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Abstract: Deceptive path planning (DPP) aims to find routes that reduce the chances of observers
discovering the real goal before its attainment, which is essential for addressing public safety, strategic
path planning, and preserving the confidentiality of logistics routes. Currently, no single metric is
available to comprehensively evaluate the performance of deceptive paths. This paper introduces
two new metrics, termed “Average Deception Degree” (ADD) and “Average Deception Intensity”
(ADI) to measure the overall performance of a path. Unlike traditional methods that focus solely
on planning paths from the start point to the endpoint, we propose a reverse planning approach
in which paths are considered from the endpoint back to the start point. Inverting the path from
the endpoint back to the start point yields a feasible DPP solution. Based on this concept, we
extend the existing πd1∼4 method to propose a new approach, e_πd1∼4, and introduce two novel
methods, Endpoint DPP_Q and LDP DPP_Q, based on the existing DPP_Q method. Experimental
results demonstrate that e_πd1∼4 achieves significant improvements over πd1∼4 (an overall average
improvement of 8.07%). Furthermore, Endpoint DPP_Q and LDP DPP_Q effectively address the issue
of local optima encountered by DPP_Q. Specifically, in scenarios where the real and false goals have
distinctive distributions, Endpoint DPP_Q and LDP DPP_Q show notable enhancements over DPP_Q
(approximately a 2.71% improvement observed in batch experiments on 10 × 10 maps). Finally, tests
on larger maps from Moving-AI demonstrate that these improvements become more pronounced
as the map size increases. The introduction of ADD, ADI and the three new methods significantly
expand the applicability of πd1∼4 and DPP_Q in more complex scenarios.

Keywords: deception; deceptive path planning; goal recognition; count-based reinforcement learning

MSC: 68T42

1. Introduction

Deception has long been a focal point in computer science, representing a significant
hallmark of intelligence [1]. In fields like multi-agent systems and robotics, path planning
serves as a foundational element for achieving collaborative task objectives. Deception
becomes pivotal in enabling agents to gain strategic advantages in games and adversarial
settings. In adversarial environments, deceptive planning empowers both human and
AI agents to obscure their true intentions and manipulate the situational awareness of
opponents. Beyond gaming contexts, deception is prevalent in diverse multi-agent applica-
tions, including negotiations [2,3] and fugitive pursuit scenarios [4]. In adversarial contexts,
deceptive planning allows intelligence operatives to obfuscate their true intentions and
confound the awareness of adversaries, thereby finding practical use in domains such as
network security [5], robot soccer competitions [6], privacy preservation [7], and other
real-world challenges. Deceptive path planning (DPP) has thus emerged as a pivotal task
within this broader landscape.

Imagine a scenario in urban surveillance in which SWAT teams have located traces
of terrorists on city streets. If SWAT teams reveal their intentions and proceed directly to

Mathematics 2024, 12, 2540. https://doi.org/10.3390/math12162540 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162540
https://doi.org/10.3390/math12162540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12162540
https://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/12/16/2540?type=check_update&version=4


Mathematics 2024, 12, 2540 2 of 21

the hideout of terrorists, they risk alarming them, potentially leading to escape. Therefore,
the teams can strategize a decoy route, departing from a designated point and feigning a
circuitous advance towards other locations to mislead the adversaries. This strategy aims
to deceive terrorists into believing that SWAT teams’ objective is not their actual hiding
place. Ultimately, the SWAT teams can reach and apprehend or eliminate terrorists. The
purpose of this approach is to deceive the surveillance systems and observers of terrorists,
thereby concealing the true objective of the SWAT teams to the fullest extent possible.

Consider a scenario in wildlife conservation in where researchers select suitable areas
within a vast protected area to reintroduce endangered species. Poachers are monitoring
the movement of these animals for their illegal hunting activities. Directly approaching the
habitat of these animals can jeopardize their safety. Conversely, planning a circuitous route
would deceive potential poachers, ensuring the safety of the animals while minimizing the
risk of detection.

Previous research on DPP problems has raised several issues and opportunities for
improvement. Firstly, while Masters et al. proposed three metrics (extent, magnitude, and
destiny) for evaluating deceptive paths [8], each has its limitations. Extent and destiny
merely assess whether grid points along a path are deceptive or not, a binary evaluation
without quantifying deception on a scale from 0 to 1. Although magnitude quantifies
deception, it lacks normalization. DPP_Q [9], incorporating the concept of “average
deceptiveness”, considers paths under specific time constraints where all paths have
equal costs, failing to address how paths with varying time costs should be compared.
Therefore, unified metrics for comprehensively evaluating the performance of deceptive
paths are lacking.

Secondly, DPP_Q tends to fall into local optima when the number of false goals
increases. Our experiments indicate that agents trained using the DPP_Q method exhibit a
tendency to initially move towards false targets from the starting point. While this approach
may yield substantial rewards initially, the fixed time constraints of DPP_Q prevent agents
from balancing deception in the subsequent planning phases. Figure 1a illustrates this
phenomenon using a heatmap based on a 49 × 49 grid map from the Moving-AI dataset,
devoid of obstacles. The orange square (with a black border) represents the start point, the
blue square (with a black border) is the real goal, and the teal squares (with black borders)
are two false goals. The heatmap visualizes the posterior probability of the real goal at each
grid point, ranging from 0 to 1, influencing the agent to bypass the lighter-colored points
for greater deception (reward). When the agent begins exploring from the starting point,
it tends to follow the direction indicated by the red arrow initially, which is detrimental
to subsequent planning. Conversely, following the green arrow direction may not yield
immediate rewards but offers greater potential rewards later. In Figure 1b, starting planning
from the real goal allows the agent to avoid biased initial exploration tendencies influenced
by the heatmap.

Thirdly, the initial exploration tendency exhibited by the agent in DPP_Q resembles
that of πd1 [8]. πd1 guides the agent towards false goals initially before proceeding to
the real goal, contrasting with πd2∼4 methods lacking such tendencies. This distinction
typically results in πd1 achieving greater deceptive effects compared to πd2∼4 methods and
explains why paths generated by πd1 entail longer costs. Therefore, we propose that the
πd2∼4 methods could be further optimized based on the tendency of the πd1 method. One
potential improvement involves adjusting the Last Deceptive Point (LDP), a concept to be
detailed later.

This article has three main technical contributions. Firstly, we introduced the concept
of Average Deception Degree (ADD), based on which we proposed the Average Deception
Intensity (ADI) and analyzed its rationality, applying it to evaluate subsequent methods.
Secondly, for πd1∼4 methods that do not consider time constraints, we proposed e_πd1∼4,
which can significantly enhance traditional πd1∼4 methods. Thirdly, for DPP_Q which
considers time constraints, we propose Endpoint DPP_Q and LDP DPP_Q, both resolving
issues of suboptimal DPP problems under specific distributions of goals.
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the blue square (with a black border) denote the real goal, and the teal squares (with black borders)
signify two false goals.

The structure of this paper is as follows: In Section 2, we review the relevant literature
on probabilistic goal recognition and DPP problems. Section 3 provides foundational
definitions of these concepts. Section 4 defines ADD and ADI briefly, introduces πd1∼4
methods and subsequently proposes e_πd1∼4. Subsequently, in Section 4 we introduce
DPP_Q, outlining the operational mechanisms of the new methods Endpoint DPP_Q and
LDP DPP_Q. In Section 5, based on the ADI, we validate the feasibility of our methods
through experiments. Lastly, we conclude with a summary and outlook for this paper.

