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Abstract: This research aims to develop a mathematical model and a solution approach for jointly
optimizing a global inventory service level and order sizes for a single-commodity supply chain
network with multiple warehouses or distribution centers. The latter face stochastic demands,
such as most real-world supply chains do nowadays, yielding significant model complexity. The
studied problem is of high relevance for inventory management, inventory location, and supply
chain network design-related literature, as well as for logistics and supply chain managers. The
proposed optimization model minimizes the total costs associated with cycle inventory, safety stock,
and stock-out-related events, considering a global inventory service level and differentiated order
sizes for a fixed and known set of warehouses. Subsequently, the model is solved by employing the
Newton–Raphson algorithm, which is developed and implemented assuming stochastic demands
with a normal approximation. The algorithm reached optimality conditions and the convergence
criterion in a few iterations, within less than a second, for a variety of real-world sized instances
involving up to 200 warehouses. The model solutions are contrasted with those obtained with a
previous widely employed approximation, where safety stock costs were further approximated and
order sizes were optimized without considering stock-out-related costs. This comparison denotes
valuable benefits without significant additional computational efforts. Thus, the proposed approach
is suitable for managers of real-world supply chains, since they would be able to attain system
performance improvements by simultaneously optimizing the global inventory service level and
order sizes, thereby providing a better system cost equilibrium.

Keywords: supply chain networks; supply chain inventory planning; system inventory service-level
optimization; Newton–Raphson

MSC: 90-08

1. Introduction

Supply chain management aims to optimize and coordinate decisions and agents
to provide products and related services at the right times, quantities, and places, also
aiming to minimize system-wide costs and ensuring system service-level requirements
(see [1–5]). In this context, inventory control decisions and related costs represent key
elements to be addressed, in addition to transport and warehouse operations, among other
issues (see [6,7]). One of the most typical supply chain topologies comprises a set of
one or more plants or suppliers that distribute products to a set of parallel warehouses
or distribution centers that finally serve end customers’ demands, as shown in Figure 1
(see [3,8–12]). Under this topology, inventory control decisions at the warehouse level are
of high significance, wherein order sizes, reorder points, and service levels represent the
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main decisions to be addressed. This has to be achieved while being efficient and following
a number of performance indicators, such as inventory availability, stock-out probability,
or demand fill rate (see [3,12–14]). System costs have been traditionally considered as the
main objective in evaluating global performance, where obtaining even marginal savings
in relative terms may generate significant improvements in the medium or long term.

Figure 1. Standard supply chain network topology.

From a strategic or long-term perspective, designing the underlying network is an
essential problem, which typically consists of locating warehouses and plants for serving
the end customers, conforming to the well-known family of facility location problems
(FLPs), as shown in [15–19]. Traditionally, plant or warehouse locations and customer
assignment decisions are made based on a sequential and hierarchical decision-making
structure, where decisions belonging to higher organizational levels are made based on FLP
modeling structure, without major concerns regarding the impacts on further lower-level
decisions (see [3,11,12]).

Nonetheless, it is worth noticing that, when the supply chain network (SCN) is al-
ready optimized and fixed for a specific time frame (e.g., a few weeks, months, or years),
the optimization of inventory-related decisions remains a relevant problem to be addressed.
In this context, several research works have been developed, where Refs. [20,21] developed
approaches to evaluate system performance in a two-level supply chain under different as-
sumptions and considerations. In [22], alternative optimization approaches were developed
to deal with inventory decisions, where order sizes and reorder points for a two-level sup-
ply chain were optimized. A mathematical model to optimize inventory-related decisions
for a complex supply chain network was developed in [23], comprising end customers,
retailers, warehouses, productive plants, and raw material suppliers, assuming a fixed
service level to be ensured for end customers. Further extensions were presented in [24,25],
where the first one addresses a multi-echelon supply chain system with three different
demand patterns, while the second one includes product perishability and demands de-
pending on prices and inventory levels. Other recent research works can be found in [26],
which presents a deterministic supply chain inventory model involving outsourcing deci-
sions, and [27], which addresses a deterministic single-location inventory model involving
product deterioration, a supplier offering price discounts, and payment delays.

Most of the aforementioned works simultaneously optimize decisions at the warehouse
level and at the plant or supplier level, consider reorder points and order sizes as decision
variables, and yield different service levels for each location. Moreover, some works
assume that the inventory service level is a fixed and known parameter, which should be
exogenously determined by a supply chain planner or manager. In contrast, this research
does not consider plant/supplier decisions and costs, and reorder points are determined
through a global service-level optimization (i.e., the same service level for all warehouses).
Then, reorder points are individualized for each warehouse mainly depending on lead
times, served demand mean and variance, and the optimal global service level. Accordingly,
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this research aims to address situations in which a global service level along with order
sizes are required to be optimized, in contrast to other previous related works.

As can be observed in traditional FLP-related literature, decisions related to the
supply chain network design are made without considering specific impacts on inventory
management ([9–11]). However, inventory management and strategic SCN design must
take care of the impacts between each other, where the number of parallel facilities (e.g.,
warehouses or distribution centers) affects the total system inventory level, resulting in
the well-known risk pooling effect, especially in scenarios with stochastic demands. Thus,
several works show that the structure of the supply chain network directly relates to
the impact that risk pooling has on system costs, conforming to the family of inventory
location problems (ILPs) (see [8–11,28–30]), where inventory management issues are jointly
addressed with SCN design decisions and costs. Subsequently, Refs. [3,12] developed
reviews of ILP-related works. Furthermore, and following the basic inventory location-
related aforementioned works, this kind of problem may include different relevant practical
issues, such as multi-commodity and multi-period scenarios, inventory and transport
capacities, alternative inventory control policies, spare parts supply chains, and supplier
selection (see [31–37]).

In this context, the need for jointly optimizing the inventory-related service level as a
problem decision variable appeared to be relevant research that needed to be addressed.
Thus, Refs. [8,9] presented approximate strategies to model and solve an ILP facing cus-
tomer demands with a Poisson distribution and a continuous (S− 1, S) inventory control
policy. Subsequently, Ref. [38] presented the first research study with an approximate
strategy to model and solve an inventory location problem with normal demands and a
continuous (Q, s) inventory control policy. Finally, Ref. [39] presented a variation of the
model in [38] and considered a heuristic solution approach.

