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Abstract: Even if the SARS-CoV-2 pandemic recedes, research regarding the effectiveness of govern-
ment policies to contain the spread of the pandemic remains important. In this study, we analyze the
impact of a set of epidemiological factors on the spread of SARS-CoV-2 in 30 European countries,
which were applied from early 2020 up to mid-2022. We combine four data sets encompassing each
country’s non-pharmaceutical interventions (NPIs, including 66 government intervention types),
distributions of 31 virus types, and accumulated percentage of vaccinated population (by the first
five doses) as well as the reported infections, each on a daily basis. First, a Bayesian deep learn-
ing model is trained to predict the reproduction rate of the virus one month ahead of each day.
Based on the trained deep learning model, the importance of relevant influencing factors and the
magnitude of their effects on the outcome of the neural network model are computed by applying
explainable machine learning algorithms. Second, in order to re-examine the results of the deep
learning model, a Bayesian statistical analysis is implemented. In the statistical analysis, for each
influencing input factor in each country, the distributions of pandemic growth rates are compared for
days where the factor was active with days where the same factor was not active. The results of the
deep learning model and the results of the statistical inference model coincide to a significant extent.
We conclude with reflections with regard to the most influential factors on SARS-CoV-2 spread within
European countries.

Keywords: SARS-CoV-2; explainable artificial intelligence; deep learning; Bayesian convolutional
deep neural networks; Bayesian statistics; hierarchical Bayesian inference; government pharmaceutical
interventions; government non-pharmaceutical interventions; viruses; vaccination
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1. Introduction

The insights obtained from the recent SARS-CoV-2 pandemic remain important to
inform future public health policy and to contribute to a more reasonable selection of
prevention policies in future epidemics. Along these lines, evidence-based research regard-
ing the effects of different epidemiological factors on the spread of SARS-CoV-2 has been
conducted [1–6].

By relying on different methodological approaches, SARS-CoV-2 studies have es-
pecially explored the effects of government policies in different spatial and temporal
scopes [7–15].

In order to convey a comprehensive understanding of the effects of the European
government policies on the spread of SARS-CoV-2, in this study, we combine four datasets
with regard to 66 government measures, virus variant distributions (of 31 virus types),
and the accumulated percentages of the vaccinated population (by the first five doses) as
well as the infection numbers at each day (from early 2020 up to mid-2022) for each of the
30 countries included in this study.
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We utilize convolutional deep neural networks (CNNs) [16,17], in particular proba-
bilistic (Bayesian) convolutional deep neural networks (BCNNs) [18,19], together (and in
comparison) with Bayesian statistical inference [20,21], as shown in Figure 1.
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We first train a BCNN model, which is capable of predicting the reproduction rate of
the virus one month ahead any given day with high accuracy. Based on the trained BCNN
model, we infer the importance and the magnitude of the effect of each relevant explanatory
factor by applying explainable artificial intelligence (XAI) algorithms. Specifically, the
results of two XAI methods are presented in this paper: permutation feature importance
(PFI) [22] and partial dependence plot (PDP) [23].

Second, we perform a Bayesian statistical analysis. In the statistical approach, we
study two distinct circumstances with regard to each pandemic influential factor in each
European country. We look at the distribution of pandemic growth rates in the days
where the selected epidemiological factor has been active. Furthermore, we look at the
distribution of pandemic growth rates in the days where the selected explanatory variable
has not been active in that country. We then compute the probability that the activation
of the selected factor—in contrast to the non-activation of it—results in a reduction in the
pandemic growth rate.

By applying the first approach, i.e., the convolutional deep model, we aim at utilizing
CNNs’ high computational ability [17] to extract the effects of the most critical explanatory
variables on the spread of the recent pandemic. By incorporating probabilities in the
convolutional deep model in our study, we aim at avoiding over-fitted models through
delivering uncertain conclusions [18].

By applying the second approach, i.e., the Bayesian statistical model besides the deep
learning model, we try to reexamine the results obtained through the utilized deep learning
model with regard to the most critical factors affecting the spread of SARS-CoV-2 within
European countries.

The remainder of this paper is as follows: Section 2 provides methodical and scientific
foundations for this study with regard to governmental SARS-CoV-2 policies. Section 3
shows how this study’s datasets are extracted, cleaned, and merged into a common data
table. Section 4 explains in detail the applied inputs (i.e., the explanatory variables) and
the resulting output (the dependent variable) of the deep learning model. It also provides
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information about the deep learning model with respect to model construction, training,
and result interpretation. How a Bayesian statistical analysis is performed is described in
Section 5. The results of the deep learning and the statistical inference models are presented
in Section 6, while Section 7 is dedicated to the interpretation of these results. Concluding
remarks and future research needs are summarized in Section 8.

2. Methodical and Scientific Foundations for This Study

Since the onset of the SARS-CoV-2 pandemic in late 2019, several studies have an-
alyzed important epidemiological factors with respect to the spread of the pandemic in
different geographical scopes (e.g., [8–10,12–15,24–29]). In this section, we review a set of
selected papers based on their relevance to our research subject, especially with regard
to the comprehensiveness of the articles’ incorporated explanatory factors as well as the
significance of the research’s geographical scope. The key features from the selected articles
are summed up in Table 1.

Table 1. Key features from selected representative set of SARS-CoV-2 epidemiological studies.

Paper Research Subject Machine Learning Method Significant Results

[24]
Analyzing COVID-19 growth rates and the
effects of NPIs combined with how long
they have been in place in 176 countries

Random forest

Closure and regulation of schools was
the most important NPI, associated
with a pronounced effect about 10 days
after implementation.

[9]
Growth rate of infection in 30 Asian
countries over the 20 weeks of the pre- and
post-vaccination period

Longitudinal correlation analysis

The facial covering policy in the
pre-vaccination period and restrictions
on gatherings and public transport
closure in the post-vaccination period
are the most effective interventions.

[13] Reproduction numbers in European
countries within the year 2020 Lasso regression

The mobility index generated by
personal behavior in prevention and
control may be more important than
wearing a mask.

[14] Mortality rate in 130 countries up to
June 2020 Multivariate regression

Earlier and stricter school and
workplace closures are associated with
lower mortality rates.

[10] Reproduction numbers in 56 countries
between May and September 2020 Bayesian regression Mask wearing in community settings

reduces SARS-CoV-2 transmission.

[8] Growth rate of infection in 133 countries
within 2020 Bayesian regression

Gathering restrictions and facial
coverings played significant roles in
epidemic mitigation before the
vaccine rollout.

[12]

Number of the new cases in the
pre-vaccination era of the pandemic in
large-scale epidemics areas, e.g., the United
States, United Kingdom, and Russia

Epidemiological
compartment model

Mass gathering restrictions and school
closings are associated with the largest
average reductions in infection rates.

[25] Main time-series predictors of COVID-19
cases in the EU Random forest

The most important predictors of
COVID-19 cases in the EU include
proportion of vaccinated people, spread
of different variants, the average daily
temperature, self-reported COVID-like
symptoms, and the use of
protective masks.

[27] New hospital admissions per day in the UK Long short-term memory

National lockdown, new cases, and first
vaccine have a strong correlation with
the total admission number due to
COVID-19 in hospitals in the UK.
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Table 1. Cont.

Paper Research Subject Machine Learning Method Significant Results

[28] 154 countries’ dietary habits’ effects on
mortality rates

Extreme gradient boosting
machine

Countries with imbalanced dietary
habits generally tend to have higher
SARS-CoV-2 mortality predictions.