2. Related Work
2.1. Plan Recognition and Probabilistic Goal Recognition

In the study of agent goal recognition, two key factors are often considered: the
competitive dynamics and the level of rationality exhibited by the observed agents. The
relationship between the observer and the observed can be categorized into Keyhole
scenarios [10], where observed agents are indifferent to the observer’s behavior due to
the absence of competitive or cooperative interactions; Adversarial scenarios [11], where
observed agents adopt a hostile stance towards the observer’s actions; and Intended
scenarios [12], where observed agents cooperate openly with the observer, sometimes
assisting in the recognition process. DPP problems primarily focus on adversarial scenarios.

The problem of goal recognition has been explored using various approaches, includ-
ing graph coverage on planning graphs [13], parsing using grammar methods [14–17],
deduction and probabilistic reasoning on static or dynamic Bayesian networks [18,19], and
inverse planning models [20,21]. Bui et al. [22] introduced an online probabilistic plan
recognition framework based on Abstract Hidden Markov Models (AHMM). Ramirez and
Geffner aligned observed outcomes with predefined plans, computing costs separately for
each potential goal [23]. Assuming agent rationality allows for the evaluation of goal types.
Masters et al. [24] proposed a traditional cost-difference-based goal recognition model
that, estimates goal probabilities based on cost disparities between optimal paths matching
current observations and those that ignore specific nodes in the observation sequence.

2.2. Deception and Deceptive Path Planning

Initially, “deceptive information” emerged as a significant focus in deception research.
Floridi proposed that “misinformation is structurally well-formed, meaningful false data,
whereas deceptive information is intentionally transmitted false information designed to
mislead the recipient” [25]. Fetzer [26] categorized five types of deceptive information:
intentional misinformation created by information producers to distort and mislead targets,
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deceptive information formed through selective filtering and sophistry against existing
information, deceptive information disseminated by information disseminators attacking
information producers based on reasons unrelated to or misleading from the stance repre-
sented by the information producer, deceptive information generated based on irrational
beliefs, and deceptive information resulting from incompetent commentary. Fallis [27]
summarized three characteristics of deceptive information: it is a type of information with
the basic attributes of information, it is misleading information, and it is not accidental
or unintentional.

Deception also has a long history in computer science, especially holding prominence
in artificial intelligence research and game theory. In particular, the article “Deceptive
AI” [28] provides a detailed analysis of common types of deception, different characteris-
tics, and typical application scenarios. By referencing examples from various branches of
artificial intelligence, this article categorizes deception research into five new categories
and describes them based on human-like features: imitating, obfuscating, tricking, calcu-
lating, and reframing. Bell et al. proposed a balanced approach to belief manipulation
and deception [29], where agents have only a coarse understanding of their opponents’
strategies and little knowledge of details. This method can be viewed as a game theory
setting, expressed in terms of social psychology as “fundamental attribution error.” It is
often applied to bargaining problems, revealing that deceptive strategies may be more
easily executed. Arkin et al. [30] mentioned that deception has always been used as a
means to gain military advantage.

Masters et al. [8] formalized Deceptive Path Planning (DPP) problems in path planning
domains, demonstrating that qualitative comparisons of posterior probabilities of goals
do not necessarily require the entire observation sequence but only the last node. They
introduced the concept of the Last Deceptive Point (LDP) and proposed traditional DPP
methods based on the A* algorithm and heuristic pruning. These methods prioritize
“dissimulation” without precise quantification of each grid’s deceptiveness and do not
explicitly model time constraints. Cai et al. [31] researched DPP in dynamic environments
using two-dimensional grid maps. Xu et al. [32] applied mixed-integer programming
to estimate grid deceptiveness based on magnitude, proposing a method that combines
time consumption and quantified deceptiveness. Liu et al. [33] introduced the Ambiguity
Model, which integrates optimal Q-values of path planning with deceptiveness to derive
ambiguous paths. Lewis [34] addressed the limitations of the Ambiguity Model when
learning Q-functions through model-free methods, proposing the Deceptive Exploration
Ambiguity Model, which demonstrated improved performance. Chen et al. [9] proposed
a method called DPP_Q for solving DPP problems under specific time constraints and
extended it to continuous domains as well (DPP_PPO).

3. Preliminaries

Before explaining the specific details of e_πd1∼4, Endpoint DPP_Q and LDP DPP_Q, it
is necessary to explain its basic techniques. In this section, we first present the definition of
path-planning domains, followed by the definition of path-planning problems [8]. Next,
we introduced the Precise Goal Recognition Model (PGRM) [9], which serves as a goal
recognition model for the observer, and finally, we defined DPP problems [8].

Definition 1. A path planning domain is a triple D = ⟨N, E, c⟩:
• N is a set of non-empty nodes (or locations);
• E ⊆ N × Nis a set of edges between nodes;
• c : E 7→ R+

0 returns the cost of traversing each edge.

A path π in a path planning domain is a sequence of nodes such as π = n0, n1, . . . , nk,
in which (ni, ni+1) ∈ E for each i ∈ {0, 1, . . . , k − 1}. The cost of π is the cost of traversing
all edges in π, which is cost(π) = ∑k−1

i=0 c(ni, ni+1), from the start node to the goal node.



Mathematics 2024, 12, 2540 5 of 21

A path planning problem in a path planning domain is the problem of finding a path
from the start node to the goal node. Based on Definition 1, we define the path planning
problem as follows.

Definition 2. A path planning problem is a tuple ⟨D, s, g⟩:
• D = ⟨N, E, c⟩ is a path planning domain;
• s ∈ N is the start node;
• g ∈ N is the goal node.

The solution path for a path planning problem is a path π = n0, n1, . . . , nk, in which
s = n0 and g = nk. An optimal path is a solution path with the lowest cost among all
solution paths. The optimal cost for two nodes is the cost of an optimal path between them,
which is denoted by optc

(
ni, nj

)
. The A* algorithm [35], a well-known best-first search

algorithm, is used by typical AI approaches to find the optimal path between two nodes.
When the number of targets exceeds one, an observer assigns a probability value to

each target. Assuming that the path planning domains are discrete, fully observable, and
deterministic, we introduce the PGRM as follows:

Definition 3. Precise Goal Recognition Model (PGRM) is a quadruple ⟨D, G, O, P⟩:
• D is a path planning domain;
• G = {gr} ∪ G f is a set of goals, consisting of the real goal gr and a set of false goals Gf;
• O = o1, o2, . . . , o|O| is the observation sequence, representing the sequence of all grid points

that the observed has passed through from the start node to the current node.
• P is a conditional probability distribution P(G|O) across G, given the observation sequence O.

Based on Definition 3, the formula for calculating the cost-difference is:

costdi f f (s, O, g) = optc(s, O, g)− optc(s, O, g), f or all g ∈ G (1)

where costdi f f (s, O, g) represents the cost-difference for each g in G; optc(s, O, g) represents
the optimal cost for the observed to reach g from s given the observation sequence O;
optc(s, O, g) represents the optimal cost for the observed to reach g from s without the need
to satisfy the observed sequence O.

