
Citation: Grigoras, , A.; Leon, F.

Synthetic Time Series Generation for

Decision Intelligence Using Large

Language Models. Mathematics 2024,

12, 2494. https://doi.org/10.3390/

math12162494

Academic Editor: Jonathan

Blackledge

Received: 10 July 2024

Revised: 8 August 2024

Accepted: 9 August 2024

Published: 13 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Synthetic Time Series Generation for Decision Intelligence
Using Large Language Models
Alexandru Grigoras, and Florin Leon *

Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi,
Bd. Mangeron 27, 700050 Iasi, Romania; alexandru.grigoras@student.tuiasi.ro
* Correspondence: florin.leon@academic.tuiasi.ro

Abstract: A model for generating synthetic time series data using pre-trained large language models is
proposed. Starting with the Google T5-base model, which employs an encoder–decoder transformer
architecture, the model underwent pre-training on diverse datasets. It was then fine-tuned using
the QLoRA technique, which reduces computational complexity by quantizing weight parameters.
The process involves the tokenization of time series data through mean scaling and quantization.
The performance of the model was evaluated with fidelity, utility, and privacy metrics, showing
improvements in fidelity and utility but a trade-off with reduced privacy. The proposed model offers
a foundation for decision intelligence systems.
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1. Introduction

In a phase of rapid development, machine learning (ML) methods become able to
help businesses solve problems that are too hard or time-consuming for people. While
technical people understand how computers work and how to use them to their advantage,
business executives or decision-makers have limited understanding of how to program
computers to execute the needed tasks. Their preferred interaction method with a computer
is by writing in the natural language. Decision Intelligence [1] represents a methodology
that starts from the decision objective and creates actionable insights that help in making
data-driven decisions. This solves the problem for business executives and gives them the
required information needed to make better decisions.

Making a decision intelligence system requires using an ML model. For example, in
forecasting the revenue of a business, an artificial neural network can be used to determine
future revenue based on past data. The models rely on having a significant amount of data
already available for forecasting. One problem arises when the data are either unavailable
or insufficient based on the forecast length. Having access to enough real-world data is
a challenge in itself; collecting and storing data can be expensive or pose privacy risks.
Even if they are available, they are not always structured or continuous and introduce the
necessity to be preprocessed to obtain useful information. Another problem is data privacy.
In some domains, client data have privacy requirements and cannot be explicitly used in
machine learning models. Therefore, data need to be anonymized and reconstructed to
meet privacy requirements.

For businesses, data are usually represented in a tabular format. The rows are the
observations taken in the respective field, and the columns display the attributes of those
observations. An important component in the data that most organizations use are the
time index. This leads to creating synthetic time series for companies that want to forecast
different scenarios or create historical data that are not available for the current models [2].
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Having the time component adds complexity to the model, as it should not be generated
randomly and needs to keep similar statistical properties. As used in decision intelligence
tools, time series are a subtype of tabular data. This work focused on time series, which
can represent the sales values of products, the number of products sold, or the availability
of supply chain providers.

A solution to these problems is creating synthetic data (SD) that have similar statistical
properties to the real ones and testing models in different scenarios. Two cases will be used
for their existent data: extension and reconstruction. There are different types of SD based
on the objective of the system. It can be generated from real data, where a model captures
the distributions and structure and is used in extension and reconstruction. Another
way is without real data, where it can be generated by an existing model of a process,
by generic assumptions of a specific phenomenon or by using the analyst’s background
knowledge and different simulations [3]. The present work focused on generating data
from existing data. There are multiple advantages to creating data. It is more cost-efficient
than collecting, storing, and managing real data. It can help with privacy regulation and
protect sensitive customer information; it offers better scalability by generating datasets
as large as needed. Another advantage is the reduction of bias and the increase in diversity
by generating different scenarios. SD have use cases in almost all domains, including
generating insights, understanding the topic, or forecasting different scenarios [4].

The main contribution of this work is defining a model for generating synthetic time
series datasets based on pre-trained large language models (LLMs), which can then be used
for training machine learning models. While there are multiple methods for generating
data, the latest research is focused on models based on the transformer architecture. This
can help in situations where there are not enough data available or privacy restrictions
apply. For example, privacy risks may appear when real datasets exist but cannot be
publicly shared.