[15] SARS-CoV-2 age-adjusted case fatality rate
in 32 countries

Extreme gradient boosting
machine

The key risk factors for countries with
higher age-adjusted case fatality rates
are low GDP per capita and low
booster vaccination rates.

[26] Occurrence of SARS-CoV-2 in the USA Ensemble machine learning

Vaccination, wearing masks, less
mobility, and government interventions
were identified as the most significant
factors regarding the control and
prevention of SARS-CoV-2.

[29]
The number of SARS-CoV-2 cases and
deaths for each US state at a weekly level
for a forecast horizon of 1–4 weeks

Long short-term memory
The variant-specific data are the most
important predictors in short-term
SARS-CoV-2 case forecasting.

The studies comprise a variety of approaches, i.e., statistical analysis [8–10,13,14],
compartmental methods [12], machine learning techniques [15,24–26,28], and deep learning
models [27,29].

The included research was conducted in various regions around the globe and con-
clude with different results. Nader et al. [24] see school closures as an important factor
to achieve reductions in infection rates. Li et al. [12] find that mass gathering restrictions
and school closings are associated with the largest average reductions in infection rates
in large-scale epidemic areas. Ge et al. [8] find that gathering restrictions and facial cov-
erings played a significant role in epidemic mitigation. Liu Y et al. [13] conclude that the
rate of masks used in individual prevention does not seem to be related to cumulative
mortality or morbidity in European countries. Instead, the mobility index generated by
personal behavior might be the more important prevention policy according to these au-
thors. Leech et al. [10] focus on masks mandates as a proxy for mask-wearing effectiveness
and conclude that mask wearing reduces the reproduction rate of SARS-CoV-2 by 19 per-
cent. Saleh et al. [27], Zheng et al. [26], Balogh et al. [25], Huy et al. [9], Zhou et al. [15],
and Du et al. [29] investigate and approve the significant role of vaccination policy. The
significance of the various virus variants beside government interventions has also come
into consideration, e.g., in [25]. A complete review of XAI-based epidemiological models of
SARS-CoV-2 including the data, methods, and results is conveyed in [30].

In this paper, we proceed with the application of explainable deep learning and
statistical methods as in previous studies to identify the importance and magnitude of
the most important factors regarding the spread of the recent pandemic. Thereby, our
approach in this paper comprises a set of new features. First, by feeding the explanatory
factors of the pandemic as 1-dimensional images into a convolutional deep learning model
CNN, we extend the literature on using CNN deep networks to epidemiological analysis.
CNNs are well-known architectures specifically used for image classification and tasks that
consider the processing of spatial dimensions of data [31]. Whereas the usage of CNN-
based architecture approaches in the context of clinical studies is practiced [32], the rich
potential of performance and interpretability of CNN models is, so far, not substantially
exploited in XAI-based epidemiological studies. Second, we treat the dependent variables
of our study (i.e., the pandemic reproduction rate in the neural network approach and
the pandemic growth rate in the statistical analysis) as uncertain (Bayesian) variables.
Incorporating the uncertainty in the model training level is rarely performed in the scope of
the SARS-CoV-2 epidemiologic literature. Third, we provide XAI algorithms to understand
the significance of a comprehensive set of explanatory features on the spread of the virus
in a wide geographical scope consisting of 30 European countries. Fourth, by performing
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a Bayesian statistical analysis alongside the machine learning approach, we investigate
whether the role of each explanatory factor, explained via the deep learning model, can be
confirmed with the statistical analysis from a dissimilar perspective.

3. Data

In this paper, we utilize four datasets provided by the European Centre for Disease
Prevention and Control (ECDC), which cover 30 European countries:

• Per country per day government measures of NPIs;
• Per country per day virus variant distributions;
• Per country per day per dose new vaccinations;
• Per country per day new reported infections.

The four datasets are merged into a unique pandas table, referred to as data_encoded.
Each row of data_encoded represents each day in the time span between 2020 and mid
2022 for a specific country. Data_encoded consists of 22,420 rows. Each country (from
30 countries) comprises its own block of approximately 750 rows (22,420/30 = 750 days) in
data_encoded. The columns of data_encoded comprise 111 columns representing the pan-
demic explanatory factors as well as 2 columns representing the 7 days’ average backward
and 7 days’ average forward number of reported infections at any arbitrary day for each
country. These are shown in Table 2 and are explained in the following Sections 3.1–3.5.

Table 2. The columns of data_encoded representing the pandemic explanatory factors as well as 2
columns representing the 7 days’ average backward and 7 days’ average forward number of reported
infections at any arbitrary day for each country.

Variable Category, Variable Type, and Number of Factors in the Category Corresponding Columns

Government NPIs (binary)—66 measures

‘AdaptationOfWorkplace’, ‘AdaptationOfWorkplacePartial’,
‘BanOnAllEvents’, ‘BanOnAllEventsPartial’, ‘ClosDaycare’,
‘ClosDaycarePartial’, ‘ClosHigh’, ‘ClosHighPartial’,
‘ClosPrim’, ‘ClosPrimPartial’, ‘ClosPubAny’,
‘ClosPubAnyPartial’, ‘ClosSec’, ‘ClosSecPartial’,
‘ClosureOfPublicTransport’,
‘ClosureOfPublicTransportPartial’, ‘EntertainmentVenues’,
‘EntertainmentVenuesPartial’, ‘GymsSportsCentres’,
‘GymsSportsCentresPartial’, ‘HotelsOtherAccommodation’,
‘HotelsOtherAccommodationPartial’, ‘IndoorOver100’,
‘IndoorOver1000’, ‘IndoorOver50’, ‘IndoorOver500’,
‘MasksMandatoryAllSpaces’,
‘MasksMandatoryAllSpacesPartial’,
‘MasksMandatoryClosedSpaces’,
‘MasksMandatoryClosedSpacesPartial’,
‘MasksVoluntaryAllSpaces’,
‘MasksVoluntaryAllSpacesPartial’,
‘MasksVoluntaryClosedSpaces’,
‘MasksVoluntaryClosedSpacesPartial’, ‘MassGather50’,
‘MassGather50Partial’, ‘MassGatherAll’,
‘MassGatherAllPartial’, ‘NonEssentialShops’,
‘NonEssentialShopsPartial’, ‘OutdoorOver100’,
‘OutdoorOver1000’, ‘OutdoorOver50’, ‘OutdoorOver500’,
‘PlaceOfWorship’, ‘PlaceOfWorshipPartial’,
‘PrivateGatheringRestrictions’,
‘PrivateGatheringRestrictionsPartial’,
‘QuarantineForInternationalTravellers’,
‘QuarantineForInternationalTravellersPartial’,
‘RegionalStayHomeOrder’,
‘RegionalStayHomeOrderPartial’, ‘RestaurantsCafes’,
‘RestaurantsCafesPartial’, ‘SocialCircle’, ‘SocialCirclePartial’,
‘StayHomeGen’, ‘StayHomeGenPartial’, ‘StayHomeOrder’,
‘StayHomeOrderPartial’, ‘StayHomeRiskG’,
‘StayHomeRiskGPartial’, ‘Teleworking’, ‘TeleworkingPartial’,
‘WorkplaceClosures’, ‘WorkplaceClosuresPartial’
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Table 2. Cont.

