
Citation: Mondal, S.K.; Zheng, Z.;

Cheng, Y. On the Optimization of

Kubernetes toward the Enhancement

of Cloud Computing. Mathematics

2024, 12, 2476. https://doi.org/

10.3390/math12162476

Academic Editors: Zheyi Chen,

Zhengxin Yu and Wang Miao

Received: 14 May 2024

Revised: 6 August 2024

Accepted: 8 August 2024

Published: 10 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Optimization of Kubernetes toward the Enhancement of
Cloud Computing
Subrota Kumar Mondal *,† , Zhen Zheng † and Yuning Cheng

School of Computer Science and Engineering, Macau University of Science and Technology, Taipa,
Macau 999078, China; kcrimson0021@gmail.com (Y.C.)
* Correspondence: skmondal@must.edu.mo
† These authors contributed equally to this work.

Abstract: With the vigorous development of big data and cloud computing, containers are becoming
the main platform for running applications due to their flexible and lightweight features. Using a
container cluster management system can more effectively manage multiocean containers on multiple
machine nodes, and Kubernetes has become a leader in container cluster management systems,
with its powerful container orchestration capabilities. However, the current default Kubernetes
components and settings have appeared to have a performance bottleneck and are not adaptable to
complex usage environments. In particular, the issues are data distribution latency, inefficient cluster
backup and restore leading to poor disaster recovery, poor rolling update leading to downtime,
inefficiency in load balancing and handling requests, poor autoscaling and scheduling strategy
leading to quality of service (QoS) violations and insufficient resource usage, and many others.
Aiming at the insufficient performance of the default Kubernetes platform, this paper focuses on
reducing the data distribution latency, improving the cluster backup and restore strategies toward
better disaster recovery, optimizing zero-downtime rolling updates, incorporating better strategies for
load balancing and handling requests, optimizing autoscaling, introducing better scheduling strategy,
and so on. At the same time, the relevant experimental analysis is carried out. The experiment results
show that compared with the default settings, the optimized Kubernetes platform can handle more
than 2000 concurrent requests, reduce the CPU overhead by more than 1.5%, reduce the memory by
more than 0.6%, reduce the average request time by an average of 7.6%, and reduce the number of
request failures by at least 32.4%, achieving the expected effect.

Keywords: Docker; Kubernetes; cloud computing; optimization

MSC: 68M10; 68M14; 68M20; 68T07; 68T09; 68T20; 68T37

1. Introduction

In cloud computing, virtual infrastructure based on virtual machines has been widely
used to support various businesses. A virtual machine is software that contains an operating
system, application program set, and related data. They run on top of the hypervisor,
which is located on the basic operating system. In addition to emulating an operating
system, a virtual machine can also provide isolation for each operating system [1,2]. In
the case of an uncertain service load, this resource management method using traditional
virtual machines as resource schedulers is difficult to maintain. To improve the flexibility
and efficiency of the cloud, people turn their attention to containerization—an important
lightweight virtualization technology that can help developers deploy modern applications
faster and more efficiently [3–5].

Containerization is a way of running multiple software applications on the same
machine. Each program runs in an isolated environment called a container. Each container
has all the files and libraries needed for normal operation [3–5]. Namespace technology

Mathematics 2024, 12, 2476. https://doi.org/10.3390/math12162476 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162476
https://doi.org/10.3390/math12162476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0008-7797
https://doi.org/10.3390/math12162476
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162476?type=check_update&version=1


Mathematics 2024, 12, 2476 2 of 26

allows multiple containers to be directly deployed on the same machine and share resources,
and containers can be created, deployed, and destroyed in a faster way. These advantages
make the container lightweight, efficient, and low-cost. As container technology gains more
traction among developers, many organizations are starting to use container technology
to deploy applications in production. As the number of containers increases, container
management and orchestration becomes challenging. To operate and manage multiple
containers, a container orchestration platform is required to run and jointly manage multiple
container instances. Currently, the most popular containers and container orchestration
platforms are Docker [3,6,7] and Kubernetes [3,8–10].

Docker works with packaging applications and their dependencies. The container-
ization scheme employed by Docker allows for the creation of multiple containers using
a single image and a shared operating system [3,6,7]. Docker itself cannot automatically
schedule and scale containers, a container management system is needed to maximize
the capabilities and benefits of containers, and Kubernetes is one of the most iconic of
these systems. Kubernetes, K8s in short, is used for managing containers and it is most
widely used [3,8–10]. Kubernetes, built on container technology, provides simple functions
such as resource scheduling, service discovery, high availability management, and elastic
scaling for cross-host containerized applications. It provides improved management tools
to support development, deployment, operation monitoring, etc. It can realize application
development, automatic management of multiplatform transplantation, and other func-
tions. However, we observe that Kubernetes has several areas that need improvement,
especially, the performance of native components of Kubernetes cannot cope with complex
application requirements, e.g., large-scale services and applications in cloud computing,
edge computing, and many others. As stated earlier, Kubernetes with default components
and settings encounter issues, such as high data distribution latency [11,12], inefficiency in
cluster backup and restore leading to poor disaster recovery [13,14], poor rolling update
leading to downtime [15–17], inefficiency in load balancing and handling requests [18],
poor autoscaling [10,19] and scheduling strategy [20–23] leading to quality of service (QoS)
violations and insufficient resource usage, and many others. To this end, in this study, our
goal is to enhance cloud computing systems and services while optimizing Kubernetes.
With Kubernetes toward enhancing cloud computing services, the biggest challenge is
to choose better-performing components while replacing native components and using
appropriate methods to optimize. Our plan is to select different components for testing and
perform comparative analysis, modify the underlying architecture at the same time, and
finally verify the results through detailed experiments. To this end, we focus on improving
the performance of K8s cloud computing by using new components and modifying K8s
architecture. In essence, we explore the following areas in great detail:

• Optimizing the data distribution latency, alongside improving the cluster backup and
restore strategies toward better disaster recovery.

• Reducing configuration time and optimizing zero-downtime rolling updates while
improving the robustness of Kubernetes services.

• Optimizing autoscaling strategies for Kubernetes toward optimizing cloud applica-
tions and services.

• Introducing a viable Scheduler for Kubernetes toward optimal load balancing and
scheduling.

• Exploring different open-source frameworks toward end-to-end enhancement of
Kubernetes.

The rest of this article is organized as follows. Section 2 (Architecture and Principles of
Kubernetes) presents the architecture, key features, and the major components of Kubernetes.
Section 3 (Default Kubernetes Cluster and Limitations) introduces the various performance
problems of Kubernetes and proposes viable optimization strategies. Section 4 (Proposed
Approach) demonstrates the approaches we follow, adopt, and propose. Section 5 (Exper-
iments) presents the overall experimental analysis and results. Section 6 (Related Work)



Mathematics 2024, 12, 2476 3 of 26

presents a literature review in the context of our analysis. The conclusion and future work
are in the last section.

2. Architecture and Principles of Kubernetes

Kubernetes was proposed by Google in 2015 as a container orchestration platform
that can deploy applications on multiple host servers [3,8–10]. As stated earlier, Kuber-
netes, built on container technology, provides simple functions such as resource scheduling,
service discovery, high availability management, and elastic scaling for cross-host con-
tainerized applications. It provides improved management tools to support development,
deployment, operation monitoring, etc. It can realize application development, auto-
matic management of multiplatform transplantation, and other functions. In this section,
we briefly present the architecture, features, and components of Kubernetes related to
our study.

2.1. Kubernetes Architecture

Kubernetes is a master–slave distributed architecture, mainly composed of master
nodes, worker (node) nodes, and client command line tools. The specific architecture
diagram is shown in Figure 1.

Figure 1. Kubernetes architecture.

2.1.1. Master Node

The master node is the main control node of the Kubernetes cluster, which is respon-
sible for task allocation, resource scheduling, and application management of the entire
cluster. API Server, Controller Manager, Schedule, and ETCD are all important components
of master nodes. We demonstrate them briefly, as follows:

• API Server connects various components in the Kubernetes cluster, implements
specific operations on each object in the cluster, and provides services such as addition,
deletion, modification, and query for resource objects.

• Controller Manager is the administrator and control center in the Kubernetes cluster.
If any node is abnormal in the system, Controller Manager detects and handles the
abnormality in time.

• Scheduler is the default resource scheduler for the Kubernetes cluster. Scheduler
schedules pending Pods to the expected nodes according to the expected policy. The
new Pod object created by the Controller Manager is received by Scheduler, which
finds a suitable node schedule for it and then writes the binding information to ETCD
through the API Server.

• ETCD is a key–value store used to store various information in the cluster, with high
availability and persistence, and maintains the stable operation of the Kubernetes cluster.



Mathematics 2024, 12, 2476 4 of 26

Now, we jump to the worker node.

2.1.2. Worker Node

The worker node is the working node that executes tasks and consumes resources
in the Kubernetes cluster, receives tasks assigned by the master node, and completes the
tasks under the control of the master node. A worker node mainly consists of the following
two parts:

• The kubelet service process runs on each node of the cluster, executes the tasks
delivered by the master node, and manages the entire life cycle of the container. In
addition, kubelet also pays attention to the status of the nodes and reports the running
status and resource usage of all worker nodes to the master control node in real time.

• The service process of Kube-proxy runs on each worker node and forwards the access
request received by Service to the backend.