The rest of the paper is structured as follows. Section 2 includes the related research
in the domain of tabular and time series synthetic data generation. Section 3 includes
the proposed model architecture for generating the synthetic data. Section 4 contains the
evaluation metrics and experiments performed to assess the synthetic data. The last section
contains the conclusions and future work to improve the model.

2. Related Work

GAN and VAE. Generating SD is an area in current development. While most of
the models include generative adversarial networks (GANs) [5] and variational autoencoders
(VAEs) [6], current research focuses on transformers [7] and large language models. Mul-
tiple GAN models have been proposed for tabular data, e.g., in [8,9], which shows that
a universal model for generating synthetic data does not exist, and there is a need for
improvements in this area. Focusing on time series data, MedGAN [10] was used to gener-
ate realistic synthetic patient records. It combines the autoencoder and GAN to generate
high-dimensional discrete variables, uses mini-batch averaging to avoid mode collapse,
and increases learning efficiency by using shortcut connections and batch normalization.
The results demonstrate feasibility by achieving comparable performance with real data
and showing limited privacy risk. Good synthetic data generators (SDGs) should preserve the
temporal dynamic when using time series data. Newly generated sequences should keep
the original relationship between variables in time, as used in the TimeGAN model [11]. The
model combines the control of supervised learning with the flexibility of the unsupervised
paradigm. The main idea is to use two autoencoding components (an embedding function
and the recovery function) trained jointly with the adversarial components (the sequence
generator and discriminator) in a way that the model simultaneously learns to encode
features, generates representations, and iterates across time. It demonstrates improvements
over the state-of-the-art models on multiple datasets.

Challenges. There are multiple challenges in training GANs [12], which open the
space for other methods or improvements. The lack of convergence affects the training
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of the model when the parameters oscillate and never reach stability. This becomes an
issue when choosing the initial values. Mode collapse happens when the generator cannot
produce more varieties of samples. Another problem, the vanishing gradient, appears when
a discriminator is so efficient that the generator can no longer learn. When using time series
data, one of the disadvantages of GANs is the difficulty of capturing long-term temporal
dynamics. DoppelGANger (DG) [13] improves the model by using batch generation. By
using auto-normalization, it tackles the mode collapse by normalizing each time series
signal individually. To map the relationship between measurements and attributes, it uses
an auxiliary discriminator that verifies only the attributes. The experiments show that
DG achieves a significant improvement in fidelity over baseline models. It also enables
what-if analysis when users can create changes in the underlying system to generate the
corresponding results, which is useful in decision intelligence systems.

Transformers. Following the increase in the popularity of LLMs, recent research has
focused on using transformers to generate synthetic tabular data. The studies presented
next improve or propose new methods. Generating tabular data requires keeping the
relations between columns. There are multiple models based on GPT2 that take advantage
of the generative nature of the transformer. REaLTABFormer generates non-relational data
and then creates the relational dataset conditioned on the initial table using a sequence-to-
sequence model [14]. It achieves state-of-the-art results on prediction tasks and captures
relational structure better than a baseline model. GReaT [15] generates tabular data by
conditioning on any subset of features, and the remaining features are sampled without
additional overhead. This is demonstrated in the tests performed on multiple real-world
and synthetic datasets. A model based on BERT [16,17], a pre-trained LLM that is used
in tasks such as sentiment analysis, can also be used to generate synthetic data. There
are proposals using NeMo LLM for generating synthetic time series data [18], although
there are no results comparing it with other models for this particular task. BERT is used
in TabFormer, which relies on two architectures for tabular time series: one for learning
representations that are analogous to BERT, which can be pre-trained end-to-end and
used in downstream tasks, and another with GPT, which can be used to generate realistic
synthetic tabular sequences [19]. Working with LLMs for data manipulation tasks (such
as query, insert, modify, delete operations, question answering, or data analysis) is not an
easy task on traditional pre-trained models. TableGPT proposes a framework that allows
LLMs to better understand and work on tables using external functional commands [20].
TabText is a framework that converts the table into natural language phrases to be used in
LLMs as input [21]. While the majority of transformer models are made for tabular data,
there are also methods proposed for time series data that leverage the relations between
time elements. TTS-GAN modifies the GAN architecture by using transformers for the
generator and discriminator instead of neural networks [22]. TsT-GAN uses unsupervised
masked modeling to produce synthetic sequences that capture both the global distribution
and the conditional time-series dynamics [23]. CEHR-GPT uses GPT and captures the
temporal dependencies in patient histories, which has proved useful in generating EHR
patient data [24].