From Equation (1), the cost-difference for all goals in the set G can be computed.
Subsequently, Equation (2) allows us to calculate their posterior probability distribution.
The formula for computing P(G|O) for each goal is as follows:

P(G|O)= α e−βcostdi f f (s,O,G)/(1 + e−βcostdi f f (s,O,G)
)

(2)

where α is a normalization factor, β is a positive constant, satisfying 1 ≥ β ≥ 0. β is used
to describe the degree to which the behavior of the observer tends toward rational or
irrational, namely “soft rationality”. β indicates the sensitivity of the observer to whether
the observed is rational. When the observed is fully rational, it will choose the least costly
method (the optimal path) to reach its real goal. The larger β, the more the observer believes
that the behavior of the observed is rational. When β = 0, P(gi|O) = P

(
gj
∣∣O)

, ∀gi, gj ∈ G,
which means that the observed is considered completely irrational, so that the posterior
probabilities of all goals are equal.

Based on Definition 3, we define the deceptive path planning problem.

Definition 4. A deceptive path planning (DPP) problem is a quintuple ⟨D, s, gr, G, P⟩:
• D is a discrete path planning domain;
• s ∈ N is the start node;
• gr ∈ N is the real goal node;
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• G = {gr} ∪ G f is a set of possible goal nodes, in which gr is a single real goal and Gf is the set
of false goals;

• P(G|O) is the posterior probability distribution of G based on the observation sequence O. Its
calculation is determined by the goal recognition model of the observer.

Here, PGRM will serve as the recognition model of the observer to calculate the P(G|O).
DPP presents a departure from conventional path planning. While typical path planning
endeavors to find the most cost-effective route to a destination, c In this context, the
objective extends beyond mere navigation to the goal; it includes minimizing the likelihood
of an observer identifying the real goal among a set of possibilities.

4. Method

This section was divided into three parts. Firstly, we present the definitions of Average
Deception Degree (ADD) and Average Deception Intensity (ADI). Secondly, we introduce
πd1∼4 methods, and then proposed e_πd1∼4. Finally, we introduced DPP_Q [9] and propose
Endpoint DPP_Q and LDP DPP_Q.

4.1. Average Deception Degree (ADD) and Average Deception Intensity (ADI)

Masters et al. stated that “The quality of the solution depends on the magnitude,
density, and extent of the deception” [8], yet these three metrics do not account for the
cost of the path. With a sufficient time budget, we should be able to plan paths that
achieve better deception effects. We exclude cases where the number of grid points covered
by a path is less than or equal to 2, meaning the distance between the start point and
the real goal must be greater than one grid point distance (either

√
2 or 1). Otherwise,

DPP problems would be meaningless. To comprehensively evaluate a deceptive path, we
introduce two new evaluation metrics: Average Deception Degree (ADD) and Average
Deception Intensity (ADI). Here, we define ADI as follows:

Definition 5. The average deception degree of a path π is D =
∑k−1

i=1 (1−P(gr |Oi))
k−1 , such that:

• π = n0, n1, .., nk, k ≥ 2 is a path (a solution to a DPP problem);
• P(gr|Oi) is the posterior probability of the real goal of ni calculated by PGRM, 0 ≤ i ≤ k;
• Oi = n0, . . . , ni, for each node ni the observed passed through, there exists the observation

sequence Oi, 0 ≤ i ≤ k.

Since the deception value is defined at each node, the quantifiable average deceptive-
ness of a path, referred to as ADD, is calculated as the sum of the deception values at each
node divided by the total number of nodes (excluding the start and end nodes). When two
paths consume the same amount of time, ADI serves as a direct measure to quantify the
overall deceptive magnitude of a path. Based on Definition 5, we propose Definition 6:

Definition 6. The average deception intensity of a path π is I = D/cµ, such that:

• D is the average deception degree of the path;
• c is cost(π) = ∑k−1

i=0 c(ni, ni+1), π = n0, n1, . . . , nk, k ≥ 2.

µ represents the degree of importance placed on time. Typically, µ ranges from 0 to 1. µ = 0
indicates that the observed does not care about the time consumed by the path.

ADI measures the contribution of a path per unit of time to ADD. In the absence of
considering path cost, a higher ADD for a path indicates better deceptive effectiveness.
When considering path cost, the overall effectiveness of a path relates to the emphasis on
the observed on time. ADI not only synthesizes the contribution of each node on a path
to its ADD but also accounts for time constraints. It serves as a highly comprehensive
indicator that reflects the overall deceptive effectiveness of a path. Overall, ADI is a reliable
and direct standard for measuring the deceptive effectiveness of the two paths.
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4.2. Deceptive Path Planning (DPP) via πd1∼4 and e_πd1∼4

Firstly, πd1∼4, as detailed by Masters et al. [8], aim to maximize the Last Deceptive
Point (LDP). The methods involve two main steps, as illustrated in the left half of Figure 2.
Step A identifies gmin from the false goals, which is the most important false goal in the DPP
problem, and Step B determines the LDP based on gmin. The paths planned by πd1∼4 will
be illustrated by the red arrows in the right half of Figure 2. Based on these, we introduce
the πd1∼4 as follows:
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πd1 uses a “showing false” strategy where the observed navigates from the start point
to gmin, and then continues to the real goal gr. The path generated by πd1 is a combination
of two parts: πd1 = πA∗(s → gmin) + πA∗(gmin → gr). Similar to πd1, πd2 focuses on
identifying key node LDP on the optimal path from gmin to gr. Instead of navigating
directly to gmin, it first heads towards LDP, then to gr. The path generated by πd2 is a
combination of two parts: πd2 = πA∗(s → LDP) + πA∗(LDP → gr). Based on πd2, πd3
also heads toward LDP first, but it introduces a modified heuristic approach biased toward
the false goal gmin to increase the deceptive potential of the path. The path generated by
πd3 is a combination of two parts: πd3 = πA∗(heuristic)(s → LDP) + πA∗(LDP → gr). πd4
utilizes a pre-computed probability “heatmap” to enhance path deception, significantly
increasing the cost of π(s → LDP) to improve its deception. The path generated by πd4 is
a combination of two parts: πd4 = π(s → LDP) + πA∗(LDP → gr). In Figure 2, πd3 shows
a clear tendency to approach the false goal gmin, indicating higher deception compared to
πd2 with the same cost consumption. πd4, although potentially less deceptive than πd1 in
terms of deception level, it significantly reduces path duration compared to πd1 in the same
DPP problem.

To further introduce e_πd1∼4 methods, as depicted in the right half of Figure 2, the
process of e_πd1∼4 involves several steps. First, following Step A, once gmin is identified,
Step C transforms the positions of “start” and “real goal”. Here, the original real goal
becomes the new start point, and the original start point is designated as the new real goal.
Simultaneously, all false goals except gmin are removed. This sets up a new DPP problem
where the original real goal is the starting point, the original start point is the new real goal,
and gmin remains as the sole false goal.

Building upon the new DPP problem, Step D identifies the new gmin (which, due to the
deletions of other false goals, corresponds to gmin from the original path planning problem),
followed by Step E to find the LDP for the new DPP problem. Subsequently, path planning
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proceeds based on πd1∼4. This approach yields four deceptive paths from “(start)” to “(real
goal)” in Figure 2 based on this new path planning problem. These paths are then reversed
to obtain four paths for the original deceptive path planning problem, as indicated by the
green arrow on the right half of Figure 2.

