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Abstract: Federated learning (FL) demonstrates significant potential in Industrial Internet of Things
(IIoT) settings, as it allows multiple institutions to jointly construct a shared learning model by
exchanging model parameters or gradient updates without the need to transmit raw data. However,
FL faces risks related to data poisoning and model poisoning. To address these issues, we propose an
efficient verifiable federated learning (EVFL) method, which integrates adaptive gradient sparsifica-
tion (AdaGS), Boneh–Lynn–Shacham (BLS) signatures, and fully homomorphic encryption (FHE).
The combination of BLS signatures and the AdaGS algorithm is used to build a secure aggregation
protocol. These protocols verify the integrity of parameters uploaded by industrial agents and the
consistency of the server’s aggregation results. Simulation experiments demonstrate that the AdaGS
algorithm significantly reduces verification overhead through parameter sparsification and reuse.
Our proposed algorithm achieves better verification efficiency compared to existing solutions.

Keywords: federated learning; data poisoning; situation prediction; privacy protection

MSC: 68P27

1. Introduction

The Internet of Things (IoT) is rapidly gaining ground due to its ability to connect
to other devices and operate autonomously, without human intervention. Within this
landscape, the Industrial Internet of Things (IIoT) has found diverse applications across
various sectors, including smart healthcare [1], intelligent manufacturing [2], and smart
city [3]. Deep Learning (DL), a crucial branch of artificial intelligence, has been harnessed
in conjunction with the Industrial Internet of Things to execute various industrial tasks
such as fault diagnosis, intrusion detection, and intelligent control [4].

Although DL models have shown excellent performance, their effectiveness heavily
relies on large-scale datasets. The traditional centralized training approach centralizes the
data in a data center for training. However, data owners are often unwilling to share data
due to privacy and business competition considerations. To address the challenge of achiev-
ing high-performance models while protecting data privacy, researchers have proposed
federated learning (FL). This scheme allows multiple institutions to collaboratively develop
DL models by sharing model parameters rather than raw data. This notable feature has
sparked many applications of FL in the industry [5–9]. For instance, Zeng et al. [10] pro-
posed a Homophilic Learning-based Federated Intelligence (HLFI) approach for industrial
IoT device failure prediction, achieving remarkable predictive results. Zhang et al. [11]
used FL to model virtual network embedding (VNE) and proposed a horizontal federated
learning (HFL)-based VNE architecture (HFL-VNE). By deploying local servers in each
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physical domain, they efficiently focused on local features, reduced resource fragmentation,
and ensured local data privacy. Wang et al. [12] formulated a federated transfer learning
framework for cross-domain prediction, addressing data scarcity and privacy concerns in
contemporary smart manufacturing cross-domain applications.

However, in practical FL applications, problems such as inference attacks and poison-
ing attacks leading to privacy data leakage have occurred.

Firstly, the defense of FL against inference attacks from curious servers/clients during
training is relatively weak [13,14]. The local model is injected with information on local
data when training with local data. Agents may be attacked by adversaries when uploading
local models. Adversaries may obtain local data information from model parameters by
designing corresponding extractors. For instance, the work by [15] trained the mGANAI
model to obtain the original training images of the participants. The main reason for
the privacy leakage was that the participants uploaded the gradients in plaintext to the
aggregation server. To protect the data privacy security of participants, some researchers
have proposed excellent solutions. Wei et al. [16] proposed adding artificial noise to the
client’s parameters before model aggregation, employing local differential privacy for
privacy protection. Kairouz et al. [17] proposed adding discrete Gaussian noise before
security aggregation and after discretizing the agents’ model updates. Adding disturbing
noise to the model can be a good way to protect model privacy. However, there is a
trade-off between model convergence and the level of privacy protection. Phong et al. [18]
used homomorphic additive encryption for asynchronous stochastic gradient descent
training of neural networks. This method can perform arithmetic operations directly on
the ciphertext without decryption. Zhang et al. [19] used a homomorphic multiplicative
encryption scheme to protect model parameters and achieve faster computational efficiency.
While these homomorphic encryption-based methods can effectively protect the private
information of each agent, they introduce significant computational overhead.

Secondly, due to security risks such as poisoning attacks, the correctness of server
aggregation results in FL systems cannot always be guaranteed. Driven by illegal interests,
a malicious cloud server may return incorrect aggregation results to agents. In this case,
the global model will be attacked, and the agents will train a bad model. Such a server
might also intentionally send designed results to a specific agent to analyze the features of
that agent’s data. To solve these problems, some solutions have been proposed. Among
them, Ren et al. [20] used a linear homomorphic hash and digital signature for traceable
verification, ensuring aggregation result accuracy. Xu et al. [21] designed a verifiable
method based on homomorphic hash functions and pseudo-randomization techniques to
support aggregated result verification. Zhang et al. [22] introduced the bilinear aggregate
signature technology into federated learning to verify the correctness of aggregated results.
To reduce the validation overhead, Fu et al. [23] used Lagrangian interpolation to set the
interpolation points to verify the correctness of the aggregated results. The scheme kept
the validation overhead constant regardless of the number of participants. Lin et al. [24]
proposed a verification scheme based on discrete logarithms. The verification overhead was
reduced by more than half compared to the bilinear set signature approach. Yang et al. [25]
exploited keyed homomorphic hash functions and homomorphic signatures to construct
verifiable aggregation tags and designed a batch verification method to enhance efficiency.
However, the existing research schemes may not be suitable for resource-limited industrial
applications due to high communication and computational costs during the verification
process. Meanwhile, as important as the verification of the correctness of the aggregation
results is, the integrity verification of the parameters uploaded by the participants is
crucial, because if model parameters uploaded by unreliable participants are used in model
aggregation, the global model may be poisoned, and the gradient aggregation protocol
may be broken [19].
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In summary, based on the analysis presented above, resource-limited industrial IoT
faces three primary challenges in FL: (1) ensuring the privacy of industrial agents during
model parameter exchange, (2) balancing training efficiency with the verification of cloud
server aggregation results’ correctness and distribution consistency, and (3) balancing
model training efficiency while validating the integrity of agents’ uploaded parameters.