Variable Category, Variable Type, and Number of Factors in the Category Corresponding Columns

Accumulated vaccination (0 ≤ float ≤ 1)—5 doses ‘vaccin_0’, ‘vaccin_1’, ‘vaccin_2’, ‘vaccin_3’, ‘vaccin_4’

Virus variants percentage (0 ≤ float ≤ 1)—31 variants

‘AY.4.2’, ‘B.1.1.529’, ‘B.1.1.7’, ‘B.1.1.7+E484K’, ‘B.1.351’,
‘B.1.427/B.1.429’, ‘B.1.525’, ‘B.1.616’, ‘B.1.617.1’, ‘B.1.617.2’,
‘B.1.617.3’, ‘B.1.620’, ‘B.1.621’, ‘BA.1’, ‘BA.2’, ‘BA+L452X’,
‘BA.2.75’, ‘BA.3’, ‘BA.4’, ‘BA.4/BA.5’, ‘BA.5’, ‘BQ.1’, ‘C.37’,
‘Other’, ‘P.1’, ‘P.3’, ‘SGTF’, ‘UNK’, ‘XBB’, ‘XBB.1.5’,
‘not_sequenced’

Month (binary encoded)—12 names translated into 4 binary digits ‘month_0’, ‘month_1’, ‘month_2’, ‘month_3’

Countries (binary encoded)—30 countries translated into 5 binary digits
‘countriesAndTerritories_0’, ‘countriesAndTerritories_1’,
‘countriesAndTerritories_2’, ‘countriesAndTerritories_3’,
‘countriesAndTerritories_4’

Smoothed infection numbers (float)—2 columns ‘7days_before_mean’, ‘7days_after_mean’

Data_encoded is appended to the Supplementary Material of this paper.

3.1. Government NPIs

Each of the 66 NPIs applied by governments has a specific column in data_encoded,
with a value of 1 if the NPI is active on a day in a country and a value of 0 otherwise. A
detailed explanation of these NPIs is presented in [33].

3.2. Vaccination Data

The vaccination data in data_encoded show the accumulated percentage of each of the
first five vaccine doses received by the population of each corresponding country in each
day. In addition, the pre-vaccination days (where the value for the first dose is equal to
0) and the post-vaccination days (where the value for the first dose is larger than 0) are
distinguished for each country’s data in a specific column named vaccination_modus.

3.3. Virus Variants

Each virus variant is presented within a day and in a country by means of the percent-
age it is sequenced in the corresponding country and day. The sum of percentage values
of all sequenced virus variants in a country within each day is equal to 1. There exists a
virus variant named ‘Other’ in the list of virus variants, which represents a collection of
other, not-labeled virus variants in the data. In addition, the dominant virus variant in each
country and each day (as the virus variant with the highest sequenced percentage) owns its
own specific column named dominant_virus within data_encoded.

3.4. Country Name and Month Name

The countries’ names (30 categories) and months’ names (12 categories) are considered
as categorical variables and hence are hot encoded to distinct sets of 5 digits and 4 digits’
binary formats, respectively. Each digit has its specific column in the data_encoded table.

3.5. Smoothed Infection Numbers

7 days’ average backward and 7 days’ average forward number of the reported infec-
tions at any arbitrary day for each country are integrated into data_encoded in two separated
corresponding columns. The week-based smoothed numbers are used to compute the
dependent variables of our study, i.e., reproduction rates (in Section 4) and growth rates (in
Section 5).
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4. Bayesian Deep Neural Network Approach

Section 4.1 explains the construction and training process of the applied DNN model.
Section 4.2 explains the explainable machine learning algorithms, which are used to eluci-
date the importance (Section 4.2.1) and the magnitude of the effect (Section 4.2.2) of each
relevant influencing input factor on the outcome of the DNN.

4.1. Deep Neural Network Training

The aim of the DNN model in our study is to predict the reproduction of the virus one
month ahead of time for each day (as the model output). Thereby, we consider monthly
data horizons from each arbitrary day forward as a closed time window ∆ (=30 days), to
examine the average effects of the explanatory variables within that time window (as the
model input).

4.1.1. Model Input

Each input for training the model is constituted by averaging the values of all ex-
planatory variables (Table 2) over the upcoming ∆ = 30 days from a day i in a country, as
depicted in the last row in Figure 2 and explained as follows.
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Figure 2. Representation of the data to form the inputs and outputs in the deep learning and statistical
approaches in our study.

For each NPIk (1 ≤ k ≤ 66) the average corresponding monthly value NPIA
k,i is equal

to the sum of the NPI values NPIk,i in the days where that NPI has been active within ∆ (the
days where its value is equal to 1 in data_encoded), divided by the sum of the upcoming
days ∆ = 30 from i.

NPIA
k,i =

∑i+∆
i NPIk,i

∆
(1)

For each virus variant Vv,i (1 ≤ v ≤ 31), the average corresponding monthly value VA
v,i

is equal to the average of that variants’ Vv,i daily percentages within the upcoming time
window ∆ = 30 from i.

VA
v,i =

∑i+∆
i Vv,i

∆
(2)



Mathematics 2024, 12, 2574 8 of 28

For each vaccination dose Dd (1 ≤ d ≤ 5), the average corresponding monthly value
DA

d,i is equal to the average of the daily percentages for that vaccination dose Dd,i within
the upcoming time window ∆ = 30 from i.

DA
d,i =

∑i+∆
i Dd,i

∆
(3)

For the factor month, if we assume that a specific day i lays within a current month
mc, and the month after is mn, the average corresponding monthly value is computed
as follows:

# Consider the next ∆ = 30 days;
# Weight the hot-encoded mc and mn digits (explained in Section 3.4) proportional to

the number of the days beginning from i until the end of the current month mc, i.e.,
∆c, and to the number of the remaining 30 days in the next month mn, i.e., ∆n (where
∆n = ∆ − ∆c);

# Sum the weighted hot-encoded mc and mn digits.

MA
m,i =

∆c ∗ Mmc ,i + ∆n ∗ Mmn ,i

∆
(4)

The monthly averaged values of the 111 inputs will then be sorted in a way corre-
sponding to the alphabetical order of variables in Table 2. The sorted set of obtained
averaged values forms one training input.

More and more training inputs are generated by iterating over all countries, all days,
and all explanatory variables (as explained above) according to the following pseudo-code:

1. For each country:

a. For each day:

i. Set an empty list;
ii. For each explanatory variable:

1. Look forward to the next 30 days from each day;
2. Compute monthly averaged values for that explanatory variable;
3. Add the computed value in 2 to the list initiated in I;

iii. Consider the completed list of averaged values in step ii.3 as one training
input.

For each generated monthly based training input, there exists a monthly based training
output described in the next subsection.

4.1.2. Model Output

If the number of observed SARS-CoV-2 positive cases in a country in an arbitrary day j is
equal to Ij, and if the average number of observed SARS-CoV-2 positive cases 7 days before the

day i, where the window ∆ = 30 days opens, is equal to
∑i

j=i−n+1 Ij
n , n = 7, i − n + 1 ≥ 0 (see

the corresponding cell to the row “day i” and column “backward n-days smoothed infection
numbers” in Figure 2), and the average number of observed SARS-CoV-2 positive cases 7 days

after the day i + ∆ where the window ∆ closes is equal to
∑i+∆+n−1

j=i+∆ Ij

n , n = 7, i + ∆ + n − 1 ≪ l,
assuming that, that country’s entire dataset is of length l (see the corresponding cell to the row
“day i + ∆” and column “forward n-days smoothed infection numbers” in Figure 2); then, the
monthly based variable Ri, which is analogous to the reproduction rate, is defined according
to Equation (5):

Ri =

∑i+∆+n−1
j=i+∆ Ij

n
∑i

j=i−n+1 Ij

n

, n = 7 (5)
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While Ri is set to be our study’s predicting object, it is not supposed to represent a
kind of causative indicator. Ri is used as a criterion to be a learnable unique output by
constructing a deep neural network, which is capable of delivering a thirty-days-forward
prognosis regarding the reproduction numbers. One conceivable interpretation of the
selected output for our DNN would be that our predictive neural network model is capable
of predicting the number of new positive cases 30 days ahead of time by knowing the
number of today’s new positive cases and the set of (monthly averaged) input explanatory
variables for the upcoming 30 days.