To facilitate further understanding of the differences between πd1∼4 and e_πd1∼4, we
also present the new DPP problem where additional false goals are not deleted in Figure 3.
In contrast to the original DPP problem, in Figure 3, after Step A, gmin is different from the
original DPP problem. Consequently, the LDP point also changes: from (6,5) in Figure 2
to (6,3) in Figure 3 (where the horizontal axis represents the x-coordinate and the vertical
axis represents the y-coordinate, starting from 0). The resulting four paths generated by the
πd1∼4 method are depicted in the right half of Figure 3 as indicated by red arrows.
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4.3. Deceptive Path Planning (DPP) via DPP_Q, Endpoint DPP_Q and LDP DPP_Q

We will provide a unified introduction to DPP_Q, Endpoint DPP_Q, and LDP DPP_Q.
The core of these three methods is based on reinforcement learning modeling using Count-
Based Q-learning. Below, we first introduce the state space, action space, and reward
function of the observed as follows:

4.3.1. The State Space

The state space of the observed includes its current coordinate (x, y), as well as the
number of straight and diagonal movements made by itself (denoted as nStraight and
ndiagonal respectively). The state space S is defined as a four-dimensional vector:

S =
{

x, y, nStraight, ndiagonal

}
(3)

4.3.2. The Action Space

The observed can take actions of two types: straight movements (up, down, left, right)
and diagonal movements (up–left, down–left, up–right, down–right). The time required
for straight movements is 1, while that of diagonal movements takes

√
2. Specifically, the

action space is a matrix:

Actions = [[0, 1, 1, 0], [0,−1, 1, 0], [−1, 0, 1, 0], [1, 0, 1, 0], [−1,−1, 0, 1], [−1, 1, 0, 1], [1,−1, 0, 1], [1, 1, 0, 1]] (4)
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It means the observed has eight actions. Each of them was represented as a 4-dimensional
vector corresponding to the state space S. The first two dimensions update the current
coordinate of the observed (x, y), while the last two dimensions update the counts of
straight and diagonal movements made by the observed. Given the state sT, the next state
sT+1 can be obtained by simple vector addition:

sT = sT−1 + Actions[i] (5)

i = 0, 1, 2, . . ., 7 represents the index of the action taken by the observed.

4.3.3. The Reward Function

Chen et al. [9] proposed an Approximate Goal Recognition Model (AGRM) based on
PGRM and conducted comparative experiments using two different reward mechanisms,
demonstrating the reliability of AGRM in computing rewards for the observed. Different
from PGRM matching full of the observation sequence O = o1, o2, ..., o|O|, the observer
based on AGRM only matches the current node of the observed o|O|. Specifically, the
formula for calculating the cost-difference is:

costdi f f
(

s, o|O|, g
)
= optc

(
s, o|O|

)
+ optc

(
o|O|, g

)
− optc(s, g) (6)

The formula for computing P
(

G
∣∣∣o|O|

)
for each goal is as follows:

P
(

G
∣∣∣o|O|

)
= α e−βcostdi f f (s,o|O| ,G)/

(
1 + e−βcostdi f f (s,o|O| ,G)

)
(7)

The observed is trained by AGRM. While training with PGRM is also feasible, AGRM allows
for the advanced allocation of fuzzy rewards to each grid point, thereby circumventing the
time-consuming reward computation during subsequent training in reinforcement learning.
Specifically, assuming the current state sT of the observed, the formula for its basic reward
is as follows:

R = 1 − P(gr|(sT [0], sT [1])) (8)

where (sT [0], sT [1]) represents the current coordinate of the observed ncurrent, that is, o|O|.
We employed the count-based method to encourage the observed to explore unknown

states. The count-based method can guide the observed to explore state-action pairs with
higher uncertainty to confirm their high rewards. The uncertainty of the observed relative
to its environment can be measured by δ/

√
N(s, a) [36], where δ is a constant and N(s, a)

represents the number of times the state-action pair (s, a) has been visited. Specifically,
δ/

√
N(s, a) is set as an additional reward used to train the observed:

radd(s, a) = δ/
√

N(s, a) (9)

Intuitively, if the observed visited a state-action (s, a) pair less frequently (i.e., N(s, a) is
smaller), the corresponding additional reward will be larger. Thus it should be more
inclined to visit this state-action pair to confirm whether it has a high reward. The rules for
the observed to receive rewards are as follows:

• If the remaining time exceeds the shortest time the observed takes to reach the target,
indicating it cannot arrive at the target within the time constraint. This scenario is
denoted as Condition A, with a reward of −9 given.

• The observed successfully reaches the target, which is denoted as Condition B, with a
reward of +100 given.

• Typically, the observed receives the deceptiveness of each grid point it traverses.
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Specifically, the observed receives exploration rewards to encourage it to explore
unknown state-action pairs. The reward function is shown as follows:

r(s, a) =


−9 + radd(s, a), Condition A
+100 + radd(s, a), Condition B

R + radd(s, a), else
(10)

Below, we provide pseudocode for DPP_Q, Endpoint DPP_Q and LDP DPP_Q, using
a 10 × 10 grid map as an example, accompanied by detailed explanations.

Algorithm 1 introduces the DPP problem and initializes it. It first sets up the learning
rate, discount factor, and epsilon-greedy value, and initializes matrices D and Ds. D is a
10 × 10 matrix storing the shortest path lengths (equivalent to optimal time cost) from each
grid point to the real goal gr. Ds is a 10 × 10 matrix storing the optimal time cost from each
grid point to the start point s0. Furthermore, Algorithm 1 reads in various elements of the
DPP problem: time constraints, obstacle coordinates, starting point coordinates, real goal
coordinates, and coordinates of all fake goal points (line 1). Then, it initializes the Q-table
and the counting matrix N-table, setting Q-values of illegal actions to −1000 (lines 2 to 3).

Algorithm 1 DPP via Q-learning (Initialization and Problem Setup)

Require : A DPP problem with a 10 × 10 gird map.
Parameter : learning rate α, discount factor γ, epsilon greedy ε.

1: Initialize distance matrix D and Ds, time constraint TC, collection of obstacle Wall,
start node s0, real goal gr, false goal set G f of the DPP problem.

2 : Initialize Q-table and N-table with zeros.
3 : Set Q(si, ai) = −1000 for all illegal (si, ai) resulting in the agent out of the map.

Algorithm 2 describes the training process of the observed. First, the observed checks
the legality of eight actions (lines 1 to 5). Then, the observed selects an action according
to ε − greedy policy, and the state-action pairs are counted (lines 6 to 9). Subsequently, the
observed receives a reward and updates the Q-table and the state (lines 10 to 13).

Algorithm 2 DPP via Q learning (Training Framework)

1: for a in Actions :
2: if s + a in Wall :
3: Q(s, a) = −1000
4: end if
5 : end for
6 : Choose an action a satisfying Q(s, a) ̸= −1000:
7: Select the action with maximum Q-value with probability 1 − ε

8: Select a random action with probability ε

9: N(s, a) = N(s, a) + 1
10 : Calculate r(s, a)
11 : s′ = s + a

12 : Q(s, a) = (1 − α)Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)

)
13 : s = s′

Algorithm 3 describes the DPP_Q method. It first initializes the problem according
to Algorithm 1. Then, it sets the initial start point of the observed as s0 and initializes its
values for the next two dimensions to 0 (line 2). Each training round includes checking the
termination condition: whether the remaining time exceeds the shortest observed time to
reach the target (the real goal gr), indicating that the observed cannot reach the real goal
within the time constraint TC−

(
s[2] +

√
2 × s[3]

)
< D[s[0], s[1]], or the current coordinate

of the observed coincide with the coordinate of the target (the real goal gr) scoord = gr (line 5).
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Finally, the optimal path can be collected using the method of tracking the maximum value
of the Q-table (line 10).