To alleviate these issues, we propose a privacy-conscious and efficient verifiable fed-
erated learning scheme called EVFL, which combines adaptive gradient sparsification
(AdaGS), BLS signatures, and fully homomorphic encryption schemes. The main contribu-
tions of this paper are as follows:

• We design an efficient federated learning mutual attack verification mechanism, which
combines BLS signatures and adaptive gradient sparsification (AdaGS). (1) It can ver-
ify the integrity of industrial agents’ upload parameters to prevent unreliable model
parameters from participating. Global model aggregation: (2) It can verify the correct-
ness of cloud server aggregation results and prevent malicious aggregation of cloud
servers. (3) It can be extended to verify the consistency of distributed aggregation
results, thereby protecting the rights and interests of industrial agents.

• We devise an innovative method, termed AdaGS, which employs adaptive gradient
sparsification to minimize the burden of verification processes. By dynamically adjust-
ing the level of sparsification and efficiently reusing parameters, AdaGS achieves high
performance while preserving efficiency. In comparison to prevalent approaches, our
scheme stands out as an optimal fit for environments constrained by limited resources.

• To protect data privacy during transmission, we employ full homomorphic encryption.
A comprehensive security analysis confirms that EVFL effectively protects agents’
data privacy and achieves secure verification for federated learning. Extensive ex-
periments demonstrate the system’s effectiveness, with only a moderate increase in
computational cost.

The rest of the paper is organized as follows. Section 2 presents the system structure,
threat model, and design model. Section 3 presents some preliminaries such as the bilinear
map, BLS signature, and gradient sparsification (GS) method. Section 4 provides a detailed
description of our proposed efficient and verifiable federated learning with privacy preser-
vation. Section 5 analyzes the security, communication, and computation costs of the EVFL
method. Section 7 evaluates performance on two datasets. Finally, Section 7 summarizes
this study and presents our future work.

2. Problem Description

With the rapid development of technologies such as IIoT and cloud–fog–edge comput-
ing [26], data privacy protection in related application scenarios has attracted widespread
attention. The converged application of IIoT based on federated learning has become
a research hotspot. Yang et al. [27] developed the digital twin empowered IIoT (DTEI)-
assisted deep reinforcement learning method for the selection process of IIoT devices in FL,
especially for selecting IIoT devices with high utility values. Zhang et al. [28] presented an
anomaly-based intrusion detection system with FL for privacy-preserving machine learning
in future IIoT networks. Wang et al. [29] proposed a reliable anomaly detection strategy
for IIoT using federated learning. The proposed strategy achieved high throughput, low
latency, and high anomaly detection accuracy for privacy preservation in various IIoT
scenarios. In summary, FL systems still face numerous privacy and security challenges.
The cloud server responsible for aggregating model parameters may be malicious. It could
distribute manipulated aggregation results, potentially launching nefarious attacks. During
global model aggregation, industrial agents might submit unreliable model parameters
that can adversely impact the overall model performance.
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In this section, we describe the system model, threat model, and design goals of EVFL.
The system model is illustrated in Figure 1.

Figure 1. The FL system model.

2.1. System Model

We consider a typical FL system with three types of entities in our scenario: (1) indus-
trial agents, (2) cloud server (CS), and (3) trusted authority (TA). We describe these three
types of entities according to their roles in the FL system model.

• Industrial agents: Industrial agents participate as distributed training participants
under the coordination of a cloud server. Each agent maintains its local dataset,
denoted as Di, and trains a local model based on this dataset. During the training
process, agents are required to transmit their local models to the cloud server. Addi-
tionally, they need to send some auxiliary information to both the CS and the TA for
verification purposes.

• Cloud server: The cloud server is responsible for updating the global model, broad-
casting the updated global model parameters, and controlling the task execution
phases, such as the start and end of the training. To support integrity verification of
the model parameters sent by each industrial agent, the cloud server needs to send
proof information to the TA for validation.

• Trusted authority (TA): The TA is responsible for initializing the system parameters
and publishing some public functions during the system startup phase. Based on
the auxiliary information and proofs sent by the CS and the industrial agents, the TA
verifies the integrality of the model parameters uploaded by the industrial agents and
the correctness of the aggregated parameters of the cloud server.

2.2. Threat Model and Design Goal

We assume the cloud server and all industrial agents in the system are semi-honest,
i.e., they execute the agreed-upon protocol honestly but may attempt to gain additional
knowledge from the data they receive. In the system, the following threats may exist:

• Cloud server: A semi-honest cloud server can obtain the model sent from each agent
and try to infer from these other entities’ private information. A malicious cloud
server may conduct dishonest data aggregation and send incorrect aggregation results
to all agents. There is also a possibility that a cloud server with ulterior motives may
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send correct aggregation results to some agents while providing incorrect results to
specific agents.

• Industrial agents: Semi-honest industrial agents may generate unique parameter labels
according to the agreed-upon protocol. However, the model parameters they upload
may not be consistent with the parameters used to generate the labels.

Once any of the above threats occur, the performance of the global model is affected
and even causes the model not to converge, seriously violating the agent’s rights.

To solve the above problems, we try to achieve the following three goals.

• Privacy security: the proposed EVFL should guarantee the security of the training
information exchanged during the training process to prevent unauthorized access by
malicious third parties.

• Protection of right: one of the main goals of the proposed EVFL is to protect the rights
and interests of agents, ensuring their access to correct and verifiable aggregation results.

• Model performance: an important goal of the proposed EVFL approach is to en-
sure model performance while minimizing verification overhead compared to exist-
ing schemes.

3. Preliminaries

In this section, we introduce some of the background used in the EVFL approach,
including the BLS signature and gradient sparsification.

3.1. Bilinear Map and Boneh–Lynn–Shacham (BLS) Signature

• Bilinear map [21]: Assume that there are two cyclic multiplicative groups G and G1
with the same prime order p, where G =< g >. e : G1 × G1 → G2 is a bilinear map
satisfying the following conditions:
Bilinearity: ∀ a, b ∈ G and ∀ x, y ∈ Z∗p, we have e(ax, by) = e(a, b)xy.
Computability: ∀ a, b ∈ G, e(a, b) can be computed efficiently.
Nondegeneracy: e(g, g) ̸= 1 is always true.