While Ri, being an average monthly based indicator for the spread of the virus, is
analogous to the conventional concept of the reproduction rate, we name Ri the reproduction
rate of the pandemic throughout our study.

4.1.3. Discretizing Model Output

By defining the output, we tried to train the model via pandemic reproduction rates as
a unique continuous output. The code for the regression task is added to the Supplementary
Material of this paper. Our attempt to obtain precise predictive results via regression was
not effective. Hereby, extending the network by increasing the hidden layers and widening
it by increasing the number of nodes did not benefit the precision of the results. This
observation could theoretically result from the skewness of the 112 variables (111 input
variables and 1 output variable). This happens when most of the values are concentrated
in the left or right ends of the x-axis. Nearly all 111 explanatory variables show similar
skewness patterns. The distributions of input variables’ values (which can be drawn from
month_data_encoded) are either of a right-skewed nature (e.g., B.1.1.7, vaccin_0) or demon-
strate highly skewed distributions in both ends of the x-axis (e.g., NonEssentialShopsPartial,
month_0). The distribution of the output, i.e., the reproduction values, are highly skewed as
well. While about 65% of the reproduction data are between 0 and 2, the maximum output
lies around 3500. We also trained the regression task with using logarithmic transformation
of the output data; however, this did not improve the model precision. The inefficiency of
the regression model is hypothesized by us to be due to the fact that, in the transformation
approach, not only the skewness of the output but also the skewness of the inputs matters.
This is because both input and output skewness can affect the regression intercept as well
as the coefficients associated with the model.

This idea shifted us towards defining the problem as an image classification task
analogous to the MNIST classification problem (which is a large database of handwritten
digits for training image recognition tasks [34]). Thereby, we aim at the recognition of
pandemic 1-D pictures (inputs) by means of classification labels (outputs). Hence, we
translate Ris to 100 bins (ranging from 0 to 99). The bins contribute to presenting the output
side in a balanced way, because each bin represents equal percentile amounts of Ris in
itself. In that way, we did not miss that much preciseness. Each bin’s range (Rbmax − Rbmin)
is sufficiently fine grained to reflect the original Ri values precisely enough. This can be
evidenced by the fact that the median of the difference of Ri values laying in two subsequent
bins is 0.027 while the median value of Ri values is 1.175. After extracting the model’s
categorical predictions in the form of reproduction percentiles, when presenting our results,
we translate them again to the original Ri values, in which we compute yet again the
mean value of the minimum threshold ( Rbmin) and the maximum threshold (R bmax) of the
corresponding bin, i.e., (R bmax + Rbmin)/2.

4.1.4. Constructing the Bayesian Deep Learning Model

Each training input and training output is generated based on computing the monthly
averaged values of data_encoded as described in previous subsections. The month-based
averaged values are stored in a new table named month_data_encoded (attached to the
Supplementary Material of this paper) to be used for model training. The generated train-
ing inputs and outputs (stored in month_data_encoded) are fed into a convolutional neural
network (CNN) model. CNNs are deep learning approaches which are typically used
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to solve image classification tasks [17,35]. In this paper, however, we use CNNs in the
epidemiological context. Our reason for choosing CNNs is their ability to detect combined
features in image recognition tasks. CNNs perform convolution operations in the upstream
layers of the network, where the filters extract the most critical features to generate a feature
map. The extracted features can not only be of spatial or temporal nature but also be used
to recognize a range of government policies. For example, the combined effects of govern-
ment policies such as ‘ClosDaycare’, ‘ClosDaycarePartial’, ‘ClosHigh’, ‘ClosHighPartial’,
‘ClosPrim’, ‘ClosPrimPartial’, ‘ClosPubAny’, ‘ClosPubAnyPartial’, ‘ClosSec’, ‘ClosSecPar-
tial’, etc., are presented as neighbor image pixels and hence will be better considered
in CNNs.

CNNs are not fit by default to incorporate the factor uncertainty, which is crucial when
dealing with relatively small or uncertain data areas. In contrast to CNNs, the Bayesian
neural networks (BNNs) approach [18,19] delivers a robust method in terms of offering
uncertainty. BNNs can easily learn from small and uncertain datasets. Integration of
BNNs and CNNs means a probabilistic interpretation of the deep learning CNN model by
inferring distributions over the models’ weights and offering distributions over the models’
outputs, i.e., BCNN. BCNN models are less prone to get into overfitting traps and can cope
with scare data through delivering uncertain outcomes.

Technically, we treated the input and output pandemic data like we treat the above-
mentioned MNIST data. Each MNIST input data point contains the pixel data for the
handwritten digit in the form of an image with dimensions (28, 28). We flatten the data
to obtain a (1, 111) image array. We use the tensor flow probability (TFP) package to
combine probabilistic models and convolutional deep learning. Thereby, batch normal-
izations are used as supplement layers after each convolution layer to alleviate the risk
of overfitting by normalizing the input values of the following layers [36]. Furthermore,
the inference is guaranteed by using the flip out estimator [37], which performs a Monte
Carlo approximation of the distribution integrating over the weights and biases. The loss
function consists of Kullback–Leibler divergence and soft-max cross entropy to quantify
the difference between the predicted outcomes’ probability distribution from the real out-
comes’ probability distribution [38]. The number of kernels, output units and dropping
rate are chosen by experimenting with the model and without utilizing parameter tuning
algorithms. Furthermore, the Adam optimizer and a learning rate value equal to 0.001 are
used. The model architecture is summarized in Figure 3 and Table 3.

Table 3. Summary of the BCNN model.

Layer (Type) Output Shape Param #

input_2 (InputLayer) (None, 1, 111, 1) 0
conv2d_flipout_2
(Conv2Dflipout) (None, 1, 111, 32) 224

batch_normalization_2
(BatchNormalization) (None, 1, 111, 32) 128

activation_2 (Activation) (None, 1, 111, 32) 0
conv2d_flipout_3
(Conv2DFlipout) (None, 1, 111, 64) 12,352

batch_normalization_3
(BatchNormalization) (None, 1, 111, 64) 256

activation_3 (Activation) (None, 1, 111, 64) 0
flatten_1 (Flatten) (None, 7104) 0
dense_flipout_2
(DenseFlipout) (None, 512) 7,275,008

dense_flipout_3
(DenseFlipout) (None, 100) 102,500
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4.2. Deep Neural Network Explanation

We employ two explainable ML algorithms introduced in the following two subsec-
tions to understand the significance and magnitude of each explanatory factor of our study.

