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Abstract: At present, the early diagnosis of diabetic retinopathy (DR), a possible complication of
diabetes due to elevated glucose concentrations in the blood, is usually performed by specialists
using a manual inspection of high-resolution fundus images based on lesion screening, leading to
problems such as high work-intensity and accessibility only in specialized health centers. To support
the diagnosis of DR, we propose a deep learning-based (DL) DR lesion classification method through
a knowledge distillation (KD) strategy. First, we use the pre-trained DL architecture, Inception-v3,
as a teacher model to distill the dataset. Then, a student model, also using the Inception-v3 model,
is trained on the distilled dataset to match the performance of the teacher model. In addition, a
new combination of Kullback–Leibler (KL) divergence and categorical cross-entropy (CCE) loss is
used to measure the difference between the teacher and student models. This combined metric
encourages the student model to mimic the predictions of the teacher model. Finally, the trained
student model is evaluated on a validation dataset to assess its performance and compare it with
both the teacher model and another competitive DL model. Experiments are conducted on the two
datasets, corresponding to an imbalanced and a balanced dataset. Two baseline models (Inception-
v3 and YOLOv8) are evaluated for reference, obtaining a maximum training accuracy of 66.75%
and 90.90%, respectively, and a maximum validation accuracy of 35.94% and 81.52%, both for the
imbalanced dataset. On the other hand, the proposed DR classification model achieves an average
training accuracy of 99.01% and an average validation accuracy of 97.30%, overcoming the baseline
models and other state-of-the-art works. Experimental results show that the proposed model achieves
competitive results in DR lesion detection and classification tasks, assisting in the early diagnosis of
diabetic retinopathy.

Keywords: knowledge distillation; fundus images; diabetic retinopathy; lesion classification;
convolutional neural networks; Inception-v3; Kullback–Leibler divergence; categorical cross-entropy;
computer-aided diagnosis disease; health
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1. Introduction

Diabetes is a chronic disease that appears when the organism cannot produce enough
insulin or it cannot effectively be used. There are two types of diabetes: type 1, which is
not preventable and requires the patient to be provided with external insulin, and type 2,
which is the most common (90% of patients) and is preventable [1].

According to the 2021 Diabetes Atlas of the International Diabetes Federation (IDF) [1],
537 million people worldwide, between 20–79 years, have diabetes, and by 2030, the

Mathematics 2024, 12, 2543. https://doi.org/10.3390/math12162543 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162543
https://doi.org/10.3390/math12162543
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9637-786X
https://orcid.org/0000-0002-8710-5109
https://orcid.org/0009-0004-3029-9717
https://orcid.org/0000-0001-8073-3594
https://orcid.org/0000-0002-5430-8778
https://doi.org/10.3390/math12162543
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162543?type=check_update&version=2


Mathematics 2024, 12, 2543 2 of 25

number could increase to 643 million. Thus, following this trend, by 2045 this will be
783 million people (between 20–79 years). Recently, Professor Andrew Boulton, President
of the IDF, declared that diabetes is a “pandemic of unprecedented magnitude”, because an
it is estimated that 10.5% (around half a billion persons) of the worldwide adult population
lives with diabetes [2].

On the other hand, a possible complication of diabetes is diabetic retinopathy (DR),
which is caused by elevated glucose concentrations in the blood, resulting in the damage
of blood vessels and the abnormal growth of new vessels in the retina [3]. This disease
occurs among 30–40% of diabetic patients, making the rise in diabetes prevalence parallel
to DR. A recent global analysis estimates that the worldwide prevalence of DR is around
103 million patients, and it will rise to 161 million by 2045 [2].

Diabetic retinopathy has been studied for a long time. For example, Porta et al. [4] pre-
sented the history of diabetic eye disease as follows: in 1876, Wilhelm Manz described some
pathologies associated with diabetic retinopathy, for example, fibrovascular deterioration
of the optic disc, adhesions in the vitreous and retina, detachment of the retina, and hemor-
rhages in the vitreous. In 1877, Mackenzie described the finding of microaneurysms with
vitreous and retinal bleeding. In 1944, Ballantyne and Lowenstein were the first to use the
term “diabetic retinopathy”. On the other hand, in 2017, Ometto et al. [5] studied the effects
of other factors unrelated to DR, how lesions are distributed for discrepancies between
decisions made by clinicians, and what the risk model predicts.

Because DR directly affects the blood vessels, it is the main cause of preventable
blindness, with a prevalence of 22% in people with diabetes [6]. However, early detection
and treatment can prevent vision loss due to diabetes. Thus, there are currently treatments
that can considerably reduce the risks of blindness through early diagnosis. For example,
retinography is a non-invasive and accessible method that generates high-quality images
of the inner and back surface of the eyes through a color camera showing the blood vessels
and revealing possible lesions due to DR, which can be seen in Figure 1a, showing a
healthy patient.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1. DR lesions examples. (a) Healtly patient. (b) Hemorrhages. (c) Exudates. (d) Microa-
neurysms. (e) Cotton wool spots. (f) Retinal venous beading. (g) Patient with glaucoma. (h) Patient
with macular degeneration.
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Diabetic retinopathy is characterized by microangiopathy in the venous capillaries,
such as microaneurysms, microvascular occlusions, arteriovenous short circuits, neovascu-
larization, exudates, and hemorrhages [3]. In addition, retinal venous beading and cotton
wool spots can be found. Neovascularization consists of the generation of new blood ves-
sels due to a prolonged absence of blood in determined regions of the eye, which generally
have irregular, weak walls that are prone to rupture. These new blood vessels are identified
as prominences in the contour of the optic nerve. Retinal hemorrhages (Figure 1b) appear
when the blood vessels weaken and begin to bleed, producing irregular reddish spots,
which cause either partial or total blindness due to the light occlusion of the photoreceptors.
Exudates (Figure 1c) are presented when substances rich in proteins spread into the eye
from the vessels, which form brilliant deposits of different sizes, covering small spots to
large areas. Microaneurysms (Figure 1d) appear as small reddish spots in different areas,
which could easily be mistaken for small hemorrhages, but are induced by dilations of the
blood vessels and not by blood draining into the vitreous body. Therefore, in diagnosis,
these structures are used to evaluate the DR grade [3]. Cotton wool spots (Figure 1e) are
presented when there are tight retinal arteries due to chronic hypertension and atherosclero-
sis [7]. Venous beading (Figure 1f) is characterized by the beaded appearance of the retinal
venules due to long hypoxia cycles and a changing lumen’s dilation and constriction.

The damage that DR causes to small retinal vessels also increases the risk of glaucoma
(GLA), cataracts, and other eye problems. GLA (Figure 1g) is an eye condition that damages
the optic nerve. This damage is caused by higher-than-normal pressure in the eye. Open-
angle glaucoma is characterized by irregular blind spots in peripheral or central vision,
often occurring in both eyes or tunnel vision in very advanced stages. The above figure
shows a fundus image of a patient with glaucoma.

Furthermore, age-related macular degeneration (AMD) is an important cause of ir-
reversible blindness worldwide. It is a multi-factorial disease with cuases such as age,
race, gender, diet, cardiovascular illnesses, and genetic risk factors. In early stages, AMD
presents the appearance of extracellular deposits in the Bruch’s membrane. In late stages,
AMD is characterized by the appearance of geographic atrophy (GA), where there is photo-
receptor loss, retinal thinning, and a progressive, irreversible loss of central vision. In many
cases, GA could evolve into choroidal neovascularization, a formation of new blood vessels
in the Bruch’s membrane, which causes hemorrhages that lead to further loss of vision [8].
Figure 1h shows a patient with macular degeneration.