• BLS signature [30]: Assume that there are two cyclic multiplicative groups G and G1
with the same prime order p, where G =< g >. e : G1 × G1 → G2 is a bilinear map.
Given a hash function H: {0,1}*→ G, which can hash directly to the elliptic curve, then
a BLS signature can be constructed:
Randomly select sk as the signer’s private key, the public key is pk = gsk∈G and
the message being signed is M. Next, the signer calculates the signature by formula
Sign = H(M)sk∈G. The verifier can take public key pk and check whether
e(pk, H(M)) = e(g, Sign) holds. If the equation holds, the signature is valid; oth-
erwise, the signature is invalid.

3.2. Gradient Sparsification (GS) Method

Gradient sparsification (GS) is a method designed to enhance communication efficiency
by compressing either the gradient or model weight vector. Its main objective is to exchange
only a few significant gradients for global model aggregation. Two commonly used GS
techniques are periodic averaged GS and top-k GS. In the periodic averaged GS method, a
random subset of gradient elements is chosen for uploading and aggregation during each
round. After passing a finite number of rounds, all the gradient elements are aggregated at
least once. In top-k GS, only the k gradient elements with the highest importance values
are uploaded and aggregated. Recent studies have demonstrated the effectiveness of
GS methods in reducing the computational and communication overheads of federated
learning systems. Han et al. [31] provide a theoretical analysis demonstrating that local
and global models can still converge after applying GS. The key of gradient compression
is to identify important gradients (i.e., the setting of the sparsification rate) and encode
(quantize) them with low precision. The choice of the sparsification rate requires a trade-off
between model performance and resource conservation. A high sparsification rate can
significantly reduce the resource overhead but may result in a substantial reduction in
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model performance. Conversely, a low sparsification rate guarantees a limited loss in
model performance but saves very little computational and communication resources.

3.3. Cheon–Kim–Kim–Song (CKKS) [32] Cryptosystem

Homomorphic encryption (HE) [33], first proposed by Rivest, Adleman, and Der-
touzous in 1987, is an encryption scheme in which homomorphic encryption operations
on plaintexts are equal to the same operations on ciphertexts. Many HE schemes, such
as RSA, ElGamal, and Paillier, can be applied to privacy protection, cloud computing, or
genomic data [34]. However, these HE schemes can only support homomorphic addition or
homomorphic multiplication, but not both. CKKS is a fully homomorphic encryption (FHE)
scheme. Compared to Paillier, the CKKS scheme has faster encryption/decryption speeds
and allows both additive and multiplicative homomorphic encryption [35,36]. Therefore,
the CKKS scheme is used in EVFL. The additively homomorphic encryption is shown in
Figure 2, and the multiplicative is shown in Figure 3.

In CKKS, the data (plaintext) are encrypted into ciphertext by the data owner using the
public key, and the ciphertext is decrypted using the private key after the data processing
is completed. CKKS scheme includes KeyGen, Encrypt, Evaluate, and Decrypt functions.

Figure 2. Addictive homomorphism.

Figure 3. Multiplicative homomorphism.

• KeyGen takes the secure parameter λ as input and outputs the private key x and
public key y, denoted as KeyGen(1λ) → (x,y).

• Encrypt inputs public key y and plaintext p∈ P (P is plaintext defined by y) and outputs
ciphertext c ∈ C (C is ciphertext defined by x) obtained by encrypting plaintext p using
public key y, denoted as Encrypt(p,y) → c.

• Evaluate inputs the ciphertext c into function F to perform the associated addition and
multiplication operations.

• Decrypt takes x and c as input and outputs plaintext p decrypted by x, which is
recorded as Decrypt(c,x) → p.

4. Our Approach

In this section, we present our proposed EVFL, which combines our designed adaptive
gradient sparsification (AdaGS) method, BLS signatures, and a secure communication
protocol based on the CKKS cryptosystem. We first describe the system model and then
present the technical details of the scheme.
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4.1. The Workflow of the Proposed Method

Our EVFL aims to protect the privacy and rights of industrial agents during the
training process. The workflow of EVFL is shown in Figure 4. On the industrial agent
side, each agent trains a local model using local data. Then, the local model is sparsified
using the AdaGS algorithm, and the sparsified model’s parameters are encrypted using
the CKKS encryption method. Before aggregating the model parameters, the TA verifies
the integrity of the model parameters sent by the agents. On the server side, the server
updates the global model parameters after receiving the parameters from the industrial
agents. The TA verifies the correctness of the server aggregated parameters. After the cloud
server distributes the parameters to the industrial agents, the industrial agents verify the
consistency of the server distribution results. The workflow of EVFL consists of four phases
as follows.

Figure 4. The workflow of the EVFL.
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4.1.1. System Setup

In the system setup phase, the TA is responsible for initializing the model parameters
and generating various keys used for data transmission and verification. The main tasks in
this stage are as follows:

The TA selects cyclic groups G and G1 with prime order q and generator g, and bilinear
pairing maps e : G × G = G1. TA randomly selects a private key k and uses it to compute the
public key δ = gk. One-way hash function H: {0,1}*→ G is used for data integrity validation,
and random number generators rand(*) are used to generate different random numbers
each time. The TA publishes parameters {g, q, e, G, G1, k, δ}.

The cloud server generates an initial global model and shares this initial global model
with all the industrial agents. The cloud server receives the encryption model parameters
Enc(Sparse(wa,1)), Enc(Sparse(wa,2)),. . . , Enc(Sparse(wa,K)) and the validation accuracy
value acc1, acc2,. . . , accK uploaded by each industrial agent. The cloud server sends the
updated global model parameters Enc(Sparse(wglo)) and the sparsification rate ρ to all
industrial agents.

Each industrial agent needs to be registered in the system before federated training
begins. During registration, an industrial agent randomly selects a private key sk and
calculates the public key pk =gsk. The industrial agent sends the public key pk to the
TA, which returns a unique identifier ID to the industrial agent. In addition, the TA also
publishes sufficient public parameters λk, k = 1,2, . . . to all the industrial agents.

4.1.2. Each Industrial Agent Trains the Local Model and Uploads the Model Parameters

After receiving the encrypted global model parameters Enc (wglo) and the sparsifi-
cation rate ρ from the cloud server, each industrial agent decrypts Enc (wglo). Then, each
agent trains the model using its local data, which can be expressed as:

wa,k = MGD(wa.glo, Dbatch,k) (1)

where momentum gradient descent (MGD) denotes the momentum gradient descent
algorithm, Dbatch,k denotes the mini-batch data of the agent k.