2.2. Kubernetes Features

Kubernetes comes with the following key features:

• Automation. Kubernetes allows users to automatically expand capacity, automatically
update, automatically deploy, and automatically manage resources during use and
has a set of default automation mechanisms.

• Service-centric. The design idea of Kubernetes is service-centric, users do not need to
care about how to install or run and can focus more on processing business logic.

• High availability. Kubernetes regularly checks the status of each Pod instance, includ-
ing the number of instances, the health status of the instance, etc., and ensures the
high availability of Kubernetes by creating multiple master and ETCD clusters.

• Rolling updates. Kubernetes can complete application updates, replacement, and
other operations without stopping its internal program operation and external services,
saving a lot of time and resources.

2.3. Kubernetes Components

Users can use the kubectl tool to operate resource objects such as Pod, Label, Replica-
tion Controller, ReplicaSet, Deployment, and Service and store the results persistently in
ETCD. We demonstrate them briefly, as follows:

• Pod is the basic unit of scheduling in Kubernetes. In addition to the user business
container, each Pod also contains a pause container called the “root container”. Each
Pod also contains one or more user business containers that are closely related to
the business.

• Label in Kubernetes exists as a key–value pair. The key and value in the key–value pair
need to be defined by the user. Users can implement multidimensional management
of resources in the label.
Replication Controller is one of the core components of the Kubernetes system.
It can be used to manage a set of Pods defined in the YAML file, ensuring that the
number of Pod copies of the application meets the user-defined value throughout the
life cycle.

• ReplicaSet helps monitor all the Pods. Particularly, ReplicaSet assists Deployment in
maintaining the availability of Pods to a desired level.

• Deployment helps manage ReplicaSet and Pods. In addition, it is used for rolling
updates while applications in Pods need to be updated. Moreover, it helps auto-scale
Pods with the help of Horizontal Pod Autoscaler (HPA) [24]. Specifically, autoscaling is
one of the most important features of Kubernetes. It allows containerized applications
and services to run automatically and flexibly.

• Service can provide a common access address for a group of containers with the
same function and can also send requested loading tasks to each container. The client



Mathematics 2024, 12, 2476 5 of 26

requests access to a set of Pod copies through the address provided by the service, and
the service successfully connects to the backend Pod copies through the label selector.

• Ingress helps bind requests to the Services, especially used for large-scale demands.
It also provides load balancing. Generally, an Ingress controller is needed in the cluster
to redirect the incoming requests to the ingress resource, which later is redirected to
the appropriate endpoint.

We observe that many other Kubernetes components are useful for application devel-
opment, deployment, and maintenance. Therefore, we refer to the official documentation
of Kubernetes (Kubernetes Official Documentation https://kubernetes.io/docs/home/,
accessed on 7 August 2024) for the details.

3. Default Kubernetes Cluster and Limitations

We observe that using the default components and settings of K8s can no longer adapt
to increasingly complex usage scenarios. Numerous K8s default components affect the
performance of K8s. Components such as Horizontal Pod Autoscaler and Ingress controller
can handle limited usage scenarios; however, they cannot handle complex data changes
in a timely manner. A set of basic settings including rolling update policy, ETCD backup
policy, scheduler algorithm, and others also affects the performance of the K8s platform. In
this section, we introduce the capabilities and limitations of Kubernetes’ components, and
finally, we propose a system framework for dealing with these issues.

3.1. ETCD Data Distribution and Latency

ETCD, as the backend database for storing all cluster data in Kubernetes, uses the Raft
algorithm [11,12] to replicate requests. The Raft algorithm has the ability of consistency and
high availability, which can ensure the consistency of data among members. The consensus
algorithm is limited by two physical constraints: network IO latency and disk IO latency.
The Raft algorithm requires metadata to be stored in a log, and ETCD cluster members
need to write each request to disk. If the disk IO delay is too large, the heartbeat in the Raft
algorithm may time out and re-elect the leader, thus affecting the performance of ETCD. In
addition, the heartbeat is an indispensable part of the Raft algorithm. When the heartbeat
sent by a member of the Raft algorithm cannot be received due to network problems, the
member may also restart the election of the leader, which affects the performance of ETCD.
This means that it also needs to be considered Network IO latency.

3.2. ETCD Backup and Restore and Issue

ETCD saves the state of the entire cluster, which can quickly restore the system in
the event of a failure and prevent permanent data loss. Backing up and restoring data by
backing up ETCD is an easy and straightforward way. ETCD’s snapshot operation can
create a snapshot of the running cluster for replication, backup, or migration to a new
cluster. ETCD’s restore operation restores cluster data from a cluster data snapshot. The
snapshot and recovery operations of ETCD can be used to back up and migrate clusters,
but the backup function of ETCD does not have the ability to back up objects such as Type,
Namespace, and Label and cannot meet the needs of users to back up specific resources.

3.3. Rolling Update Performance and Issue

Rolling updates are the default update strategy used by Kubernetes. This strategy
ensures that at least a set of Pods are running when an update is performed, preventing
application downtime. Old Pods do not shut down until the newly deployed version of the
Pod is up and ready to handle traffic. The kubectl drain command of K8s can transfer all
Pods and reschedule all Pods to other nodes to realize cluster replacement. First, during
the execution of this instruction, the specified node is marked as NoSchedule, and other
Pods cannot be (are not) scheduled to this node. The drain operation then starts evicting
the Pod from the specified node and shuts down the currently running container on the

https://kubernetes.io/docs/home/


Mathematics 2024, 12, 2476 6 of 26

node by sending the TERM (terminate) signal to the Pod’s underlying container. However,
there are still two factors that may cause service interruption during the drain operation:

• The application service needs to be able to handle the TERM signal. If the container
cannot handle the signal normally during execution (such as committing a database
transaction), the Pod is still closed ungracefully.

• All Pods that provide services to the application are lost. When a new container is
started on a new node, the services may be down, or if the Pods are not deployed
using the controller, they may never be restarted.

3.4. Ingress and Ingress Controller in Handling Requests and Issue

Ingress [18,25] is one of the standard resource types of the Kubernetes API. It defines
many rules for forwarding requests to specified service resources according to the host
or URL path and forwarding the request traffic outside the cluster to the corresponding
service in the cluster [26]. The Ingress controller [18,27] is a component that realizes
dynamic configuration according to the Ingress configuration file and is responsible for
specific forwarding. When the Ingress controller starts booting, it uses a couple of load-
balancing policy settings that apply to all Ingress. The Ingress controller continuously
monitors the changes in Ingress, service, and other objects through the Kube-apiserver,
automatically updates the configuration file, and applies the new configuration once a
change occurs. Kubernetes Ingress is the Ingress controller recommended by Kubernetes by
default. Its main advantages are simplicity and few configuration files. The disadvantage
of Kubernetes Ingress is that the time it takes to modify and reload the configuration file
becomes longer as the routing configuration file becomes larger, which seriously affects the
quality of service and even causes service interruption.

3.5. Horizontal Pod Autoscaler (HPA) and Issue

HPA is the most widely used autoscaling component in Kubernetes. HPA can au-
tomatically scale the number of Pods in ReplicationController, Deployment, ReplicaSet,
and StatefulSet based on CPU utilization. The status change in the resource triggers the
operation of Kube-controller-manager and periodically adjusts the Replication Controller
or the number of replications in the deployment, which makes the observed index value
of the Pod’s average CPU utilization match the target value set by the user. In each syn-
chronization cycle of HPA, Kube-controller-manager queries data from the metrics server
according to the indicators defined in each cycle, and cAdvisor (cAdvisor (Container Advi-
sor) https://github.com/google/cadvisor, accessed on 7 August 2024) [28] is responsible
for providing indicators to metrics server. However, because of the autoscaler sync period
and the data reporting period, using cAdvisor cannot obtain more timely data, nor can it
obtain the average trend of indicators.

3.6. Scheduling Model and Issue

The Kubernetes cluster implements the scheduling of Pod applications through the
component Kube-scheduler. First, the Kube-scheduler binds the Pod application to be
scheduled to the most appropriate node in the cluster according to Kubernetes’ default
(and customisable) scheduling policy, after going through the appropriate preselection and
preference phases. Metadata about bindings (including node and Pod applications) are
stored in Kubernetes’ ETCD database. The Kubernetes resource scheduling model is shown
in Figure 2. We briefly present the execution process of the Kubernetes cluster scheduler,
as follows:

(1) The user sends a request to the API Server to create a Pod through the Rest interface
of the API Server or the Kubernetes client tool (supported data types include JSON
and YAML).

(2) API Server handles user requests and stores Pod data in ETCD. The scheduler looks at
unbound Pods through the APIServer. Attempts to allocate a node to the Pod.

https://github.com/google/cadvisor


Mathematics 2024, 12, 2476 7 of 26

(3) Filter nodes: Scheduler screens each node according to the preselection algorithm, and
eliminates the nodes that do not meet the requirements.

(4) Host scoring: Scheduler scores the nodes screened out in the preselection algorithm.
Each optimization algorithm has a different scoring focus, and each scoring algorithm
has a different weight. Finally, the weighted average of the scoring results of each
algorithm is the final score of a certain node.

(5) Select node: Scheduler selects the node with the highest score in the optimization
algorithm, binds the Pod to this node, and stores the binding information in ETCD.

Figure 2. Kubernetes resource scheduling model, adapted from [29].

Figure 3 shows the scheduling process. In the following, we demonstrate the Scheduler
Algorithm.