Due to DR being characterized by several retinal lesions, it is necessary to develop
new multi-class image classification algorithms and address the imbalance between the
number of images per class found in most datasets. In addition, these algorithms must
present an accurate classification to support medical diagnosis. Therefore, in this study, we
present a knowledge distillation (KD) model using a new combination of loss functions.
First, we used a pre-trained teacher model to distill the target dataset. Then, a student
model was trained on the distilled dataset to match the performance of the teacher model.
For evaluation, the proposed method was tested on two datasets: one imbalanced dataset
containing 1000 images across 39 classes and a second balanced dataset with 3592 images
into eight categories. Experimental results show that the DR lesions classification system
overcomes the accuracy of some state-of-the-art methods. The contributions of this work
are summarized as follows:

• Knowledge Distillation Model and Combination of Loss Functions:

– We present a knowledge distillation model and develop a new combination of
the Kullback–Leibler divergence and categorical cross-entropy loss functions to
address the problem of sample number imbalance in the dataset.

– To the best of our knowledge, this combination of loss functions is the first to
be used.

• Teacher–Student Training Framework:
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– We utilize a pre-trained teacher model to distill the dataset, providing a refined
set of data for training.

– We train a student model on the distilled dataset to achieve performance compara-
ble to the teacher model, ensuring effective knowledge transfer and maintaining
a compact and efficient final model.

• Dataset and Methodology:

– We perform an analysis of different CNN architectures by testing and evaluating
them to determine the best network that would generate the best classification results.

• Experimental Setup and Results:

– Experimental results using a public and in-house dataset demonstrates that the
proposed knowledge distillation model significantly reduces overfitting against
baseline models. In addition, the distilled model shows a robust generalization
and overcomes some state-of-the-art methods.

The rest of the paper is divided as follows: Section 2 presents a review of some recent
works on DR detection, DR grading, and DR lesion classification. Section 3 describes the
fundus image datasets used, the CNN architectures, and the loss functions utilized to clas-
sify DR lesions. Section 4 details the proposed knowledge distillation-based classification
model for DR lesions. Next, Section 5 presents the experimental setup, evaluation metrics,
DR lesions classification performance analysis, and comparison against other works in the
literature, followed by a discussion of the results. Finally, the conclusions are presented in
Section 6, followed by future work.

2. Related Work

Various methods have been proposed to detect DR in fundus images. For exam-
ple, extracting blood vessels to use their information for DR diagnosis. Thus, Sundaram
and et al. [9] presented a hybrid segmentation method of blood vessels by fusing morpho-
logical operators, vessel enhancement at multiple scales, and the bottom hat algorithm.
In comparison, Colomer et al. [10] proposed a blood vessel segmentation approach using
sparse representations and dictionary-based learning. The proposed method was evaluated
using RGB and intensity fundus images via two public databases.

Other works use a machine learning approach to generate DR grading related to the
severity of the illness. For example, in [11], Sharif and Shah applied feature extraction to
classify the grading of DR. Contrast-limited adaptive histogram equalization (CLAHE),
Gaussian curve fitting, and independent component analysis (ICA) were used as a pre-
processing stage, and a multi-class Gaussian Bayes classifier and multi-support vector
machine (SVM) were applied to classify the grade of DR. Kaur and Mittal [12] reported
a lesion segmentation method by a means and iterative clustering approach, taking into
account the heterogeneity and bright and weak edges, which are used to grade non-
proliferative diabetic retinopathy.

On the other hand, other works directly classified retina lesions to identify DR through
generic classifiers. For example, in [13], Estudillo-Ayala et al. presented a method using
multi-directional fractional-order Gaussian filters, the differential evolution algorithm, and
the Kittler thresholding method to detect microaneurysms and hemorrhages in fundus
images. Then, the extracted structures were classified by means of an SVM. In another
work, Wang et al. [14] proposed a semi-supervised method using a series of both healthy
and ill fundus images without annotation. The proposed method separated background
from blood vessels and background noise applying image processing steps. Furthermore,
background noise was modulated as a stochastic variable through a mixture of Gaussian
filters for normal and abnormal images, respectively. Thus, both the image background and
the noise of the background noise identification were joined in a whole model to detect the
lesions, for example, haemorrhages, exudates, and cotton wool spots. In [15], Biswas et al.
developed an intelligent system for the detection of DR using an SVM to detect foveal
avascular zones and microaneurysms. In [16], an automatic detection method of exudates
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using fundus images was presented. This method involved the following steps: shifting
color correction, optic disc removal, and exudates detection. Afrin and Shill [17] presented
a DR grading system based on retinal lesion detection (e.g., microaneurysms, blood vessels,
and exudates). Similarly, in [18], Adal et al. reported an automatic detection method of
lesions based on longitudinal retinal changes caused by small red lesions in normalized
images. This method reduces illumination variations and improves the contrast of small
features in the retina. Sidibé et al. [19] used a sparse coding approach for retinal lesions
classification, specifically for detecting fundus images with exudates or drusen and images
without lesions. They applied a linear SVM over the sparse coded features, improving the
bag-of-visual-word approach. In [20], Ghasemi Falavarjan et al. reported an advance in
analyzing ultra-wide-field retinal images, enabling accurate measurements of peripheral
retinal lesions. Finally, some less recent techniques are those of [21,22]. The first work
presented a method to detect exudates by applying adaptive histogram equalization and
thresholding for area calculation. Then, micro-aneurysms were detected using top-hat and
bottom-hat transforms. Micro-aneurysms were finally classified using Otsu thresholding
and the Hough transform. The second method used the m-Mediods-based modeling
approach together with the Gaussian mixture model.

Although the above methods obtained promising results, they are not suitable for clas-
sifying multiple DR lesions. Thus, CNNs have been widely used for multiclass problems,
improving the ability of DR lesion diagnosis. Ashraf et al. [23] focused on identifying red le-
sions of small size that are less discriminative for early DR detection. A modified ResNet50
model was used as a CNN as an alternative to transfer learning issues such as over-fitting,
domain adaptation, and performance degradation. In another work, Alsubai et al. [24]
proposed a quantum-based deep CNN approach because of its parallel computing capacity
for DR classification in fundus images. Priya et al. [25] and Bilal et al. [26] presented reviews
of current methods of detecting non-proliferative diabetic retinopathy, exudates, hemor-
rhages, and microaneurysms using deep, intelligent systems. Abdelmaksoud et al. [27]
presented a comprehensive computer-aided diagnosis using deep learning for DR classifi-
cation. First, a prepossessing stage removes noise, performs quality enhancements, and
resizes fundus images for standardization. Next, the system classifies healthy and DR
patients. Finally, blood vessels, exudates, hemorrhages, and microaneurysms are extracted.
Hassan et al. [28] evaluated semantic segmentation, scene analysis, and hybrid DL systems
for retinal lesion detection using optical coherence tomography (OCT) images. Some lesions
extracted were intra-retinal fluid, drusen, hard exudates, chorioretinal anomalies, and sub-
retinal fluid. In [29], Playout et al. presented a convolutional multi-task architecture with
reinforcing learning for red and bright lesions’ simultaneous segmentation.