After training the local model, each industrial agent performs sparsification on the
local model to obtain Sparse(wa,k) and Inda,k. The sparse model can be reconstructed to
obtain wa,k using the cloud server’s recovery sparsification model algorithm (detailed
in Section 3.3). Next, Sparse(wa,k) and wa,k are encrypted using the CKKS encryption
algorithm to obtain Enc(Sparse(wa,k)) and Enc(wa,k). Then, Enc(Sparse(wa,k)) and Enc(wa,k)
are divided into n and (1 − ρ)n blocks, respectively, with each block further subdivided
into s sectors. Here, we use Equations (2) and (3) to represent Enc(Sparse(wa,k)) and
Enc(wa,k), respectively.

spm(k) = Enc(Sparse(wa,k)) =
{

spmk
i,j, i = 1, 2, . . . , (1− ρ)n, j = 1, 2, . . . , s ∈ Znxs

p (2)

m(k) = Enc(wa,k) =
{

mk
i,j, i = 1, 2, . . . n, j = 1, 2, . . . s

}
∈ Znxs

p (3)

where spm(k)
i,j denotes the data in the ith block, jth sector of Enc(Sparse(wa,k)). Then agent

k calculates the flags spφ
(k)
i and φ

(k)
i and the signatures spσ

(k)
i and σ

(k)
i of the ith block, re-

spectively.

spφ
(k)
i = ∑s

j=1 H(spm(k)
i,j ), i = 1, 2, . . . (1− ρ)n (4)

spσ
(k)
i = (spφ

(k)
i )skk .g∑s

j=1 spm(k)
i,j λi , i = 1, 2, . . . (1− ρ)n (5)

φ
(k)
i = ∑s

j=1 H(m(k)
i,j ), i = 1, 2, . . . n (6)

σ
(k)
i = (φ

(k)
i )skk .g∑s

j=1 m(k)
i,j λi , i = 1, 2, . . . n (7)
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The industrial agent sends the processed parameters spm(k), Enc(Sparse(wa,k)), Inda,k,

spφ
(k)
i , and spσ

(k)
i to the cloud server and sends φ

(k)
i and σ

(k)
i to the TA. Algorithm 1 depicts

the pseudo-code for training the local model and uploading the parameters.

Algorithm 1 Training the local model and uploading parameters

Input: Model, training parameters
Output: spm(k), Enc(Sparse(wa,k)), Inda,k, spφ

(k)
i , spσ

(k)
i , φ

(k)
i , σ

(k)
i

1: Industrial agent side:
2: For industrial agent k = 1, . . . , K do: // Parallel running
3: Receive Enc(wglo) and ρ.
4: Decrypt Enc(wglo) to obtain wglo.
5: Train the model locally and obtain the model parameters wa,k.
6: Perform sparse operation on model parameters to obtain Sparse(wa,k), Inda,k,

and wa,k.
7: Encrypt Sparse(wa,k) and wa,k to obtain Enc (Sparse(wa,k)) and Enc(wa,k).
8: Divide Enc (Sparse(wa,k)) into (1-ρ)n blocks, each of which is divided into s sectors,

to obtain spm(k)
i,j .

9: Divide Enc (wa,k) into n blocks, each of which is divided into s sectors, to ob-

tain m(k)
i,j .

10: Compute spφ
(k)
i , spσ

(k)
i , φ

(k)
i , σ

(k)
i .

11: Send Enc(Sparse(wa,k)), Inda,k, spmk, spφk
i , spρk

i , and acck to the server.

12: Send σ
(k)
i and φ

(k)
i to the TA.

13: End
14: Return Enc(Sparse(wa,k)), Inda,k, spφ

(k)
i , spσ

(k)
i , φ

(k)
i , σ

(k)
i .

4.1.3. Integrity Verification for Parameters Uploaded to the CS

In order to ensure the authenticity of the aggregated parameters, the integrity of the
uploaded parameters of each agent is verified before the cloud server aggregates the global
model. The TA first runs the random number generator to generate c integer random
numbers {β1, β2, . . . , βc} in the range between 1 and (1 - ρ)n. Then, the TA sends {β1, β2, . . . ,
βc} to the cloud server. After receiving the challenge information from TA, the cloud server
generates the proof information for each agent according to Equations (8)–(10) and sends
spφ(k), spσ(k) and η

(k)
i , i = β1, β2, . . . , βc to TA.

spφ(k) = ∏βc
i=β1

(spφ
(k)
i )c (8)

spσ(k) = ∏βc
i=β1

(spσ
(k)
i )c (9)

spη(k) = gλi ∑s
j=1 spm(k)

i,j , i = β1, β2, . . . βc (10)

After receiving the proof information from the cloud server, the TA verifies whether
Equation (11) holds. If Equation (11) holds, the parameters uploaded by agent k can be
used for global model aggregation. Otherwise, they are rejected. The whole process is
shown in Algorithm 2

e(spσ(k), g) = e(spφ(k), pkk).e(∏β

i=β1
spη

(k)
i , gc) (11)
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Algorithm 2 Integrity verification for parameters uploaded to the CS

Input: spm(k), spφ
(k)
i , spσ

(k)
i

Output: 1: Integrity verification passed, 0: Integrity verification not passed
1: TA side:
2: Run random number generator to generate {β1, β2, . . . βc}.
3: Send challenge information {β1, β2, . . . βc} to CS.
4: for industrial agent k = 1, . . . , K do:
5: CS side:
6: Compute spφ(k), spσ(k) and spη

(k)
i

7: Send spφ(k), spσ(k) and spη
(k)
i to TA;

8: TA side:
9: Compute e1 = e(spσ(k), g), e2 = e(spφ(k), pkk) · e(∏

βc
i=β1

spη
(k)
i , gc)

10: If e1==e2
11: Return 1;
12: else
13: Return();
14: End

4.1.4. Parameter Aggregation by the CS and Correctness Verification for
Aggregated Results

Before the cloud server performs model parameter aggregation, we assume that the
cloud server has received the complete set of local model parameters from the agents.
Agents whose parameters do not pass the integrity verification are rejected. The cloud
server begins by recovering the model parameters, Enc(wa, k), based on spm(k) and Inda, k
uploaded by agent k. After this recovery process, the global model is obtained by aggregat-
ing the model parameters using the following formula:

Enc(wglo) = ∏k
k=1 (ϑk.Enc(wa,k)) (12)

where ϑk denotes data contribution ratios calculated by ϑk = |Dk|/|Dall|.
After aggregating the model parameters, the cloud server distributes the aggregated

model parameters to each agent. The correctness of the cloud server’s aggregation result
is verified by each agent with the assistance of the TA. In this section, correctness means
that the cloud server correctly aggregated all the validation parameters uploaded by the
agents. According to Section 4.1.3 , the TA receives φ(k) and σ(k) from each agent. The TA
runs a random number generator to generate c random integers {β1, β2, . . . , βc} in the range
between 1 and n. Then, the TA computes φ(k), σ(k), and η

(k)
i , i = β1, β2, . . . , βc, according to

Equations (13)–(15).