Figure 3. Scheduler scheduling flowchart, adapted from [30].



Mathematics 2024, 12, 2476 8 of 26

Scheduling Algorithm

In Kubernetes, there are a number of built-in Predicate and Priority preference algo-
rithms to choose from, which can be specified by the user at the time of use via the resource
description file:

(1) PodFitsHost. This algorithm specifies to run on a node by setting the node name.
(2) PodFitsResources. Checks whether the available resources of the node meet the

request amount of the Pod.
(3) PodFitsHostPorts. Checks whether the port requested by the Pod is already occupied

by the node.
(4) PodSelectorMatches. Checks whether the node matches the label parameter.
(5) CheckNodeMemoryPressure. Checks whether there is pressure on the memory of the

node.
(6) CheckNodeDiskPressure. Checks whether there is pressure on the disk space of the

node.
(7) NoDiskConflict. Checks whether the mounted storage volume conflicts with the

storage volume in the Pod configuration file.

The Priority optimization algorithm lists the following:

(1) LeastRequestedPriority. Selects the node with the least resource consumption from
the node list first, and the resource includes the sum of CPU and memory.

(2) SelectorSpreadPriority. Selects nodes different from the Pod under the same RC from
the node list first. The smaller the number of Pod copies, the greater the score.

(3) ImageLocalityPriority. Prioritizes selecting nodes with existing images from the node
list to avoid spending time pulling images.

After the optimization process, each set optimization algorithm returns a score. In
addition, each function also has a weight when it is set. Based on the two, the total score
of each node is calculated, and the node with the highest score is selected for bind and
run. Since the scheduler does not use the actual resource usage of the node as the basis
for scheduling, the node scores it gives do not reflect the real situation of the node and
there are a set of scheduling errors. In addition, in the original scheduling algorithm, the
preselection stage mainly focuses on hardware resources such as the CPU, memory, and
disk space of the node, without considering the network I/O of the node, which leads to a
large gap in the network I/O of each node.

3.7. Our Proposed System Framework

We depict our proposed system framework (our proposed solution) in Figure 4, The
idea of our solution is to use a combination of different new components complementing
with multiple optimizations, such as scheduling, ETCD, and others, to ultimately improve
the performance of K8s. The framework is as follows:

Figure 4. System framework, adapted from [31].



Mathematics 2024, 12, 2476 9 of 26

• Optimizing ETCD operations with the help of optimized disk drives (e.g., SSD) and
giving ETCD services higher disk I/O permissions.

• Using Velero [32] components to back up data, and enable a zero-downtime rolling up-
date strategy to improve the robustness of Kubernetes services and reduce downtime.

• Using open-source software Traefik [33] to reduce Ingress update configuration downtime.
• Using Prometheus [34] to obtain more detailed indicators, provide them to Kube-

apiserver for HPA and scale Pod accordingly.
• Customising Scheduler Strategies based on Scheduler Extender.

4. Proposed Approach

Kubernetes is a complex tool. As with most complex tools, it can be tricky to obtain the
best performance from Kubernetes. Most Kubernetes releases have not been fine-tuned to
maximize performance, so it is necessary to take numerous methods to optimize Kubernetes
and to address the aforementioned issues. In this section, we demonstrate how to improve
the performance of Kubernetes in terms of backup, load balancing, autoscaling, extended
scheduling, and many more while following/adopting our proposed system framework
depicted in the aforementioned section.

4.1. ETCD Performance Optimization

As mentioned above, the performance of ETCD [35] is limited by network IO latency
and disk IO latency, so performance can be improved at the network level and hardware
level. However, the performance improvement at the network level needs to be set accord-
ing to different usage environments, we optimize merely ETCD at the hardware level. Both
the persistence of ETCD’s log and the storage of data are inseparable from the support of
the underlying hardware. There is no doubt that the IO speed of the underlying hardware
affects the speed of ETCD’s reading of data. We can use SSD hard drives as the underlying
storage hardware to effectively increase data throughput and reduce IO latency. At the
same time, we can appropriately give ETCD services higher disk I/O permissions to make
ETCD run more stably.

4.2. Backup and Restore Performance Optimization

Velero [32] is a cloud-native disaster recovery and migration tool. It is an open-source
software written in Go language that can safely backup, restore, and migrate Kubernetes
cluster resources and persistent volumes. The basic principle of Velero is to back up the
data of the cluster to the object storage and pull the data from the object storage when
restoring. Therefore, Velero can realize the backup and recovery of multiple object levels
in the Kubernetes cluster, including Kubernetes clusters and various objects such as Type,
Namespace, Label, etc. It can also realize the cluster configuration including replication
and synchronization of development, testing, and production environments, simplifying
the environment configuration, etc.

Velero is composed of a client and a server. The server is deployed on the target
K8s cluster, and the client is a command line tool that runs locally. It runs in the local
environment and needs to be configured on a machine with kubectl and cluster kubeconfig.
The Velero client calls the Kubernetes API to create and validate different objects and then
uploads a tarball of the copied Kubernetes objects to cloud storage.

4.3. Rolling Update Performance Optimization

The purpose of a zero-downtime rolling update is to release a new version of an
application without impacting users. This means developers can make continuous requests
to new apps as they are released, and app users never get a response to the dreaded access
error. To minimize the downtime caused by rolling updates, we need to achieve zero
downtime to reduce downtime. Users can achieve zero-downtime deployment by using
lifecycle hooks, ready probes, and Pod interruption budgets.



Mathematics 2024, 12, 2476 10 of 26

4.4. Ingress Performance Optimization

Kubernetes Ingress is the Ingress controller recommended by Kubernetes by default.
Its main advantages are simplicity and few configuration files. The disadvantage of
Kubernetes Ingress is that the time it takes to modify and reload the configuration file
becomes longer as the routing configuration file becomes larger, which seriously affects the
quality of service and even causes service interruption. Using Traefik [33] Ingress as the
Ingress controller is a better way. Traefik Ingress is a full-featured Ingress controller, which
supports continuous configuration updates (without restarting), adaptive services, multiple
load balancing algorithms, Web UI, support for various protocols, and other functions.
Compared with Kubernetes Ingress, it has more advantages.

4.5. Autoscaling Performance Optimization

Prometheus [34] is an open-source monitoring alarm system and time series database
(TSDB) developed by SoundCloud. It is an open-source version of the Google BorgMon
monitoring system. It can monitor the Kubernetes system and efficiently process the large
amount of data generated. In the event of a power failure or shutdown, we can quickly
locate the point of failure through Prometheus. The Prometheus Server is the core part of the
Prometheus components, responsible for the acquisition, storage, and query of monitoring
data. NodeExporter pushes data to Prometheus through Pull/Push. ServerAlert Manager
is responsible for processing alarm information.

Prometheus Server periodically obtains the status metrics of the monitored Pod and
stores them in the local TSDB. Prometheus Adapter periodically queries the metrics in
TSDB and sends the results to Kube-apiserver. Through the Prometheus Adapter, we can
use any indicator in Prometheus for HPA, and HPA performs corresponding Pod scaling
after obtaining the indicator. Compared with cAdvisor, Prometheus can obtain the average
change trend of the indicators, which can better show the changes in services.

4.6. Scheduling and Load Balancing Optimization

In this, we proceed as follows.

4.6.1. Scheduler Design

There are three general ways to add new scheduling algorithms to Kubernetes:

(1) Modify the source code of the default scheduler, add the scheduling algorithm, and
then recompile and redeploy the scheduler. This approach intrudes into the source
code of the Scheduler component of Kubernetes and is not conducive to version
updates and rollbacks.

(2) Develop a new scheduler to run in the cluster at the same time as the default sched-
uler. With this approach, if different Pods choose different schedulers, scheduling
conflicts or scheduling failures may occur as the different scheduling processes cannot
communicate with each other synchronously.

(3) Custom algorithms are implemented based on the Kubernetes Scheduler Extender
mechanism. This approach is nonintrusive to the source code and the Scheduler
Extender runs as a plug-in, enabling flexible custom scheduling by modifying the
scheduling policy configuration file.

This article takes a third approach to development, loading and running a custom
scheduling policy in the Scheduler Extender component and scoring the nodes in the Post-
Scoring loop at the end of the preference phase. Figure 5 shows the scheduler architecture
designed in this article. The two core parts of the dynamic scheduling scheme proposed
in this paper are the node resource monitoring component and the custom scheduling
component. The Node-Exporter component of Prometheus is used to monitor the resources
of the node. The custom scheduling component is to expand the process Extender by
starting the scheduler and loading a custom scheduling policy to implement scheduling
intervention. The Prometheus Server periodically obtains node monitoring data from the



Mathematics 2024, 12, 2476 11 of 26

Node-Exporter component on the node, and the scheduler extension process Extender
loads a custom scheduling strategy as a scheduling plug-in and starts it.

Figure 5. New scheduler architecture, adapted from [36].

The Kubernetes Scheduler calls the Extender in the Post-Scoring phase, and the Exten-
der process sends corresponding command queries to the HTTP API interface provided
by the Prometheus Server to obtain detailed metrics data grouped by nodes. Prometheus
Server collects different types of metrics through different types of Node-exporters de-
ployed on different nodes. The custom scheduling algorithm then scores the node based
on its resource monitoring data; the higher the score the higher the scheduling priority.
The Extender process then sends the node scores for the custom scheduling policy to the
default scheduler, Scheduler, which finally calculates the final node scores based on the
weight of each scheduling policy.

