit it here.

Taking b = −2, the plot of P(λ) for λ ∈ (0,−b) is presented in Figure 9a, and the plot
of P(λ) for λ ∈ (−b,−100b) is presented in Figure 9b, the plot of P(λ) at infinity is also
presented in Figure 9c. The numerical simulation verifies the qualitative analytical results
of Theorem 4.
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Figure 9. The plots of P(λ) at b = −2.
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Remark 2. If Lemma 1 is used to analyze the monotonicity of the period function (42), then we can
only obtain that P′(λ) ≤ 0 for λ ∈ (0,−b), but the monotonicity of P(λ) on (−b,+∞) cannot be
theoretically proven directly. In fact, choosing S(u) = − b

2 (e
u + e−u) + b, we have

L(u) =
S(u)

(S′(u))2 =
−2(eu + e−u) + 4

b(eu − e−u)2 . (54)

Taking the derivative of L(u) twice, it yields

L′′(u) =
2eu(e2u − 4eu + 1

)
−b(eu + 1)4 . (55)

A short calculation revealed that for u ∈ (− ln(2 +
√

3), ln(2 +
√

3)), L′′(u) < 0 holds.
From Lemma 1, it implies that P′(λ) ≤ 0 for λ ∈ (0,−b). However, Equation (55) yields that
L′′(u) > 0 for u > ln(2 +

√
3). Thus, L′′(u) < 0 is impossible for all u ∈ (ln(2 +

√
3),+∞),

and the condition of Lemma 1 is not satisfied.

6. Conclusions

In this paper, we considered the monotonicity of the period function of the generalized
sine-Gordon Equation (1) and the sinh-Poisson Equation (2). Using Lemma 1, we obtained
the monotonicity of the period function of Equation (1) for a = 0, and the result can be
found in Theorem 1. Using Lemma 2, we obtained the monotonicity of the period function
of Equation (1) for a ̸= 0, and the results can be found in Theorems 2 and 3. Using Lemma
2, the monotonicity of the period function of Equation (2) was provided, and the result
can be found in Theorem 4. The numerical simulations were used, and the results of the
numerical simulations were consistent with the theoretical analysis. In the future, we will
further investigate the stability of the periodic solutions of Equations (1) and (2).
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