Tokenization. Tokenizing time-series data for transformer models is an important
task in fine-tuning LLMs. Multiple versions are proposed in [25,26]. Tokenizers are used
by LLMs in their input to split the text into smaller chunks. Tokenizers may find it difficult
to understand context and repeating patterns because they are not meant to represent
numerical values. They can also perceive consecutive values as distinct tokens and ignore
the temporal relations between them. While traditional LLMs use tokenizers that split
numbers in different ways, LLaMA uses a tokenizer that splits numbers into individual
digits, which makes it more efficient in handling integers and floating-point numbers. There
are methods that are explored in time series forecasting tasks in [27]. Analyzing the impact
of different tokenization methods on model performance is important when choosing
the best one. A tokenization method that uses an encoder–decoder architecture shows a
significant improvement in classification and forecasting tasks [28]. It is also important
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how numbers are tokenized. Adding spaces to create one token per digit improves the
performance on GPT-3 but decreases the performance on LLaMA-2, which tokenizes digits
individually [29]. Another method utilizes the frequency spectrum as a common dictionary
for tokenizing time series sequences, which converts single time series into frequency units
with weights. Applied to a transformer’s architecture, it outperforms the state-of-the-art
transformer models [30]. The results show that using specialized tokenizers for TS data
can increase the performance of the LLM if applied to the right LLM. The advancement
in handling time series data could unlock a wide range of possibilities, which includes
modality switching and time series question answering.

Evaluation. There are multiple ways to evaluate synthetic data, which makes compar-
ing multiple models difficult. There are applications where time series data pose challenges
for SDGs. Financial time series data have limited availability and an irregular nature [31],
which makes it harder for an SDG to get good results. SD can be evaluated based on fidelity,
utility, and privacy. Achieving a trade-off between these is necessary, depending on the
goals. Synthcity offers a framework for benchmarking synthetic data to easily compare mul-
tiple models [32]. There is also the question of how useful are the synthetic data compared
with real-world data. Among the members of the scientific community, there is still no
consensus on its usefulness, as analyzed in [33]. On the task of boosting ML models, there
are marginal improvements in using synthetic data in training ML models. A problem
also exists in the metrics of evaluating SDGs, which exposes the lack of standardization
of metrics in the research literature. Only the widespread use of SD can improve the
applications in different domains.

3. The Proposed Model

A model for generating synthetic time series data is proposed. The model starts from
the development of pre-trained LLMs, which are a specific type of transformer trained on
large amounts of data. An LLM learns to predict the next word given the input sequence of
words and the context of these words, which makes it a good choice for SDG. There are
multiple steps needed for creating the model, as seen in Figure 1.
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3.1. Pre-Trained LLM

The initial step is model pre-training, where the model is fed with an extensive dataset
that contains different articles, books, websites, or others. Using unsupervised learning, the
model learns to predict the next sequence of words given the input. The Google T5-base [34]
pre-trained model was chosen as a base model with 220 million parameters. T5 uses an
encoder–decoder transformer architecture, which relies on the attention mechanism to
process sequences of text. The encoder processes the input and converts it into a set of
hidden representations, while the decoder takes the representations and generates the
output text. It uses the sentencepiece [35] tokenizer, which handles diverse and complex
linguistic inputs effectively. After pre-training, the model learns general knowledge to
determine the output of basic questions.
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3.2. Fine-Tuning