4.6.2. Algorithm Improvement

With the rapid growth of cloud computing, more and more I/O-intensive applications
are being deployed to run on cloud computing platforms. However, because Kubernetes
is not aware of network I/O as a resource type, it may schedule multiple I/O-intensive
applications to a few duplicate nodes, resulting in long response times for services on
the nodes. To improve the network I/O resource balance in the Kubernetes cluster, this
paper proposes an algorithm based on the cluster network I/O balance algorithm Balanced-
NetworkIOPriority (BNIP), which is modified from the Kubernetes default scheduling
algorithm BalancedResourceAllocation [37].

4.6.3. Analysis of Algorithm Principles

Assuming that the number of nodes entering the Kubernetes scheduling preference
phase is n, then the current network I/O load of node i (1 ≤ i ≤ n) is Ni and the NIC
bandwidth of this node is BandWi, the network I/O usage Ui of node i can be calculated
according to the expression (1) [38], and the average network I/O usage U of these n nodes
can be derived according to the expression (2).

Ui =
Ni

BandWi
(1)

U =
∑n

i=1 Ui

n
(2)



Mathematics 2024, 12, 2476 12 of 26

Let the network I/O request of the Pod to be scheduled be Rio, and the incremental
network IO usage △j of node j after the Pod is scheduled to node j(1 ≤ j ≤ n) can be
calculated according to Equation (3) [38].

△j =
Rio

BandWj
(3)

Then, according to Equations (4) [38] and (5), one can calculate the network IO usage
Ej of the node after Pod scheduling to node j and the average network IO usage E of these
n nodes.

Ej = Uj +△j (4)

E =
∑n

i=1 Ui +△j

n
(5)

Calculate the variance of network IO usage Pj for n nodes after Pod is scheduled to
node j(1 ≤ j ≤ n).

Pj =
∑n

i=1
(
Ui − E

)2 −
(
Uj − E

)2
+

(
Uj +△j − E

)2

n
(6)

The node score Si(1 ≤ i ≤ n) is calculated as shown in Equation (7), where PMin and
Pmax are, respectively, the minimum and maximum values of Pi(1 ≤ i ≤ n) , which are
normalized to take values in the range ⌈0, 10⌉ .

Si = 10 −
⌈

10 ∗ Pi − Pmin
Pmax − Pmin

⌉
(7)

The BNIP algorithm works by calculating the current network I/O between Kuber-
netes cluster nodes. The larger the network I/O gap between nodes, the more unbalanced
the distribution of network I/O in the cluster, the lower the score of the BNIP algorithm,
and the lower the scheduling priority of the node.

5. Experiments

In this section, we demonstrate our experimental analysis and evaluate the effective-
ness of our proposed solution framework.

5.1. Experimental Setup

The computer equipment used in this experiment is an AMD Ryzen 7 6800H @ 3.2
Ghz, and a Kubernetes cluster with 1 master node and 3 working nodes is established. The
master node is allocated 4 core processors and 4 GB RAM memory, and the working nodes
are 2 core processors and 2 GB RAM are allocated. The software version used is Kubernetes
version 1.24.1, Docker version 20.10.12.

5.2. Experimental Analysis

In the following, we present the experimental analysis with the results of our proposed
solution strategies for each specific objective stated earlier.

5.2.1. ETCD IO Operation Analysis

In the ETCD [35] performance experiment, the test condition is to specify different
numbers of client connections and key sizes. Two test tasks are set up, one is to test
the performance gap between ETCD using HDD and SSD, and the other is to test the
performance before and after IO optimization. The size of the key in the test data is 8, and
the size of the value is 256. The purpose of the test is to test the write queries per second
(QPS) and the latency value of each request before and after the optimization of ETCD
performance. We can come up with any other configurations we want.



Mathematics 2024, 12, 2476 13 of 26

One of the experimental software uses ETCD version 3.54 and the ETCD benchmark.
The HDD used is Seagate ST6000DM003, 5400 rpm, with a read speed of 185 MB/s and a
write speed of 185 MB/s. The SSD is a Samsung 960 EVO, with a read speed of 3200 MB/s
and a write speed of 1900 MB/s. We can come up with any other settings we want
depending on the availability of hardware resources.

In the ETCD performance experiment, we use ETCD’s benchmark tool to obtain the
write queries per second (QPS) and the latency of each request. Tables 1 and 2 show that
after deploying ETCD with SSD, the performance of ETCD is improved by about ten times.
Table 3 shows that after IO priority optimization is adopted, regardless of whether the
access target is a single master or all members, there can be a higher Large Write QPS, and
for each request, the latency is also reduced.

Table 1. Performance of ETCD deployed on HDD.

Keys Connections Clients Target Write QPS Latency per Request

10,000 1 1 only master 77 49.5 ms

10,000 1 1 all members 74 48.8 ms

100,000 100 1000 only master 1164 1685.6 ms

100,000 100 1000 all members 1147 1632.4 ms

Table 2. Performance of ETCD deployed on SSD.

Keys Connections Clients Target Write QPS Latency per Request

10,000 1 1 only master 1250 0.8 ms

10,000 1 1 all members 840 1.2 ms

100,000 100 1000 only master 21,348 45.1 ms

100,000 100 1000 all members 21,475 45.4 ms

Table 3. Performance of ETCD deployed on SSD with IO priority optimization.

Keys Connections Clients Target Write QPS Latency per Request

10,000 1 1 only master 1289 0.8 ms

10,000 1 1 all members 865 1.1 ms

100,000 100 1000 only master 22,368 40.6 ms

100,000 100 1000 all members 22,589 40.9 ms

5.2.2. Velero Backup, Migration, and Restore Operation Analysis

The test task of the Velero [32] experiment is to implement backup and migration in
clusters A, B, and C. The purpose of the experiment is to test whether Velero can back up
and restore the entire cluster and restore the specified Label. The three clusters deployed
have a master and a worker, and Velero is installed at the same time. Among them, the
guestbook application is set up in cluster A, and the service is provided normally (Figure 6).

The experimental process is to use Velero to back up the cluster resources of cluster A
to cluster B and use Velero to back up specific labels to cluster C. The expected result of the
experiment is that cluster B can also provide normal access to the guestbook application
because it restores all the resources of cluster A, while cluster C cannot access the guestbook
application normally because it only restores a specific Label. Notably, we can have as
many clusters as we want; however, three is the minimum for this experimental analysis.



Mathematics 2024, 12, 2476 14 of 26

Figure 6. Successful access to guestbook.

Label is an important concept in the Kubernetes system, as stated earlier. It adds
identifiers to resources to distinguish and select resources. An application includes different
Labels. When using Velero to migrate the cluster this time, only some Label resources in the
cluster are migrated, so the guestbook function of the application cannot be restored, and
the guestbook application in cluster C cannot be accessed normally. The result of accessing
the guestbook application of cluster C is shown in Figure 7.

Figure 7. Unable to access guestbook.

5.2.3. Fortio: Zero-Downtime Rolling Update Analysis

In the test experiment of zero-downtime rolling update, the Kubernetes cluster pro-
vides the access service of the Nginx server and actively updates the version. The ex-
periment uses Fortio 1.38.4 version [39], generates 8 concurrent thread connections, and
generates 1500 requests per second for 60 s. Notably, we can come up with any other
configurations we want. Fortio can obtain the access success rate returned by the Nginx
server to determine whether Nginx has been providing services normally.

When using the default rolling update strategy, during the rolling update application
process, the Fortio test results are shown in Figure 8, and there is a 0.17 % access failure
rate. Figure 9 shows that when the zero-downtime rolling update strategy is enabled, there
are no access errors (errors are 0) during the rolling update application.

Figure 8. No zero-downtime rolling updates enabled.



Mathematics 2024, 12, 2476 15 of 26

Figure 9. Enable zero-downtime rolling updates.

5.2.4. Traefik: Ingress Update Configuration Downtime Analysis

In Traefik’s [33] performance experiment, the software used is Traefik version 2.94,
Traefik version 3.0.0-beta2, Envoy version 1.22.8 [40], and Nginx version 1.22.1 [41], respec-
tively, as the Ingress controller is used for testing. The Kubernetes cluster provides the
access service of the Nginx server. The experiment uses Fortio version 1.38.4, generates 8
concurrent thread connections, sends 1500 requests per second, and lasts for 6 min. Notably,
we can come up with any other configurations we want. At the same time, the shell file
is used to change the number of Pods every 30 s within 3 min and the Pod configuration
is changed every 30 s to simulate actual usage. The test goal is to use Fortio to obtain
the average number of requests per second and latency (percentile) of different Ingress
controllers.

Figure 10 shows that in the experiment, the delay of Traefik at the 75th, 95th, and
99th requests is lower than that of NGINX and Envoy, and Traefik 3.0.0-beta2 is lower
than Traefik 2.94. It can be seen from Figure 11 that the average number of requests per
second of Traefik is higher than that of NGINX and Envoy, and the performance of Traefik
3.0.0-beta2 is better than that of Traefik 2.94, which can handle more requests per second.
This experiment shows that Traefik has better performance in environments where scale-out
and configuration changes occur frequently.

Figure 10. Latency comparison.

Figure 11. Average requests per second comparison.