4.2.1. PFI

In order to assess the importance of each input feature (explanatory variable) on the
predicted reproduction rate of the virus in the DNN model, we apply the permutation
feature importance PFI algorithm. The algorithm works as is shown in the following
pseudo-code based on [22]:

Input: Trained model f̂ , feature matrix X, target vector y, error measure L(y, f̂ )

1. Estimate the original model error eorig = L(y, f̂ (X)) (e.g., mean squared error)
2. For each feature j∈{1,. . .,p} do:

1.1.1. Generate feature matrix Xperm by permuting feature j in the data X. This breaks
the association between feature j and true outcome y.

1.1.2. Estimate error eperm = L(Y, f̂ (Xperm)) based on the predictions of the permuted
data.

1.1.3. Calculate permutation feature importance as quotient FIj = eperm/eorig or difference
FIj = eperm−eorig

3. Sort features by descending FI.

Thereby, one can estimate the significance of each input feature (explanatory variable)
by calculating the increase in the model’s initial prediction error (step 1) after permuting
(shuffling) that feature within all rows of a selected set of data (hereby, randomly selected
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25% of the entire dataset). Due to the incorporated uncertainty in the predicted outputs
of the BCNN model, the sub-step 1.1.2 of the above algorithm is repeated 100 times,
resulting in the estimated error being equal to the mean value of the 100 resulted root mean
squared errors.

4.2.2. PDP

To shed light on the effect each relevant input feature might have on the predicted
outcome of the DNN model, we apply the partial dependence plot PDP algorithm [23]. By
means of the PDP, we aim at understanding two distinct counterfactual scenarios, in which
one selected explanatory factor Ei could turn out to be 1 (representing its activation within
all days in the data of a country) or zero (representing its inactivation within all days in the
data of a country). We perform this procedure in a country-wise manner over the entire
existing rows of each country’s data. For each explanatory factor and each country, we
compute the average predicted outcome via counterfactual inactivation of that factor in the
country’s entire dataset, which is assumed to be of length l:

RA|E=0
i =

∑l
i=0 Pred(Ri | Ei = 0)

l
(6)

We then compute the average predicted outcome via counterfactual activation of that
feature in the country’s entire dataset.

RA|E=1
i =

∑l
i=0 Pred(Ri | Ei = 1)

l
(7)

We then subtract the activation-related outcome from the inactivation-related outcome.

δRE
i = RA|E=0

i − RA|E=1
i (8)

The δRE
i can be interpreted as average gains expressed in terms of the difference in

reproduction values when activating each feature in each of the thirty countries, for which
data are available:

• A positive δRE
i means that the average reproduction rate is predicted to be smaller

under the full activation scenario of that factor on all days of the pandemic time in the
corresponding country;

• A negative δRE
i indicates greater predicted reproduction numbers under full activation

scenario of that factor on all days of the pandemic time span in the corresponding country.

Note that, similar to the procedure conducted in Section 4.2.1, due to the incorporated
uncertainty in the predicted outputs of the BCNN model, the prediction task for each row
of data is accomplished through 100 repetitions.

5. Bayesian Statistical Approach

In this section, we perform a statistical inference analysis for each explanatory factor
within each of the 30 European countries. Thereby, we use the information regarding the
7 days’ average backward and 7 days’ average forward number of the reported infections
at any arbitrary day for each country from data_encoded.

If the average number of observed SARS-CoV-2 positive cases 7 days before any day

i is equal to
∑i

j=i−n+1 Ij
n , n = 7 (see the corresponding cell to the row “day i” and column

“backward n-days smoothed infection numbers” in Figure 2) and the average number of

observed SARS-CoV-2 positive cases 7 days after the day i is equal to
∑i+n−1

j=i Ij

n , n = 7 (see
the corresponding cell to the row “day i” and column “forward n-days smoothed infection
numbers” in Figure 2), then, the daily based variable ∂i is defined according to Equation (9):
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∂i =

∑i+n−1
j=i Ij

n
∑i

j=i−n+1 Ij

n

− 1, n = 7 (9)

∂i represents a kind of symmetric predictive criteria to indicate the change in the
spread of the virus between the 7 days’ average backward and 7 days’ average forward
values for any arbitrary day i. Hence, ∂i is the daily relative growth rate of the pandemic.
For each influencing input factor, the distribution of pandemic growth rates in the days
where the selected explanatory factor has been active is compared with the distribution
of the pandemic growth rates in the days where the selected explanatory variable has not
been active.

5.1. Bayesian Statistical Model

To obtain the posterior probabilities with regard to the presence and non-presence
of a selected explanatory factor in each country, we took each country’s data separately
and analyzed each explanatory factor within the selected country’s data by means of a
hierarchical Bayesian model [20,21]. A hierarchical Bayesian model considers a hyper
parameter at the top level of its analysis, as well as specific parameters in its lower level.
The top hierarchical level takes the overall distribution of growth rates in a certain country
into account regardless of the condition whether the certain explanatory factor has been
active or not. The lower level takes the situation-specific developments into account, i.e.,
whether the selected epidemiological factor is implemented or not. The model used in this
paper is illustrated in Figure 4.
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country (variables in boxes are observed variables).

The top level of the model in Figure 4 depicts the hyper mu parameter, which is a
normal distribution function consisting of a mean and a standard deviation for a distinct
country from the studied countries. The mean and standard deviation are derived by us
through considering all observed ∂is data within a selected country. The left-hand side of
the model (consisting of variables with positive sign at the end) devotes itself to the effect of
activation of a certain explanatory factor on the epidemic growth rates. The right-hand side
of the model (consisting of variables with negative sign at the end) devotes itself to the effect
of non-activation of the selected explanatory factor on the epidemic growth rates. The lower
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level of the model uses the Student’s t-distribution to infer posterior predictive ∂i values.
The reason of choosing a Student’s t-distribution is its fitness to the shape of the ∂i in the
studied countries. Thereby, we used the fitter package (https://github.com/cokelaer/fitter,
accessed on 18 June 2024) in python to explore aggregate and individual data across the
studied countries. The histogram of the overall ∂is numbers with the example of Germany
during the pandemic is demonstrated in Figure 5.
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The hyper parameter nu is the degree of freedom part of the subsequent Student’s t-
distribution, which usually ranges from 0 to 30 and becomes shared between the left-hand
side and the right-hand side of the model. The presence of the sd_Country parameters
specified in both the right-hand side and left-hand side of the model figure provides
a weekly informative prior which permits the lower level of the model to sample its
parameters (either corresponding to the activation of a factor on the left-hand side or
corresponding to the non-activation of the selected explanatory factor in the right-hand
side) without bias. While a basically normal distribution provides a reasonable prior for the
mean parameter, the exponential distributions provide reasonable priors for the standard
deviation, i.e., for the distribution of the abovementioned sd_Country terms [21].

Obtaining posterior distributions with regard to the presence and non-presence of a
selected factor is often analytically intractable. The sampling procedure of the posterior
distributions are accomplished via using a No-U-turn sampler (NUTS) implemented in
the probabilistic programming package for python PyMC3. The results of the posterior
sampling draws get stored in a PyMC3 data object called trace. The values of a trace not only
represent the obtained posterior values but also can reveal the reliability of the parameter
space exploration via the employed sampling algorithm. The model trace convergence is
evaluated by means of the Gelman-Rubin R_hat statistic [39]. R_hat values deviating from
one indicate that trace values move wildly or get stuck and that sampling failed to cover
the parameter space effectively. Hence, in practice, we are looking for R_hat values close
to one. The resulting trace plots regarding the predicted distributions of ∂is in the case of
implementing gym and sport center closures (predGermany+) versus non-implementation
of the gym and sport center closures (predGermany-) in Germany are shown in Figure 6.

https://github.com/cokelaer/fitter
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Figure 6. Estimated plot distributions (left-hand side panels) and the corresponding sampled values
(right-hand side panels) via multi-process sampling with regard to the effect of gym and sport center
closings in Germany based on the hierarchical model depicted in Figure 4. Note that 4 subplots in
each left-hand side panel comprise 4 different chains, each of them comprising 1000 draws (solid line:
chain 1, dotted line: chain 2, dashed line: chain 3, and dot-dashed line: chain 4).