The second step is fine-tuning, which is the process of transforming the general-
purpose model into a specialized one. Smaller and more specific datasets are fed into
the model to improve the performance on a specific domain. The time dependency adds
complexity to the model, which makes it necessary to improve the input tokenizer to
handle time series data. A challenge in fine-tuning is the significant amount of time and
storage capacity necessary to handle the computational load. There are multiple fine-tuning
methods that can be used. Prefix tuning involves adding trainable prefix tokens to the input
sequences to allow the model to adapt to new tasks without modifying the original weights
of the model. It is very good as a cost-saving measure, but the limitation is that it may
not perform well in capturing specific task features. Distillation involves training a smaller
model that replicates the behavior of the larger model, but this may require careful tuning.
The concept of parameter-efficient fine-tuning is introduced to overcome these limitations,
which works by reducing the number of trainable parameters in a neural network. The
Low-Rank Adaptation of Large Language Models (LoRA) technique introduces trainable rank
decomposition matrices into each layer of the transformer. This technique shows that the
new parameters introduced are merged back into the model without increasing the total
number of parameters. The fine-tuning method used is QLoRA (Quantized LoRA), shown
in Figure 2, which is an extended version of LoRA that quantizes the precision of weight
parameters to 4 bit precision instead of 32 bit. This reduces memory utilization, making it
able to run on consumer GPUs [36]. Using QLoRA, the model was trained with a learning
rate of 2.5 · 10−5 over 500 iterations using the Adam optimizer. The loss function is cross
entropy. QLoRA uses the rank 32, which controls the number of parameters trained, and a
scaling factor alpha of 64.
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3.3. Tokenization

Dividing the input text into smaller units is an important task in training LLMs.
Depending on the technique, tokens can consist of a wide range of segments, including
characters, words, sub-words, or symbols. The tokenizers usually struggle in multiple
cases, such as case sensitivity, trailing whitespace, digit chunking, integers, floating-point
numbers, arithmetic reasoning, and model-specific behavior. To be used in fine-tuning
the LLM as input, the time series sequence is converted into a sequence of tokens, as
shown in Figure 3, using scaling and quantization [37]. This allows the model to han-
dle numerical data as a language model would handle text. The first step is applying
mean scaling [38] to the time series to normalize the data. Considering a time series as
x1:C+H = [x1, x2, . . . , xC+H ], where the C time steps are the historical context and H steps
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are the forecast horizon, the scaling formula is defined in Equation (1), where the scale is
s = 1

C ∑C
i=1|xi|. This step ensures that the values are on a similar scale, which is important

for the model to process them effectively. The second step is to quantize the scaled values to
a fixed number of discrete tokens. This reduces the granularity of the data by mapping the
original values to a smaller set of representative values or levels, as defined in Equation (2).
Considering B bin centers c1 < c2 < . . . < cB and B − 1 edges bi, c1 < bi < ci+1, where
i ∈ {1, 2, . . . , B − 1}, the quantization function is q : R → {1, 2, . . . , B} and the dequan-
tization function is d : {1, 2, . . . , B} → R . There are multiple ways of determining the
number of bins B [39], for example, quantile binning, which is data-dependent, and uniform
binning. In the proposed model, uniform binning is chosen. It uniformly selects the bin
centers within an interval [l, r]. The number of bins chosen for the experimental studies
is B = 4094, and this can be changed depending on the input dataset and its frequency to
capture the cycles.

∼
x i =

xi
1
C ∑C

i=1|xi|
, (1)

q(x) =


1 i f − ∞ ≤ x < b1
2 i f b1 ≤ x < b2

. . .
B i f bB−1 ≤ x < ∞

, and d(j) = cj (2)
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3.4. Inference

The third step is inference to generate new synthetic datasets based on some rules or
existing data. In the context of an LLM, the inference is the capacity to produce predictions
or answers corresponding with the input and context that it has been given. The model
responds to prompts with relevant and appropriate responses by using its knowledge.
Figure 4 represents the process of generating output text based on input context and existing
time series. An example of a time series and the description of the data are used as the
input. The model outputs the synthetic time series. The tokens generated by the models
are mapped using the dequantization function from Equation (2) to the real values by
applying the inverse scaling transformation. To handle long-term dependencies in time
series data, the transformer uses the self-attention mechanism, which allows each time step
to consider all other time steps in the sequence. Positional encodings are added to the input
data to add temporal context to the model. While these methods add computational and
memory demands, other optimizations, such as sparse attention and memory-augmented
techniques, may be used. The input of the model can be a time series and words describing
the expected output. Fitting a large time series into the model is a limiting factor of LLMs.
To decrease the computational complexity, the data are fed into the model in batches. In our
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case, the context length was set as 80 steps. The output will be the generated time series that
can be further used in decision intelligence systems for training machine learning models.
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4. Experiments
4.1. Evaluation