In contrast to traditional deep learning methods, which are resource-intensive, contain-
ing large amounts of parameters, and are not suitable for direct clinical applications, this
work proposes the use of the knowledge distillation (KD) algorithm, which is considered a
dataset reduction method that focuses on the creation of more compact and representative
sets of the original dataset since it takes into account the most important characteristics of
images and saves their information. This method not only reduces computational com-
plexity and storage requirements but can also improve the efficiency and generalization of
models trained on previously manipulated sets. Thus, Luo et al. [30] proposed a knowledge
distillation approach to a large teacher network, which later guides a student network
using labels of the images for DR grading. In addition, the authors incorporated class
activation mapping (CAM), including an attention module and a mimicking stage. Ab-
basi et al. [31] presented a knowledge distillation approach to transfer knowledge of a
complex model to a simple model with fewer parameters. The proposed method uses
unlabeled data to transfer DR knowledge and incorporate it into a low-resource embedded
system. A VGG network was used to train the teacher model, and then a simple model
(student model) was trained based on the teacher’s knowledge. The proposed approach
was used for binary DR classification. In another work, Gao et al. [32] reported a collab-
orative learning-based knowledge distillation framework, which was used to enhance
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fundus images, increasing the detecting retinopathy accuracy and reducing the running
time of the model. The collaborative strategy allowed us to incorporate several student
models of different scales and architectures to extract relevant diagnosis information. Next,
a transfer learning approach was applied. In [33], Islam et al. proposed a knowledge
distillation approach where two models were fused (ResNet152V2 and Swin transformer)
as teacher models. Then, the knowledge learned from the teacher model was used to train
the lightweight student model (Xception) for the diabetic retinopathy classification task.
In addition, a pre-processing stage, formed by several methods such as image denoising,
ROI selection, thresholding, bounding box selection, cropping, unsharp masking filter,
and gamma transformation, were applied to the APTOS and IDRiD datasets for both
binary and multi-class classification. Ju et al. [34] proposed a DL strategy to learn from
long-tailed fundus datasets, where a hybrid knowledge distillation method was used for
DR lesion classification. In [35], Wang et al. presented a knowledge distillation approach
focusing on the transfer of lesion knowledge applied to DR lesion segmentation. Finally,
Salguero et al. [36] analyzed something similar to what we are proposing in this paper, in
which they processed the information with different unsupervised classification methods
and relied on natural language processing with the latent semantic analysis method. Their
dataset belonged to several images of ovarian cancer pathology. When comparing the
results obtained with 40% of the data and with the entire dataset, they saw that the score
obtained was 87%.

3. Materials and Methods

In this section, the fundus image datasets used in this work are introduced. Two
datasets are presented: the JSIEC1K dataset, containing 1000 images across 39 categories,
and an in-house dataset with 3592 images balanced across eight categories. The characteris-
tics, sources, and composition of these datasets are detailed.

Additionally, the fundamentals of convolutional neural networks are explained, in-
cluding their architecture, key components such as convolutional layers and pooling layers,
and the process of training these networks. Following this, two specific CNN architectures
are discussed: Inception-v3 and YOLOv8. The Inception-v3 model, with its innovative use
of inception modules and the YOLOv8 architecture, known for its real-time object detection
capabilities, are described in detail. Finally, the theory behind the loss functions used
in the study, specifically the Kullback–Leibler divergence and categorical cross-entropy
loss, is presented to provide a comprehensive understanding of the proposed method’s
theoretical foundations.

3.1. Fundus Image Datasets

For the development of this project, we explored multiple fundus image datasets,
where we found that the images tend to be highly consistent across different sources. Thus,
the specialized equipment used for capturing these images generally produces very similar
outputs, regardless of the specific device (see [37]). However, the queried datasets lacked
sufficient images or labels to train deep-learning models. Therefore, in this work, we
selected two datasets due to their characteristics described below. The first one includes
1000 images belonging to 39 different categories, but presents an imbalance between them
and shows a non-uniform distribution. The second one contains 3592 into eight different
categories but maintains a balance between them.

3.1.1. JSIEC1K Dataset

For the initial tests, the JSIEC1K dataset [38] was used, obtained from Kaggle public
datasets (https://www.kaggle.com/datasets/linchundan/fundusimage1000/, accessed
on 13 February 2024). It is an imbalanced dataset, which is a collection of fundus images
consisting of a total of 1000 images divided into 39 different categories. It is important to
mention that the distribution of images is not uniform across all categories, as there are
some with a significantly higher number of samples compared to others. This imbalance in

https://www.kaggle.com/datasets/linchundan/fundusimage1000/
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the dataset, coupled with the large number of classes being trained with so few samples,
may affect the test results. The images come from the Joint Shantou International Eye
Center (JSIEC) located in Guangdong Province, China. They are a small portion of a larger
set consisting of 209,494 fundus images. The main objective of this dataset is to be used
for training and testing deep learning platforms, which are a type of artificial intelligence.
Table 1 shows the classes and number of images per class of the JSIEC1K dataset.

Table 1. Classes and the number of images in each class of the JSIEC1K dataset.

Class # Class # Class #

Normal 38 ERM 26 Vitreous particles 14
Tessellated fundus 13 MH 23 Fundus neoplasm 8
Large optic cup 50 Pathological myopia 54 Massive hard exudates 13
DR1 18 Possible glaucoma 13 Yellow-white spots-flecks 29
DR2 49 Optic atrophy 12 Cotton-wool spots 10
DR3 39 Severe hypertensive

retinopathy
15 Vessel tortuosity 14

BRVO 44 Disc swelling and elevation 13 Chorioretinal atrophy 15
CRVO 22 Dragged Disc 10 Preretinal hemorrhage 10
RAO 16 Congenital disc abnormality 10 Fibrosis 10
Rhegmatogenous RD 57 Retinitis pigmentosa 22 Laser Spots 20
CSCR 14 Bietti crystalline dystrophy 8 Silicon oil in eye 19
VKH disease 14 Peripheral retinal

degeneration
14 Blur fundus without PDR 114

Maculopathy 74 Myelinated nerve fiber 11 Blur fundus with suspected PDR 45

3.1.2. In-House Dataset

On the other hand, an in-house and balanced dataset was also used to perform
the tests. It consists of images from the “Messidor-2” dataset [39,40], which was down-
loaded from Kaggle public datasets (https://www.kaggle.com/datasets/geracollante/
messidor2, accessed on 13 February 2024), containing 1748 fundus images of 1440 × 960
and 2240 × 1488 pixels. Out of the 1748 images, 1705 images were grouped into eight
groups: macular degeneration (55), exudates (149), hemorrhages (82), cotton wool spots
(56), microaneurysms (156), glaucoma (69), venous beading (59), and healthy patients (449).
Later, a data augmentation strategy using the Python package Augmentor was performed
in order to generate a balance set with respect to the number of healthy patient images,
providing 3592 images (449 for each group).

In contrast to the JSIEC1K dataset, this dataset shows less diversity but a more balanced
approach. Table 2 shows the classes and number of images per class of the in-house dataset.

Table 2. Classes and the number of images in each class of the in-house dataset.

Class # Class # Class #

Beading 449 Macular Degeneration 449 Exudate 449
Glaucoma 449 Hemorrhages 449 Cotton-wool spots 449
Microaneurysms 449 Healthy 449

3.2. Convolutional Neural Networks

A CNN is composed of so-called convolutional layers, which are in charge of extraction
of local features from a set of images by applying different convolution kernels to filters.
As a result of these convolutions, features maps are obtained. Thus, a convolution layer
containing k kernels could detect K different features (feature maps) after being trained.
In Figure 2, a convolutional layer and its corresponding feature maps are presented using a
gray-scale image and a bank of K filters.

https://www.kaggle.com/datasets/geracollante/messidor2
https://www.kaggle.com/datasets/geracollante/messidor2
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Kernel 1

Kernel 2

Kernel K

Feature
map 1

Feature
map 2

Feature
map K{

Filter Bank {
Feature maps

Input image

Figure 2. Example of a convolutional layer. A filter bank of k filters generates the corresponding k
feature maps.

In a nutshell, each feature map Fk with k = 1, 2, . . . , K could be mathematically de-
scribed as is shown in Equation (1):

Fk = ∑
n

Wk[n] ∗ I[n], (1)

where I[n] is a multi-spectral image, n-th is the color band number, Wk[n] is the sub-kernel
to the band n, and ∗ represents the 2D convolution operator.