Furthermore, Refs. [37,40] presented a generalized Benders decomposition (GBD)-
based solution approach that solved an ILP at optimality with normal demands and
continuous (Q, s) inventory control policy in competitive times. A significant contribution
of this approach relies on the decomposition process, which yields a sub-problem that
fully addresses all inventory-related decisions for a fixed SCN, which was previously
determined to be a master problem at each algorithm iteration. These facts represent a
significant potentiality, where any inventory model improvement may be integrated into an
ILP, and it would be fully captured by the sub-problem following the GBD-based solution
approach proposed in [37,40]. Similarly, several widely employed local search heuristics
and metaheuristics may be considered to solve a related ILP with inventory service-level
optimization, following [32,41–44]. For these approaches, the design of the SCN is explored
by a local search algorithm (i.e., warehouse location and customer assignments), whereas
solving a fixed-network inventory optimization problem (as modeled and solved in this
research) may be considered a solution evaluation subroutine within the overall algorithm.
Consequently, the aim of jointly optimizing order sizes and the service level for a fixed
SCN gains attractiveness given the potentiality of integrating it within a broader ILP for
optimizing the design of the SCN. Naturally, this and other similar integrative approaches
remain as future research to be addressed.

In summary, this paper fills existing research gaps by developing a novel continuous,
nonlinear optimization model to jointly optimize the global inventory service level and
order sizes for a fixed supply chain network. The addressed network topology comprises
multiple parallel warehouses under a normal approximation of end customer demands.
A continuous (Q, s) inventory control policy is considered, where a common global service
level for all the existing warehouses has to be observed. It worth noting that the proposed
formulation involves enhancement of some well-accepted approximations in previous
related literature, especially focusing on safety stock and order size optimization. Finally,
a multivariate Newton–Raphson-based algorithm is developed to solve the formulated
problem at optimality. This well-known method has been successfully employed in supply
chain management-related research, such as in [45–47].



Mathematics 2024, 12, 2544 4 of 20

As discussed in [48], the Newton method, also known as the Newton–Raphson method,
is one of the most proper approaches for solving nonlinear equations and is particularly
relevant when expressions for the gradient vector and the Jacobian matrix can be computed
in an explicit and efficient manner. This approach involves a fine equilibrium between math-
ematical complexity and tractability while ensuring a quadratic convergence rate. Other
approaches widely employed are variations and approximation of the Newton–Raphson
approach, such as the Quasi-Newton and the Conjugate Gradient Method. Moreover, given
the small- and medium-size instances considered in this research (i.e., at most 201 variables)
and the possibility of having a potentially good initial guess for the order size and the
global service level (as described in Section 4), an outstanding performance of the employed
approach is observed.

The rest of the paper is organized as follows. Section 2 describes the studied problem
and the proposed model formulation, including a generic formulation and a specified one
considering demands with a normal approximation. Section 3 aims to describe the solution
approach developed to solve the proposed formulation, which is derived specifically for
demands with a normal distribution. Subsequently, Section 4 describes the computational
experimentation carried out, then presents and discusses the obtained results. Section 5
presents a further discussion of the main results obtained in the previous section, along
with a brief managerial insight discussion. Finally, conclusions and future research are
presented in Section 6.

2. Problem Description and Formulation
2.1. Problem Description

The problem studied in this research consists of optimizing a global inventory control
service level and individual order sizes in a system comprising a single plant or supplier
that fulfills incoming orders from N parallel warehouses, which finally serve demands
from external customers (retailers). This topology is depicted in Figure 1. The global service
level consists of a homogeneous maximum stock-out probability that must be observed at
each and every warehouse. In this case, it is assumed that each warehouse faces a stochastic
demand that is the aggregation of several customer demands. Particularly, following most
inventory location-related literature, the aggregated demand at the warehouse level is
approximated considering a normal distribution, as in [49].

Note that, although the normal distribution presents a positive probability of observ-
ing negative values (which can be considered inadequate for most demand processes), it
may still be a suitable approximation in strategic problems, especially when a low variation
coefficient of warehouse demands is observed, as indicated in [50]. In these cases, the prob-
ability of realizing negative demands may be considered immaterial or insignificant (see
Section 5), which provides a simple simulation exercise to denote these facts. In addition,
the normal distribution involves clear advantages related to its analytical properties, spe-
cially for deriving exact expressions. Moreover, ref. [50] (pp. 156–157) states that, when the
variation coefficient is less than 0.5, the truncated normal distribution does not significantly
differ from a normal approximation. Naturally, in cases with significant probabilities of
negative demands, the normal approximation may be considered unsuitable, and other
distributions or approximations should be considered, as in [49], where a truncated normal
distribution was considered.

In the studied system, each warehouse i (i = 1, ..., N) follows a continuous inventory
control policy (Qi, RPi), where Qi is the order size to be optimized, and RPi is the reorder
point, which is the critical inventory level that generates an order to the plant. The order
size must be optimized according to the costs associated with the well-known Wilson
model plus penalty costs associated with demands that arise during stock-out events at
each warehouse. Finally, the reorder point has to be set in order to observe the global
service level or stock-out probability, while the associated safety stock costs are minimized
as much as possible. Thus, RPi is set at the minimum value that guarantees the observation
of the maximum stock-out probability.
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2.2. Model Formulation

The studied formulation relies on the following notation and definitions:
Model parameters:

OCi : Fixed order costs for each order submitted from warehouse i ($/order).
HCi : Unit holding cost at warehouse i ($/unit-time).
PCi : Penalty cost per unit of demand arising during stock-out events

and served with a delay for each warehouse i ($/unit).
LTi : Lead time for the incoming orders at warehouse i.
Di : Demand mean per time unit (per day) at each warehouse i.
Vi : Variance of demand per time unit at each warehouse i.

