
Citation: Huang, Z.; Huang, L.; Li, D.

Co-Evolutionary Algorithm for

Two-Stage Hybrid Flow Shop

Scheduling Problem with Suspension

Shifts. Mathematics 2024, 12, 2575.

https://doi.org/10.3390/

math12162575

Academic Editor: Frank Werner

Received: 23 July 2024

Revised: 16 August 2024

Accepted: 19 August 2024

Published: 20 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Co-Evolutionary Algorithm for Two-Stage Hybrid Flow Shop
Scheduling Problem with Suspension Shifts
Zhijie Huang , Lin Huang and Debiao Li *

Management Science and Engineering Department, Fuzhou University, Fuzhou 350116, China;
072103408@fzu.edu.cn (Z.H.); huangl229@foxmail.com (L.H.)
* Correspondence: debiaoli@fzu.edu.cn

Abstract: Demand fluctuates in actual production. When manufacturers face demand under their
maximum capacity, suspension shifts are crucial for cost reduction and on-time delivery. In this
case, suspension shifts are needed to minimize idle time and prevent inventory buildup. Thus, it is
essential to integrate suspension shifts with scheduling under an uncertain production environment.
This paper addresses the two-stage hybrid flow shop scheduling problem (THFSP) with suspension
shifts under uncertain processing times, aiming to minimize the weighted sum of earliness and
tardiness. We develop a stochastic integer programming model and validate it using the Gurobi
solver. Additionally, we propose a dual-space co-evolutionary biased random key genetic algorithm
(DCE-BRKGA) with parallel evolution of solutions and scenarios. Considering decision-makers’ risk
preferences, we use both average and pessimistic criteria for fitness evaluation, generating two types
of solutions and scenario populations. Testing with 28 datasets, we use the value of the stochastic
solution (VSS) and the expected value of perfect information (EVPI) to quantify benefits. Compared
to the average scenario, the VSS shows that the proposed algorithm achieves additional value gains
of 0.9% to 69.9%. Furthermore, the EVPI indicates that after eliminating uncertainty, the algorithm
yields potential improvements of 2.4% to 20.3%. These findings indicate that DCE-BRKGA effectively
supports varying decision-making risk preferences, providing robust solutions even without known
processing time distributions.

Keywords: scheduling; suspension shifts; uncertain processing times; biased random key genetic
algorithm; co-evolutionary

MSC: 68U01

1. Introduction

Suspension shifts are crucial for enterprises to adapt to market demand changes and
to regulate production capacity by controlling working hours, ensuring on-time order
delivery. In actual production, demand fluctuates. When demand is below maximum
capacity, suspension shifts reduce production capacity, minimizing machine idle time,
operational costs, and inventory due to early completions. Considering that in a production
workshop, most processes involve human–machine collaboration and are influenced by
fixed work schedules and shift handovers, the decision to suspend operations must be
made according to the shift. Additionally, suspending all machines in the workshop
simultaneously can maximize cost reduction, so all operations in the same workshop
should be suspended according to the same shift. Therefore, production planning typically
schedules workshop suspension shifts based on actual orders, creating non-production
periods that constrain workshop scheduling.

However, if the suspension shift plan is not effectively integrated with production
scheduling, it can fail to reduce operational costs and inventory, leading to lower fulfillment
rates and financial losses. For example, as shown in Figure 1, there are six shifts, and the

Mathematics 2024, 12, 2575. https://doi.org/10.3390/math12162575 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162575
https://doi.org/10.3390/math12162575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0007-5752-9115
https://orcid.org/0000-0003-4077-3107
https://doi.org/10.3390/math12162575
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162575?type=check_update&version=2

Mathematics 2024, 12, 2575 2 of 30

release times and due dates of three jobs, J1, J2, and J3, are r1, r2, and r3, and d1, d2,
and d3, respectively. In case 1, job J2’s arrival time r2 causes machine idling, which the
suspension shift plan cannot predict, leading to early completion, excess operational costs,
and increased inventory. Even if the operation is suspended in shift 2, early completion
and inventory issues persist. In case 2, an unreasonable suspension shift plan delays
job J3, resulting in penalties and customer loss. In case 3, a reasonable suspension shift
plan effectively reduces operational costs and inventory. Thus, it is essential to integrate
workshop suspension shifts with production scheduling. This ensures that the suspension
shift plan effectively regulates production capacity and promotes on-time delivery.

Figure 1. Co-optimization benefits analysis.