5.2. Computing the Term Efficiency by Comparing Distribution Samples

In this subsection, we assume we have obtained the posterior distributions of the
pandemic growth rates in the days where a selected explanatory variable has been active,
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as well as the posterior distributions of the pandemic growth rates in the days where the
selected explanatory variable has not been active.

We define the efficiency of a factor to figure out the probability that, in an arbitrary
chosen day, the presence (activation, “+”) of a factor grants less value to the growth rate
of the virus in comparison to the absence (non-activation, “−”) of that factor. We do the
comparison stochastically by sampling 1000 random draws from both positive-signed and
negative-signed distributions. Moreover, 1000 random draws from the positive-signed
posterior distribution will generate a list L of growth rates ∂i named L+

σ , which is of
length 1000. Likewise, 1000 random draws from the negative-signed posterior distribution
will generate a list of growth rates ∂i named L−

σ , which is of length 1000. The efficiency
ratio (Equation (10)) results from the iterative comparison of each positional element l
(from 0 to 1000-1) of the above-mentioned two generated lists, setting the comparison
term L+

σ (l) < L−
σ (l) equal to 1 if it is true and 0 if false, and calculating the averaged

compared values:

e+<− =
∑1000−1

l=0

{
L+
σ (l) < L−

σ (l)
}

1000
(10)

To offset the stochastic nature of computing e+<− via random drawn growth rates,
we repeat computing e+<− 1000 times and look at the e+<− distribution.

5.3. Exemplary Computation of the Efficiency Term

Figures 7 and 8 illuminate the inference procedure from the observed empirical data
up to computing the efficiency terms by means of the example of “closure of gyms and
sport centers” in the four most populated European countries (France, Germany, Italy,
and Spain).
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Figure 8. Efficiency of the implementation of the selected NPI (gyms and sport centers closures) in
comparison to non-implementation of it within the selected subset of countries.

Each blue line at the left-hand side of Figure 7 displays the empirically observed
growth rate of the pandemic in the days when the selected factor (closure of gyms and sport
centers) has been active in each selected country. Each orange line on the left-hand side
of Figure 7 displays the growth rate of the pandemic in the days when the selected factor
has not been active in each selected country. The posterior predictive probabilities in the
middle and the right-hand side of Figure 7 are driven by sampling posteriors using NUTS.

The obtained posterior probability distributions of activation versus non-activation of
the selected explanatory factor in Figure 7 are compared in line with the logic explained in
Section 5.2 and expressed in Equation (10). The histogram of the obtained 1000 computed
efficiencies e+<− is presented in Figure 8.

6. Results
6.1. Verifying the Accuracy of the Bayesian Deep Learning Model

The BCNN model is trained with 1000 epochs over 80% of the data, which covers
21,549 rows of month_data_encoded. The training code (to replicate the training process)
and the saved model (to regenerate the model predictions) as well as training and eval-
uation losses and training and evaluation root mean square errors are appended to the
Supplementary Material of this paper. Figure 9 reveals the preciseness of the predicted
(month-based) reproduction rate percentiles of the model for a hold out set comprising
20% random split test data as well as for the training and evaluation datasets.

The violin plots of the upper panels in Figure 9 demonstrate the distribution of
100 resulting root mean square errors, when the saved model is prompted 100 times to
predict reproduction rate percentiles. As one can see, the estimated error between the
predicted reproduction values and the actual values is less than 5% in all 3 sets. The lower
panel in Figure 9 demonstrates the root mean squared errors, when the saved model is
required to predict reproduction rate percentiles 100 times, and the predicted value for
each input is calculated by averaging the entire 100 predicted values for that input and
then compared to the actual one. The result indicates that the estimated errors are less than
3% for each of the hold out, training, and evaluation sets, if we utilize the BCNN model’s
average predicted outputs.
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6.2. Verifying the Accuracy of the Bayesian Statistical Analysis

The detailed results regarding the summary of efficiencies e+<− and the detailed
statistics corresponding to each factor in each of the 30 countries are attached to the
Supplementary Material of this paper. The r-hat statistic for all the obtained results is
approximately equal to 1.0 for all parameters. This indicates no problems during sampling.

6.3. Bayesian Deep Learning Results

In this subsection, we present the corresponding results of the Bayesian deep learning
approach. The resulting PFI importance of variables is presented in Table 4. The explanatory
factors with higher values in Table 4 can be interpreted as the ones with higher importance.
In contrast, the explanatory factors with lower values in Table 4 can be interpreted as
ones with the lowest importance. The Base line, which represents the zero-importance
level, is located between some not frequently observed virus variants, i.e., BA.2+L452X
and BA.4/BA.5.

The depicted values in the heat map diagram in Figure 10 express average gains
measured in terms of alteration of reproduction values to contain the pandemic growth if
one feature is active in comparison with the circumstance of that feature being non-active
in line with the PDP notion.

Figure 11 illustrates the month-wise computed PDPs covering the counterfactual
scenarios of all months of the year being set each time to a specific month ranging from 0
(December) to 11 (November). In Figure 11, a specific period of the year for each country
between the month 4 (April) and the month 9 (September) is highlighted in light-red as it
demonstrates the season belonging relatively to the warmer times within the year.
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Table 4. Importance of explanatory variables with regard to their impact on pandemic reproduction
based on PFI.