Algorithm 3 DPP_Q

Algorithm 1
1 : for episode in Episodes do
2: Initialize s = [s 0[0], s0[1] , 0, 0]
3: while True :
4: Algorithm 2
5: if TC −

(
s[2] +

√
2 × s[3]

)
< D[s[0], s[1]] or scoord = gr :

6: break
7: end if
8: end while
9 : end for
10 : collect the solution path πs0→gr

Algorithm 4 describes the Endpoint DPP_Q method. It first initializes the problem
according to Algorithm 1. Then, it sets the initial exploration start point of the observed
as the real goal gr, and initializes its values for the next two dimensions to 0 (line 2). Each
training round includes checking the termination condition: whether the remaining time
exceeds the shortest observed time to reach the start node s0, indicating that the observed
cannot reach the real goal within the time constraint TC −

(
s[2] +

√
2× s[3]

)
< Ds[s[0], s[1]],

or the current coordinate of the observed coincides with the coordinate of the target (the
start node s0) scoord = s0. After collecting the path (line 10), performing a reversal operation
yields a solution for the DPP problem (line 11).

Algorithm 4 Endpoint DPP_Q

Algorithm 1
1: for episode in Episodes do
2: Initialize s = [gr[0], gr[1], 0, 0]
3: while True :
4: Algorithm 2
5: if TC −

(
s[2] +

√
2 × s[3]

)
< Ds[s[0], s[1]] or scoord = s0:

6: break
7: end if
8: end while
9: end for
10: collect the solution path πgr→s0

11: reverse
(
πgr→s0 )

Algorithm 5 describes the LDP DPP_Q method. It begins by initializing the problem
according to Algorithm 1. Then, it computes the gmin to determine the coordinates of
LDP, and calculatess the shortest cost distance from the LDP point to the false goal gmin:
opt(LDP, gr) (line 1). The initial start point of the observed is set as LDP, with its values
initialized to 0 for the next two dimensions (line 2). Subsequently, the algorithm divides
into two steps that can be executed in parallel or sequentially: one agent starts from LDP to
explore paths that can reach the real goal gr within the time constraint opt(LDP, gr), while
another agent starts from LDP to explore paths that can reach the start node s0 within the
time constraint TC − opt(LDP, gr). After collecting the paths, performing a reversal and
concatenation operation yields a solution for the DPP problem starting from s0 and ending
at gr (line 21).
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Algorithm 5 LDP DPP_Q

Algorithm 1
1 : Find gmin and LDP, then calculate opt(LDP, gr)
2 : for episode in Episodes do
3: Initialize s = [LDP[0], LDP[1], 0, 0]
4: while True:
5: Algorithm 2
6 : if opt(LDP, gr)−

(
s[2] +

√
2 × s[3]

)
< D[s[0], s[1]] or scoord = gr :

7 : break
8 : end if
9 : end while
10 : end for
11 : collect the solution path πLDP→gr

12 : for episode in Episodes do
13 : Initialize s = [LDP[0], LDP[1], 0, 0]
14 : while True :
15: Algorithm 2
16 : if TC − opt(LDP, gr)−

(
s[2] +

√
2 × s[3]

)
< Ds[s[0], s[1]] or scoord = s0:

17 : break
18 : end if
19 : end while
20 : collect the solution path πLDP→s0

21 : reverse(πLDP→s0 ) + πLDP→gr

5. Experiments and Results

We divided the experiments into three parts. Firstly, we randomly generated a total
of 300 DPP problems based on 10 × 10 grid maps to verify the effectiveness comparison
between πd1∼4 and e_πd1∼4. Next, we also randomly generated a total of 300 DPP problems
based on 10 × 10 grid maps to validate the effectiveness of DPP_Q, Endpoint DPP_Q, and
LDP DPP_Q. Finally, we used large maps from Moving-AI to further verify the effectiveness
of DPP_Q, Endpoint DPP_Q and LDP DPP_Q.

5.1. Performance Evaluation of e_πd1∼4 (Compared with πd1∼4)
5.1.1. Experimental Design

Considering the need to collect sufficient experimental data to ensure the reliability
of performance testing results, we investigated the scenarios with 1, 2, and 3 false goals.
The experiments were conducted on 300 10 × 10 grid maps, each randomly populated
with 4 to 9 obstacle grid cells. For the case with one false goal, we generated 100 maps
where one start node was randomly placed in the lower-middle area, one real goalwas
randomly located in the upper-left corner and one false goal was randomly positioned in
the upper-right corner (as shown in Figure 4a). For the case with two false goals, another set
of 100 maps was generated where one start node was randomly placed in the bottom-right
corner, one real goal was randomly placed in the upper-left corner and two false goals
were randomly placed in the upper-right and lower-left corners respectively (as shown
in Figure 4b). For the scenario with three false goals, building upon the distribution seen
in Figure 4b for two false goals, we randomly added a third false goal positioned in the
middle area (as illustrated in Figure 4c). This experimental design emphasizes the unique
characteristics of DPP problems when there is a certain distance between the start node,
real goal, and false goals.
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5.1.2. Experimental Results

As shown in Figure 5, we randomly select one map each for the experiments with 1, 2,
and 3 false goals to demonstrate the results. Here, f denotes the number of false goals. In
Figure 5, the black squares represent obstacles, the orange dot represents the start point,
the blue dot represents the real goal, the teal dots denote the positions of false goals, the
red arrows indicate the πd1∼4 path, and the green arrows represent the e_πd1∼4 path.
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Table 1 demonstrates a significant difference in the ADI of paths generated by πd1∼4
compared to e_πd1∼4. The improvements of e_πd1∼4 over traditional πd1∼4 are substan-
tial. Experimentally, e_πd1 shows almost no improvement compared to πd1 (−0.03%),
while e_πd2 averages an improvement of 16.83% compared with πd2, e_πd3 averages an
improvement of 10.47% compared with πd3, and e_πd4 averages an improvement of 5.03%
compared with πd4. Overall, e_πd1∼4 shows an average improvement of 8.07% over πd1∼4.

Table 1. The five-number summary describes the improvements of ADI of paths generated by
e_πd1∼4 compared with πd1∼4, where µ = 1.