Decision variables:
Qi : Order size for each warehouse i.
RPi : Reorder point at each warehouse i.
α : Maximum stock-out probability accepted at each and every warehouse.
δ : Minimum probability required for not observing stock-outs (1− α).
SSi : Average safety stock observed at each warehouse i.
SODi : Average demand arising during stock-out events and served with a

delay at each warehouse i.
Under the aforementioned definitions and assumptions, each warehouse faces a con-

tinuous stochastic demand during lead time LTi, defined as yi, with a probability density
function ϕi(yi). Then, the problem is formulated as the following nonlinear program-
ming model:

min
N

∑
i=1

(
OCi

Di
Qi

+ HCi
Qi
2

)
+

N

∑
i=1

HCi SSi +
N

∑
i=1

PCi SODi
Di
Qi

(1)

s.t.

Pr(yi ≤ RPi) = 1− α ∀i = 1, ..., N (2)

SSi =
∫ RPi

0
(RPi − yi) ϕi(yi) dyi ∀i = 1, ..., N (3)

SODi =
∫ ∞

RPi

(yi − RPi) ϕi(yi) dyi ∀i = 1, ..., N (4)

0 < α < 1 (5)

The first summation of the objective function in Equation (1) is the well-known Wilson
model objective function, which considers order and cycle inventory costs associated with
the order size at each warehouse (see [51,52]). The second term in the objective function is
the expected safety stock costs at all warehouses. Finally, the third summation in (1) is the
expected costs associated with demand arising during stock-out events at all warehouses.
Note that it is assumed that all demands are eventually served, and these costs represent
the additional expenditures of serving demands with some delay in case a stock-out event
occurs (also known as backorders).

Equation (2) ensures that RPi is set to guarantee the minimum service level or maxi-
mum stock-out probability at each warehouse. Equation (3) determines the expected safety
stock just before the orders arrive at each warehouse, which is equivalent to the reorder
point minus the expected demand during lead time (integrating over demand values lower
than RPi; otherwise, it represents a stock-out). Equation (4) allows for computing the
expected demand arising since stock-out is observed, until the next order arrives (i.e., it
considers demand values over RPi; otherwise, a stock-out situation is not observed).
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Assuming a normal distribution, Equation (2) allows for setting the minimum reorder
point at each warehouse i, as shown in Equation (6). In addition, Equations (3) and (4) can
be written as in (7) and (8), respectively (see [38]).

RPi = Di LTi + Z1−α

√
LTi
√

Vi (6)

SSi =
∫ RPi

0
(RPi − yi) ϕi(yi) dyi ≈ Z1−α

√
Vi LTi (1− α) +

√
Vi LTi√

2π
e−

1
2 Z2

1−α (7)

SODi =
∫ ∞

RPi

(yi − RPi) ϕi(yi) dyi =

√
Vi LTi√

2π
e−

1
2 Z2

1−α − Z1−α

√
Vi LTi α (8)

Note that Equation (3) assumes a minimum demand of 0, while the normal distribution
is unbounded. However, the right side of the Equation (7) is obtained assuming unbounded
demand (i.e., −∞ to +∞), representing an approximation for cases with non-negative
demands. This approximation is suitable in cases where the probability of observing
negative values is close to 0 and where the approximation error may not be significant.

Replacing (6)–(8) into the model, it can be written as:

min
N

∑
i=1

(
OCi

Di
Qi

+ HCi
Qi
2

)
+

N

∑
i=1

HCi

(
Z1−α

√
Vi LTi (1− α) +

√
Vi LTi√

2π
e−

1
2 Z2

1−α

)
+

N

∑
i=1

PCi

(√
Vi LTi√

2π
e−

1
2 Z2

1−α − Z1−α

√
Vi LTi α

)
Di
Qi

(9)

s.t.: (5)

It is worth mentioning that, when the penalty cost is zero (PC = 0), then the order
size may be determined simply by following the well-known Wilson model, as shown
in Expression (10) (see [51,52]). However, given the impact of the order size on the total
penalty costs, as observed in the last term of Expression (9), the optimal order size does not
coincide with (10). Instead, the order size is computed as Expression (11) by differentiating
Equation (9) with respect to Qi and equalizing it to zero. Moreover, it can be observed in
(11) that, when the service level tends to 1, unfilled demand tends to 0, and the optimal
order size converges to Expression (10).

QW
i =

√
2 OCi Di

HCi
(10)

Qi =

√
2 Di (OCi + PCi SODi(δ))

HCi
=

√
2 Di OCi

HCi

√
1 +

PCi
OCi

SODi(δ) (11)

Note that Expression (11) may represent a sort of correction to the traditional Wilson
model, where penalty costs between two consecutive orders may be understood as another
fixed order cost. Then, the order size computation just corrects the order costs OCi in
Expression (10) by OCi + PCi · SODi, as observed in Expression (11).

Although it is natural to require Qi > 0, the derivation of optimal order sizes when
served demand is non-negative naturally yields a solution that is automatically non-
negative, as can be observed in (10) and (11). Otherwise, it is impossible to serve positive
demands with negative order sizes. Thus, discarding negative roots in the process is
enough to obtain positive order sizes for each existing warehouse with positive demands,
and then Qi > 0 is not established as a formal constraint of the problem.
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3. Solution Approach

The proposed formulation is solved by searching a critical point, i.e., a solution for
which the total cost gradient is zero. In other words, the algorithm searches for a solution x
such that ∇g(x) = 0, where g(x) is the total cost function defined in Equation (9), and x
is the decision variable vector of the problem. Then, the equation ∇g(x) = 0 is solved by
means of a root-finding problem employing the well-known multivariate Newton–Raphson
method [53]. Note that all the involved expressions are explicitly developed for normally
distributed demands.

The multivariate Newton–Raphson method allows us to find the approximation of
a root for a vector-valued function F(x) [53]. This iterative method arises from the Taylor
expansion for vector-valued functions around a point x0, as shown in (12), where JF(x) is
the Jacobian matrix.