φ(k) = ∏βc
i=β1

(φ
(k)
i )c (13)

σ(k) = ∏βc
i=β1

(σ
(k)
i )c (14)

η(k) = gλi ∑s
j=1 m(k)

i,j , i = β1, β2, . . . βc (15)

In this scenario, let us assume that an agent accepts the global model Enc(wglo) and
divides the global model parameters into n blocks, with each block further divided into s
sectors, denoted as m(glo). The TA sends the challenge information {β1, β2, . . . , βc} to agent
k. Agent k generates proof information, which includes φ(glo), σ(glo), and η

(glo)
i , i = β1, β2,

. . . , βc, based on the provided challenge information. The TA can verify the correctness
of the cloud server’s aggregation parameters by assessing whether Equation (16) holds.
For a detailed proof, please refer to Section 4.1. Algorithm 3 presents the pseudo-code for
Correctness verification for aggregated results.

∏K
k=1 e(σ(k), g) =∏K

k=1 e(φ, pkk).e(∏βc
i=β1

η
(glo)
i , gc) (16)
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Algorithm 3 Correctness verification for aggregated results
Input: Enc(Sparse(wglo))
Output: 1: Correctness verification passed, 0: Correctness verification not passed
1: TA side:
2: Run random number generator to generate {β1, β2, . . . βc}.
3: Send challenge information {β1, β2, . . . βc} to some agent.
4: Agent side:
5: Generates proof information φ(glo), σ(glo) and η

(glo)
i , i = β1, β2, . . . βc

6: Send φ(glo), σ(glo) and η
(glo)
i to the TA.

7: TA side:
8: Compute e1 = ∏K

k=1 e(σ(k), g), e2 = ∏K
k=1 e(φ(k), pkk) · e(∏

βc
i=β1

η
(glo)
i , gc)

9: If e1==e2
10: Return 1;
11: else
12: Return();
13: End

4.1.5. Consistency Checking of Aggregated Results

To protect the agents and prevent the cloud server from sending incorrect aggregation
results to some agents, the TA performs verification to ensure the consistency of the agents’
received parameters. In this context, let us assume that two different agents α and ε receive
the aggregated model parameters Enc(w(glo)

a,α ) and Enc(w(glo)
a,ε ), respectively, sent by the

cloud server. Agent α receives the correct model parameters. It is evident that for the
random integers {β1, β2, . . . , βc} generated by the TA within the range between 1 and n,
φ
(α)
i and φ

(ε)
i can be obtained by Equations (17) and (18).

φ
(a)
i = ∑s

j=1 H(m(a)
i,j ), i = 1, 2, . . . n (17)

φ
(ε)
i = ∑s

j=1 H(m(ε)
i,j ), i = 1, 2, . . . n (18)

Since agents α and ε receive the same aggregation result, φ
(α)
i is equal to φ

(ε)
i . This ver-

ification process helps ensure that agents receive consistent and correct model parameters,
enhancing the overall security and trustworthiness of the federated learning system.

4.2. Adaptive Gradient Sparsification

To reduce the resource consumption overhead of verification, we introduce an adap-
tive gradient sparsification method aimed at reducing the number of transmitted parame-
ters. Drawing inspiration from the concept of feedback tuning commonly used in control
systems, we devise an adaptive gradient sparsification (AdaGS) method. This method adap-
tively adjusts the sparsification rate based on the model’s performance, thereby striking a
better balance between model performance and resource consumption.

In our approach, we employ accuracy values as the metrics for assessing model
performance. The industrial agent k calculates the local accuracy value, acck, and sends it
to the cloud server. The cloud server then calculates the average accuracy accglo according
to the formula:

accglo =
K

∑
k=1

(ϑk · acck) (19)

When the average accuracy value accglo falls below the highest accuracy for ψ consecutive
times, the system adjusts the sparsification rate ρ using the following adjustment formula:

ρ = max(ρ− d, 0) (20)

where d represents the decay rate, which controls the extent of sparsification rate adjust-
ment, and ψ influences the sensitivity of the algorithm. Based on the experiment in this
paper, we set d to 0.001 and ψ to 2.
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The cloud server sends the updated sparsification rate to all agents for use in the
next round of model sparsification. After training their local models, each agent applies
sparsification based on the received sparsification rate. The importance values of local
model parameters at each iteration t are represented by gradient parameters. These gra-
dient parameters are ranked into a sequence based on their absolute values, sorted from
smallest to largest. Selecting the value at the ρ% position as the sparsity threshold ξ. The
parameters with gradient absolute values exceeding ξ are chosen to compose the sparse
model parameters Sparse(wa,k). The position of these parameter is recorded to create an

index sequence Ind(t)a,k. Agents upload only the parameters whose importance values exceed
the threshold ξ, rather than transmitting all model parameters to the cloud server.

In each iteration, the local model parameter recovery algorithm is executed to obtain
Enc(wa,k) when the cloud server receives the sparsified model parameter Enc(Sparse(wa,k))

and indexing sequence Ind(t)a,k from agent k. For the local model parameter at position i, the
following logic is applied:

If index i exists in the sequence index Ind(t)a,k, the model parameter uploaded by agent
k for that indexed position is used.

If index i is not found in the sequence index Ind(t)a,k, the parameter at the same position
in the global model from the previous iteration is used to fill in the missing value.

Finally, the cloud server computes the global model parameters according to Equa-
tion (12). The whole process is shown in Algorithm 4. The AdaGS consists of two communi-
cation transfer processes, uploading and downloading. Each local model has M parameters,
and after sparsification, (1-ρ)M parameters and (1-ρ)M parameter indexes are uploaded to
the server. The cloud server aggregates the global model and returns the M parameters to
each agent. Ranking at each agent k to obtain the importance threshold ξ takes O(T log T)
time. The computational complexity of Algorithm 4 is O(T log T).