The hybrid flow shop scheduling problem (HFSP) is a class of NP-hard combinatorial
optimization problems [1] that is widely applied in industries such as chemicals, semicon-
ductors, metallurgy, textiles, and logistics. The HFSP involves multiple production stages
with parallel machines, where jobs must be processed in sequence. This paper investigates
the two-stage hybrid flow shop scheduling problem (THFSP), which is a common variant
of HFSP that is distinguished by its restriction to two production stages, which simplifies
the general problem while retaining significant theoretical and practical importance [2].
The THFSP is particularly relevant in applications such as PCB assembly, metal fabrication,
and two-stage packaging processes. Meanwhile, the heterogeneity of production and the
diversity of orders make it difficult to accurately predict the processing time of jobs. This
makes it even harder to ensure the rationality of pre-arranged workshop suspension shifts.
If the actual processing time exceeds the estimated time, work orders will be overdue.
Conversely, if the actual processing time is shorter than the estimated time, work orders
will be completed early. Therefore, researching two-stage hybrid flow shop scheduling with
suspension shifts is of significant importance in an environment with uncertain processing
times.

The goal of this work is to provide decision-makers with robust scheduling solutions in
the workshop. Considering suspension shifts and uncertain processing times, we develop

Mathematics 2024, 12, 2575 3 of 30

a method based on a dual-space co-evolutionary biased random key genetic algorithm
(DCE-BRKGA). In this method, parallel populations of solutions and scenarios co-evolve,
with each relying on the other for the fitness evaluation of their individuals [3]. This
approach aims to generate representative and diverse scenario populations and measure
their impact on solution populations. Simultaneously, the solutions evolve based on
different decision-making risk profiles, and we collectively evaluate the performance of
the scenarios.

The primary contributions of this paper are related to the proposed problems, solution
methods, and comprehensive experiments:

• We propose a stochastic integer programming model to address the two-stage hybrid
flow shop scheduling problem with suspension shifts under uncertain processing
times. This model regards suspension shifts as a crucial tool to adjust capacity and
ensure on-time delivery, and it aims to minimize the weighted sum of job earliness
and tardiness. By incorporating constraints on job sequencing, machine utilization,
and suspension shifts, the model can flexibly adjust capacity in complex production
environments, ensuring the effective execution of production plans.

• In a deterministic environment, we test the performance of a biased random key
genetic algorithm (BRKGA) by comparing it with Gurobi and the random key genetic
algorithm (RKGA). The BRKGA’s final solutions are, on average, 7.08% worse than
Gurobi’s optimal solutions. Additionally, we compare the optimal solutions generated
by RKGA and BRKGA under two different fitness criteria. The results show that
BRKGA’s optimal solutions are, on average, 49.7% and 50.4% better than those of
RKGA, demonstrating its ability to produce superior solutions.

• For uncertain environments, we propose the DCE-BRKGA, which incorporates paral-
lel population co-evolution. When applying the pessimistic criterion, we designed a
specialized scenario fitness function based on Lemmas 1 and 2. It transforms scenario
evolution into a maximization problem, while solution evolution is treated as a mini-
mization problem. It clarifies the search direction and speeds up the convergence of
the algorithm.

• We evaluate the performance of the DCE-BRKGA by the value of the stochastic so-
lution (VSS) and the expected value of perfect information (EVPI). The VSS shows
that the proposed algorithm can achieve additional value gains of 0.9% to 69.9% com-
pared to the average scenario. Furthermore, the EVPI indicates that after eliminating
uncertainty, the algorithm yields potential improvements of 2.4% to 20.3%. This is par-
ticularly useful for manufacturers as it helps them understand the value of investing
in solutions to reduce uncertainty or to improve prediction accuracy.

The structure of this article is as follows. Initially, the proposed problem is stated and a
mathematical model is presented in Section 3. Subsequently, a co-evolutionary algorithm is
introduced to solve the NP-hard problem in Section 4, and the results of computational tests
are discussed in Section 5. Finally, conclusions are drawn and future work and research
directions are discussed in Section 6.

2. Literature Review

This study employs a co-evolutionary algorithm to conduct two-stage hybrid flow
shop scheduling with suspension shifts in an environment of uncertain processing times.
The research expands upon previous works in three key aspects: workshop scheduling
considering suspending operations, workshop scheduling with uncertain processing times,
and the application of co-evolutionary algorithms.