F(x) = F(x0) + JF(x0) (x− x0) +O(x− x0)
2 (12)

The method is based on a linear approximation, ignoring the O(x)2 term. If x = r,
where F(r) = 0, and x0 is the current guess, then

0 = F(r) ≈ F(x0) + JF(x0) (r− x0) (13)

or
r− x0 ≈ −JF(x0)

−1 F(x0). (14)

Then, with an initial guess x0, at each iteration k, the new root approximation is

xk+1 ≈ xk − JF(xk)
−1 F(xk). (15)

Let EOQi, SSi, and SODi be the order size-related costs (i.e., cycle and ordering), safety
stock, and expected demand during stock-out events for the i-th warehouse, respectively.
Then, for i ∈ {1, . . . , n}:

EOQi =
OCi · Di

Qi
+

HCi ·Qi
2

, (16)

SSi =
√

Vi · LTi

(
e−

1
2 Z2

δ

√
2 π

+ Zδ · δ
)

, (17)

SODi =
√

Vi · LTi

(
e−

1
2 Z2

δ

√
2 π
− Zδ (1− δ)

)
, (18)

and, considering x = (x1, x2, ..., xN , xN+1)
⊤ = (Q1, Q2, ..., QN , δ)⊤ ∈ RN+1 as the vector of

the decision variables to be determined, we define:

g(x) =
N

∑
i=1

(
EOQi + HCi · SSi + PCi · SODi ·

Di
Qi

)
(19)

where δ = 1− α is the system service level. Function f (x) is considered the gradient vector
of g(x):

f (x) = ∇g(x) (20)

=

[
∂

∂Q1
(g(x)) · · · ∂

∂Qi
(g(x)) · · · ∂

∂QN
(g(x))

∂

∂δ
(g(x))

]⊤
(21)

=
[

f1(x) · · · fi(x) · · · fN(x) fδ(x)
]⊤ (22)
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where:

fi(x) =
∂

∂Qi
(g(x)) = −OCi · Di

Q2
i

+
HCi

2
− PCi · SODi ·

Di

Q2
i

for i = 1, . . . , N (23)

fδ(x) =
∂

∂δ
(g(x)) =

√
2 π e

Z2
δ

2

(
N

∑
i=1

√
Vi · LTi

(
HCi · δ− PCi ·

Di
Qi

(1− δ)

))
(24)

We need to compute the optimal value of x, i.e., the fixed point, where the function
g(x) is minimized, which is equivalent to computing x∗ = (Q∗1 , Q∗2 , ..., Q∗N , δ∗)⊤, such as
f (x∗) = ∇g(x∗) = 0.

The Newton–Raphson method will be used for addressing this computation. Let x(0)

be an initial guess; then, at the k-th iteration, the current solution x(k) is given by:

x(k) = x(k−1) − J f

(
x(k−1)

)−1
f
(

x(k−1)
)

, (25)

where

J f (x) = ∇ f (x) =
[

∂ f (x)
∂Q1

∂ f (x)
∂Q2

· · · ∂ f (x)
∂QN

∂ f (x)
∂δ

]

=



∂ f1(x)
∂Q1

∂ f1(x)
∂Q2

· · · ∂ f1(x)
∂QN

∂ f1(x)
∂δ

∂ f2(x)
∂Q1

∂ f2(x)
∂Q2

· · · ∂ f2(x)
∂QN

∂ f2(x)
∂δ

...
...

. . .
...

...
∂ fN(xx)

∂Q1

∂ fN(x)
∂Q2

· · · ∂ fN(x)
∂QN

∂ fN(x)
∂δ

∂ fδ(x)
∂Q1

∂ fδ(x)
∂Q2

· · · ∂ fδ(x)
∂QN

∂ fδ(x)
∂δ



=



∂2g(Q,δ)
∂Q2

1
0 · · · 0 ∂2g(Q,δ)

∂δ∂Q1

0 ∂2g(Q,δ)
∂Q2

2

. . . ∂2g(Q,δ)
∂δ∂Q2

. . . . . . . . .
...

...
...

. . . . . . . . .
...

. . . . . . 0
...

0 · · · 0 ∂2g(Q,δ)
∂Q2

N

∂2g(Q,δ)
∂δ∂QN

∂2g(Q,δ)
∂Q1∂δ

∂2g(Q,δ)
∂Q2∂δ · · · · · · · · · ∂2g(Q,δ)

∂QN ∂δ
∂2g(Q,δ)

∂δ2



= Hg(x),

and where Hg(x) is the Hessian matrix of g(x), and

∂2g(Q, δ)

∂Q2
i

=
2 Di

Q3
i

(
OCi + PCi

√
Vi LTi

(
e−

1
2 Z2

δ

√
2 π
− Zδ (1− δ)

))
for i = 1, . . . , N (26)

∂2g(Q, δ)

∂Qi∂Qj
= 0 for i, j = 1, . . . , N such as i ̸= j (27)

∂2g(Q, δ)

∂δ ∂Qi
=

∂2g(Q, δ)

∂Qi ∂δ
=
√

2 π e
1
2 Z2

δ

√
Vi · LTi ·

PCi · Di

Q2
i

(1− δ) for i = 1, . . . , N (28)

∂2g(Q, δ)

∂δ2 = eδ

N

∑
i=1

(√
Vi · LTi (HCi + γi + Zδ eδ (HCi · δ− γi (1− δ)))

)
, (29)

with eδ =
√

2 π · e 1
2 Z2

δ and γi =
PCi · Di

Qi
.
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It is important to note that, to fulfill constraint (5), the following check condition is
added to the updating step at the k-th iteration:

δ(k) =


δmin if x(k)N+1 < δmin

δmax if x(k)N+1 > δmax

x(k)N+1 otherwise.

(30)

In our implementation, we consider δmin = 0.5 and δmax = 1− 10−m, with m = 4,
since it is assumed that Zδ ≥ 0 and since Z1 cannot be computed. Naturally, δmax may
consider more significant figures (m > 4) up to user preferences.

The whole procedure is presented in Algorithm 1. In line 8, Equation (25) is computed
in two steps. The first step is computing ∆ x = −J f (x)

−1 f (x) by solving the system
J f (x)∆ x = f (x). The mentioned system is solved by the routine solve of the module
numpy.linalg [54]. The second step simply involves updating the current solution by
computing x = x + ∆ x.