The goal of the proposed model is to generate synthetic data that are suitable for the
tasks of data extension and reconstruction. Three dimensions are used to determine if the
model outperforms existing SDGs [40]. Evaluating SD is not as simple as determining
all the scores and selecting the one with the best values. SD cannot be optimized on all
three dimensions simultaneously, which makes it necessary for a trade-off between fidelity,
utility, and privacy to be made. The three dimensions are represented as a triangle in
Figure 5.
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In the case of extension and reconstruction, fidelity and utility were chosen as the
metrics to be optimized. Fidelity represents how similar the generated data are compared to
the real data and is important in tasks where creating an accurate time series is important.
The utility was then measured to determine how useful the generated data were for the
problem. It is determined by using the generated data in prediction tasks using different
algorithms. The last one was privacy. Storing and analyzing customer data or other
important information is regulated and must respect the standards set. The generated
SD should not leak information from the real dataset. Privacy cannot be optimized in the
proposed model, and it is important to analyze it to determine how it performs against
the other models. In this way, if there is not a significant difference, the model offers good
enough performance on this metric.

Two datasets were used: online retail store data and financial data. The first dataset
used to fine-tune the LLM model was M5 Forecasting—Accuracy [41]. It is a large-scale
dataset created for the M5 Forecasting Competition hosted by the International Institute
of Forecasters (IIF), which was released in 2020 and is designed to facilitate research and
development in time series forecasting methods. It contains details about 42,840 hierarchical
sales data from Walmart, making it suitable for evaluating the performance of forecasting
models across diverse domains. The second dataset contains stock market data with
historical daily prices of Nasdaq-traded stocks and ETFs [42]. The closing price was
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selected for the stocks and ETFs used in the experiments. The data were retrieved from
Yahoo Finance.

4.2. Results

Multiple experiments were performed to compare the proposed model to the following
models: GAN, TimeGAN, DoppelGANger, and LSTM. The system was tested on the three
dimensions presented in Section 4.1. These determine how the model performs on the three
dimensions and if it offers an improvement in fidelity and utility at the cost of privacy in
the context of generating synthetic data for data extension and reconstruction.

The GAN model is the baseline model for generating synthetic datasets. It has the
problems of lack of convergence, mode collapse, and vanishing gradient. TimeGAN
improves it by preserving temporal dynamics, while DoppelGANger improves it further
by using batch generation and auto-normalization, as well as an auxiliary discriminator
to solve the initial problems of the GAN. The proposed model has enhanced temporal
understanding, which makes it better for handling long-range temporal dependencies over
the GAN-based models. It has a flexible contextualization compared with a fixed-length
input on GANs and has better control over the data characteristics using fine-tuning. Some
disadvantages of the proposed model include high computational complexity and the
risk of overfitting. It can also function as a sequence learning problem after scaling and
quantization of the time series input data. It can then be considered a forecasting model.
The model was compared to an LSTM neural network.

4.2.1. Fidelity

The original synthetic data were compared to the generated synthetic datasets both
visually and using similarity metrics. Figure 6 contains the visualization of the time series
on the M5 dataset. The proposed model has a higher similarity with the original dataset
than the other models. While this is not ideal in every scenario for a general SDG, it has
advantages in the cases of data extension and reconstruction. In extending the time series
for the same products, it is important to maintain the trend in the time series and avoid
being too general; otherwise, important information could be lost. This is important in
business use cases for forecasting, where a similar trend is better than an average prediction,
where the overall forecasting accuracy is higher.

Data reconstruction has similar requirements, as it needs to hide the exact values while
keeping a similar trend to be useful in those applications. Generated synthetic data are
considered safer to use than original data, which have no protection and can leak important
information. More details about the performance of the data are shown in the following
metrics. The LLM generates the time series similar to the input time series, while the other
models create results based on the training dataset provided. The graphs show promising
results for the goal.