Algorithm 4 AdaGS
Input: d, ψ
Initialize acc0 ← 0, µ← 0
1: For t = 1, . . . , N do:
2: Each industrial agent k = 1, . . . , K:
3: Train the model locally and obtain the model gradient parameters;
4: Rank the gradient parameters according to their absolute values from smallest to largest;
5: Select the value at the ρ% position as the sparsity threshold ξ;

6: Select the parameters whose gradient absolute values exceed ξ to obtain Sparse(w(t)
a,k);

7: Record the position of the parameter whose gradient absolute value exceeds ξ to create an index sequence Ind(t)a,k;

8: Encrypt Sparse(w(t)
a,k) to obtain Enc(Sparse(w(t)

a,k));
9: Compute the validation accuracy value acck ;

10: Send acc(t)k , Ind(t)k and Enc(Sparse(w(t)
a,k)) to cloud server.

11: The cloud server:
12: For i = 1,2. . . ,Np

13: If i ∈ Ind(t)a,k

14: w(t)
a,k = Enc(Sparse(w(t)

a,k)).
15: Else
16: w(t)

a,k = Enc(w(t−1)
glo,i ).

17: Enc(w(t)
glo) = 1

K ∑K
k=1 Enc(w(t)

a,k).

18: acc(t)glo ← ∑K
k=1 (θk · acc(t)k ).

19: If acc(t)glo > acc0

20: acc0 ← acc(t)glo
21: Else
22: µ← µ + 1.
23: If µ >= ψ
24: ρ← max(ρ− d, 0)
25: µ← 0
26: Send ρ and Enc(w(t)

glo) to agents.
27: End
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5. Analysis

In this section, we provide the security and correctness analysis of the proposed scheme.

5.1. Correctness Analysis

The correctness guarantees of our EVFL are: (1) if the parameters uploaded by an
agent are intact, the proof of integrity always passes the validation of the TA; and (2) if the
cloud server aggregates the parameters correctly, the proof of correctness always passes the
validation of the TA.

Proof. (1) The integrity of the parameters uploaded by agents depends on (11), which can
be derived as follows:

e(spσ(k), g) = e(∏βc
i=β1

(spσ
(k)
i )

c
, g) (21)

= e(∏βc
i=β1

(φ
(k)
i )

c.skk
, g).e(∏βc

i=β1
gcλj ∑s

j=1 spm(k)
i,j , g)

= e(∏βc
i=β1

(φ
(k)
i )

c
, gskk ).e(∏βc

i=β1
gλj ∑s

j=1 spm(k)
i,j , gc)

= e(spφ(k), pkk).e(∏βc
i=β1

spη(k), gc)

(2) The correctness of the parameters aggregated by the cloud server relies on a
checking equation, as shown in (16), which can be proved as follows:

∏K
k=1 e(σ(k), g) = ∏K

k=1 e(φ(k), pkk).e(∏β

i=β1
η
(k)
i , gc) (22)

= ∏K
k=1 e(φ(k), pkk). ∏K

k=1 e(∏β

i=β1
gλi ∑s

j=1 m(k)
i,j , gc)

= ∏K
k=1 e(φ(k), pkk).e(∏β

i=β1
gλi ∑s

j=1 ∑K
k=1 m(k)

i,j , gc)

= ∏K
k=1 e(φ(k), pkk).e(∏β

i=β1
η
(glo)
i , gc)

5.2. Security Analysis

Definition 1 (CPA Security). The private key encryption scheme ∏= (Gen, Enc, Dec) satisfies
that if for any probabilistic polynomial adversary A, there exists a negligible function negl such that

Pr
[

PrivKcpa
A,∏(n) = 1

]
≤ 1

2
+ negl(n) (23)

then indistinguishable encryption under the choice of plaintext attack (CPA Security) is satisfied.

Secure communication protocol based on CKKS encryption is proved to be indistin-
guishable under chosen plaintext attack. In other words, in the CKKS encryption algorithm,
assuming the existence of an adversary A, even though A knows the chosen plaintext
and the encrypted ciphertext, they still cannot directly deduce the secret key. Next, we
demonstrate that our scheme protects the agents’ privacy.

Theorem 1. In the absence of collusion in the system, our scheme can protect the agent’s data
privacy and model privacy security if the CKKS encryption algorithm satisfies CPA security.

Proof. Assume that an adversary in our system intercepts the ciphertexts of the model
parameters, but since the CKKS algorithm satisfies CPA security and there is no collusion
between the agents and the adversary in the system, the adversary is unable to obtain the
private key to decrypt the parameters. For eavesdroppers, we use TLS/SSL (Transport
Layer Security/Secure Sockets Layer) to establish a separate communication channel
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between the cloud server and each agent to prevent eavesdropping during parameter
transmission. Since each agent uses a separate channel to communicate with the cloud
server, each agent cannot access the model parameters of other agents. Therefore, in our
system, we can ensure the privacy and security of all industrial agents’ data and models.

5.3. Analysis of Communication Cost and Computation Cost

We introduce some new notations to describe the operations in our protocol. Let P
denote a bilinear pairing, A denote an addition in G, M denote a multiplication in G, E
denote an exponentiation in G, Az denote an addition in Z*, M denote a multiplication in
Z*, H denote a hash computation for different hash functions, and U denote the number of
agents. In addition, the length of an element in Z* and G is represented as |Z| and |g|,
respectively. The total number of model parameters is denoted by NP.

• Communication cost: According to our protocol, communication costs are mainly
incurred in data transmission. During each training round, the industrial agent sends
sparsified local model parameters and auxiliary information to the cloud server. This
incurs a communication cost of UA ·

[
3(1− ρ)Np · |Zn|+ 2(1− ρ)n · |g1|+ |Zn|

]
. For

integrity verification, the TPA sends a challenge sequence β = {β1, β2, . . . βc}to the
cloud server, where the size is c · |Zn| bits. The cloud server then sends back a proof
of integrity

{
spφ(k), spσ(k), spµ

(k)
i

}
, with a size of (c + 2) · |g1| bits. After aggregating

the local models, the cloud server sends the global model parameters to the agents,
which requires UA · Np · |Zn| bits. When verifying the correctness of the aggregation

result, each industrial agent sends auxiliary validation message
{

φ
(k)
i , σ

(k)
i

}
to the

TA, incurring a communication cost of 2UA · n · |g1| bits. The TA then transmits
a challenge sequence β = {β1, β2, . . . βc} to some agents, where the size is c · |Zn|
bits. Agents send back a proof of correctness

{
φ(glo), σ(glo), η

(glo)
i

}
, with a size of

(c + 2) · |g1| bits. Thus, the communication cost per round of training is approximately[
(4− 3ρ)UA · Np + 2c + 1

]
· |Zn|+ [2UA · 2n + 2c + 4] · |g1| bits.