Algorithm 1 Application of Newton–Raphson Method

1: procedure LEVELSERVICE(Q(0), δ(0), N, δmin, δmax, tol, itermax,params)
2: x←

(
Q(0)

1 , . . . , Q(0)
N , δ(0)

)
3: k← 1
4: while k ≤ itermax do
5: error← ∥ f (x)∥
6: if error < tol then
7: break;
8: ∆ x← solve for − J f (x)∆ x = f (x)
9: x← x + ∆ x ▷ Update solution.

10: Q(k) ← (x1, x2, ..., xN)

11: δ(k) ← xN+1
12: if δ(k) > δmax then
13: δ(k) ← δmax
14: Compute Q(k) with Equations (18) and (11).
15: if δ(k) < δmin then
16: δ(k) ← δmin
17: Compute Q(k) with Equations (18) and (11).
18: k← k + 1
19: return x

The optimal order size of the Wilson model shown in Equation (10) (see [52]) is
considered the initial order size Q(0) for all warehouses. The initial service level δ(0) is set
to 0.95, the number of warehouses N depends on the instance, the tolerance of the method
tol is set to 10−6 and compared with the norm of the gradient vector ∇g(x), and the
number of maximum iterations itermax is set to 10. The input parameter params contains
the demand Di, variance of the demand Vi, lead time LDi, unit holding cost HCi, penalty
cost PCi, and fixed-order cost OCi for each warehouse i (for more details, see Section 2.2).

4. Computational Experimentation and Numerical Results

In all of these experiments, a service level of δbase is considered as a benchmark
solution for the algorithm. In particular, the values considered are computed based on [38],
which relies on a previous approximation for optimizing the system service level that
assumes an approximated safety stock expression and order sizes computed as in the
Wilson model’s solution.

Tables 1–6 show the numerical results of the instances with N = 5, 10, 20, 30, 50, 100,
and 200 warehouses, respectively, representing a wide set of reasonable real-world sizes.
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For each warehouse i, all cases consider HCi = 1 as a baseline cost parameter, and PCi
ranges within {10, 50, 100}, representing a significant range of variation with respect to
the holding costs, HCi. In addition, the coefficient of variation CV = 0.1, 0.2, and 0.3
for each instance, focused on high-volume, smooth demands. Thus, 9 cases or sub-
instances are defined for each instance (i.e., by combining PC and CV variations). Finally,
for i ∈ {1, . . . , N}, the order cost OCi is determined in terms of the lead time LTi, as
OCi = 500 + 500 LTi, the lead time LTi is randomly set in the range [2, 5], and the average
demand Di is considered to be in the range [250, 500].

Table 1. Results with N = 5 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.637 6610.853 0.729 6593.118 17.736 0.268 0.049
50 0.927 6824.682 0.931 6822.696 1.987 0.029 0.037

100 0.964 6914.253 0.964 6912.805 1.447 0.021 0.039

0.2
10 0.637 7030.687 0.724 6991.544 39.142 0.557 0.041
50 0.927 7458.345 0.929 7451.254 7.091 0.095 0.039

100 0.964 7637.485 0.963 7631.883 5.602 0.073 0.039

0.3
10 0.637 7450.520 0.719 7386.327 64.194 0.862 0.047
50 0.927 8092.008 0.928 8076.688 15.319 0.189 0.039

100 0.964 8360.718 0.963 8348.246 12.473 0.149 0.038

Table 2. Results with N = 10 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.643 13,227.495 0.732 13,194.073 33.423 0.253 0.051
50 0.929 13,646.542 0.932 13,642.784 3.758 0.028 0.038
100 0.964 13,821.493 0.965 13,818.755 2.738 0.020 0.040

0.2
10 0.643 14,052.249 0.727 13,978.429 73.820 0.525 0.042
50 0.929 14,890.343 0.930 14,876.928 13.414 0.090 0.040
100 0.964 15,240.244 0.964 15,229.646 10.598 0.070 0.041

0.3
10 0.643 14,877.003 0.723 14,755.858 121.145 0.814 0.049
50 0.929 16,134.143 0.929 16,105.162 28.981 0.180 0.040
100 0.964 16,658.995 0.963 16,635.402 23.593 0.142 0.040

Table 3. Results with N = 20 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.647 27,086.481 0.734 27,017.934 68.546 0.253 0.115
50 0.929 27,964.850 0.933 27,956.983 7.867 0.028 0.042
100 0.965 28,330.820 0.965 28,325.066 5.755 0.020 0.043

0.2
10 0.647 28,818.063 0.729 28,666.230 151.833 0.527 0.049
50 0.929 30,574.802 0.931 30,546.635 28.167 0.092 0.043
100 0.965 31,306.743 0.964 31,284.438 22.304 0.071 0.047

0.3
10 0.647 30,549.646 0.724 30,299.868 249.777 0.818 0.049
50 0.929 33,184.754 0.930 33,123.813 60.941 0.184 0.043
100 0.965 34,282.665 0.964 34,232.979 49.686 0.145 0.043
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Table 4. Results with N = 50 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.662 69,521.335 0.742 69,356.054 165.281 0.238 0.056
50 0.932 71,844.193 0.935 71,823.688 20.505 0.029 0.098
100 0.966 72,804.162 0.967 72,788.943 15.219 0.021 0.045

0.2
10 0.662 74,135.464 0.738 73,765.225 370.239 0.499 0.049
50 0.932 78,781.180 0.934 78,707.043 74.137 0.094 0.047
100 0.966 80,701.118 0.966 80,641.939 59.179 0.073 0.045

0.3
10 0.662 78,749.593 0.733 78,134.903 614.690 0.781 0.050
50 0.932 85,718.167 0.932 85,557.140 161.027 0.188 0.045
100 0.966 88,598.074 0.965 88,466.073 132.001 0.149 0.046

Table 5. Results with N = 100 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.652 139,961.242 0.737 139,610.759 350.483 0.250 0.062
50 0.930 144,609.401 0.934 144,567.711 41.690 0.029 0.046

100 0.965 146,539.884 0.966 146,509.175 30.709 0.021 0.048

0.2
10 0.652 149,149.699 0.732 148,369.477 780.223 0.523 0.052
50 0.930 158,446.018 0.932 158,296.041 149.977 0.095 0.049

100 0.965 162,306.984 0.965 162,187.764 119.220 0.073 0.051

0.3
10 0.652 158,338.157 0.727 157,049.333 1288.824 0.814 0.109
50 0.930 172,282.635 0.931 171,957.523 325.112 0.189 0.048

100 0.965 178,074.084 0.964 177,808.317 265.767 0.149 0.050

Table 6. Results with N = 200 warehouses.