Furthermore, a pooling layer, or downsampling layer, is commonly incorporated at the
output of each convolutional layer. Its dimension reduction decreases the number of neurons
in the convolutional network and reduces overfitting and computational complexity.

Mathematically, the pooling layer slides a two-dimensional filter over each feature
map. Thus, for a feature map of dimension m × n, the output of the pooling layer will be
(m − f )/s + 1 × (n − f )/s + 1, where f is the size of the filter and s is stride length.

The pooling layers could be classified into three categories: a max-pooling layer, a
min-pooling layer, and an average-pooling layer, where the max-pooling layer is the most
commonly used. The max-pooling layer is used to reduce the dimension of the feature
maps and to improve robustness to changes in the position of the feature in the image or
local translation invariance. It is reached by selecting the maximum response in each patch
of each feature map.

A simple CNN architecture used for classification tasks contains several pairs of
convolutional-pooling layers. Furthermore, another kind of layer, the fully connected layer,
is used for classification tasks. In this layer, each of the outputs in the previous layer is
connected with a weight to each neuron in the layer. Finally, the output classification
labels in the CNN are generated by an activation function. Figure 3 shows a typical
CNN architecture.
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Figure 3. Typical CNN architecture.

Training a CNN consists of adjusting the unknown parameters of the network, i.e., the
weights and biases of all connections. In this regard, the backpropagation algorithm is the
most frequently used process to iteratively adjust these weights through the minimization
of a loss function, for example, the difference between the estimated classes (outputs) and
the references (labels).

On the other hand, there are pre-trained CNN models that could be used in cases
where a sufficiently large dataset is not available. This strategy is known as transfer
learning, and it allows us to fine-tune the last layers, e.g., last fully-connected layer, instead
of training the whole model from scratch.

In transfer learning, the weights of a pre-trained model are transferred to the current
model to be trained, in contrast to randomly initializing its weights [41]. Therefore, for many
image classification problems, such as medical image classification, this approach is enough.
In this regard, VGG16, Inception-v3, and ResNet50 are three of the models with the highest
score in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC2014) [42].

3.2.1. Inception-v3

Inception-v1 is a 22-layer network that was started as a module for Googlenet, a CNN
developed by researchers at Google, that used deeper nets than needed for image classifi-
cation. Inception-v3 CNN [43], developed by the same group as the original Inception, is
composed of 48 convolutional layers and “Inception modules”, which are used to reduce
the parameter number and to maintain the efficiency of the network. Furthermore, incep-
tion modules allow us to handle information at different scales efficiently, improving the
efficiency and performance of image recognition tasks.

In Inception-v3, the authors showed how large convolution kernels can be expressed
more efficiently by a series of smaller convolutions, surpassing its ancestor GoogLeNet on
the ImageNet benchmark. Thus, Inception-v3 implements three types of Inception modules
(Table 3); these modules allow us to replace large convolutions by applying convolutions of
different sizes.

Table 3. Inception module types, convolutions applied, equivalent convolution, and the output
feature maps in each module.

Inception Module Convolutions Applied Equivalent
Convolution

Output Feature Maps

A (3 × 3)× 2 (5 × 5) 288
B (3× 1)× 1 and (1× 3)× 1 (3 × 3) 768
C (1× 7)× 1 and (7× 1)× 1 (7 × 7) 2048

Inception-v3 introduces several improvements over its predecessors, such as the
factorization of large convolutions into smaller convolutions and the use of asymmetric
convolutions, reducing both the parameter number and the complexity of the model.
Figure 4 shows the Inception-v3 architecture.
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Figure 4. Inception-v3 architecture.

3.2.2. YOLOv8

Another popular CNN architecture is YOLO (you only look once). YOLO is a family
of object detection models running in real-time that has been key in computer vision
evolution. It was introduced in a paper titled “You Only Look Once: Unified, Real-Time
Object Detection”, published in 2016 by Joseph Redmon et al. with the YOLOv2 version [44].
In that work, a novel approach to object detection in images was presented, which stood
out for its ability to perform real-time detection with a single pass of the convolutional
neural network.

In 2022, YOLOv8 was released by Ultralytics, the original YOLO team [45]. YOLOv8
is building upon its past versions and brings in novel features and enhancements in perfor-
mance and flexibility. It was designed with relevant characteristics such as accuracy, speed,
and ease of use for a wide range of tasks, e.g., object detection and image segmentation
and classification, even with large amounts of data. YOLOv8 is composed of two parts: the
so-called backbone and the head. Figure 5 shows the YOLO architecture.

Figure 5. YOLOv8 network architecture. Conv stands for convolution, C2f stands for convolution to
feature, Concat means concatenation, SPPF corresponds to spatial pyramid pooling fast, Upsample
returns an interpolated version, and Detect performs the object detection task.
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A modified CSPDarknet53 architecture was used as the backbone of YOLOv8. It is
composed of 53 convolutional layers and cross-stage partial connections, which improves
the information flow over layers. On the other hand, the head section is composed of
several convolutional layers followed by fully connected layers. These layers predict the
bounding boxes, the probabilities of the objects identified, and the objectness punctuation.

As the main feature, a self-attention mechanism is used in the head of YOLOv8. This
mechanism focuses on different sections of the image and adjusts the relevance of the
features according to their importance on the task performed.

On the other hand, YOLOv8 can detect objects of different sizes in the image using
a multi-scale approach. This is possible using a pyramid network composed of multiple
layers that detect objects at different scales (see Figure 5).

3.3. Kullback–Leibler Divergence and Categorical Cross-Entropy Loss

We used a combination of two different loss functions, Kullback–Leibler divergence [46]
and the categorical cross-entropy loss function [47].

On the one hand, KL divergence allows us to measure the deviation between two prob-
ability distributions through their relative entropy. KL divergence is shown in Equation (2).

DKL(p(x) ∥ q(x)) = ∑
x∈X

p(x) log
p(x)
q(x)

, (2)

where p(x) and q(x) are two probability distributions of a random variable x into the
discrete sample space X.

It is important to say that KL divergence is not a distance measure. This is because it
is not symmetric, i.e., DKL(p(x) ∥ q(x)) ̸= DKL(q(x) ∥ p(x)).

On the other hand, categorical cross-entropy is a loss function widely used in multi-
class classification problems. It is the union of the softmax activation function plus classic
cross-entropy. Therefore, it is commonly called softmax loss.

The softmax activation function is given by Equation (3):

f (Z)i =
ezi

∑C
j ezj

, (3)

where Z is an input vector of C real values, and zi and f (Z)i are output vectors, whose
elements range between 0 and 1 and sum up to 1. Thus, f (Z)i consists of C probabilities,
which are proportional to the exponential of their real input values.

Finally, the categorical cross-entropy definition is shown in Equation (4):

CCE = −
C

∑
i

ti log( f (z)i), (4)

where ti is the target vector (ground truth labels).

4. Knowledge Distillation-Based Classification Model

In this work, a knowledge distillation approach to classify DR lesions in fundus images
is proposed. The main aim of this work is to develop a simple deep learning model, capable
of being used in smaller devices that do not have the computational capacity to process
all fundus images, but only a reduced set of images that only take into account the most
important characteristics of the dataset.

The proposed framework of lesion classification using a knowledge distillation method
consists of a two-stage model, as shown in Figure 6. It is composed of two main phases:
a teacher and a student model. In the first phase, the teacher model extracts the relevant
information related to DR lesions by applying a deep CNN approach. In the second phase,
by a transfer learning approach, the extracted relevant DR diagnosis information is used to
train the student model.
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Figure 6. Knowledge distillation-based DR lesion classification framework.