Mathematics 2024, 12, 2476 16 of 26

5.2.5. Prometheus: HPA Autoscaling Analysis

In the test experiment of the Prometheus [34] experiment, the access service of the
Nginx server is provided in the Kubernetes cluster. The test condition is to use Gatling
3.9.0 version [42] to send access requests to the Kubernetes cluster within 5 min of the test
time, and the number of requests gradually drops from 1800 requests per second to 0 per
second. Notably, we can come up with any other configurations we want. The goal of the
experiment is to compare the trends of Average CPU usage and number of replicas under
two different methods: HPA Performances with Prometheus Custom Metrics (HPPCM)
and HPA for Performances with Default Kubernetes Resource Metrics (HPDKRM).

Figure 12 shows the changes in CPU usage percentage of HPPCM and HPDKRM
during the experiment. The metric value of CPU usage percentage changes every scraping
period (60 s). Due to the large number of requests sent by Gatling, the CPU usage percentage
of HPDKRM increases from zero to the highest, then gradually decreases as the number
of requests decreases, and finally becomes zero, and the trend of change is relatively flat.
The metric value of the CPU usage percentage of HPPCM also changes with the number
of requests. It gradually decreases from the highest at the beginning, and finally becomes
zero, which changes very frequently. The reason is that when Prometheus grabs the metric
in each period, the metric needs to be calculated by the Prometheus Adaptor to obtain the
average value per second, and the forecast is made according to the trend of the metric.

Figure 12. Average CPU usage for HPPCM and HPDKRM.

By default, Kube-controller-manager compares the collected metrics with the values
specified in the HPA configuration every 15 s and makes changes to the number of Pods.
The changes in the number of HPDKRM and HPPCM replicas are related to the CPU
usage percentage. Figure 13 shows the changes in the number of replicas of HPPCM and
HPDKRM. The scaling operation of expanding the number of replicas of HPDKRM to
8 occurs around 60 s, which is the result of increased CPU usage. Similarly, the replicas scale
again to 12 at 75 s, and to 21 at 120 s. The CPU usage of HPPCM changes frequently every
query period. The number of replicas of HPPCM changes faster than that of HPDKRM,
causing HPA to rapidly increase the number of replicas to a maximum of 24, while 21 in the
case of HPDKRM. HPPCM has the advantage of responding quickly to frequent changes in
metric values, enabling HPA to cope with surges in requests.



Mathematics 2024, 12, 2476 17 of 26

Figure 13. The number of replicas scaling for HPPCM and HPDKRM.

5.2.6. Custom Scheduler: Scheduling and Load Balancing Analysis

The servers used in this experiment are created through the Alibaba Cloud platform.
The configuration of the four nodes is shown in the Table 4.

Table 4. Algorithm experiment environment server configuration instructions.

Number CPU Memory Network Limits

Master 2 vCPU cores 4G 50 Mbps

Node1 2 vCPU cores 4G 50 Mbps

Node2 4 vCPU cores 4G 75 Mbps

Node3 8 vCPU cores 8G 125 Mbps

To verify the improvement effect of the BNIP (our proposed algorithm based on
BalancedNetworkIOPriority, BNIP for short, which is a cluster network I/O balancing
algorithm) algorithm on the network I/O balance level among cluster nodes by the default
scheduling algorithm (DSA), this paper adopts a comparative experiment to reflect the
performance of the BNIP algorithm and the test condition is whether to enable the BNIP
algorithm. There are nine Pods with different network IO requirements, which are deployed
in sequence according to the number and are scheduled by the scheduler to different nodes.
The specific Pod information is shown in Table 5. Notably, we can come up with any
other configuration we want. An Nginx server is also deployed on each working node,
providing a very simple service for testing network access response times. Every time a
Pod is deployed, the network bandwidth of all nodes is collected to calculate the network
bandwidth usage and integrated network bandwidth usage variance.

Table 5. Pod resource request information in BNIP algorithm experiment.

Number Network I/O CPU Requests Mem Requests

1, 2, 3 2 Mbps 100 m 160 Mi

4, 5, 6 5 Mbps 100 m 160 Mi

7, 8, 9 10 Mbps 100 m 160 Mi

In Figure 14, corresponding to the DSA experiment, when the number of deployed
Pods varies from 1 to 7, the network IO usage of Node3 keeps increasing, and the network
IO usage of Node1 and Node2 is always small and close to 0. When the number of Pods
changes from 8 to 9, the network IO usage of Node2 starts to increase, because Node2
shares a part of the Pods, and the network IO usage of Node3 starts to decrease.



Mathematics 2024, 12, 2476 18 of 26

In Figure 15, corresponding to the BNIP experiment, when the number of Pods changes
from 1 to 3, the node network IO usage rates of Node1 and Node3 increase respectively. In
the process of changing the number of Pods from 4 to 9, the network IO usage of the three
nodes increases at the same time, but the increase is lower than that in the DSA experiment,
and the gap between the network IO usage of the three nodes is much smaller than that in
the DSA .

Figure 14. DSA network IO usage.

Figure 15. BNIP network IO usage.

Table 6 shows the distribution of Pods in Nodes in the default scheduling algorithm
and BNIP scheduling algorithm. In DSA, no Pod is assigned to Node1, and 1 Pod is
assigned to Node2. On the other hand, 8 Pods are allocated to Node 3 and the Pods are
centrally scheduled to Node 3. In the experiment BNIP, 2 Pods were allocated on Node1, 3
Pods were allocated on Node2, and 4 Pods were allocated on Node3. The distribution of
Pods on the three nodes was much more even than that in the default experiment, and they
were not centrally scheduled to a certain condition on the node.



Mathematics 2024, 12, 2476 19 of 26

Table 6. BNIP experiment Pod internode distribution table.

Experiment Node1 Node2 Node3

DSA none 8 1, 2, 3, 4, 5, 6, 7, 9

BNIP 2, 6 3, 5, 8 1, 4, 7, 9

After the experiment, the comprehensive utilization rate of cluster node network IO
and the variance of the comprehensive utilization rate of network IO in the DSA and BNIP
experiments were calculated, respectively, and the results are shown in Table 7. In the
experimental results using the BNIP scheduling algorithm, the network IO utilization and
variance are smaller than the experimental results of the DSA.

Table 7. Comparison of indicators of DSA and BNIP experiments.

Experiment Average Network IO Usage Variance

DSA 12.3% 4.3

BNIP 11.3% 0.8

5.2.7. Default Configured K8s vs. Opitmized K8s: Overall Comparative Analysis

This experiment tests the performance of the Kubernetes cluster before and after
optimization. The servers used in this experiment are created through the Alibaba Cloud
platform, and there are a total of four. One is used as the master node and the other three
are used as worker nodes. The configuration of the four nodes is shown in Table 8.

Table 8. Kubernetes cluster configuration details.

Number CPU Memory Network Limits

Master 4 vCPU cores 4G 50 Mbps

Node1 2 vCPU cores 4G 50 Mbps

Node2 4 vCPU cores 4G 75 Mbps

Node3 8 vCPU cores 8G 125 Mbps

In the comparison experiment, the default Kubernetes cluster (default) is a Kubernetes
cluster with native settings and components, and the other cluster is a Kubernetes cluster
(optimized) using the optimization method in this paper. The software versions used are
Kubernetes version 1.24.1 and Docker version 20.10.12. The container used is the NGINX
server [43]. The test condition is to use the default settings of Kubernetes and the improved
method proposed in this paper to conduct 100, 500, 1000, 2000, 3000, 5000, and 10,000
concurrent accesses to the Webserver for 30 s. We conduct 10 experiments for each request
and count the average CPU usage, average memory usage, average request time, and
number of failed requests.

The average CPU usage of the cluster under different concurrent requests is shown
in Figure 16. When the number of concurrent requests is 100, 300, or 1000, the difference
in effect is not obvious, because the number of concurrent requests is not very high at
this time, and the overall CPU consumption is not large. The performance gap is rela-
tively small. As the number of concurrent requests increases, the optimized Kubernetes
cluster performance can save up to 1.5% of the CPU overhead compared with the default
Kubernetes performance.



Mathematics 2024, 12, 2476 20 of 26

Figure 16. Average CPU usage.

The average memory usage of the cluster under different concurrent requests is shown
in Figure 17. When the number of concurrent requests is 100, 300, or 1000, the difference in
effect is not obvious. Compared with the performance of the default Kubernetes cluster,
the optimized Kubernetes cluster performance saves an average of 0.4% memory overhead
and can save a minimum of 0.3% memory overhead. As the number of concurrent requests
increases, due to the BNIP algorithm used by the optimized scheduler, Pods with relatively
high network traffic are scheduled to one node, reducing the data sent to another node,
thereby reducing the use of memory buffers, saving up to 0.6% memory usage.

Figure 17. Average memory usage.

The average request time of the cluster under different concurrent request amounts
is shown in Figure 18. It can be observed from Figure 18 that the optimized Kubernetes
cluster can complete the specified number of concurrent requests in a shorter time than the
default Kubernetes cluster. When the number of concurrent requests is more than 2000, the
average request time is reduced by 7.6%.

The number of cluster request failures under different concurrent request volumes is
shown in Figure 19. The optimized Kubernetes cluster is effective and reduces the number
of failures. When the number of concurrent requests is more than 2000, the minimum
request failure is reduced by more than 32.4 %.



Mathematics 2024, 12, 2476 21 of 26

Figure 18. Average request completion time.

Figure 19. Average number of failed requests.

6. Related Work

In this section, we perform a literature review in the context of our study.