CV PC δbase Base Tot. δop Op. Tot. Diff. % Diff. t (sec.)

0.1
10 0.656 270,940.412 0.740 270,291.532 648.880 0.239 0.142
50 0.931 279,788.460 0.934 279,711.036 77.424 0.028 0.300

100 0.966 283,455.235 0.966 283,398.193 57.042 0.020 0.321

0.2
10 0.656 288,467.066 0.735 287,021.597 1445.469 0.501 0.354
50 0.931 306,163.162 0.933 305,884.568 278.594 0.091 0.236

100 0.966 313,496.712 0.965 313,275.243 221.469 0.071 0.238

0.3
10 0.656 305,993.720 0.730 303,604.624 2389.096 0.781 0.259
50 0.931 332,537.864 0.932 331,933.871 603.993 0.182 0.241

100 0.966 343,538.189 0.965 343,044.464 493.726 0.144 0.464

The columns δbase and Base Tot. show the service level and total cost considering
the Wilson order size. The columns δop and Op Tot. show the service level and total cost
considering the order size of the presented model. The columns Diff. and %Diff. show the
difference between both solutions. The last column t (sec.) shows the computational time
in the execution of the presented model.

It is worth noting that the Hessian matrix of the cost function g(x) (i.e., the Jacobian
matrix of the gradient vector f (x)) at the end of the algorithm was positive definite in
all tested cases. This is shown by the obtained eigenvalues that were strictly positive
for all instances, as observed in Tables 7 and 8, which show the minimum and maximum
eigenvalues obtained for each instance. Therefore, it can be stated that all obtained solutions
at least represent a local minimum for the studied model. In addition, merely as empirical
evidence, Figure 2 shows the evolution of the total system cost for N = 5, 10, 20, 50, 100,
and 200, with CV = 0.1 and PC = 10, for different values of δ, and considering the optimal
value of Qi of expression (11) (∀i = 1, ..., N) for each fixed value of δ. These figures denote
the existence of a single minimum for δ in the range (0, 1). In sum, although it has not
been demonstrated that the studied problem has a strictly convex objective function and a
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single global optimum (given the associated algebraic complexity, especially considering
the relationship between Zδ and δ), it is shown that all the obtained values effectively
represent optimal solutions to the problem within the feasible domain of δ.

Table 7. Minimum (λmin) and maximum (λmax) eigenvalues for the Hessian matrix Hg(x) at the
approximate solution x∗, such as ∇ f (x∗) ≈ 0, considering N = 5, 10, and 20.

CV PC N = 5 N = 10 N = 20
λmin λmax λmin λmax λmin λmax

0.1
10 0.000598 3644.7 0.000569 7263.5 0.000570 15,378.4
50 0.000599 35,620.4 0.000570 71,653.6 0.000571 152,555.7

100 0.000600 116,503.6 0.000571 234,758.5 0.000572 500,358.3

0.2
10 0.000572 7094.3 0.000550 14,145.9 0.000552 29,937.9
50 0.000574 68,574.7 0.000552 138,098.8 0.000554 293,919.9

100 0.000577 224,349.8 0.000554 452,590.9 0.000557 964,330.5

0.3
10 0.000547 10,361.3 0.000532 20,671.6 0.000534 43,731.6
50 0.000549 99,025.6 0.000535 199,643.9 0.000537 424,741.5

100 0.000554 324,036.7 0.000538 654,444.6 0.000541 1,393,913.9

Table 8. Minimum (λmin) and maximum (λmax) eigenvalues for the Hessian matrix Hg(x) at the
approximate solution x∗, such as ∇ f (x∗) ≈ 0, considering N = 50, 100, and 200.

CV PC N = 50 N = 100 N = 200
λmin λmax λmin λmax λmin λmax

0.1
10 0.000582 42,501.7 0.000575 82,713.1 0.000577 159,443.1
50 0.000583 431,659.1 0.000577 827,875.5 0.000579 1,606,404.9

100 0.000584 1,422,147.9 0.000578 2,719,990.2 0.000579 5,284,173.3

0.2
10 0.000566 82,647.2 0.000559 160,914.3 0.000562 310,311.9
50 0.000569 831,004.9 0.000562 1,593,976.4 0.000564 3,095,319.7

100 0.000571 2,738,989.9 0.000564 5,238,968.5 0.000566 10,185,844.2

0.3
10 0.000551 120,589.3 0.000543 234,894.4 0.000547 453,144.7
50 0.000554 1,199,891.8 0.000547 2,301,892.7 0.000550 4,473,392.9

100 0.000557 3,956,325.2 0.000550 7,568,015.3 0.000553 14,725,563.3

Nevertheless, convexity may be reasonable and expected, since when the service level
δ approaches 1, the safety stock cost tends to ∞ (i.e., the second term in Expression (1)),
and the penalty cost tends to 0 (i.e., the third term in Expression (1)), thus yielding a total
cost tending to ∞. In addition, the order size Qi (∀i = 1, 2, 3, ..., N) converges to the Wilson
model solution in Expression (10), as observed in Equation (11). This expression at the
limit is independent of δ, and the related costs of the first term in (1) do not affect the limit
of the total costs (which tends to ∞). On the contrary, when δ approaches 0, the safety
stock cost tends to 0 and the penalty cost to ∞, again yielding a total cost approaching ∞.
Moreover, the order size and related costs (the first term in Expression (1)) tends to ∞ when
δ approaches 0.