2.1. Workshop Scheduling Research Considering Suspending Operations

Workshop suspensions adjust production capacity by controlling machine availability
time. Research on workshop scheduling considering machine availability can be catego-
rized into two types:

Mathematics 2024, 12, 2575 4 of 30

Optimizing the scheduling plan: This approach treats machine availability as a con-
straint. For instance, Lin et al. [4] considered constraints due to regular maintenance and
shift changes, employing an online algorithm to address the parallel machine scheduling
problem for uninterrupted job processing. Nguyen [5] introduced a polynomial-time ap-
proximation scheme for minimizing the total completion time of two parallel machines.
Yu et al. [6] examined the proportional flow shop scheduling problem with periodic ma-
chine maintenance. Detti et al. [7] aimed to minimize completion time in single-machine
scheduling problems with uncertain maintenance activities using robust scheduling meth-
ods.

Collaborative optimization research: This type focuses on the synergy between ma-
chine availability planning and scheduling planning. Lee and Leon [8] studied the collabo-
rative optimization of single-machine variable-rate scheduling, regarding maintenance as a
tool to enhance equipment utilization and discussing strategies to minimize total processing
time and delays within a single maintenance cycle. Nourelfath et al. [9] proposed a joint
model for parallel machine system scheduling and maintenance. Lu et al. [10] suggested
a new integrated model to dynamically adjust maintenance plans, noting that periodic
maintenance might lead to excessive maintenance. Liu Yu et al. [11] introduced a parallel-
machine production synchronization evaluation model, integrating production plans with
preventive maintenance scheduling using the moment-matching method. Zheng et al. [12]
explored the energy-saving two-stage hybrid flow shop scheduling problem, combining
time-of-use electricity pricing decisions with machine working states and production plans
to optimize the maximum completion time and total energy consumption.

These studies underscore the significance of joint decision-making in machine avail-
ability planning and production planning for enhancing production efficiency, reducing
costs, and ensuring product quality. This area has garnered substantial attention in the
academic community.

2.2. Workshop Scheduling Research Considering Uncertain Processing Time

Early research on workshop scheduling optimization was often based on idealized
assumptions. However, uncertainties in actual production environments—such as fluc-
tuations in equipment performance, failures, and maintenance needs—make accurate
prediction of processing times challenging. This makes the in-depth study of processing
time uncertainty crucial for optimizing scheduling, improving efficiency, and reducing
risks. Current research on scheduling under uncertain processing times can be divided into
three main directions:

Rescheduling: This approach generates an initial scheduling plan based on current
workshop information and adjusts the plan according to actual conditions when random
disturbances occur. For example, Zadeh [13] initially schedules based on estimated pro-
cessing times and then reschedules after determining the actual times, using the artificial
bee colony algorithm to solve the dynamic flexible workshop scheduling problem with the
goal of minimizing the maximum completion time. Framinan et al. [14] explored using real-
time completion times of pipeline operations to reschedule jobs, demonstrating through
computational experiments that rescheduling policies are effective only if the processing
time variability is low and the initial plan quality is good.

Stochastic scheduling: This approach uses known probability distributions or rele-
vant empirical data about job processing times, employing methods based on expected
indicators for decision-making. Yue et al. [15] addressed the timing window allocation
scheduling problem with stochastic processing times, using a branch-and-bound algorithm
to solve the single-machine scheduling problem optimally. Ghaedy-Heidary et al. [16] pro-
posed a simulation optimization framework combining genetic algorithms and simulation
models for the stochastic flexible job shop scheduling problem. Liu et al. [17] studied the
stochastic parallel-machine scheduling problem with uncertain job arrivals and processing
times, proposing a two-stage method to minimize the total cost: first assigning jobs when
uncertainty is unknown, then scheduling when uncertainty is known.

Mathematics 2024, 12, 2575 5 of 30

Robust scheduling: This approach pre-identifies and evaluates potential uncertainty
events during production, incorporating their impact into the preliminary scheduling plan
to minimize worst-case performance. Lu et al. [18] studied the single-machine scheduling
problem with uncertain processing times, using simple iterative improvement heuristics
and simulated annealing heuristics. Wang et al. [19] investigated the robust scheduling
problem for identical parallel machines with uncertain processing times, considering the
possibility of outsourcing jobs. Xiao et al. [20] examined the job shop scheduling problem
with stochastic deteriorating processing times, measuring schedule robustness by the
expected deviation between realized and initial completion times.