6.1. ETCD Performance Optimization

The performance optimization of ETCD is mainly related to hardware and net-
work [35]. Larsson et al. [44] conducted experiments and found that poor ETCD per-
formance leads to poor performance of Kubernetes. Compared with block storage disks
attached to the network, VM local fast instance storage plus backup can have more dura-
bility, and compared with HDD hard disks, SSD hard disks can significantly improve
the performance of ETCD. Determining the deployment method of ETCD and the un-
derlying hard disk type according to different usage environments can improve the read
performance of Kubernetes.

Furthermore, Jeffery et al. [45] found that the reason for the expansion of Kubernetes
request latency and the decline in availability is that the increase in the amount of synchro-
nization work performed by the leader node increases as the scale of ETCD becomes larger.
Therefore, the author suggests that in large-scale clusters, to ensure that the throughput
of Kubernetes increases with the increase in the cluster size, the eventual consistency
algorithm should be used instead of the consistency algorithm. The methods of Lars-
son et al. [44] and Jeffery et al. [45] have certain requirements on storage devices, which
cannot meet most situations. Therefore, we use the basic optimization of ETCD on the
settings of ETCD, which can adapt to more machines.

In our analysis, we deploy etcd to SSD and increase permissions to improve the IO
performance of the K8s system.



Mathematics 2024, 12, 2476 22 of 26

6.2. Backup and Migration

There are different ways to increase the backup capability. In the face of Kubernetes not
providing resource types to define backup Pods, Zhu et al. [46] designed and implemented
a controller to manage a custom resource called Backup Pod Set (BPS), the controller
responds to the request to create, update, or delete the BPS instance and decide whether to
back up the Pod according to the label corresponding to the BPS.

Using a couple of tools can also improve the efficiency and performance of backup.
To reduce the work of application developers, Deshpande et al. [47] has also implemented
a self-managed backup system with a user interface. The system is based on adaptive
scheduling of snapshots, and the frequency of snapshots can be changed according to the
size of the load. Users can configure the recovery point objective and backup retention time
according to their own needs.

Migration can improve performance through a couple of tools. By using the CRIU
(User Space Checkpoint/Restore) feature to check and restore the in-memory state of
the processes running in the container, Oh and Kim [48] achieves shorter downtime and
lower-cost container migration without the need for external storage components. Lee
et al. [49] provides a fault-tolerant application, a container-based light virtualization, and
an automatic construction system to achieve modularity, automatic update, and real-time
migration on any device.

Both the snapshot-based method and the backup Pod set-based method can realize
data backup. Similarly, data migration can also be realized by using CRIU and using an
automatic construction system. However, these methods do not provide more options for
backup and migration size. For such problems, we use Velero (Velero https://velero.io/,
accessed on 7 August 2024) [32], which can provide migrations of different sizes, and we
can even choose different tags, types, and namespaces for backup or migration.

6.3. Horizontal Pod Autoscaler (HPA) Optimization

In HPA optimization, metrics are an important factor affecting performance. Casalic-
chio and Perciballi [50] found that for CPU-intensive workloads, absolute metrics are better
suited for the task of resource allocation than relative metrics when it comes to satisfying
services such as application response time. Because absolute indicators can more clearly
reflect the number of containers that need to be deployed, reducing the response time
under high-load servers. Taherizadeh and Grobelnik [51] discovered several influencing
factors that were not taken seriously in Kubernetes. When the Average CPU utilization
exceeds the conservative constant, the HPA operation occurs, and the unnecessary scaling
times are reduced by modifying the interval between scaling operations.

The use of mathematical models can also improve HPA performance. Jin-Gang
et al. [52] proposed the monitoring indicators of a unified communications server based
on the container Docker to adjust the HPA algorithm. It also uses autoregressive integral
and moving average (ARIMA) models to predict future workloads and combine response
scaling methods to ensure service quality.

Reinforcement learning can also improve the performance of HPA. Rossi [53] proposed
a reinforcement learning model for horizontal and vertical autoscaling. By setting the cost
to different weights and training, it can finally be deployed according to user definitions.
The goal is to successfully learn the best adaptation strategy.

None of the above methods mentioned that HPA has fewer native indicators, and the
types of indicators that can be obtained are relatively limited. Considering this problem,
we actively use Prometheus [34] to obtain more indicators and optimize the performance
of HPA. Notably, in our other research work [54], we show how to predict load in advance
and build a custom Pod reactive autoscaler toward meeting the dynamic demand. In this
paper, we keep our tasks as simple as possible, since we focus on multiple goals.

https://velero.io/


Mathematics 2024, 12, 2476 23 of 26

6.4. Load Balancing and Scheduling

We observe that we need to optimize the Ingress controller [18,25,27] to improve the
performance of external access. Zhang et al. [55] modified the load balancing component
Ingress controller of Kubernetes to implement a solution based on adding request evalua-
tion, endpoint (the backend service container is called endpoint) evaluation, and endpoint
matching. Consumption value establishes endpoint evaluation to evaluate the endpoint’s
ability to process the request. The matching stage is based on the endpoint evaluation
results and the request evaluation results, and finally, it selects a suitable endpoint for
matching.

The optimization of the K8s-scheduler model can also improve the performance of
the system. Wei et al. [56], while studying the source code of Kubernetes, found that the
scheduling module of Kubernetes selects nodes for Pods based on the current optimal
node, without considering specific resource usage costs. Finally, the authors combined the
improved ant colony algorithm and particle swarm optimization algorithm to improve the
K8s scheduling model and reduce the resource cost of Pod scheduling.

Nguyen and Kim [57] proposed a new leader election algorithm, which can evenly
distribute leaders on different nodes of the cluster. This method effectively solves the
problem that the leader is concentrated on a certain node during the leader election process
in Kubernetes, improving the performance of Kubernetes.

It is also a good way to implement a scheduler directly. Liu et al. [58] found that
Kubernetes has design flaws in load balancing. When there are too many distribution rules,
it will lead to a longer request distribution time, and merely supporting simple static load
balancing strategies cannot meet complex business needs. So, support for multi-index
dynamic load is proposed. The load balancer of the balancing strategy uses the index
collector to collect the indexes and the weight calculator to calculate the indexes, and finally,
it realizes the multimetric dynamic load balancing strategy.

The scheduler based on the deep learning model can also have better performance. To
solve the difficult problem of scheduling algorithm optimization, Huang et al. [59] designed
a multicluster scheduler based on deep reinforcement learning: RLSK. RLSK uses a deep
reinforcement learning model to learn how to schedule jobs based on the history of job
scheduling among multiple clusters, so that the utilization of different resources in each
cluster tends to balance, thereby improving the total utilization of resources rate.

For the optimization of the scheduler, the above methods do not consider enough
system indicators, so we develop a scheduler that can meet multiple indicators such as
CPU usage and memory utilization to achieve optimal scheduling.

7. Conclusions and Future Work
7.1. Conclusions

As container technology evolves and Kubernetes becomes the de facto standard for
container cluster management systems, more and more companies have begun using
Kubernetes. We studied the architecture and principles of Kubernetes and observed
that the native Kubernetes platform has several areas for improvement, especially, the
performance of native Kubernetes components cannot cope with complex application
requirements. This paper chooses to optimize Kubernetes to enhance cloud computing as
a research topic. The main work content and research results are summarized as follows:
(1). For the optimization of ETCD, we use SSD to deploy ETCD and improve the IO
priority of ETCD. (2). Aiming at the problem that the default backup strategy of Kubernetes
cannot back up objects such as Type, Namespace, and Label, this article uses the Velero
framework to back up the Kubernetes cluster. (3). Aiming at the problem that some users
cannot access during the rolling update process, this article launches a zero-downtime
rolling update strategy. (4). For the performance bottleneck caused by using the default
Kubernetes Ingress, this article uses Traefik Ingress as the Ingress controller. (5). To solve
the problem that cAdvisor cannot obtain more timely data, this paper uses the Prometheus
server to obtain Kubernetes cluster indicators. (6). Aiming at the lack of consideration of



Mathematics 2024, 12, 2476 24 of 26

node network IO resources in the default scheduling algorithm of Kubernetes, this paper
proposes a scheduling algorithm based on node network IO balance (BNIP algorithm). The
BNIP algorithm takes the network IO requirements of the Pods to be scheduled and the
current network usage of the candidate nodes as the scheduling basis and selects the best
scheduling node. The experiment results validate our study and show that compared with
the default settings, the optimized Kubernetes platform can work better and help enhance
QoS with reduced resource usage.

7.2. Limitations and Future Work

Although the current optimization scheme has a certain performance improvement
compared with the native Kubernetes platform, there is still a lot of room for improvement.
In future research, research can be carried out from the following aspects:

• HPA performance optimization. The current method of using Prometheus to obtain
metrics can respond to changes in the entire cluster in a more timely manner, but there
is still a certain lag. Predicting HPA might be a better approach.

• Add more custom scheduling algorithms and more system indicators to improve
scheduling performance in different environments.

• Perform more in-depth optimization according to the needs and characteristics of
different platforms to achieve performance improvement. For example, scheduling
algorithms and HPA indicators can be customized according to platform requirements.