We used Inception-v3 in its Keras implementation as a base and loaded it without its
top layer, allowing it to adapt to our data with a different number of target classes. In this
case, the model is prepared to work with images of size 224 × 224 and three color channels
(RGB). Two tests were conducted to determine whether or not to use pre-trained weights:
one with pre-trained weights from ImageNet benchmark and another with no pre-trained
weights for training from scratch.

Therefore, it was observed that using the pre-trained weights from ImageNet bench-
mark, the model’s accuracy improved between 1.1 and 2.3%, depending on whether data
augmentation was not used or used (respectively) to counteract the unbalanced dataset.

On top of this base Inception-v3 model, custom layers were added to adapt the model
to a specific task. First, the output of Inception-v3 was flattened to convert it into a vector.
Then, a dense (fully connected) layer with 1024 neurons and ReLU activation was added,
followed by a dropout layer with a rate of 0.2 to reduce overfitting. Finally, an output dense
layer was added with as many neurons as classes to be predicted (in this case, 39) using a
softmax activation function for multiclass classification.

The model was compiled with the RMSprop optimizer, a learning rate of 0.0001,
and categorical cross-entropy loss was used, which is suitable for multiclass classification
tasks. Tests were also conducted with an ADAM optimizer, and based on the results, it was
decided to use ADAM in future iterations of the model, as it provided better results.

The knowledge distillation method employed in this study consists of several key
stages (Figure 6), each contributing to the overall goal of creating a compact, efficient
representation of the original dataset. These stages encompass the entire process from
initial model preparation to final evaluation. We will now describe each of these stages
in detail.

Stage 1: Teacher Model Preparation. This stage involves initializing an Inception-v3
model that has been pre-trained on ImageNet. The use of a pre-trained model leverages
transfer learning, providing a strong foundation of general visual features. This model
is then fine-tuned on the fundus image dataset to be distilled, allowing it to specialize
in retinal image analysis while retaining its broader visual understanding. The resulting
fine-tuned model becomes the teacher model, embodying the comprehensive knowledge
that we aim to distill into a more compact form.



Mathematics 2024, 12, 2543 13 of 25

Stage 2: Student Model Initialization. In this stage, another Inception-v3 model
architecture is initialized. Like the teacher model, it starts with weights from ImageNet
pre-training. However, unlike the teacher model, this student model will not be trained
on the full original dataset. Instead, it is prepared to learn from the distilled dataset
that will be created in subsequent stages. This approach aims to create a model that can
achieve performance comparable to that of the teacher model while using significantly less
training data.

Stage 3: Synthetic Dataset Initialization. This stage marks the beginning of the
knowledge distillation process. A small subset of samples is randomly selected from the
original training dataset. These samples form the initial synthetic dataset, which will serve
as the starting point for the distillation process. The goal is to refine this small set of samples
to encapsulate the essential information from the entire original dataset.

Stage 4: Knowledge Distillation Process. This is the core of the knowledge distillation
process. It involves an iterative procedure to optimize the synthetic dataset. In each
iteration, the student model, using the custom loss function, is trained on the current
version of the synthetic dataset for one epoch. The student’s performance is then evaluated
on the original training dataset to assess how well it has captured the knowledge. Gradients
of the loss with respect to the synthetic dataset are computed using automatic differentiation.
These gradients guide the update of the synthetic dataset through gradient descent, aiming
to minimize the loss on the real dataset. This procedure is carried out to a specified number
of iterations, progressively refining the synthetic dataset to better represent the knowledge
contained in the original dataset.

Stage 5: Student Model Training. Once the knowledge distillation process is complete,
the student model is trained on the final distilled synthetic dataset. This training uses a
custom loss function that adds Kullback–Leibler divergence and categorical cross-entropy.
This combined loss function helps the student model not only learn the correct classifica-
tions but also mimic the probability distributions of the teacher model’s outputs, potentially
capturing some of the nuanced knowledge of the teacher.

Stage 6: Evaluation. In the final stage, the trained student model is evaluated on
a separate validation dataset depending on the one it was trained. Its performance is
compared to that of the teacher model. This comparison allows us to assess how well the
knowledge distillation process has worked. Ideally, the student model should achieve
performance comparable to the teacher model despite being trained on a much smaller,
synthetic dataset.

The overall method applies knowledge distillation to compress a large training
dataset into a smaller synthetic dataset while aiming to maintain model performance. It
leverages transfer learning through ImageNet pre-training and uses meta-learning-based
performance matching in the distillation process. The goal is to create a compact, efficient
training dataset that encapsulates the essential information from the original dataset,
allowing for faster and more resource-efficient model training without significant loss
in performance.

The teacher model approach in this knowledge distillation process demonstrates
several significant strengths across its various stages. In the preparation phase, the model
leverages the powerful Inception-v3 architecture, pre-trained on ImageNet, providing a
robust foundation of general image features. This transfer learning approach allows the
model to start with a rich set of visual representations, which is particularly beneficial
for medical imaging tasks where large-scale, domain-specific datasets may be limited.
The strategy of freezing pre-trained layers while adding custom top layers strikes a balance
between preserving general image understanding and adapting to the specific nuances of
retinal image classification.

The student model initialization phase shows strength in its flexibility, setting all layers
to be trainable. This approach allows the student model to fully adapt to the task at hand,
potentially refining the transferred knowledge from ImageNet to be more specific to retinal
imagery. The use of the same Inception-v3 architecture for both teacher and student models
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facilitates direct knowledge transfer, ensuring that the student can effectively learn from
the teacher’s representations.

The knowledge distillation process itself demonstrates a sophisticated approach to
learning, employing a custom loss function that combines Kullback–Leibler divergence
and categorical cross-entropy. This dual-objective function balances the goals of mimicking
the teacher’s soft predictions and maintaining high task-specific performance. By using the
teacher’s predictions as soft targets, the student model can capture nuanced information
beyond just the hard class labels, leading to improved generalization and performance.

The method employed in this study leverages a custom loss function that combines
Kullback–Leibler divergence and categorical cross-entropy, offering several advantages.
This dual-component loss function facilitates effective knowledge distillation by encour-
aging the student model to mimic the probability distributions of the teacher model’s
predictions, capturing nuanced information beyond mere class labels. The categorical
cross-entropy component ensures the student model maintains high task performance
by focusing on correct classifications. By using the teacher’s predictions as soft targets
through KL divergence, the student model can learn from the teacher’s uncertainties, po-
tentially leading to better generalization. This combination also provides a regularizing
effect, which is crucial when training on a small synthetic dataset, helping to prevent
overfitting. The dual objective allows the student to balance between mimicking the teacher
and performing well on the specific classification task.

5. Results and Discussion
5.1. Experimental Setup

The proposed method was implemented on a workstation custom computer running
the Ubuntu® 22.04.4 LTS x86_64 (Canonical Ltd., London, UK) operating system. This
system was equipped with a 12th Gen Intel® i7-12700 (Intel Corp., Santa Clara, CA, USA),
an NVIDIA GeForce RTX® 3090 24 GB graphics card (NVIDIA Corp., Santa Clara, CA,
USA), and 64 GB of RAM.

5.2. Evaluation Metrics

Two metrics were used to evaluate the classification performance of the proposed
method: the accuracy (ACC) and the F1-score.

On the one hand, ACC measures the relation between correct samples concerning the
number total. It is formally defined as follows:

ACC =
TP + TN

TP + FP + TN + FN
, (5)

where TP are the true-positive samples correctly classified, TN are the true-negative
samples correctly classified, FP are the false-positive samples or positive samples incorrectly
classified, and FN are the false-negative samples or negative samples incorrectly classified.