Therefore, studying the randomness of processing times is crucial for optimizing
scheduling and reducing risks. Scholars have proposed three methods—rescheduling,
stochastic scheduling, and robust scheduling—to address this challenge, each with its
advantages and disadvantages and suitable for different production environments. In
practical applications, it is necessary to choose the appropriate scheduling strategy based
on specific conditions.

2.3. Application Research on Co-Evolutionary Algorithms

To address the complex optimization challenges characterized by large scales, multiple
objectives, and uncertainty, co-evolutionary algorithms have become a significant research
area in evolutionary computation. These algorithms improve performance, efficiency,
and robustness [21–23]. Co-evolutionary algorithms have received considerable attention
in manufacturing production [24] and various other fields [25]. Population cooperation
is the primary method to achieve co-evolution [26]. Co-evolution can be categorized
into competitive and cooperative types based on different inter-population evaluation
methods. The following discusses research on competitive and cooperative co-evolutionary
algorithms for solving uncertainty problems.

Competitive co-evolutionary algorithms are based on the principle of intermediate
competition in ecology, where improvement in one population exerts selective pressure on
other populations, thereby affecting their evolution. Gu et al. [27] proposed a competitive
co-evolutionary quantum genetic algorithm to solve job shop scheduling problems with
uncertain processing times. They designed three interspecific competition strategies for
population evaluation and dynamically adjusted the population sizes to increase the genetic
diversity and prevent premature convergence.

Cooperative co-evolutionary algorithms decompose complex problems into several
subproblems, which are solved by various populations through multi-population coopera-
tion for collaborative evaluation. Herrmann [28] was the first to design a dual-population
co-evolutionary genetic algorithm for robust scheduling of parallel machines under uncer-
tain processing times. Jensen [29] introduced a ranking-based scenario fitness evaluation,
correcting the symmetry and bias issues of the original method. Oliveira et al. [3] proposed
a dual-space co-evolutionary biased random key genetic algorithm for car rental problems
with uncertain demand, where solution and scenario parallel populations co-evolve.

Current research shows that co-evolutionary algorithms have been widely applied
in multiple fields, but there has been less research on dealing with uncertainties. The
application of co-evolutionary algorithms to uncertainty problems can be categorized
into competitive and cooperative types. Competitive co-evolutionary algorithms improve
algorithmic performance through competitive strategies, while cooperative co-evolutionary
algorithms decompose uncertainty problems, separating uncertain factors from certain ones
to allow parallel populations of solutions and scenarios to co-evolve. Cooperative methods
are simple to operate and have strong applicability, supporting the design of scenarios with
different decision risk preferences and ensuring solution quality. However, their application
has not been fully explored and utilized, necessitating further in-depth research.

Mathematics 2024, 12, 2575 6 of 30

3. Problem Definition

This paper discusses the two-stage hybrid flow shop scheduling problem with suspen-
sion shifts under uncertain processing times, aiming to obtain production schedules and
a workshop suspension shift plan during the planning period. The production schedule
aims for products to be completed exactly on the due date; early completion increases
operational and inventory costs, while late completion results in penalties for breach of
contract. Therefore, the objective of this study’s production scheduling is to minimize
the weighted sum of earliness and tardiness of jobs, achieving on-time delivery to reduce
operational and inventory costs and to minimize the penalties due to delays.

The problem under investigation can be characterized as follows: Given a set of jobs
N = {1, 2, · · · , n}, each job undergoes processing operations in a two-stage hybrid flow
shop, where each stage has m1 and m2 identical parallel machines, respectively. Each job
requires two operations, with the first operation processed at the first stage and the second
operation processed at the second stage, and each operation can be assigned to any machine
k within its corresponding stage. Assuming each job’s processing at each stage as a single
job, the problem assumptions are as follows:

1. All jobs must pass through the stages in the same order, and a job can only proceed to
the next stage after completing the current one;

2. A job cannot be processed on different machines simultaneously;
3. Each machine can process only one job at a time without preemption;
4. Parallel machines at each stage have identical technical features, production capacities,

and processing speeds;
5. All jobs and machines are available at time 0;
6. Buffer areas between machines are sufficiently large, allowing processed jobs to wait;
7. Job setup times are included in the processing times or are negligible;
8. Machines cannot process jobs during suspension shifts, but if a job is interrupted by a

suspension shift, it can resume processing after the suspension shift ends;
9. All machines follow the same suspension shift schedule to reduce operational costs.