Author Contributions: Conceptualization, S.K.M., Z.Z. and Y.C.; Methodology, S.K.M., Z.Z. and
Y.C.; Software, Z.Z. and S.K.M.; Validation, Z.Z., S.K.M. and Y.C.; Formal analysis, S.K.M., Z.Z. and
Y.C.; Investigation, S.K.M. and Z.Z.; Resources, S.K.M. and Z.Z.; Writing—original draft, S.K.M.
and Z.Z.; Writing—review & editing, S.K.M., Z.Z. and Y.C.; Visualization, Z.Z.; Supervision, S.K.M.;
Project administration, S.K.M.; Funding acquisition, S.K.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by The Science and Technology Development Fund of Macao,
Macao SAR, China under grant 0033/2022/ITP.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Authors gratefully acknowledge the funding source. The authors also would
like to thank the anonymous reviewers for their quality reviews and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xiao, Z.; Song, W.; Chen, Q. Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans.

Parallel Distrib. Syst. 2012, 24, 1107–1117. [CrossRef]
2. Huang, K.; Chen, H. The Applied Research on the Virtualization Technology in Cloud Computing. In Proceedings of the 1st

International Workshop on Cloud Computing and Information Security, Shanghai, China, 9–11 November 2013; pp. 526–529.
3. Bernstein, D. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
4. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux j 2014, 239, 2.
5. Bentaleb, O.; Belloum, A.S.; Sebaa, A.; El-Maouhab, A. Containerization technologies: Taxonomies, applications and challenges.

J. Supercomput. 2022, 78, 1144–1181. [CrossRef]
6. Bigelow, S.J. What Is Docker and How Does It Work? 2020. Available online: https://www.techtarget.com/searchitoperations/

definition/Docker/ (accessed on 7 August 2024).
7. Anderson, C. Docker [software engineering]. IEEE Softw. 2015, 32, 102–c3. [CrossRef]
8. Hat, R. What Is Kubernetes, 2020. Available online: https://www.redhat.com/en/topics/containers/what-is-kubernetes/

(accessed on 7 August 2024).
9. Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; Wilkes, J. Borg, omega, and kubernetes. Commun. ACM 2016, 59, 50–57.

[CrossRef]
10. Mondal, S.K.; Pan, R.; Kabir, H.D.; Tian, T.; Dai, H.N. Kubernetes in IT administration and serverless computing: An empirical

study and research challenges. J. Supercomput. 2022, 78, 2937–2987. [CrossRef]
11. Ongaro, D.; Ousterhout, J. In search of an understandable consensus algorithm. In Proceedings of the 2014 USENIX Annual

Technical Conference (USENIX ATC 14), Philadelphia, PA, USA, 19–20 June 2014; pp. 305–319.

http://doi.org/10.1109/TPDS.2012.283
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1007/s11227-021-03914-1
https://www.techtarget.com/searchitoperations/definition/Docker/
https://www.techtarget.com/searchitoperations/definition/Docker/
http://dx.doi.org/10.1109/MS.2015.62
https://www.redhat.com/en/topics/containers/what-is-kubernetes/
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1007/s11227-021-03982-3


Mathematics 2024, 12, 2476 25 of 26

12. Oliveira, C.; Lung, L.C.; Netto, H.; Rech, L. Evaluating raft in docker on kubernetes. In Proceedings of the Advances in Systems
Science: Proceedings of the International Conference on Systems Science 2016 (ICSS 2016) 19, Wroclaw, Poland, 7–9 September
2016; pp. 123–130.

13. Rodríguez, H.; Quarantelli, E.L.; Dynes, R.R.; Smith, G.P.; Wenger, D. Sustainable disaster recovery: Operationalizing an existing
agenda. In Handbook of Disaster Research; Springer: New York, NY, USA, 2007; pp. 234–257.

14. Sameer; De, S.; Prashant Singh, R. Selective Analogy of Mechanisms and Tools in Kubernetes Lifecycle for Disaster Recovery. In
Proceedings of the 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC),
Tumkur, Karnataka, India, 2–3 December 2022; pp. 1–6. [CrossRef]

15. Malviya, A.; Dwivedi, R.K. A Comparative Analysis of Container Orchestration Tools in Cloud Computing. In Proceedings of
the 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 23–25
March 2022; pp. 698–703. [CrossRef]

16. Jackson, K. Kubernetes Rolling Updates. Available online: https://www.bluematador.com/blog/kubernetes-deployments-
rolling-update-configuration (accessed on 20 May 2024).

17. Shan, C.; Xia, Y.; Zhan, Y.; Zhang, J. KubeAdaptor: A docking framework for workflow containerization on Kubernetes. Future
Gener. Comput. Syst. 2023, 148, 584–599. [CrossRef]

18. Vayghan, L.A.; Saied, M.A.; Toeroe, M.; Khendek, F. Deploying microservice based applications with kubernetes: Experiments
and lessons learned. In Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San
Francisco, CA, USA, 2–7 July 2018; pp. 970–973.

19. Balla, D.; Simon, C.; Maliosz, M. Adaptive scaling of Kubernetes Pods. In Proceedings of the NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–5.

20. Menouer, T. KCSS: Kubernetes container scheduling strategy. J. Supercomput. 2021, 77, 4267–4293. [CrossRef]
21. Pérez de Prado, R.; García-Galán, S.; Muñoz-Expósito, J.E.; Marchewka, A.; Ruiz-Reyes, N. Smart containers schedulers for

microservices provision in cloud-fog-IoT networks. Challenges and opportunities. Sensors 2020, 20, 1714. [CrossRef] [PubMed]
22. Senjab, K.; Abbas, S.; Ahmed, N.; Khan, A.u.R. A survey of Kubernetes scheduling algorithms. J. Cloud Comput. 2023, 12, 87.

[CrossRef]
23. Rejiba, Z.; Chamanara, J. Custom scheduling in kubernetes: A survey on common problems and solution approaches. ACM

Comput. Surv. 2022, 55, 1–37. [CrossRef]
24. Salinger, N. Autoscaling with Kubernetes HPA: How It Works with Examples, 2022. Available online: https://granulate.io/

blog/kubernetes-autoscaling-the-hpa/ (accessed on 7 August 2024).
25. Kubernetes_Official_Documentation. Ingress in Kubernetes, 2023. Available online: https://kubernetes.io/docs/concepts/

services-networking/ingress/ (accessed on 11 July 2023).
26. Kubernetes_Official_Documentation. Service in Kubernetes, 2023. Available online: https://kubernetes.io/docs/concepts/

services-networking/service/#publishing-services-service-types (accessed on 7 August 2024).
27. Kubernetes_Official_Documentation. Ingress Controller in Kubernetes, 2023. Available online: https://kubernetes.io/docs/

concepts/services-networking/ingress-controllers/ (accessed on 11 July 2023).
28. Altaf, U.; Jayaputera, G.; Li, J.; Marques, D.; Meggyesy, D.; Sarwar, S.; Sharma, S.; Voorsluys, W.; Sinnott, R.; Novak, A.; et al.

Auto-scaling a defence application across the cloud using docker and kubernetes. In Proceedings of the 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December
2018; pp. 327–334.

29. Cloud, A. Getting Started with Kubernetes | Scheduling Process and Scheduler Algorithms, 2021. Available online: https:
//alibaba-cloud.medium.com/getting-started-with-kubernetes-scheduling-process-and-scheduler-algorithms-847e660533f1 (ac-
cessed on 13 July 2023).

30. Fu, P. How to Customize Kubernetes Scheduler. 2021. Available online: https://medium.com/gemini-open-cloud/kubernetes-
scheduler- (accessed on 7 August 2024).

31. Tao, P. Kubernetes-v120-Architecture, 2020. Available online: https://blog.csdn.net/projim_tao/article/details/130140048
(accessed on 13 July 2023).

32. Diagboya, E. What Is Velero? 2021. Available online: https://medium.com/mycloudseries/what-is-velero-1f205650b76c
(accessed on 5 January 2023).

33. SINGH, M. What Is Traefik and How to Learn Traefik? 2021. Available online: https://www.devopsschool.com/blog/what-is-
traefik-how-to-learn-traefik/ (accessed on 1 January 2023).

34. Patel, A. Prometheus—Overview, 2023. Available online: https://medium.com/devops-mojo/prometheus-overview-what-is-
prometheus-introduction-92e064cff606 (accessed on 1 January 2023).

35. Maayan, G.D. What Is Etcd and How Is It Used in Kubernetes? 2019. Available online: https://dev.to/giladmaayan/what-is-
etcd-and-how-is-it-used-in-kubernetes-47bg (accessed on 1 January 2023).

36. Xiaoshi, B. Analysis of Kubernetes Scheduler SchedulerExtender, 2020. Available online: https://my.oschina.net/u/4131034/
blog/3162549 (accessed on 13 July 2023).