• Computational cost: Before uploading local parameters, the industrial agent is re-
quired to generate auxiliary validation information to be sent to both the cloud server
and the TA. The computational overhead of the auxiliary information generation
is (1 + ρ)n · s · H + (s − 1) · (1 − ρ)n · A. After receiving the challenge message
from the TA, the cloud server generates proof information, incurring a computa-
tional overhead of c[3E + (s− 1) · A + MZ] + 2(c − 1)M. The TA then validates
the integrity, and the computation overhead for this validation is approximately
n(1− ρ) · [(s− 1) · A + s ·m + 2E + M]. When performing the aggregation results’
correctness validation, the industrial agent generates proof information, incurring
computation costs approximately equal to n · s · H + (s− 1) · n · A. Then, the TA vali-
dates the correctness, and the computation overhead is close to 3P + (c− 1) ·MZ + E.

From Table 1, it is evident that the computational cost encompasses various oper-
ations, including power, hash, addition, and multiplication operations. Among these,
the hash operation is the most time-consuming, followed by power, multiplication, and
pairwise operations, with the remaining operations being less time-consuming, as noted in
reference [37]. Due to the use of fewer parameters, the communication and computation
overhead of our scheme costs less.

Table 1. Lists the resource overhead of some existing schemes.

Cost Type Quantity EVFL The State of the Art [38]

Communication cost Data transmission
[
(4− 3ρ)A · Np + 2c + 1

]
· |Zn|+

[2UA · n + 2(1− ρ) + 2c + 4] · |g1|
(2UA · Np + 2c) · |Zn|+

2(c + 2) · |g1|



Mathematics 2024, 12, 2479 15 of 20

Table 1. Cont.

Cost Type Quantity EVFL The State of the Art [38]

Computation cost
Computation cost on
auxiliary information
generation

(1− ρ)nsH + (s− 1) · (1− ρ)nA nsH + 2nE + nMz + 2sA + sMz

Computation cost
Computation cost on
proof information
generation

c[3E + (s− 1)A + Mz] + 2(c− 1)M cs(A + MZ) + 2(c− 1)M + 3cE + 2cM

Computation cost Computation cost
of validation 3P + (c− 1)MZ + E 3P + (c + 1)MZ

6. Implementation and Evaluation
6.1. Experiment Settings and Evaluation Standards

We conducted our experiments on a computer equipped with an Intel i7-6550 CPU,
NVIDIA 1080-Ti GPU, and 16 GB of RAM. Our implementation used Python for the EVFL
model and CKKS-Python for implementing CKKS homomorphic encryption.

To evaluate the performance of the EVFL model, we employed two datasets: Fashion-
MNIST (F-MNIST) and KDD CUP 99. F-MNIST is a widely recognized benchmark dataset
commonly used in various machine learning tasks. On the other hand, the KDD CUP
99 dataset originates from packet traces collected in military network environments and is
a prevalent dataset in the field of Industrial Internet of Things (IIoT) intrusion detection.
Thus, we chose these two datasets to thoroughly assess the benchmark performance of
our approach.

Here are the details regarding the number of data records and characteristics in the
different datasets:

• Fashion-MNIST(F-MNIST) [39]: there are 60,000 training samples and 10,000 test sam-
ples in this dataset, and the samples can be categorized into 10 classes (sandals, shirts,
sneakers, bags, etc.), each with grayscale images with an input size of 28 × 28 × 1.

• KDD CUP 99 [40]: This dataset consists of 5 million records, and we used a 10%
training subset and a test set for our experiments. The training set had 494,021 training
samples, and the test set had 311,092 test samples. The dataset included 41 features,
and there were 24 types of attacks in the training set and 38 types of attacks in the
test set. The types of attacks can be classified as denial-of-service (DoS), attack from
remote to local machine (R2L), unauthorized access to local administrator user (U2R),
and four types of probing attacks.

We used the CNN model as the local model of industrial agents. The structure of
the CNN model trained on the F-MNIST dataset was 28 × 28 (input)–5 × 5 × 16 (conv,
one stride, one padding)–(relu)–2 × 2 (max_pooling, one stride)–5 × 5 × 32 (conv, one
stride, one padding)–(relu)–2 × 2 (max_pooling, one stride)–(flatten)–64 (dense)–(relu)–
10 (output). The structure of the CNN model trained on KDD CUP 99 dataset was 5× 5 (input)–
3× 3× 16 (conv, one stride, two padding)–(batchnorm)–(relu)–2× 2 (max_pooling,1stride)–
3× 3× 32 (conv, one stride, two padding)–(batchnorm)–(relu)–2× 2 (max_pooling,1stride)–
(flatten)–(output). We trained the model using an MGD optimizer with a momentum
rate of 0.5. The loss function was a cross-entropy cost function. The mini-batch size, the
aggregation round, the learning rate, and the decay rate d used to train the network were
512, 1500, 0.05, and 0.001, respectively.

The accuracy, precision, recall, F1-score, and compression rate (CR) were used as the
evaluation standards. The CR is the proportion of the transmission parameter, which is cal-
culated according to CR = ∑N

t=1 ∑K
k=1 |sparse(wa,k)

i )|/ ∑N
t=1 ∑K

k=1 |w
a,k
t |, where N represents

the aggregation rounds.
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6.2. The Model Performance of the EVFL

In this experiment, we chose the centralized learning (CL) method and the privacy-
preserving federated learning (PFL) [41] method to compare with our EVFL method.