On the other hand, in the case of imbalanced datasets, the F1-score has been used to
provide robust results. This measure considers both the recall and precision ability of the
model. The F1-score is calculated as follows:

F1 =
2TP

2TP + FP + FN
. (6)

Both ACC and the F1-score are measured between 0 and 1, where values close to 1
are better.
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5.3. Classification Performance Analysis

In this section, we present an evaluation of the classification performance of the
proposed knowledge distillation model. First, we report the results of the baseline models,
the Inception-v3 and YOLOv8 models. Next, we present the knowledge distillation results.
Finally, we compare the proposed approach to some state-of-the-art works.

5.3.1. Baseline Models

The Inception-v3 baseline model serves as a crucial benchmark for evaluating the
efficacy of our proposed knowledge distillation technique in DR lesion classification using
fundus images. This baseline, leveraging transfer learning from ImageNet pre-training,
provides a robust point of comparison across multiple dimensions. By juxtaposing the
performance metrics of this baseline against our distilled model, we can quantitatively
assess the impact of the distillation process on classification accuracy, training efficiency,
and generalization capability. The baseline model, trained on both datasets, allows us to
measure the degree of data compression achieved through distillation while maintaining
or potentially improving performance.

In addition to the Inception-v3 baseline, we also implemented a YOLOv8 model as
a secondary baseline. This implementation, consisting of a few lines of code, serves as
the quickest and most straightforward way to establish a functional model. The YOLOv8
baseline represents a “quick and dirty” approach, with no custom parameters modified,
providing a reference point for minimal effort implementation. By including this rapid
deployment baseline, we aim to contextualize our results not only against a sophis-
ticated model like Inception-v3 but also against a solution that prioritizes speed and
ease of implementation. This dual baseline approach allows us to comprehensively
evaluate our distillation technique across a spectrum of model complexities and im-
plementation efforts, offering insights into its versatility and effectiveness in various
practical scenarios.

Thus, the Inception-v3 baseline model, trained on both the JSIEC1K and in-house
datasets, provides a crucial benchmark for evaluating our proposed knowledge distil-
lation technique. For the in-house dataset, the model achieved a training accuracy of
11.44% and a validation accuracy of 12.50%, with corresponding loss values of 2.0796 and
2.0794, respectively.

This training process took 52 min and 58.40 s, a relatively short time that nonetheless
yielded poor performance, indicating significant challenges with this dataset. In contrast,
the JSIEC1K dataset showed more promising results, with the model reaching a training
accuracy of 66.75% and a validation accuracy of 35.94%. The loss values for this dataset were
1.0304 for training and 4.7077 for validation, suggesting potential overfitting. The training
time for JSIEC1K was 34 min and 8.08 s, slightly less than that required for the in-house
dataset. These baseline results highlight several key issues: the stark performance difference
between datasets, the challenge of generalization as evidenced by the gap between training
and validation accuracies, and the non-trivial time investment required even for sub-
optimal results. This sets a clear context for our knowledge distillation approach, which
aims to address these limitations by creating a more efficient and generalizable method
for retinal image classification. Figures 7 and 8 show the training and validation curves
for accuracy and loss using the Inception-v3 baseline models on the JSIEC1K and in-house
datasets, respectively.
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Figure 7. Training and validation accuracy curves for the Inception-v3 baseline models on JSIEC1K
(left) and in-house (right) datasets over training epochs.

Figure 8. Training and validation loss curves for the Inception-v3 baseline models on JSIEC1K (left)
and in-house (right) datasets over training epochs.

The YOLOv8 approach, implemented as a quick and straightforward baseline, demon-
strates intriguing results when applied to both the in-house and JSIEC1K datasets. For the
in-house dataset, YOLOv8 achieved a training accuracy of 67.60% with a loss of 0.0648,
while the validation loss was 1.5974. This training process took 81 min and 46.16 s, showing
a significant improvement in accuracy compared to the Inception-v3 baseline, albeit with a
longer training time. The JSIEC1K dataset saw even better results, with YOLOv8 reaching a
training accuracy of 90.9% and a loss of 0.05347, while the validation loss was 2.8493. This
training was completed in 43 min and 51 s, faster than the in-house training dataset despite
the higher accuracy achieved. Figure 9 shows the training and validation loss curves using
the YOLOv8 baseline models on the JSIEC1K and in-house datasets.

Table 4 shows a summary of the results using the baseline models Inception-v3 and
YOLO-v8 on the JSIEC1K and in-house datasets.
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Figure 9. Training and validation loss curves for YOLOv8 baseline models on in-house (left) and
JSIEC1K (right) datasets over training epochs.

Table 4. Results of the baseline models Inception-v3 and YOLO-v8 on the JSIEC1K and in-
house datasets.

Model Dataset Training
Time

Training Acc
(%)

Validation
Acc (%)

Training
Loss

Validation
Loss

Inception-v3 In-House 52 m 58.40 s 11.44 12.50 2.0796 2.0794
JSIEC1K 34 m 8.08 s 66.75 35.94 1.0304 4.7077

YOLOv8 In-House 81 m 46.16 s 67.60 58.47 0.0648 1.5874
JSIEC1K 43 m 51.00 s 90.90 81.52 0.5347 2.8493

From Table 4, the results reported highlight some key points, which are listed below:

• The YOLOv8 model demonstrates superior training accuracy on both datasets com-
pared to the Inception-v3 baseline, particularly on the JSIEC1K dataset where it
achieved outstanding 90.90% accuracy.

• The training times, while longer than the Inception-v3 baseline, are still relatively
short considering the accuracy gains. However, high validation losses, especially for
the JSIEC1K dataset, suggest potential overfitting issues.

• The absence of validation accuracy figures limits our ability to fully assess the model’s
generalization capabilities. Nevertheless, these results underscore the potential of
the YOLOv8 architecture for rapid prototyping and baseline establishment in retinal
image classification tasks, providing a strong point of comparison for our knowledge
distillation technique.

5.3.2. Knowledge Distillation Results

The application of knowledge distillation to the Inception-v3 model trained on the
in-house dataset has yielded exceptional results, marking a significant advancement in
retinal image classification performance. Figure 10 shows some classification results using
the knowledge distillation proposal trained on the in-house dataset. The estimate class is
shown at the top left of each image. The distilled model achieved a remarkable training
accuracy of 99.01% and a validation accuracy of 97.30%, with corresponding loss values of
0.0912 for training and 0.3284 for validation. These impressive outcomes were obtained
after a training duration of 45 min qne 22.4 s, demonstrating the effectiveness of the
distillation process in capturing and condensing essential information from the original
dataset. The distilled model’s performance represents a substantial improvement over
both the Inception-v3 and YOLOv8 baselines previously tested on the in-house dataset.
The high validation accuracy of 97.30% is particularly noteworthy, as it indicates excellent
generalization capability, a crucial factor for the practical application of machine learning
models in medical imaging. This strong generalization performance suggests that the
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distilled model has successfully captured the key features and patterns within the retinal
images, allowing it to make accurate predictions on unseen data. Table 5 compares the
knowledge distillation approach with the Inception-v3 model against the baseline model
YOLOv8, both trained on the in-house dataset.

Figure 10. Fundus images examples and the classes assigned by the knowledge distillation proposal
trained on the in-house dataset. The estimate class is shown at the top left of each image using the
numbers 0: ‘Beading’, 1: ‘Macular Degeneration’, 2: ‘Exudade’, 3: ‘Glaucoma ’, 4: ‘Hemorrhages’, 5:
‘Cotton-wool spots’, 6: ‘Microaneurysms’, and 7: ‘Healthy’.

Table 5. Comparison of the knowledge distillation approach against the baseline model YOLOv8 on
the in-house dataset.