Explanatory Variable Mean Error% Explanatory Variable Mean Error%

Country 27.56 IndoorOver100 6.04
Month 27.15 OutdoorOver500 6.01
B.1.1.7 13.82 AdaptationOfWorkplace 6.00
B.1.617.2 11.68 IndoorOver1000 5.99
BA.2 10.80 SocialCircle 5.98
ClosPrim 10.31 BanOnAllEvents 5.98
NonEssentialShopsPartial 9.69 ClosDaycarePartial 5.84
Vaccin_0 9.67 MassGather50Partial 5.83
Not_sequenced 9.44 PlaceOfWorship 5.76
PrivateGatheringRestrictions 9.01 AdaptationOfWorkplacePartial 5.64
StayHomeOrderPartial 8.77 MasksVoluntaryClosedSpacesPartial 5.39
NonEssentialShops 8.67 ClosPubAny 5.39
MassGatherAll 8.50 MasksVoluntaryClosedSpaces 5.28
GymsSportsCentresPartial 8.40 Vaccin_2 5.26
OutdoorOver1000 8.23 BA.1 5.25
MasksMandatoryAllSpaces 8.15 WorkplaceClosures 5.25
EntertainmentVenuesPartial 8.06 B.1.1.529 5.24
MassGatherAllPartial 7.98 HotelsOtherAccommodation 5.23
Vaccin_1 7.94 BA.5 5.02
QuarantineForInternationalTravellersPartial 7.80 StayHomeRiskGPartial 4.81
RestaurantsCafesPartial 7.68 P.1 4.74
ClosSec 7.67 MasksVoluntaryAllSpaces 4.74
ClosDaycare 7.65 ClosureOfPublicTransport 4.60
ClosHighPartial 7.56 StayHomeGenPartial 4.53
StayHomeRiskG 7.55 C.37 4.52
RestaurantsCafes 7.55 BA.2.75 4.52
ClosHigh 7.51 RegionalStayHomeOrder 4.52
Other 7.48 BA.4 4.51
ClosureOfPublicTransportPartial 7.30 B.1.617.3 4.51
QuarantineForInternationalTravellers 7.23 SGTF 4.51
Teleworking 7.15 SocialCirclePartial 4.50
MasksMandatoryClosedSpaces 7.13 B.1.620 4.50
HotelsOtherAccommodationPartial 7.10 B.1.351 4.50
GymsSportsCentres 7.08 BA.4/BA.5 4.50
RegionalStayHomeOrderPartial 7.06 Base line 4.49
MasksMandatoryClosedSpacesPartial 7.06 BA.2+L452X 4.49
TeleworkingPartial 6.99 Vaccin_4 4.49
IndoorOver500 6.99 B.1.616 4.49
OutdoorOver50 6.94 B.1.427/B.1.429 4.49
PrivateGatheringRestrictionsPartial 6.92 Vaccin_3 4.49
ClosSecPartial 6.87 P.3 4.49
ClosPrimPartial 6.82 WorkplaceClosuresPartial 4.48
PlaceOfWorshipPartial 6.82 BA.3 4.48
MassGather50 6.79 XBB.1.5 4.48
StayHomeOrder 6.66 AY.4.2 4.48
BanOnAllEventsPartial 6.55 B.1.525 4.48
OutdoorOver100 6.55 B.1.621 4.48
MasksMandatoryAllSpacesPartial 6.54 UNK 4.48
MasksVoluntaryAllSpacesPartial 6.51 B.1.617.1 4.48
IndoorOver50 6.37 B.1.1.7+E484K 4.47
StayHomeGen 6.37 XBB 4.47
EntertainmentVenues 6.30 BQ.1 4.46
ClosPubAnyPartial 6.06
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6.4. Bayesian Statistics Results

In this subsection, we present the corresponding results of the Bayesian statistics
approach. Figure 12 demonstrates the average values corresponding to each explanatory
factor’s efficiencies e+<− from the statistical inference analysis. The max and min values of
the obtained e+<− values differ in the range of less than 2 percent from the depicted mean
values in Figure 12.

In order to summarize the statistical inference for each explanatory variable (depicted
in Figure 12), the average of the efficiencies over the entire 30 countries is computed and
illustrated in Table 5. In Table 5, explanatory variables with higher than 50 percent efficiency
values (e.g., the season Spring and the alpha variant) can be interpreted as effective factors
with regard to pandemic containment. In contrast, explanatory variables (e.g., the season
Autumn or the omicron variant) with under 50 percent efficiency values can be interpreted
as effective factors with regard to pandemic growth.
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Table 5. Sorted average efficiencies e+<− of the pandemic factors over all studied countries.

Explanatory Variable Average
Efficiency% Explanatory Variable Average

Efficiency%

Spring 65.90 BanOnAllEventsPartial 50.33
B.1.1.7 63.90 ClosDaycarePartial 50.10
NonEssentialShops 63.80 OutdoorOver50 50.00
BA.2 63.06 WorkplaceClosures 49.93
GymsSportsCentres 62.10 SocialCircle 49.80
EntertainmentVenues 61.56 ClosureOfPublicTransport 49.43
ClosPrim 61.36 RegionalStayHomeOrderPartial 49.26
ClosSec 60.26 RegionalStayHomeOrder 48.80
ClosDaycare 59.66 StayHomeGenPartial 48.76
MassGather50 59.53 QuarntinInternationalTravellerPartial 48.76
PrivateGatheringRestrictions 59.20 StayHomeRiskGPartial 48.73
BanOnAllEvents 58.43 MaskVoluntaryCloseSpacePartial 48.46
RestaurantsCafes 58.10 MasksVoluntaryAllSpaces 48.33
ClosHigh 58.00 MasksVoluntaryAllSpacesPartial 48.26
StayHomeOrder 57.46 ClosPubAnyPartial 47.90
NonEssentialShopsPartial 57.40 QuarantinInternationalTravellers 47.80
PostVaccination 56.23 SocialCirclePartial 47.73
ClosSecPartial 56.00 WorkplaceClosuresPartial 47.63
StayHomeOrderPartial 55.86 TeleworkingPartial 47.56
PrivateGatheringRestrictionsPartial 55.86 IndoorOver50 47.56
GymsSportsCentresPartial 54.56 ClosPubAny 47.56
ClosPrimPartial 54.46 MassGather50Partial 47.53
EntertainmentVenuesPartial 54.20 MaskMandatoryCloseSpacePartial 47.13
HotelsOtherAccommodationPartial 53.30 StayHomeGen 44.63
MasksMandatoryAllSpaces 53.16 MassGatherAll 44.36
Winter 53.10 MasksMandatoryClosedSpaces 43.83
PlaceOfWorship 53.06 PreVaccination 43.70
AdaptationOfWorkplace 52.70 Summer 43.63
ClosureOfPublicTransportPartial 52.20 OutdoorOver500 43.63
ClosHighPartial 51.80 MassGatherAllPartial 43.20
HotelsOtherAccommodation 51.76 IndoorOver500 42.66
AdaptationOfWorkplacePartial 51.56 IndoorOver1000 42.23
Teleworking 51.33 IndoorOver100 41.96
RestaurantsCafesPartial 50.83 OutdoorOver1000 41.73
MasksVoluntaryClosedSpaces 50.66 OutdoorOver100 41.43
MasksMandatoryAllSpacesPartial 50.63 B.1.617.2 39.20
StayHomeRiskG 50.56 Autumn 34.63
PlaceOfWorshipPartial 50.50

7. Interpretation of Deep Learning and Statistical Findings

The analysis of the importance of explanatory factors (Table 4) indicates that the factor
country is at the top level of epidemiological factors in the predictions of the model. The
high importance of the factor country is caused by the construction of the DNN model,
since this factor is not averaged over different countries, which would make no sense
for this factor. Each country is a unique key for the data solely corresponding to that
country. It remained in its place during the training of the model. However, seeing the
factor month—which is taken into account during the training procedure of the BCNN
model—at the top of all other explanatory features is remarkable.

Consequently, we conclude that the months and seasons have been much more influ-
ential on the dynamics of the SARS-CoV-2 pandemic in comparison with the governments
NPIs and vaccination policies as well as the emergence of virus mutants. The evidence
from the counterfactual PDP exploration of seasonal effects (Figure 11) is twofold: First, the
overall reproduction rates in the white area are significantly higher than those within the
light-red area. Second, in most of the countries, there is a peak in the virus spread around
month 7 (July). The existing literature explores the role of seasonal trends. Merow and
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Urban [40] develop statistical models that predict the maximum potential of COVID-19
worldwide and throughout the year. The authors predict that COVID-19 will decrease
temporarily during summer, rebound by autumn, and peak next winter. In a more recent
study, Wiemken et al. [41] use time-series decomposition to extract the annual seasonal com-
ponent of COVID-19 cases, hospitalization, and mortality rates from March 2020 through
December 2022 for the United States and Europe. The authors identify seasonal spikes
in COVID-19 from approximately November through April for all outcomes and in all
countries. These results are indeed, to a large extent, in line with the predictions of our
deep learning model. In addition, the results of the statistical inference analysis (Figure 12
and Table 5) regarding the seasonality effects support that large probable growth rates
of the virus are visible in the Autumn season (September, October, and November) and
the smallest pandemic growth is predicted to be in the Spring season (March, April, and
May). The statistical inferences show that the gained efficiencies in Winter (December,
January, and February) are higher than the efficiencies of Summer (June, July, and August).
Note that as the statistical inference analysis uses the data of each country separately, the
months are summarized into the seasons so as to increase the number of prior observations
per season in each country. Returning to the spike in July in the DNN model (Figure 11),
the frequently observed peak in summer in most of the countries (e.g., Hungary in July,
Liechtenstein in July–August, Belgium in July, Bulgaria in July, Estonia in July–August,
Netherlands in July, Lithuania in July, etc.) can be hypothesized to be a result of the surge
in the infection cases through less-restricted public mobility during summer vacation.