Paths Median
/(10−2)

Q1
/(10−2)

Q3
/(10−2)

Average
/(10−2)

Std
/(10−2) Improvements

f = 1

πd1 3.605 3.408 3.870 3.637 0.330 −0.16%e_πd1 3.620 3.460 3.803 3.631 0.284

πd2 2.935 2.452 3.330 2.870 0.691
33.07%e_πd2 3.810 3.508 4.070 3.819 0.458

πd3 3.315 2.915 3.793 3.356 0.678
14.00%e_πd3 3.830 3.508 4.062 3.826 0.455

πd4 3.530 3.243 3.843 3.561 0.490
8.26%e_πd4 3.880 3.583 4.128 3.855 0.447

f = 2

πd1 3.210 2.980 3.470 3.203 0.341
0.00%e_πd1 3.210 2.980 3.470 3.203 0.340

πd2 2.755 2.423 3.078 2.758 0.423
13.96%e_πd2 3.125 2.900 3.380 3.143 0.361

πd3 2.755 2.423 3.078 2.758 0.423
13.96%e_πd3 3.125 2.900 3.380 3.143 0.361

πd4 2.995 2.660 3.242 2.984 0.372
5.76%e_πd4 3.145 2.900 3.405 3.156 0.375

f = 3

πd1 3.350 2.912 3.770 3.346 0.598
0.06%e_πd1 3.340 2.895 3.738 3.344 0.600

πd2 3.210 2.777 3.683 3.221 0.631
3.45%e_πd2 3.335 2.895 3.688 3.332 0.600

πd3 3.210 2.777 3.683 3.221 0.631
3.45%e_πd3 3.335 2.895 3.688 3.332 0.600

πd4 3.255 2.878 3.763 3.294 0.598
1.08%e_πd4 3.335 2.895 3.710 3.335 0.601

For πd1 and e_πd1, their performances are nearly indistinguishable. However, for
πd2∼4 and e_πd2∼4, the improvements are quite significant. Of course, this also relates to

the distribution of true and false goals. Although Table 1 suggests that the advantage of
e_πd1∼4 is less pronounced when there are three false goals compared to 1 or 2; this may

be due to the specific placement of the third false goal, which is close to both the start node
and the real goal. If the third false target were also randomly placed in a corner position,
the advantage of e_πd1∼4 would likely be more pronounced.

5.2. Performance Evaluation of Endpoint DPP_Q and LDP DPP_Q (Compared with DPP_Q)

In this section, we first conduct batch experiments on 10 × 10 maps to verify the
advantages of Endpoint DPP_Q and LDP DPP_Q over the baseline DPP_Q. Subsequently,
we perform further tests on 49 × 49 maps based on the Moving-AI benchmark.

5.2.1. Experimental Design

Considering the need for sufficient experimental data to ensure the reliability of perfor-
mance testing for DPP_Q, Endpoint DPP_Q and LDP DPP_Q, we conducted experiments
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on 300 10 × 10 grid maps. Each map contained randomly generated obstacle grids (4 to 9)
following the methodology in Section 5.1. We investigated scenarios with one or two false
goals. For maps with one false goal, we randomly placed one start node in the lower-middle
area, one real goal in the upper-left corner and one false goal in the upper-right corner
(as in Figure 6a), across 100 maps. For scenarios with two false goals, firstly, regarding
the symmetric distribution, we randomly placed one start node in the lower-right corner,
one real goal in the upper-left corner and two false goals in the upper-right and lower-left
corners respectively (Figure 6b). There were also 100 maps generated of this type. For
the asymmetric distribution, the position of the real goal varied (Figure 6c), and 100 maps
were generated. The * symbol indicates maps with special distributions of real and false
goals. These experiments aimed to thoroughly evaluate how these configurations impact
the performance of our methods under various conditions.
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For the methods used here—time-constrained DPP_Q, Endpoint DPP_Q, and LDP
DPP_Q—we aimed to make the experiments more realistic and feasible. For each set of
experiments (f = 1, f = 2, and f = 2*), consisting of 100 maps, we employed the method πd4
to generate 100 deceptive paths. We then selected the maximum time cost from these paths,
rounded up to the nearest integer, to serve as the time constraints for our experiments.
Specifically, for f = 1, the time constraint was set to 15 (derived from a rounded-up maximum
of 14.242); for f = 2, the time constraint was set to 16 (rounded up from 15.414) and for
f = 2*, the time constraint was set to 13 (rounded up from 12.242).

The choice of πd4 was deliberate because it provides paths with moderate time con-
sumption and generally higher deception levels on average, making it a notable method
within traditional approaches. Of course, any other time constraints could be used as long
as all path-planning problems under these constraints have feasible solutions.

5.2.2. Experimental Results

For illustration, we randomly selected four maps from each of the three types of
DPP problems mentioned above. Figure 7a–d display the paths generated by DPP_Q,
Endpoint DPP_Q, and LDP DPP_Q for four random maps from the f = 1 group. Figure 7e–h
correspond to four random maps from the f = 2 group, and Figure 7i–l depict four random
maps from the f = 2* group. In these figures, paths generated by DPP_Q are indicated by
red arrows, paths by Endpoint DPP_Q are indicated by green arrows, and paths by LDP
DPP_Q are indicated by magenta arrows, and the black squares represent obstacles, the
orange dot represents the start point, the blue dot represents the real goal, the teal dots
denote the positions of false goals. The term “cost” denotes the specific time constraint
used for path planning, and “map” indicates the map number selected from the 100 maps
available. There are notable differences in the paths generated by DPP_Q, Endpoint DPP_Q,
and LDP DPP_Q.
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From Table 2, it can be observed that the differences between the new and old methods
are not significant (less than 1%) when f = 1 and f = 2. However, when f = 2*, the relative
effectiveness of Endpoint DPP_Q and LDP DPP_Q compared to DPP_Q becomes more
pronounced (approximately 2.7%). These results are based on a 10 × 10 small-scale map.

Table 2. The five-number summary describes the improvements of ADI of paths generated by
Endpoint DPP_Q and LDP DPP_Q, compared with DPP_Q, where µ = 1. πQ represents paths
generated by DPP_Q, πEQ represents paths generated by Endpoint DPP_Q, and πLQ represents paths
generated by LDP DPP_Q.

Paths Median
/(10−2)

Q1
/(10−2)

Q3
/(10−2)

Average
/(10−2)

Std
/(10−2) Improvements

f = 1

πQ 4.970 4.728 5.220 4.986 0.354 –

πEQ 4.995 4.750 5.223 4.990 0.348 0.08%

πLQ 5.050 4.758 5.230 5.021 0.319 0.70%

f = 2

πQ 4.130 3.778 4.402 4.096 0.416 –

πEQ 4.130 3.760 4.405 4.061 0.472 −0.85%

πLQ 4.145 3.728 4.380 4.060 0.436 −0.88%

f = 2*

πQ 5.225 4.758 5.725 5.230 0.692 –

πEQ 5.385 4.935 5.755 5.372 0.676 2.72%

πLQ 5.340 4.968 5.820 5.371 0.638 2.70%
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Below, we conduct experiments on the classic 49 × 49 large maps from Moving-AI,
specifically using the maps called “49_empty.map”, “49_small.map”, and “49_large.map”.
The start point coordinates are set to (44, 3), with the real goal located at (10, 30). There are
two false goals located at (5, 10) and (45, 45), respectively.