Comparisons of the non-temporal correlations r between the four products selected from
the M5 dataset are represented in Tables 1–6 for the original data, the compared models,
and the proposed model. Equation (3) shows the formula of r and how it is calculated,
where xi, yi are the individual sample points of variables x, y, and x, y are their respective
means. The objective is to have similar correlations between variables of the synthetic
data compared with the other models. The correlations between variables are similar and
remain consistent across all the models.

r = ∑ (xi − x)(yi − y)√
∑(xi − x)2∑(yi − y)2

, (3)
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Table 1. Correlation in real data between products for the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 0.066127 0.162910 −0.104505
FOODS_1_006 0.066127 1.000000 0.064237 −0.032394
FOODS_1_020 0.162910 0.064237 1.000000 −0.109218
FOODS_1_021 −0.104505 −0.032394 −0.109218 1.000000

Table 2. Correlation in synthetic data between products for the GAN on the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 −0.011732 0.006012 0.019552
FOODS_1_006 −0.011732 1.000000 0.014411 −0.012533
FOODS_1_020 0.006012 0.014411 1.000000 0.046684
FOODS_1_021 0.019552 −0.012533 0.046684 1.000000

Table 3. Correlation in synthetic data between products for the TimeGAN on the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 0.155671 0.056921 −0.017706
FOODS_1_006 0.155671 1.000000 −0.150662 −0.135556
FOODS_1_020 0.056921 −0.150662 1.000000 −0.210899
FOODS_1_021 −0.017706 −0.135556 −0.210899 1.000000

Table 4. Correlation in synthetic data between products for the DGAN on the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 0.138953 0.282578 −0.012651
FOODS_1_006 0.138953 1.000000 0.152952 −0.060127
FOODS_1_020 0.282578 0.152952 1.000000 −0.137310
FOODS_1_021 −0.012651 −0.060127 −0.137310 1.000000

Table 5. Correlation in synthetic data between products for the LSTM on the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 0.111014 0.194706 −0.147662
FOODS_1_006 0.111015 1.000000 0.073915 −0.144626
FOODS_1_020 0.194706 0.073915 1.000000 −0.068540
FOODS_1_021 −0.147662 −0.144626 −0.068540 1.000000

Table 6. Correlation in synthetic data between products for the proposed model on the M5 dataset.

FOODS_1_005 FOODS_1_006 FOODS_1_020 FOODS_1_021

FOODS_1_005 1.000000 −0.160347 0.190210 −0.229806
FOODS_1_006 −0.160347 1.000000 −0.025239 −0.136912
FOODS_1_020 0.190210 −0.025239 1.000000 −0.196031
FOODS_1_021 −0.229806 −0.136912 −0.196031 1.000000

The distributions of output values for all the models are compared in Figure 7. The
values should be close to the real dataset for a good synthetic dataset that follows the same
patterns as the real data. The closer the values are to the real dataset, the more accurate the
synthetic data are in terms of fidelity. Analyzing the density for the sales of each model, the
proposed model shows results that are closest to the real values compared with the others.
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Other metrics to compare the similarity of the datasets are cosine similarity (CS) and
Jensen–Shannon distance (JS) [43]. The JS distance is the square root of the JS divergence.
The average values of those metrics are shown in Table 7 for the proposed model and
the compared models. The results are given for both retail and financial datasets. The
higher the value, the more similar the time series are on CS, and the opposite is true for JS.
The expression for CS is presented in Equation (4), where xi, yi are the individual sample
points of variables x, y. The JS distance is the square root of JS divergence and is shown
in Equation (5), where m is the pointwise mean of x and y, and D is the Kullback–Leibler
divergence. The proposed model shows an improvement in similarity with the original
data for CS and JS in both datasets.

In Tables 7–11, the best values are highlighted in bold.

Table 7. Average cosine similarity and average Jensen–Shannon distance for the selected models.

Model
Avg. Cosine
Similarity

(M5 Dataset)

Avg. JS Distance
(M5 Dataset)

Avg. Cosine
Similarity

(Stocks Dataset)

Avg. JS
Distance

(Stocks Dataset)

GAN 0.9124 0.3127 0.9158 0.3095
TimeGAN 0.8976 0.3271 0.9467 0.2803

DoppelGANger 0.9140 0.3116 0.9474 0.2799
LSTM 0.9197 ∞ 0.9435 ∞

Proposed model 0.9208 0.2242 0.9484 0.2789

CS =
∑ xiyi√

∑ xi
2∑ yi

2
, (4)

JS =

√
D(x ∥ m) + D(y ∥ m)

2
(5)

The discriminative score is another important metric in the evaluation of synthetic data
to determine how well a model can distinguish between real and synthetic data samples.
It evaluates the classification accuracy between original and synthetic data using a post
hoc RNN network. The output is shown in Table 8, where the lower value is better. The
proposed model has the lowest value, as confirmed in the visualization graphs. Compared
with the LSTM, the results are better because the forecasting model aims to determine the
most accurate future values, whereas a synthetic data generator must incorporate some
randomization to avoid being too similar to the real data.
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Table 8. Discriminative score for the selected models.