Furthermore, it may be natural that the penalty cost is strictly and continuously
increasing, whereas the safety stock cost is strictly and continuously decreasing, both with
δ. Finally, it can be observed that order size-related costs (i.e., the first term in (1)), when
order size is determined by Equation (11), are strictly and continuously decreasing from
∞ to the optimal cost of the Wilson model, given by

√
2 · HCi ·OCi · Di. In sum, it may be

expected that the total cost in expression (1) tends to ∞ when the service level δ approaches
0 or 1, creating a convex U-shaped function, when also considering that total costs are
always positive when Di and all cost parameters are positive (i.e., 0 represents a lower
bound to the total costs), as shown in Figure 2.
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Figure 2. Behavior of total cost g(x) for CV = 0.1, PC = 10, and N = 5, 10, 20, 50, 100, and 200.

As can be observed for all instances in Tables 1–6, although the total costs for the
proposed approach are slightly lower than those obtained with the benchmark approach,
the system service level is significantly different when the penalty cost parameter is the
lowest (i.e., PC = 10). On the contrary, when penalty cost is the highest (i.e., PC = 100)
and the optimal service level tends to 1, the benchmark and the optimal service level
tend to be the same. These results are explained by the fact that, when the service level
is high, stock-out demands converge to 0 and order sizes tend to Wilson order size; thus,
the benchmark solution becomes a very good approximation. In the same way, savings
obtained when the proposed approach is employed are more significant when penalty cost
parameter PC is the lowest. Accordingly, the proposed approach is more beneficial when
PC is not too high and the optimal service level is not near 1. This is especially relevant
from a supply chain network design perspective (as discussed in most ILP-related literature
described in Section 1), where variations in the global service level may imply significant
changes to the SCN configuration, such as different customer assignments or more relevant
changes in warehouse locations and the number of located warehouses.
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The aforementioned results are contrasted with the very low computing time required
by the proposed approach, even for the largest considered instances (i.e., 200 warehouses),
always being less than a second. Thus, the fact that the proposed approach has the potential
to provide a better system service level, which may even impact the design of the SCN and
related costs given the unsubstantial computational efforts required, supports the usage of
the proposed approach instead of previous approximations.

As observed in Tables 1–6, a significant similitude is observed in the optimal service
level when CV varies (i.e., 0.1, 0.2, and 0.3), while in terms of total system costs, a more
significant variation is obtained when CV is the highest. For example, for 200 warehouses,
if CV = 0.1 and PC = 10, then the total savings are about 0.24%, whereas when CV = 0.3
and PC = 10, the total savings rise to about 0.78% (i.e., more than three times in savings).

In terms of the algorithm behavior, Figures 3–5 show the number of iterations executed
with N = 5 warehouses and different values of CV and PC. Each graph shows the evolution
of the error ∥∇g(x)∥, total cost, i.e., the value of g(x), the service level values δ, and the
order size for each warehouse. These results denote the good and fast performance of the
proposed algorithm, which yield optimal solutions in only 6 iterations. In particular, and in
practical terms, it is observed that the solution seems to be a very good approximation of
the optimal values after only 3 or 4 iterations. Analogously, these results are very similar for
larger instances where, for N = 20, 50, 100, and 200 warehouses, the algorithm converges
in 5 iterations, and the solution after 3 or 4 iterations is practically the same as the final
optimal solution, all considering a tolerance of tol = 10−6, as depicted in Figure 6.

All experiments were run on a computer with an 11th Gen Intel Core i5 processor
running at 2.6 GHz with 8 cores using 16 MB of RAM, running Ubuntu version 22.04.4.
The programming language used was Python 3.11.5 [55]. Although other programming
language are suitable for this kind of studies, the selection of Python was based mainly
on its free availability and easy use. In addition, the complexity and size of the studied
problem and its instances are not so challenging as to require more specialize language
programming, such as MATLAB or Mathematica (visited on 15 August 2024).
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Figure 3. Evolution of (a) the error ∥∇g(x)∥, (b) the total cost g(x), (c) the service level δ, and (d) the
order size for all warehouses (Q), with CV = 0.1, PC = 10, and 5 warehouses.

https://la.mathworks.com/products/matlab.html
https://www.wolfram.com/mathematica/
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Figure 4. Evolution of (a) the error ∥∇g(x)∥, (b) the total cost g(x), (c) the service level δ, and (d) the
order size for all warehouses (Q), with CV = 0.2, PC = 50, and 5 warehouses.
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Figure 5. Evolution of (a) the error ∥∇g(x)∥, (b) the total cost g(x), (c) the service level δ, and (d) the
order size for all warehouses (Q), with CV = 0.3, PC = 100, and 5 warehouses.
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Figure 6. Evolution of the error ∥∇g(x)∥ considering (a) 20, (b) 50, (c) 100, and (d) 200 warehouses
with CV = 0.3 and PC = 100.

5. Discussion of Research Results and Managerial Insights

Given the proposed formulation and solution approach, in addition to the obtained
results, several insights and implications from a scientific and practical perspective may be
obtained. Firstly, this research represents a significant contribution to inventory location
and supply chain inventory-related literature through an enhanced formulation along
with an exact solution approach to optimizing a global inventory-related service level (i.e.,
stock-out probability) and order sizes for a multi-warehouse system, along with an exact
solution approach based on the well-known Newton–Raphson method. Note that the
proposed solution approach is analytically derived considering a normal distribution (i.e.,
an approximation) for warehouse demands. Nonetheless, the approach may be adapted to
other distributions, while analytical derivation may result in a more complex or simpler
one depending on the specific distribution considered (e.g., uniform, triangular, log-normal,
truncated normal, Poisson, gamma, beta, etc.). In particular, a numerical approximation
instead of an analytical derivation of the key algorithm elements (i.e., gradient vector
and Jacobian matrix) may be developed considering empirical probabilistic distributions,
as described in [48].