Model Training Time Training Acc
(%)

Validation Acc
(%) Training Loss Validation Loss

YOLOv8
(baseline) 81 m 46.16 s 67.60 58.47 0.0648 1.5874

KD 45 m 22.40 s 99.01 97.30 0.0912 0.3284

One of the most significant advantages of the distillation approach is the reduction in
overfitting, a common challenge in deep learning models. The narrow gap between the
training accuracy (99.01%) and validation accuracy (97.30%) indicates that the distillation
process has effectively mitigated the overfitting issues observed in baseline models. This
improved balance between fitting the training data and generalizing to new data is critical
for creating reliable and robust models for medical applications. The loss values achieved
by the distilled model are also considerably lower than those of the baseline models, with a
training loss of 0.0912 and a validation loss of 0.3284. These reduced loss values signify
a more stable and well-fitted model, suggesting that the distillation process has enabled
the model to learn a more accurate representation of the underlying data distribution.
The low loss values, combined with high accuracies, indicate that the model is both
confident and correct in its predictions, a desirable characteristic for any classification
system, but particularly crucial in medical diagnostics.

While the training time for the distilled model (approximately 45 min) is shorter than
that of the baseline Inception-v3 model, the substantial performance gains justify this addi-
tional computational pre-investment. In the context of developing robust medical imaging
tools, the improved accuracy and generalization capabilities outweigh the increased train-
ing time, especially considering that training is a one-time process and the resulting model
can be deployed efficiently.

On the other hand, the training and validation loss curves, shown in Figure 11, provide
further insight into the learning process of the knowledge-distilled model. Both curves
show rapid convergence, with sharp decreases in loss during the early epochs, followed
by stabilization. This pattern is indicative of efficient learning and good model stability.
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The quick convergence suggests that the distillation process has effectively captured the
most relevant features of the dataset, allowing the model to learn rapidly and reach high
performance levels early in the training process.

Figure 11. Training and validation loss (left) and accuracy (right) curves for the knowledge-distilled
model with a custom loss function over training epochs.

Similarly, the accuracy curves reveal consistently high performance throughout the
training phase. Both training and validation accuracies maintain levels above 97.0%, demon-
strating the model’s ability to learn effectively from the distilled dataset and generalize
well to unseen data. This consistency in high accuracy across training and validation sets
additionally confirms the strength of the distilled model. These findings strongly support
the knowledge distillation model’s effectiveness in DR lesion classification using fundus
images. The distilled model not only outperforms the baselines in terms of raw accuracy
but also demonstrates superior generalization capabilities. This suggests that the distilla-
tion process has successfully captured and condensed the essential information from the
original dataset, enabling the model to learn more effectively and efficiently.

In addition, Figure 11 illustrates the training and validation performance of the
knowledge-distilled model with a custom loss function on retinal image classification.
The loss curves (left) demonstrate rapid convergence, with a sharp initial decrease in val-
idation loss from approximately 800,000 to near 0 within the first few epochs, followed
by consistent low loss values for both training and validation sets. The accuracy curves
(right) show high performance throughout training, with training accuracy consistently
above 98.50% and often exceeding 99.0%, while validation accuracy fluctuates between
97.0% and 98.0%. This aligns with the reported training accuracy of 99.01% and validation
accuracy of 97.30%. The narrow gap between training and validation accuracies (less than
2%) indicates excellent generalization and reduced overfitting compared to baseline models.
The stability of both loss and accuracy curves after initial rapid improvement suggests
a well-fitted model with efficient learning characteristics. These results corroborate the
exceptional performance of the distilled model, demonstrating significant improvements
over Inception-v3 and YOLOv8 baselines on the in-house dataset and highlighting the
effectiveness of knowledge distillation in capturing essential features for robust retinal
image classification.

Finally, Figure 12 shows the confusion matrix and its normalized version of the
knowledge distillation proposal trained on the in-house dataset.

The proposed knowledge distillation approach for DR lesion classification represents
a significant advancement in the field of automated medical image analysis. By achieving
high accuracy, excellent generalization, and efficient learning, this method shows promise
for improving early diagnosis of diabetic retinopathy, potentially leading to better patient
outcomes and more efficient healthcare delivery.
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(a) (b)
Figure 12. Confusion matrix without (a) and with (b) normalization of the knowledge distillation
proposal trained on the in-house dataset.

Despite its strong performance, the model’s reliance on a fixed architecture (Inception-
v3) may limit its adaptability to varying retinal image characteristics or different medical
imaging tasks. The knowledge distillation process, although powerful, is constrained by
the quality and biases of the teacher model, potentially propagating any inherent errors or
limitations. The fixed hyperparameters, such as learning rate and loss function weighting,
may not be optimal for all datasets or throughout the entire training process for different
medical data sources. Additionally, the model’s performance on extremely rare conditions
or edge cases in retinal imagery might be limited due to the potential scarcity of such exam-
ples in the training data. Lastly, while the model shows high accuracy, its interpretability
remains a challenge, which is crucial in medical applications where understanding the
reasoning behind predictions is often as important as the predictions themselves.

In applying the pre-trained Inception-v3 architecture as a teacher model for dataset
distillation, several challenges were encountered. The primary challenge involved adapting
the model, originally trained on general image data, to the specific nuances of retinal
imagery. This required careful fine-tuning to ensure effective capture of unique features in
fundus images without overfitting to the training data. Another significant challenge was
balancing the trade-off between model complexity and computational efficiency, particu-
larly given the high-resolution nature of medical images.

These challenges were addressed through a systematic approach of experimentation
and optimization. The model’s hyperparameters were carefully adjusted: the top layers
were fine-tuned while keeping pre-trained layers frozen, and custom data augmentation
techniques specific to retinal images were implemented. To enhance the distillation process,
a custom loss function combining Kullback–Leibler divergence with categorical cross-
entropy was developed, allowing the student model to learn both from the teacher’s soft
predictions and the true labels.

It is noteworthy that the selection of Inception-v3 was not arbitrary. Multiple architec-
tures were explored to determine the one that yielded the best results, including VGG16,
ResNet, RetinaNet, and MobileNet. After extensive experimentation and comparison,
the Inception-v3 architecture was selected due to its superior reliability and better general-
ization capabilities for the specific task of retinal image classification. This comprehensive
approach to architecture selection ensured that the chosen model was well-suited to the
unique challenges of the dataset and the requirements of the distillation process.

5.4. Comparison Study

In this section, we compare the proposed knowledge distillation classification of DR
lesions against some state-of-the-art works. First, we compare our knowledge distillation
model with a similar work that uses different distilled dataset strategies applied to ovarian
cancer diagnoses. Second, we compare our method with five works on DR classification in
fundus images using KD.
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In the research by Salguero et al. [36] they had a problem with training being too
expensive, so they opted to reduce the size of the training dataset by selecting images
that best expressed the features. Their dataset consisted of 103 ovarian cancer diagnoses,
of which 23 were detected at stage 3 or 4. The latter were chosen given the large difference
shown in a tissue at that stage and a healthy one. They randomly took 13 cases with cancer
and 13 with normal tissue. They describe that the distillation process selects a small patch
showing greater variance in the matrix of eigenvalues S obtained from singular value
decomposition (SVD). For this, they used different classifiers such as an SVM or multilayer
perceptron (MLP). One of the several experiments they carried out was the comparison
of performances of several sets in a MLP neural network. They used five different sets:
the distilled dataset, the entire dataset, two randomly selected datasets, and a set obtained
using principal component analysis (PCA).

Table 6 compares the F1-score of the proposed KD classification DR lesion approach
and the results of ovarian cancer detection reported in [36] using different data subsets.

Table 6. F1-scores comparison of the proposed KD method against the approach of [36] using different
data subsets.