Model Discriminative Score
(M5 Dataset)

Discriminative Score
(Stocks Dataset)

GAN 0.3923 0.4769
TimeGAN 0.1493 0.2177

DoppelGANger 0.1538 0.1692
LSTM 0.3475 0.06

Proposed model 0.1385 0.04

4.2.2. Utility

The predictive score [11] is used to evaluate the prediction performance on the train on
synthetic tests in a real setting. A post hoc RNN architecture is used to predict one step
ahead and report the performance in terms of MAE, as seen in Table 9. The forecasting
score evaluates the performance using an XGBoost [44] model by forecasting five steps
ahead in terms of MAE, which is shown in Table 9. The lower values offer a better utility
for training machine learning models. The proposed model offers a better predictive score
than TimeGAN in the M5 forecasting dataset and worse in the financial dataset due to the
irregularities in stock market data. The forecasting score is better than TimeGAN in the M5
dataset and better than DoppelGANger in financial datasets. This shows the potential for
the synthetic data to be useful in forecasting tasks.

Table 9. Predictive and forecasting scores for the selected models.

Model Forecasting Score
(M5 Dataset)

Predictive Score
(M5 Dataset)

Forecasting Score
(Stocks Dataset)

Predictive
Score

(Stocks Dataset)

Real data 5.0202 - 14.8507 -
GAN 14.7066 0.2513 53.1305 0.2499

TimeGAN 3.7573 0.1867 17.2828 0.0389
DoppelGANger 4.7288 0.2310 5.7457 0.0494

LSTM 3.7828 0.2229 14.4989 0.2051
Proposed model 3.6635 0.1828 2.9812 0.2051

An experiment was conducted to determine the best value for the context window in
the model. The discriminative and predictive scores by changing the context window size
are shown in Figure 8 for the proposed model. It shows how the variation of the context
size affects the results. The best value selected for context size was 80.
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4.2.3. Privacy

While the model was not optimized for privacy, some experiments were performed
to assess privacy against inference, which represents a set of metrics that determine the
likelihood that an attacker will be able to reveal sensitive or private information from the
synthetic dataset. The methods such as multi-layer perceptron (NumericalMLP), logistic
regression (NumericalLR), support vector regression (NumericalSVR), and radius nearest
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neighbors (NumericalRadNN) [45] were employed to differentiate between real and syn-
thetic data. The NumericalMLP method uses the full synthetic dataset and a few columns
of real data (key fields) as input. A multi-layer perceptron neural network was trained
to determine the output of the other values of real data (sensitive fields). The final score
was 1 minus the average prediction score of the neural network. The other methods work
similarly but use different regression methods. The best score is 1, which means the real
data are safe from the attack, and the worst is 0, where an attacker can retrieve sensitive
data. The results in Tables 10 and 11 with the selected models are used to determine
the protection score of the proposed model on the two different datasets. The proposed
model offers an improvement in protection on the NumericalMLP metric and a decrease
in protection for the other three metrics. This is expected, as the primary elements for
optimization are fidelity and utility. An improvement in privacy could be made only with
a trade-off in fidelity and utility.

Table 10. Privacy against inference metrics for the selected models on the M5 dataset.

Model NumericalMLP NumericalLR NumericalSVR NumericalRadNN

GAN 0.9481 0.2797 0.2983 0.8089
TimeGAN 0.9884 0.2721 0.2464 0.8904

DoppelGANger 0.9872 0.2616 0.2488 0.8552
LSTM 0.9884 0.2149 0.2180 0.8311

Proposed
model 0.9931 0.2151 0.2181 0.8699

Table 11. Privacy against inference metrics for the selected models on the stock market dataset.