It is worth highlighting that, although normal distribution presents a positive prob-
ability of observing negative values, it may be insignificant for aggregated high-volume
demands with small levels of relative variability (i.e., Coefficient of Variation, CV). For ex-
ample, a normal demand with a positive mean and a CV of 0.5 implies a negative demand
probability of 0.02275, whereas for all experiments carried out in this research, a maxi-
mum CV of 0.3 is considered, with a negative demand probability of 0.00043. Table 9
presents the average percentage of times where negative demand values are obtained for
100 experiments, where each one involves 1000 random demand values following a normal
distribution with a CV = 0.1, 0.2, 0.3, 0.4, and 0.5 (note that this experiment is independent
of mean demand value, except if it is 0 or negative). It can be observed that, for a CV of
0.1 and 0.2, negative demands are not observed, whereas for a CV of 0.3, only in 0.044%
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of cases was a negative value observed. In the extreme case of considering a CV of 0.5,
negative demands are observed in 2.29% of cases. Accordingly, potential errors related to
the occurrence of negative demands may be considered insignificant, and the proposed
approach represents a powerful methodology for practical implementations.

Table 9. Summary of normal demand simulation with µ = 1.

CV 0.1 0.2 0.3 0.4 0.5

Mean (%) 0.0000 0.0000 0.0440 0.6710 2.2910
Standard Deviation 0.0000 0.0000 0.0641 0.2500 0.4667

In terms of the modeling structure, it is worth highlighting that previous research
within inventory location-related literature fail in modeling in an exact manner both safety
stock and unfilled demand costs, where the associated stock-out probability is not con-
sidered as a decision variable but as an input parameter. In our research, in contrast,
the service level is considered a system decision variable to be jointly optimized, which
makes the solution approach difficult. Note that if a different service level for each ware-
house is assumed, then the problem may be decoupled into independent problems for each
warehouse with two decision variables (i.e., the service level and the order size). On the
contrary, as considered in this research, if the required service level is assumed to be the
same for all warehouses, then the common system service level and the order sizes for all
warehouses must be optimized simultaneously.

Based on the obtained results, it is observed that the proposed model allows for
obtaining solutions with a better system performance in contrast to a natural benchmark,
where the expected safety stock costs are modeled in the traditional manner observed
in inventory management and inventory location literature. This simplified modeling
approach yields a different suboptimal service level, slightly different order sizes for
each warehouse, and a more expensive system cost compared to the proposed approach.
Naturally, if a pre-fixed service level is considered near the optimal value obtained with
the proposed model, then the improvements may be immaterial. On the contrary, if a
pre-fixed service level is far from the optimal value obtained with our approach, then the
improvements may be even more significant.

It is remarkable that the proposed model and solution approach do not imply a signifi-
cant increase in computational effort, since optimal solutions are obtained after only a few
iterations with very low computational times, even for the largest instances considered (i.e.,
200 warehouses). Note that observing more than 10 or 20 warehouses for a single company
in the real world is very infrequent, except for some global multinational companies.

Moreover, the proposed model and solution approach are particularly relevant as
part of a sub-problem within further inventory location problems. This is especially
significant when the generalized Benders decomposition is employed, as in [36,37,40],
where the full original problem is decomposed into an MIP formulation that deals with
warehouse location and customer assignment decisions (i.e., within a master problem),
whereas inventory decisions are addressed by an underlying sub-problem (such as the
problem addressed in this research). It is remarkable that none of the aforementioned works
optimizes the service level, which is considered a fixed parameter. Accordingly, a natural
future research direction consists of extending the proposed methodology to address
an inventory location problem to design a supply chain network while simultaneously
optimizing decisions of warehouse location, customer assignment, order sizes, and the
global inventory service level, which enlarge the contributions of this research.

In terms of managerial insights, it worth highlighting that the proposed approach
may definitively benefit supply chain managers by providing better solutions in terms of
strategic supply chain inventory performance. These benefits may imply significant savings
in the long terms. In particular, the proposed methodology (i.e., the model and the solution
algorithm) may help in efficiently supporting the decision-making process related to op-
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timally setting significant inventory decision variables in real-world supply chains, such
as the global service level and warehouse order sizes. Moreover, very low computational
complexity and efforts to implement the proposed approach are required, significantly
facilitating its adoption and utilization in real-world settings. Finally, in relation to the
existence of third-party logistic providers, they may benefit by reducing emergency ship-
ments, given the optimal setting of the global service level and related safety stock, thus
yielding reductions in related costs and improvements in terms of system sustainability
and service level.

Additionally, the methodology may be used in small regions where the homogeneity
of customers leads to the marketing goal of offering a homogeneous customer service level
at the warehouses, since customers may perceive a service level difference or, in small
regions, their communication may allow them to share this knowledge. Therefore, it is
important to the company to offer the same service at different locations, since the proposed
approach allows for optimizing the associated costs.

6. Conclusions and Future Research

In this research, a model to optimize inventory-related decisions for a single-commodity
supply chain network comprising a set of parallel warehouses or distribution centers is
developed. Inventory decisions in the model are warehouse order sizes and a common
global service level consisting of a homogeneous maximum allowed stock-out probability
for each warehouse, assuming stochastic demands with a generic formulation. Subse-
quently, a second specific formulation is derived considering a normal approximation of
warehouse demands. Finally, a Newton–Raphson-based algorithm is developed to solve
the problem, converging in only a few iterations and seconds for instances with up to
200 parallel warehouses.

The proposed formulation along with the developed solution approach yield sig-
nificant benefits in comparison with a natural benchmark, without implying substantial
additional computational efforts, thus providing significant differences in the obtained
service level and lower system costs, which are contributions associated with the pro-
posed approach.

It is worth noting that the studied problem and related variations may arise as a
sub-problem within a generalized Benders decomposition for inventory location problems
to optimize the supply chain network. Similarly, any two-step local search heuristic or
metaheuristics may benefit from employing the proposed approach as a procedure to
evaluate every SCN configuration (e.g., fitness evaluation within genetic algorithms).
The above arguments enlarge the applicability and relevance of this research.

Relevant future research based on this research may increase its contributions, which
involve multi-commodity and multi-period formulations, along with considering other
demand distributions. Moreover, empirical distributions may be considered in which
expressions involved within the algorithm are derived based on numerical approximations.
A simultaneous modeling of decisions and costs at the upstream location level, such as
plants or suppliers, denotes a significant extension to be addressed, following most of the
literature concerning two-stage supply chain inventory management, as described in the
literature review above.
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