Figure 8 displays heatmaps of the exploration of each grid point after training for
10,000,000 iterations. The color bars on the right of each image represent logarithmically
scaled values (base 10). The “cost” refers to the time constraints given to the observed,
resulting in time costs of 59.28, 62.797, and 59.28 for the DPP problems solved using πd4 on
“49_empty.map”, “49_small.map”, and “49_large.map”, respectively. The orange squares
(black borders) denote the start point, the blue squares (white borders) denote the real goal,
and the teal squares (white borders) denote the locations of the false goals. In Figure 8c,f,i,
the purple squares (white borders) indicate the coordinates of the LDP points corresponding
to the respective DPP problems.
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Figure 8a–c show the exploration patterns of the observed for DPP_Q, Endpoint
DPP_Q, and LDP DPP_Q in the “49_empty.map” scenario. Figure 8d–f depict the explo-
ration in the “49_small.map” scenario, while Figure 8g–i display the exploration in the
“49_large.map” scenario. Figure 8b,e,h reveal that Endpoint DPP_Q effectively addresses
the initial issue of DPP_Q, as shown in Figure 8a,d, and g, where it often gets stuck in local
optima early on. Further analysis of Figure 8c,f,i shows that LDP DPP_Q not only resolves
the initial local optima problem seen in Figure 8a,d,g but also reduces the exploration space
intelligently, potentially speeding up the training process.

Figure 9a,c,e depict heatmaps of reward functions for the three DPP problems. The red,
green, and magenta lines represent paths generated by DPP_Q, Endpoint DPP_Q, and LDP
DPP_Q, respectively. Similar to Figure 8, the orange squares (black borders) denote the start
point, blue squares (white borders) denote the real goal, and teal squares (white borders)
denote the false goals. The purple squares (white borders) in Figure 9a,c,e represent the
coordinates of LDP of the relative DPP problems.
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In Figure 9b,d,f, the x-axis represents the progress along the path (ranging from 0 to 1),
while the y-axis represents the posterior probability of the real goal. The red, green, and
magenta lines illustrate how the posterior probability of the real goal changes in the path
generated by DPP_Q, Endpoint DPP_Q, and LDP DPP_Q, respectively. It is observed that
the red line tends to reach around 1.0 earlier than the green and magenta lines in Figure 9b.
In Figure 9b, the green and magenta lines almost overlap (with ADD of 0.586 for DPP_Q,
0.703 for Endpoint DPP_Q, and 0.695 for LDP DPP_Q), while in Figure 9d, LDP DPP_Q
notably outperforms Endpoint DPP_Q and DPP_Q (with ADD of 0.316 for DPP_Q, 0.423
for Endpoint DPP_Q, and 0.558 for LDP DPP_Q). Figure 9e shows even closer alignment
between the green and magenta lines (mean deception scores of 0.530 for DPP_Q, 0.635 for
Endpoint DPP_Q, and 0.635 for LDP DPP_Q), demonstrating that LDP DPP_Q effectively
enhances ADD, similar to Endpoint DPP_Q. Given the same time constraints, using ADD
as a metric provides a more intuitive comparison of the three path-planning strategies.

6. Discussion and Conclusions

In this paper, we introduce two metrics for measuring the solutions of DPP problems:
ADD and ADI. Employing a reverse-thinking approach, we propose three new methods
(e_πd1∼4, Endpoint DPP_Q and LDP DPP_Q) that demonstrate significant improvements
compared to the original methods (πd1∼4 and DPP_Q).

Firstly, we define the concept of ADD. Based on ADD, we further develop the notion
of ADI and analyze its validity, applying it to evaluate subsequent methods. Secondly, we
enhance πd1∼4 without time constraints by introducing e_πd1∼4, which shows substantial
improvements over traditional methods. Experimental results indicate negligible improve-
ment for e_πd1 compared with πd1 (−0.03%), a significant average improvement of 16.83%
for e_πd2 compared with πd2, a 10.47% average improvement for e_πd3 compared with
πd3, and a 5.03% average improvement for e_πd4 compared with πd4. Overall, e_πd1∼4
outperforms πd1∼4 by 8.07%. Finally, addressing methods under time constraints like
DPP_Q, we propose Endpoint DPP_Q and LDP DPP_Q. Both methods effectively address
the issue of poor path deception in DPP_Q when the real and false goals have specific
distributions. Moreover, Endpoint DPP_Q and LDP DPP_Q demonstrate even more signif-
icant advantages in overcoming local optima issues on large maps compared to DPP_Q,
resulting in substantial improvements.

For future work, we recognize that the training times of methods such as DPP_Q,
Endpoint DPP_Q, and LDP DPP_Q are still lengthy. Inspired by the principles of πd1∼4, we
suggest segmenting paths by incorporating more navigation points that are similar to LDP.
Segmenting agent training could accelerate learning while achieving comparable results.
Additionally, modeling the goal recognition method of the observer remains challenging.
PGRM serves as an assumption model that is potentially inaccurate or flawed. Future re-
search should introduce adversarial elements and more complex opponent goal recognition
models. For example, the observed may quickly perceive the identifications or actions of
the observer and adjust their planning accordingly to enhance deception strategies. Fur-
thermore, expanding DPP problems to higher dimensions, such as three-dimensional space
for drone flight or dynamic environments, promises practical advancements. Incorporating
additional elements like images or audio captured by identifiers rather than solely relying
on coordinates could make the game more intricate. These directions hold promise for
future research, enhancing practical applicability significantly.

Author Contributions: Conceptualization, D.C. and K.X.; methodology, D.C.; validation, D.C.
and Q.Y.; formal analysis, D.C.; investigation, D.C.; data curation, D.C.; writing—original draft
preparation, D.C.; writing—review and editing, D.C.; supervision, Q.Y. and K.X.; funding acquisition,
K.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China (grant num-
ber 62103420).



Mathematics 2024, 12, 2540 20 of 21

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We thank Peta Masters and Sebastian Sardina of RMIT University for their support
with the open-source code. Deceptive Path-Planning algorithms can be found at GitHub—ssardina-
planning/p4-simulator: Python Path Planning Project (P4) (https://github.com/ssardina-planning/p4
-simulator) (accessed on 17 June 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:
DPP Deceptive path planning
ADD Average Deception Degree
ADI Average Deception Intensity
LDP Last Deceptive Point
AHMM Abstract Hidden Markov Models
PGRM Precise Goal Recognition Model
AGRM Approximate Goal Recognition Model

References
1. Alloway, T.P.; McCallum, F.; Alloway, R.G.; Hoicka, E. Liar, liar, working memory on fire: Investigating the role of working

memory in childhood verbal deception. J. Exp. Child Psychol. 2015, 137, 30–38. [CrossRef] [PubMed]
2. Greenberg, I. The effect of deception on optimal decisions. Oper. Res. Lett. 1982, 1, 144–147. [CrossRef]
3. Matsubara, S.; Yokoo, M. Negotiations with inaccurate payoff values. In Proceedings of the International Conference on Multi

Agent Systems (Cat. No. 98EX160), Paris, France, 3–7 July 1998; pp. 449–450.
4. Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; DiRenzo, J.; Maule, B.; Meyer, G. Protect: A deployed game theoretic system to

protect the ports of the united states. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems, Valencia, Spain, 4–8 June 2012; Volume 1, pp. 13–20.

5. Geib, C.W.; Goldman, R.P. Plan recognition in intrusion detection systems. In Proceedings of the DARPA Information Survivability
Conference and Exposition II, DISCEX’01, Anaheim, CA, USA, 12–14 June 2001; pp. 46–55.

6. Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E. Robocup: The robot world cup initiative. In Proceedings of the First
International Conference on Autonomous Agents, Marina Del Rey, CA, USA, 5–8 February 1997; pp. 340–347.

7. Keren, S.; Gal, A.; Karpas, E. Privacy Preserving Plans in Partially Observable Environments. In Proceedings of the IJCAI, New
York, NY, USA, 9–15 July 2016; pp. 3170–3176.