Model NumericalMLP NumericalLR NumericalSVR NumericalRadNN

GAN 0.5180 0.5530 0.6072 0.9695
TimeGAN 0.7677 0.0527 0.2491 0.9131

DoppelGANger 0.6120 0.0582 0.2570 0.9102
LSTM 0.5736 0.0513 0.1414 0.8811

Proposed model 0.5239 0.0507 0.1416 0.9090

4.3. Discussion

The experiments conducted with the proposed synthetic data generator highlight the
increase in performance in optimizing the fidelity and utility metrics and demonstrate its
effectiveness in creating synthetic data that are close to real data. The model has slightly
worse results on privacy metrics, which is an expected trade-off. The results are consistent
across the two datasets with online retail and financial data. Future improvements to
the model could be made by using real-world data in different domains. Collecting the
required data from businesses is a long-term process, and optimizations need to be made
to perform better in different use cases.

The proposed model can be further employed to create a complete decision intelligence
system. It can be extended to output not only the synthetic data but also the insights
extracted from that data that are related to the decision that needs to be made. A scenario
generator tool can be created, where the business executives can analyze how changing
an input variable affects the output. An example can be a retail store that has multiple
suppliers for the same products and should make a decision about what supplier to choose
depending on how the market changes. If the decision maker changes the supplier, the
model should predict the future revenue of the company based on past data. This result
helps businesses to make data-driven decisions in an easy-to-understand format. Another
domain for this application can be financial data, where a company can predict the stock
price depending on the new markets that it enters.

However, there are some challenges of deploying in LLM into production. The first is
managing the computational resources and costs required for (near) real-time inference.
Data privacy needs to be ensured when handling sensitive information. Monitoring the
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model performance is essential in ensuring accurate results and improving the model as
market conditions change and unexpected events can happen.

5. Conclusions

Synthetic data have an important role in business data analysis, where datasets for
training machine learning models are not available or pose privacy concerns. The work
conducted in this paper focused on solving the problems of data availability and data
privacy for decision intelligence tools, which are useful for business executives to make
data-driven decisions.

While GAN and VAE models were used to generate synthetic data with good perfor-
mance, the current research focused on the transformer architecture. TimeGAN proposes
a method that maintains the relationship between variables over time and improves the
results of a GAN. DoppelGANger improves it further by using batch generation and auto-
normalization to solve the initial problems of GANs. The model can also be seen as a
sequence learning problem and is compared to an LSTM network, which has worse results.
The evaluation of synthetic data is not standardized and needs to be optimized depending
on the objective, making each model suitable for a certain task.

A model for generating synthetic data based on LLMs is proposed. It has and en-
hanced temporal understanding to handle long-range temporal dependencies, a flexible
contextualization and uses fine-tuning to have a better control over the data characteristics.
High computational complexity and risk of overfitting are some of its limitations.

The first step in creating the model is choosing the pre-trained LLM, which has general
knowledge learned from a large amount of multi-source data as input. The second one
is fine-tuning using a specialized dataset; it employs QLoRA to reduce the complexity of
fine-tuning. An important task in using LLMs for generating time series data is determining
how the data are converted for use as input to the LLM. There are multiple tokenization
methods used for converting the raw numbers into simple tokens. The model uses mean
scaling and quantization to achieve a better tokenization of numbers. The last step is the
inference, which outputs the synthetic data in the correct format to be used for training
different ML models.

Multiple experiments were performed in terms of fidelity, utility and privacy to
determine synthetic data performance. The model was compared to GAN, TimeGAN,
DoppelGANger, and LSTM models. Datasets with online retail and financial data were
used. Regarding fidelity, the model showed an improvement in similarity based on data
visualization, cosine similarity, Jensen–Shannon distance, and discriminative score. The
utility also improved using the predictive score, which determines the performance of
data in ML prediction tasks. The privacy was reduced, which was determined by using
multiple machine learning models trained to determine the original data based on the
synthetic data and some known columns of the original data. These include multi-layer
perceptrons, logistic regression, support vector regression, and radius nearest neighbors.
All experiments show that optimizing fidelity and utility has a trade-off of lower privacy,
which is expected. The model demonstrates its effectiveness in creating synthetic data for
the tasks of data extension and reconstruction.
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