• Accuracy: Early-stage observations in Figure 5a,d reveal that EVFL exhibits lower
accuracy compared to CL and FL. This initial discrepancy can be attributed to EVFL’s
utilization of a model sparsification algorithm. As the number of aggregation rounds
increases, the accuracy curve of EVFL steadily improves. By the end of the training
process, its accuracy approaches that of PFL. Detailed experimental results are pre-
sented in Table 2, highlighting the similarity in model performance between EVFL and
PFL. These findings emphasize that EVFL’s introduction does not adversely impact
model performance across diverse datasets.

• Resource cost: Figure 5c,f show transmission parameter curves for different datasets,
while Table 2 provides comprehensive experimental data. The quantity of transmis-
sion parameters plays a pivotal role in determining computation and communication
overhead. As evident from Figure 5c,f, the number of transmission parameters in-
creases notably with the growing number of iteration rounds, varying across different
datasets. From Table 2, we can see that compared with PFL, EVFL demonstrates an
impressive reduction in transmission parameters. Specifically, on the Fashion-MNIST
and KDD CUP 99 datasets, EVFL reduces transmission parameters by a factor of 8.94
and 8.92, respectively. This outcome serves as a testament to the effectiveness of our
AdaGS method in curtailing resource consumption.

(a) Accuracy curves (b) Sparsification rate curves (c) Transmission parameters cures

(d) Accuracy curves (e) Sparsification rate curves (f) Transmission parameters cures

Figure 5. Curves of the different models; (a–c) were trained on Fashion-MNIST; (d–f) were trained on
KDD CUP 99.

Table 2. Classification results of the different models.

Fashion-MNIST KDD CUP 99

Dataset Accuracy Precision Recall CR Accuracy Precision Recall CR

CL 88.49% 88.49% 88.44% – 97.36% 97.29% 97.36% –

PFL 88.36% 88.46% 88.36% 1x 97.32% 96.02% 97.32% 1x

EVFL 84.92% 84.73% 84.92% 8.94x 97.13% 97.34% 97.13% 8.92x
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6.3. The Computation Cost of Proof Generation and Verification

In this section, we conducted experiments to assess the computational cost associated
with proof generation and verification. We explored two specific aspects.

6.3.1. Varying the Number of Parameters

First, we tested the time cost of proof generation and validation with varying parame-
ter quantities. In this experiment, 10 industrial agents were employed, and they utilized
60% of the available parameters. Testing was conducted on both the F-MNIST and KDD
CUP 99 datasets. Figure 6 provides a graphical representation of the results. As shown
in Figure 6, the time cost for proof generation and validation increased as the number
of parameters grew. However, there was a slight variation in computational overhead
for integrity and correctness verification. To illustrate, using the F-MNIST dataset as an
example, when the parameter count ranged from 2 × 104 to 12 × 104, the time required
for parameter integrity validation increased from 1.885 ms to 1.904 ms, while the time for
correctness validation of aggregation results increased from 2.318 ms to 2.795 ms. These
results show that the time cost for integrity and correctness verification remains relatively
stable with a fixed number of agents and varying numbers of parameters.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Time required to generate proofs and validations with different numbers of parameters,
with 10 agents and 60% of the parameters used; (a,e) Time required for the parameter integrity
proof generation; (b,f) Time required for the parameter integrity verification; (c,g) Time required for
the aggregated results’ correctness proof generation; (d,h) Time required for the aggregated results’
correctness verification; (a–d) were tested on Fashion- MNIST; (e–h) were tested on KDD CUP 99.

6.3.2. Varying the Number of Agents

Additionally, we explored the time cost variations for proof generation and verification
as the number of industrial agents changed. These experiments were conducted using
60% of the parameters, involving 104 and 106 parameters on the Fashion-MNIST and KDD
CUP 99 datasets, respectively. Figure 7 illustrates the outcomes. As shown in Figure 7, the
time cost of proof generation and validation increased with the increase in the number of
industrial agents. Moreover, the time cost was more sensitive to changes in the number of
industrial agents when dealing with 106 parameters compared to cases with 104 parameters.
This sensitivity aligned with theoretical expectations, as proof generation and verification
were performed independently by each industrial agent.

In summary, our experimental results are in line with prior research, as reported
in reference [23,38]. Notably, our approach, which integrates the AdaGS algorithm to
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reduce the number of uploaded parameters, exhibits a lower time cost for proof generation
and validation when compared to certain existing schemes. This highlights the practical
advantages of our method in terms of computational efficiency.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Time required to generate proofs and validations with different numbers of agents, with 60%
of the parameters used; (a,e) Time required for the parameter integrity proof generation; (b,f) Time
required for the parameter integrity verification; (c,g) Time required for the aggregated results’
correctness proof generation; (d,h) Time required for the aggregated results’ correctness verification;
(a–d) were tested on Fashion-MNIST; (e–h) were tested on KDD CUP 99.

7. Conclusions

In this paper, an efficient and verifiable federated learning framework with privacy
protection (EVFL) for the industrial internet was introduced. EVFL integrates three key
capabilities: privacy protection, verification mechanism, and resource optimization. Firstly,
in terms of privacy protection, it employs full homomorphic encryption technology. A
comprehensive security analysis confirmed that EVFL effectively safeguarded the privacy
of agent data and enabled secure verification in federated learning. Secondly, regarding the
verification mechanism, by incorporating BLS signatures, EVFL supports verifying the in-
tegrity of uploaded parameters from industrial agents, the correctness of aggregation results
from cloud servers, and the consistency of distributed results from cloud servers. Thirdly,
in terms of resource optimization, through the integration of our meticulously designed
adaptive gradient sparsification method, EVFL significantly reduces resource consumption.
Both theoretical analysis and experimental results demonstrated the effectiveness of EVFL.

In the future, our goal is to leverage new technologies such as large language models
(LLMs) to delve deeper into identifying untrusted participants within FL systems, promptly
detecting data poisoning and model poisoning attacks, thereby further enhancing the
security and reliability of this approach.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Quantity
G, G1 Cyclic multiplicative groups with prime order p
g The generator of G
e A bilinear map
H A hash function
Enc(w) Encrypted model parameters
ρ Sparsification rate
Dbatch,k The mini-batch data of the agent k
sk The privacy key of the industrial agent
pk The public key of the industrial agent
ID The unique identifier of the industrial agent
Sparse(w) Sparsified model parameters
Enc(Sparse(w)) Encrypted sparsified model parameters
acca,k Accuracy value
d The decay rate
t Number of iterations
CR Compression rate
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