37. Liggitt, J. Kubernetes. 2023. Available online: https://github.com/kubernetes/kubernetes/tree/master (accessed on
7 August 2024).

http://dx.doi.org/10.1109/ICMNWC56175.2022.10031926
http://dx.doi.org/10.23919/INDIACom54597.2022.9763171
https://www.bluematador.com/blog/kubernetes-deployments-rolling-update-configuration
https://www.bluematador.com/blog/kubernetes-deployments-rolling-update-configuration
http://dx.doi.org/10.1016/j.future.2023.06.022
http://dx.doi.org/10.1007/s11227-020-03427-3
http://dx.doi.org/10.3390/s20061714
http://www.ncbi.nlm.nih.gov/pubmed/32204390
http://dx.doi.org/10.1186/s13677-023-00471-1
http://dx.doi.org/10.1145/3544788
https://granulate.io/blog/kubernetes-autoscaling-the-hpa/
https://granulate.io/blog/kubernetes-autoscaling-the-hpa/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://alibaba-cloud.medium.com/getting-started-with-kubernetes-scheduling-process-and-scheduler-algorithms-847e660533f1
https://alibaba-cloud.medium.com/getting-started-with-kubernetes-scheduling-process-and-scheduler-algorithms-847e660533f1
https://medium.com/gemini-open-cloud/kubernetes-scheduler- 
https://medium.com/gemini-open-cloud/kubernetes-scheduler- 
https://blog.csdn.net/projim_tao/article/details/130140048
https://medium.com/mycloudseries/what-is-velero-1f205650b76c
https://www.devopsschool.com/blog/what-is-traefik-how-to-learn-traefik/
https://www.devopsschool.com/blog/what-is-traefik-how-to-learn-traefik/
https://medium.com/devops-mojo/prometheus-overview-what-is-prometheus-introduction-92e064cff606
https://medium.com/devops-mojo/prometheus-overview-what-is-prometheus-introduction-92e064cff606
https://dev.to/giladmaayan/what-is-etcd-and-how-is-it-used-in-kubernetes-47bg
https://dev.to/giladmaayan/what-is-etcd-and-how-is-it-used-in-kubernetes-47bg
https://my.oschina.net/u/4131034/blog/3162549
https://my.oschina.net/u/4131034/blog/3162549
https://github.com/kubernetes/kubernetes/tree/master


Mathematics 2024, 12, 2476 26 of 26

38. Wittig, K. Kubernetes Metrics—The Complete Guide, 2021. Available online: https://www.kubermatic.com/blog/the-complete-
guide-to-kubernetes-metrics/ (accessed on 13 July 2023).

39. Labadie, C. Fortio: Load Testing Library, Command Line Tool, Advanced Echo Server, 2022. Available online: https://github.
com/fortio/fortio (accessed on 7 August 2024).

40. Mukherjee, A. An Inexact Introduction to Envoy, 2020. Available online: https://errindam.medium.com/an-inexact-introduction-
to-envoy-ac41949834b5 (accessed on 18 June 2023).

41. Lixu, T. Nginx Ingress Controller, 2022. Available online: https://blog.devgenius.io/k8s-nginx-ingress-controller-36bb06f95ac2
(accessed on 18 June 2023).

42. Pedamkar, P. Gatling Load Testing, 2022. Available online: https://www.educba.com/gatling-load-testing/ (accessed on 1
January 2023).

43. Alkraien, A. Intro to Nginx Web Server, 2022. Available online: https://medium.com/javarevisited/intro-to-nginx-web-server-
part-1-bb590fad7035 (accessed on 18 June 2023).

44. Larsson, L.; Tärneberg, W.; Klein, C.; Elmroth, E.; Kihl, M. Impact of etcd deployment on Kubernetes, Istio, and application
performance. Softw. Pract. Exp. 2020, 50, 1986–2007. [CrossRef]

45. Jeffery, A.; Howard, H.; Mortier, R. Rearchitecting Kubernetes for the Edge. In Proceedings of the 4th International Workshop on
Edge Systems, Analytics and Networking, Online, 26 April 2021; pp. 7–12.

46. Zhu, M.; Kang, R.; He, F.; Oki, E. Implementation of Backup Resource Management Controller for Reliable Function Allocation
in Kubernetes. In Proceedings of the 2021 IEEE 7th International Conference on Network Softwarization (NetSoft), Virtual, 28
June–2 July 2021; pp. 360–362.

47. Deshpande, U.; Linck, N.; Seshadri, S. Self-service data protection for stateful containers. In Proceedings of the 13th ACM
Workshop on Hot Topics in Storage and File Systems, Virtual, 27–28 July 2021; pp. 71–76.

48. Oh, S.; Kim, J. Stateful container migration employing checkpoint-based restoration for orchestrated container clusters. In
Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Republic of Korea, 17–19 October 2018; pp. 25–30.

49. Lee, J.; Jeong, H.; Lee, W.J.; Suh, H.J.; Lee, D.; Kang, K. Advanced Primary–Backup Platform with Container-Based Automatic
Deployment for Fault-Tolerant Systems. Wirel. Pers. Commun. 2018, 98, 3177–3194. [CrossRef]

50. Casalicchio, E.; Perciballi, V. Auto-scaling of containers: The impact of relative and absolute metrics. In Proceedings of the 2017
IEEE 2nd International Workshops on Foundations and Applications of Self Systems (FASW), Tucson, AZ, USA, 18–22 September
2017; pp. 207–214.

51. Taherizadeh, S.; Grobelnik, M. Key influencing factors of the Kubernetes auto-scaler for computing-intensive microservice-native
cloud-based applications. Adv. Eng. Softw. 2020, 140, 102734. [CrossRef]

52. Yu, J.-G.; Zhai, Y.-R.; Yu, B.; Li, S. Research and application of auto-scaling unified communication server based on Docker.
In Proceedings of the 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA),
Changsha, China, 9–10 October 2017; pp. 152–156.

53. Rossi, F. Auto-scaling Policies to Adapt the Application Deployment in Kubernetes. In Proceedings of the ZEUS, Potsdam,
Germany, 20–21 February 2020; pp. 30–38.

54. Mondal, S.K.; Wu, X.; Kabir, H.M.D.; Dai, H.N.; Ni, K.; Yuan, H.; Wang, T. Toward Optimal Load Prediction and Customizable
Autoscaling Scheme for Kubernetes. Mathematics 2023, 11, 2675. [CrossRef]

55. Zhang, J.; Ren, R.; Huang, C.; Fei, X.; Qun, W.; Cai, H. Service dependency based dynamic load balancing algorithm for container
clusters. In Proceedings of the 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), Xi’an, China, 12–14
October 2018; pp. 70–77.

56. Zhang, W.-g.; Ma, X.-l.; Zhang, J.-z. Research on Kubernetes’ Resource Scheduling Scheme. In Proceedings of the 8th International
Conference on Communication and Network Security, Qingdao, China, 2–4 November 2018; pp. 144–148.

57. Nguyen, N.D.; Kim, T. Balanced Leader Distribution Algorithm in Kubernetes Clusters. Sensors 2021, 21, 869. [CrossRef]
[PubMed]

58. Liu, Q.; Haihong, E.; Song, M. The design of multi-metric load balancer for kubernetes. In Proceedings of the 2020 International
Conference on Inventive Computation Technologies (ICICT), Coimbatore, Tamilnadu, India, 26–28 February 2020; pp. 1114–1117.

59. Huang, J.; Xiao, C.; Wu, W. Rlsk: A job scheduler for federated kubernetes clusters based on reinforcement learning. In
Proceedings of the 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 21–24 April 2020;
pp. 116–123.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kubermatic.com/blog/the-complete-guide-to-kubernetes-metrics/
https://www.kubermatic.com/blog/the-complete-guide-to-kubernetes-metrics/
https://github.com/fortio/fortio
https://github.com/fortio/fortio
https://errindam.medium.com/an-inexact-introduction-to-envoy-ac41949834b5
https://errindam.medium.com/an-inexact-introduction-to-envoy-ac41949834b5
https://blog.devgenius.io/k8s-nginx-ingress-controller-36bb06f95ac2
https://www.educba.com/gatling-load-testing/
https://medium.com/javarevisited/intro-to-nginx-web-server-part-1-bb590fad7035
https://medium.com/javarevisited/intro-to-nginx-web-server-part-1-bb590fad7035
http://dx.doi.org/10.1002/spe.2885
http://dx.doi.org/10.1007/s11277-017-4282-4
http://dx.doi.org/10.1016/j.advengsoft.2019.102734
http://dx.doi.org/10.3390/math11122675
http://dx.doi.org/10.3390/s21030869
http://www.ncbi.nlm.nih.gov/pubmed/33525452

	Introduction
	Architecture and Principles of Kubernetes
	Kubernetes Architecture
	Master Node
	Worker Node

	Kubernetes Features
	Kubernetes Components

	Default Kubernetes Cluster and Limitations
	ETCD Data Distribution and Latency
	ETCD Backup and Restore and Issue
	Rolling Update Performance and Issue
	Ingress and Ingress Controller in Handling Requests and Issue 
	Horizontal Pod Autoscaler (HPA) and Issue
	Scheduling Model and Issue
	Our Proposed System Framework

	Proposed Approach
	ETCD Performance Optimization
	Backup and Restore Performance Optimization
	Rolling Update Performance Optimization
	Ingress Performance Optimization
	Autoscaling Performance Optimization
	Scheduling and Load Balancing Optimization
	Scheduler Design
	Algorithm Improvement
	Analysis of Algorithm Principles


	Experiments
	Experimental Setup
	Experimental Analysis
	ETCD IO Operation Analysis
	Velero Backup, Migration, and Restore Operation Analysis
	Fortio: Zero-Downtime Rolling Update Analysis
	 Traefik: Ingress Update Configuration Downtime Analysis
	Prometheus: HPA Autoscaling Analysis
	Custom Scheduler: Scheduling and Load Balancing Analysis
	Default Configured K8s vs. Opitmized K8s: Overall Comparative Analysis


	Related Work
	ETCD Performance Optimization
	Backup and Migration
	Horizontal Pod Autoscaler (HPA) Optimization
	Load Balancing and Scheduling

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	References