8. Masters, P.; Sardina, S. Deceptive Path-Planning. In Proceedings of the IJCAI, Melbourne, Australia, 19–25 August 2017;
pp. 4368–4375.

9. Chen, D.; Zeng, Y.; Zhang, Y.; Li, S.; Xu, K.; Yin, Q. Deceptive Path Planning via Count-Based Reinforcement Learning under
Specific Time Constraint. Mathematics 2024, 12, 1979. [CrossRef]

10. Avrahami-Zilberbrand, D.; Kaminka, G.A. Incorporating observer biases in keyhole plan recognition (efficiently!). In Proceedings
of the AAAI, Melbourne, Australia, 19–25 August 2007; pp. 944–949.

11. Nichols, H.; Jimenez, M.; Goddard, Z.; Sparapany, M.; Boots, B.; Mazumdar, A. Adversarial sampling-based motion planning.
IEEE Robot. Autom. Lett. 2022, 7, 4267–4274. [CrossRef]

12. Cohen, P.R.; Perrault, C.R.; Allen, J.F. Beyond question answering. In Strategies for Natural Language Processing; Psychology Press:
London, UK, 2014; pp. 245–274.

13. Kautz, H.A.; Allen, J.F. Generalized plan recognition. In Proceedings of the AAAI, Philadelphia, PA, USA, 11–15 August 1986;
p. 5.

14. Pynadath, D.V.; Wellman, M.P. Generalized queries on probabilistic context-free grammars. IEEE Trans. Pattern Anal. Mach. Intell.
1998, 20, 65–77. [CrossRef]

15. Pynadath, D.V. Probabilistic Grammars for Plan Recognition; University of Michigan: Ann Arbor, MI, USA, 1999.
16. Pynadath, D.V.; Wellman, M.P. Probabilistic state-dependent grammars for plan recognition. arXiv 2013, arXiv:1301.3888, preprint.
17. Geib, C.W.; Goldman, R.P. A probabilistic plan recognition algorithm based on plan tree grammars. Artif. Intell. 2009, 173,

1101–1132. [CrossRef]
18. Bui, H.H. A general model for online probabilistic plan recognition. In Proceedings of the IJCAI, Acapulco, Mexico, 9–15 August

2003; pp. 1309–1315.
19. Liao, L.; Patterson, D.J.; Fox, D.; Kautz, H. Learning and inferring transportation routines. Artif. Intell. 2007, 171, 311–331.

[CrossRef]
20. Ramírez, M.; Geffner, H. Probabilistic plan recognition using off-the-shelf classical planners. In Proceedings of the AAAI

Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010; pp. 1121–1126.

https://github.com/ssardina-planning/p4-simulator
https://github.com/ssardina-planning/p4-simulator
https://doi.org/10.1016/j.jecp.2015.03.013
https://www.ncbi.nlm.nih.gov/pubmed/25913892
https://doi.org/10.1016/0167-6377(82)90017-7
https://doi.org/10.3390/math12131979
https://doi.org/10.1109/LRA.2022.3148464
https://doi.org/10.1109/34.655650
https://doi.org/10.1016/j.artint.2009.01.003
https://doi.org/10.1016/j.artint.2007.01.006


Mathematics 2024, 12, 2540 21 of 21

21. Sohrabi, S.; Riabov, A.V.; Udrea, O. Plan Recognition as Planning Revisited. In Proceedings of the IJCAI, New York, NY, USA,
9–15 July 2016; pp. 3258–3264.

22. Bui, H.H.; Venkatesh, S.; West, G. Policy recognition in the abstract hidden markov model. J. Artif. Intell. Res. 2002, 17, 451–499.
[CrossRef]

23. Ramırez, M.; Geffner, H. Plan recognition as planning. In Proceedings of the 21st International Joint Conference on Artifical
Intelligence, Pasadena, CA, USA, 11–17 July 2009; Morgan Kaufmann Publishers Inc.: Cambridge, MA, USA, 2009; pp. 1778–1783.

24. Masters, P.; Sardina, S. Cost-based goal recognition for path-planning. In Proceedings of the 16th Conference on Autonomous
Agents and Multiagent Systems, São Paulo, Brazil, 8–12 May 2017; pp. 750–758.

25. Floridi, L. The Philosophy of Information; Oxford University Press: Oxford, UK, 2011.
26. Fetzer, J.H. Disinformation: The use of false information. Minds Mach. 2004, 14, 231–240. [CrossRef]
27. Fallis, D. What is disinformation? Libr. Trends 2015, 63, 401–426. [CrossRef]
28. Sarkadi, S.; Wright, B.; Masters, P.; McBurney, P. Deceptive AI; Springer: Berlin/Heidelberg, Germany, 2021.
29. Bell, J.B. Toward a theory of deception. Int. J. Intell. Counterintell. 2003, 16, 244–279. [CrossRef]
30. Arkin, R.C.; Ulam, P.; Wagner, A.R. Moral decision making in autonomous systems: Enforcement, moral emotions, dignity, trust,

and deception. Proc. IEEE 2011, 100, 571–589. [CrossRef]
31. Cai, Z.; Ju, R.; Zeng, Y.; Xie, X. Deceptive Path Planning in Dynamic Environment. In Proceedings of the 2020 3rd International

Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Shenzhen, China, 24–26 April
2020; pp. 203–207.

32. Xu, K.; Zeng, Y.; Qin, L.; Yin, Q. Single real goal, magnitude-based deceptive path-planning. Entropy 2020, 22, 88. [CrossRef] [PubMed]
33. Liu, Z.; Yang, Y.; Miller, T.; Masters, P. Deceptive reinforcement learning for privacy-preserving planning. arXiv 2021, arXiv:2102.03022.
34. Lewis, A.; Miller, T. Deceptive reinforcement learning in model-free domains. In Proceedings of the International Conference on

Automated Planning and Scheduling, Prague, Czech Republic, 8–13 July 2023; pp. 587–595.
35. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
36. Strehl, A.L.; Littman, M.L. An analysis of model-based interval estimation for Markov decision processes. J. Comput. Syst. Sci.

2008, 74, 1309–1331. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1613/jair.839
https://doi.org/10.1023/B:MIND.0000021683.28604.5b
https://doi.org/10.1353/lib.2015.0014
https://doi.org/10.1080/08850600390198742
https://doi.org/10.1109/JPROC.2011.2173265
https://doi.org/10.3390/e22010088
https://www.ncbi.nlm.nih.gov/pubmed/33285863
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.jcss.2007.08.009

	Introduction 
	Related Work 
	Plan Recognition and Probabilistic Goal Recognition 
	Deception and Deceptive Path Planning 

	Preliminaries 
	Method 
	Average Deception Degree (ADD) and Average Deception Intensity (ADI) 
	Deceptive Path Planning (DPP) via d14  and e_d14  
	Deceptive Path Planning (DPP) via DPP_Q, Endpoint DPP_Q and LDP DPP_Q 
	The State Space 
	The Action Space 
	The Reward Function 


	Experiments and Results 
	Performance Evaluation of e_d14  (Compared with d14 ) 
	Experimental Design 
	Experimental Results 

	Performance Evaluation of Endpoint DPP_Q and LDP DPP_Q (Compared with DPP_Q) 
	Experimental Design 
	Experimental Results 


	Discussion and Conclusions 
	References