Set Name Their F-Score Our F-Score

Distilled set (44%) 0.8784 0.9091
Complete set (100%) 0.7890 0.8875

Random set (44%) 0.7678 0.9076
Random set (5%) 0.7404 0.8932
PCA (σ = 95%) 0.6920 —
PCA (σ = 99%) 0.8146 —

In contrast to our results, they obtained performance with training models both
with 40% of the total sample size and with the entire image set as about 0.87 as F1-score.
On the other hand, using the data subset obtained by data distillation, the F1-score was
superior. They concluded that using this methodology, the training time was reduced by
50%. Furthermore, the results obtained with the proposed KD method overcame the results
of [36] using the distilled, complete, and random sets. The evaluation with the PCA set was
not carried out in our proposal.

On the other hand, the proposed DR lesions classification approach was compared
with five state-of-the-art works on DR classification in fundus images using a knowledge
distillation strategy. The compared works are described as follows.

Luo et al. [30] proposed a self-knowledge distillation approach (SKD) for DR grading.
In addition, a CAM-attention module (CAM-AM), focusing on regions with DR lesions,
and a mimicking module (MM), which holds its original hierarchy in the distillation process,
was proposed. Regarding the loss function, L2 and KL divergence were used for the teacher
and the student model, respectively. Messidor (1200 images) and IDRID (516 images)
fundus datasets were used to test their proposal. In this work, no pre-processing stage
was applied.

In [31], Abbasi et al. used knowledge distillation as the transfer knowledge strategy.
First, in the pre-processing stage, the low-contrast images were eliminated, and then a
histogram equalization was applied. Second, unlabeled data were used to transfer DR
knowledge to a simple model capable of being implemented into a low-resource embedded
system. Both the teacher and student model used a VGG network with KL divergence
as a loss function. The proposal was evaluated in the Messidor fundus dataset for binary
DR classification.

Gao et al. [32] presented a collaborative learning-based knowledge distillation strategy
for DR detection. It included several student models of different scales and architectures to
extract relevant diagnosis information. This allowed for enhancing fundus images while
increasing the DR detection accuracy and reducing the computation time. On the one hand,
ResNet-18 architecture was used as a teacher model, whereas the BEit transformer and
ConvNeXt-CNN architectures were used as student models. On both architectures, KL
divergence as a loss function was used. On the other hand, the authors applied image
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cropping, histogram equalization, and contrast stretching in an in-house (1521 images)
fundus dataset.

In [34], Ju et al. used a long-tailed fundus dataset, i.e., where a few classes represent the
majority of the images. The authors proposed DR lesion classification using a knowledge
distillation approach. First, the labeled dataset was used for hierarchy-aware pre-training
and multi-label marginalization classification (MLMC). Second, an instance-wise class-
balanced sampling (ICS) approach was applied. Third, a hybrid knowledge distillation
(HKD) method was used to train a less biased representation. Finally, two in-house datasets
of one million images with 50 classes were used to conduct the experiments. A ResNet-50
architecture was used for both the teacher and student model, and KL divergence as a loss
function. In this proposal, no pre-processing stage was applied.

Wang et al. [35] presented a lesion-aware knowledge distillation (LKD) approach to DR
lesion segmentation in three classes. The proposed LKD strategy uses a lesion embedding
queue in the global training, and it was tested on the IDRiD (81 images) and DDR (757
images) fundus datasets. The MCA-UNet and UNet networks were used as teacher and
student models in the KD method, respectively. The CLAHE algorithm was applied to the
entire dataset as a pre-processing stage.

In Table 7, we present a comparison of the proposed KL-based DR lesion classifi-
cation method against five state-of-the-art methods [30–32,34,35]. Thus, we can see that
the proposed knowledge distillation model overcomes the proposal of [31] regarding the
training time and the methods of [32,35] in the number of parameters of the model. Fur-
thermore, our proposal overcomes all methods in accuracy. In addition, our proposal does
not require pre-processing of the datasets, allowing it to be applied directly to the fundus
image datasets.

Table 7. Comparison of the proposed method against five state-of-the-art methods.

Work/
Year Method Classification Dataset/

Images-Classes
Pre-

Processing
Teacher
Model

Student
Model

Loss
Function Time Parameters

(M)
Acc
(%)

[30]/
2020

SKD +
CAM-AM + DR

grading
Messidor/1.2K,
IDRiD/516 None — — L2 (Teacher)

KL (Student) — — 92.9 (Messidor)
67.96 (IDRiD)MM

[31]/
2021 KD DR

detection Messidor/1.2K-2C Images removal and
histogram equalization VGG VGG KL 5.12 h — 82.32

[32]/
2023 KD DR

detection In-house/1.521K-2C
Image cropping,
histogram equalization, ResNet-18 BEiT KL — 81.18 98.77
and contrast stretching

[34]/
2024

MLMC +
ICS + HKD

DR lesion
classification In-house/1M-50C None ResNet-50 ResNet-50 KL — — 85.79

[35]/
2024 LKD DR lesion

segmentation
IDRiD/81-3C,
DDR/757-3C CLAHE MCA-UNet UNet KL — 7845 —

Ours/
2024 KD DR lesion

classification
JSIEC1K/1K-39C,
In-house/1.705K-8C None Inception-v3 Inception-v3 KL +

CCE 45 m 22.40 s 71.38 99.01 (Messidor/In-House)

6. Conclusions

The knowledge distillation approach employed in this study has demonstrated remark-
able effectiveness in enhancing the performance of retinal image classification for diabetic
retinopathy detection. One of the most significant achievements of the distilled model
is its superior generalization capability. The narrow gap between training (99.01%) and
validation (97.30%) accuracies suggests that the model has effectively mitigated overfitting
issues observed in baseline models.

This substantial improvement enables more effective and efficient learning, which is
crucial in the context of medical image analysis. The high accuracy and robust generaliza-
tion of the distilled model suggest strong potential for clinical application in DR screening.

The distilled model shows a significant reduction in overfitting compared to the base-
line models, as evidenced by the close alignment of training and validation performance
metrics. Such a characteristic is particularly important in medical applications where
generalizability is crucial for accurate diagnosis across diverse patient populations. Finally,
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the proposed method was compared against some state-of-the-art works, overcoming these
and maintaining a compact and efficient final model.

Future research directions could explore the application of this knowledge distillation
technique to other medical imaging tasks or larger, more diverse datasets. This could in-
clude adapting the method for the detection and classification of other retinal diseases, such
as age-related macular degeneration or glaucoma. In addition, extending its application to
different medical imaging modalities, e.g., fluorescein angiography or optical coherence
tomography, could be explored. Additionally, investigating the model’s interpretability
and its performance in real-world clinical settings would be valuable next steps. This could
involve collaborating with ophthalmologists to assess the model’s performance in compari-
son to human experts and to understand how the model’s predictions align with clinical
decision-making processes. Finally, an integration of this model into existing clinical work-
flows could be analyzed. This could be reached by involving several steps: (1) developing
a user-friendly interface for clinicians, (2) ensuring seamless connectivity with current
imaging systems, and (3) implementing robust data handling and privacy measures.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC Accuracy
AMD Age-related Macular Degeneration
CAM Class Activation Mapping
CAM-AM CAM-Attention Module
CCE Categorical Cross-Entropy
CLAHE Contrast Limited Adaptive Histogram Equalization
CNN Convolutional Neural Network
DL Deep Learning
DR Diabetic Retinopathy
GA Geographic Atrophy
GLA Glaucoma
HKD Hybrid Knowledge Distillation
ICA Independent Component Analysis
IDF International Diabetes Federation
ISC Istance-wise Class-balanced Sampling
JSIEC Joint Shantou International Eye Center
KD Knowledge Distillation
KL Kullback–Leibler
LKD Lesion-aware Knowledge Distillation
MLMC Multi-label Marginalization Classifier
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MLP Multilayer Perceptron
MM Mimicking Module
OCT Optical Coherence Tomography
PCA Principal Component Analysis
SKD Self-knowledge Distillation
SVD Singular Value Decomposition
SVM Support Vector Machine
YOLO You Only Look Once
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