The deep neural network model as well as the statistical inferences both provide
evidence that the three well-known variants of the virus (i.e., B.1.1.7—Coronavirus Alpha
variant, B.1.617.2—Coronavirus Delta variant, and BA.2—Coronavirus Omicron variant) have
seemingly played a significant role in driving the dynamics of the pandemic, i.e., higher
influence on the virus spread than the governments’ NPIs and vaccination programs.
The PDP analysis of the DNN model (Figure 10) also evidences that, in the light of the
assumption regarding the counterfactual scenario of the pandemic getting stuck by the mere
presence of B.1.1.7 (Coronavirus Alpha variant), a considerable reproduction rate reduction
of up to around 90 percent could have been achieved. The rows of Figure 10 regarding the
B.1.617.2 (Coronavirus Delta variant) and BA.2 (Coronavirus Omicron variant) variants reveal
to what extent the counterfactual predominance of the Omicron variant could have been
beneficial in terms of amelioration of the virus spread and how the hypothetical extension
of the delta variant could be harmful. Note that a row named ‘Other’ exists, which indicates
the potential harmful effect of other not-labeled virus variants in the dataset; if such virus
variants could prevail, the pandemic scene might have gone beyond the destructive role of
the delta variant. The same inferences regarding the role of the major virus variants can be
obtained through the statistical inference analysis (see Figure 12 and Table 5).

While the outcomes disclose the role of the explanatory factors within each country
separately, the overall results indicate that, generally, the government policies might have
played a subordinated role compared to the seasonality and virus variants.

Figures 10 and 12 illustrate that, in the majority of countries, the efficiency term
(Section 5.2) of the post vaccination period is relatively higher than the pre-vaccination
period. The factor vaccine_0_1 in Figure 10, which expresses the counterfactual scenario
of the whole population being vaccinated with the first and the second dose within all
phases of the pandemic, reveal the relatively high effectiveness of the vaccination policy to
constrain the spread of the virus.

Beyond the month and season factors of the NPIs, closing the primary schools, general
and regional lockdowns, and non-essential shop closures were significant in reducing the
pandemic reproduction, both in the DNN model and the statistical inference model.

While in the literature the effects of government mask mandates are to some ex-
tent inconsistent [10], the partially inconsistent representation of the mask mandates in
closed spaces in Figures 10 and 12, and Table 5 need to be further researched. The ex-
planatory factor MasksMandatoryAllSpaces encompassing the protective mask usage in
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all public spaces on a mandatory basis (enforced by law) is predicted through the DNN
model to have positive influence to combat the pandemic. However, it is peculiar that the
factor MasksMandatoryClosedSpaces representing protective mask use in closed public
spaces/transport on mandatory basis (enforced by law) is contributing to increase infection
rates in most of the countries.

This requires further research on the role of mask mandates to control the pandemic.
Kai et al. [42] put forward some hypothesis that enforcing masks works if and only when
the entire or at least a substantial mass of the society becomes committed to it. And it
becomes significantly inefficient if mask wearing is prescribed or obeyed partially [42] or if
the observed levels of mask wearing in closed spaces are critical [10]. Barceló and Sheen [43]
raise the question of the effectiveness of mask mandates in regions where commitment
to face masks lacks a cultural background [43]. Despite the conjectures, examining the
predicted non-efficiency of mask mandates in closed spaces, despite the high efficiency of
the all spaces mask mandates, as shown in Figures 10 and 12, and Table 5, might not be
explained completely based on the above hypothesis nor within our analysis. It requires
further research.

8. Conclusions

In this paper, we applied a deep Bayesian convolutional neural network and a Bayesian
inference statistical model to analyze the SARS-CoV-2 government policies across thirty
European countries. The data explored include 66 government measures, virus variant
distributions of 31 virus types and the vaccinated population percentages by the first five
doses as well as the reported daily new infections in each country. The results of the deep
learning Bayesian model and the statistical Bayesian inference agree with each other to a
large extent.

While the outcomes disclose the role of government interventions within each country
separately, the overall results indicate that, generally, a number of government policies
played a subordinated role compared to the seasonality and virus variants. The seasonality
effects shaped the overall dynamics of the pandemic as a factor on top of the influence
sphere of other pandemic explanatory factors. Large growth rates for infections are achieved
around the Autumn season (especially in October and November) and the smallest prob-
abilities with regard to pandemic growth is in the Spring season (especially in April and
May). This does not contradict the positive impact of some important NPIs and vaccination
policies. The role of the first two vaccination doses as well as the NPIs closing the primary
schools, general and regional lockdowns, and non-essential shop closures substantially con-
tributed to the reduction in the spreading of the virus. This is evidenced both from the
Bayesian deep learning model as well as from the Bayesian statistical inference analysis.

The study described in this paper naturally has limitations. It does not incorporate
the degree of government’s policies’ appliance or the degree of people’s compliance with
the governments’ interventions. Some intervention policies—such as the total number of
tests carried out in each population, the data collected via contact tracing measures, or the
role of media and communication policies—were not integrated in our dataset. The role of
temperature is represented only indirectly by means of seasons and months.

There are several ways to enhance the approach applied in our paper. First, where the
factor time is just implicitly modeled in the deep learning model applied (through averag-
ing the effect of each explanatory variable over a month), utilizing a two-dimensional input
data matrix to explicitly model the connected time steps in one dimension along with the
explanatory factors as a second dimension, is a matter of follow-up research. This further
investigation step will explicitly include the concrete time steps in the analysis and enables
the research to not only convey the significance and magnitude of effects of each pandemic
explanatory factor in the spread of pandemic, but also the required time lags, which could
have been necessary to unfold the effect of each explanatory factor. Second, we could
have decomposed the country factor in our study to a range of its constituent components
including health and well-being infrastructure, socio-cultural characteristics, and develop-
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ment and economical sub-features as well as geo-spatial attributes corresponding to each
country to infer more country-specific conclusions with regard to the causes of spreading
patterns of the virus. Third, while the application of filters in the convolutional neural
network applied in our study counts for possible interactions between the explanatory
factors considered in our model, the interpretation of explanatory factors’ combination
effects has not been addressed in our study. Likewise, possible correlation analyzed via
separated statistical inference with regard to each country cannot indicate, necessarily,
causation. Finally, while we used the PFI and PDP concepts, which are applicable to a
broad range of machine learning methods to interpret the results of the BCNN model, the
potential performance of model-specific interpretation methods (specifically applicable to
CNNs) is not utilized in our research. Hence, the XAI implemented in our research can be
extended to other methods in the future research steps.
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