The heterogeneity of workshop environments and the diversity of orders make pre-
dicting job processing times challenging, leading to uncertainties in actual production
environments. Therefore, this study considers the limited known information about job
processing times: specifically, the upper and lower bounds for each stage.

Most manufacturing companies operate on a two-shift system, dividing each day into
two 12 h shifts (day and night). When planning a suspension shift schedule, it is necessary
to schedule the production of current jobs and determine the shifts during the week when
suspension should occur. However, to keep the production line running, the shop must
ensure at least four working days per week, allowing for no more than six suspension
shifts. Since the objective of this study is to minimize the weighted sum of job earliness
and tardiness, we aim to maximize the number of workshop suspension shifts without
worsening this objective value, achieving capacity optimization and on-time delivery of
orders. Let tm represent the number of suspension shifts required. The problem then
transforms into finding the optimal solution for collaborative optimization by starting from
tm = 0 and incrementally adding one suspension shift until the objective value worsens or
the number of suspension shifts exceeds six (tm > 6), as shown in Figure 2. Additionally,
if a day is divided into three, four, or more shifts, the algorithm can still be applied by
simply recalculating the number of shifts and adjusting the constraints on tm according
to the specific situation. For example, three shifts means that a shift is 8 h, and tm can be
calculated accordingly.

Problem Modeling

To formalize the problem, we develop a stochastic integer programming model. Fol-
lowing the detailed problem description and the set of assumptions outlined earlier, we
introduce pertinent symbols to enhance clarity, as presented in Table 1.

Mathematics 2024, 12, 2575 7 of 30

Figure 2. Problem transformation flowchart.

Table 1. Mathematical notations.

Notation Description

S Stage set S = {1, 2}
l Stage symbols, l ∈ S
Ml A set of machines in stage l
M All machines set
k Machine symbol, k ∈ Ml
N A set of jobs that does not contain virtual jobs, N = {1, 2, · · · , n}
N0 A set of jobs containing virtual jobs, N = {0, 1, 2, · · · , n}, For each

stage and machine, introduce a virtual job 0, which precedes the
first job on each machine

n Total number of jobs
ml Total number of machines in stage l
h, i, j Job symbol, h, i ∈ N0, j ∈ N, h ̸= i ̸= j
αi Earliness weight of job i
βi Tardiness weight of job i
p̃il Stochastic processing time of job i in stage l
di Due date of job i
T Shift set, T = {1, 2, · · · , t0}
t Shift symbol, t ∈ T
µ Duration of each shift
tm Shifts requiring suspensions
sil Start time of job i in stage l
Ei Earliness of job i
Ti Tardiness of job i
M1 Maximum value

Mathematical Modeling

Decision variables:

Mathematics 2024, 12, 2575 8 of 30

Zijlk 0–1 variable: Zijlk = 1 if job j is machined immediately after job i on machine k in
stage l; otherwise, Zijlk = 0.

Xt 0–1 variable: Xt = 1 if a suspension occurs on shift t; otherwise, Xt = 0.
Yilt 0–1 variable: Yilt = 1 if the end machining time of job i is at shift t in stage l;

otherwise, Yilt = 0 .
Rilt 0–1 variable: Rilt = 1 if job i is machined across shift t in stage l; otherwise, Rilt = 0 .

Optimization model:

Min ∑
i∈N

(αiEi + βiTi) (1)

Constraints:

Ei ≥ 0, ∀i (2)

Ei − di +
(
si2 + p̃i2 + Xt(Yi2t + Ri2t)µ

)
≥ 0, ∀i, ∀t (3)

Ti ≥ 0, ∀i (4)

Ti + di − (si2 + p̃i2 + Xt(Yi2t + Ri2t)µ) ≥ 0, ∀i, ∀t (5)

∑
k∈Ml

∑
i∈N0

Zijlk = 1, ∀l, ∀j (6)

∑
j∈N

Z0jlk ≤ 1, ∀l, ∀k (7)

Zijlk + Zjilk ≤ 1, ∀k, ∀l, ∀i, ∀j = i + 1, · · · , n (8)

∑
j∈N

Zijlk − ∑
h∈N0

Zhilk ≤ 0, ∀l, ∀k, ∀i (9)

sil + p̃il + Xt(Yilt + Rilt)µ− sjl −M1(1− Zijlk) ≤ 0, ∀k, ∀i, ∀j, ∀l, ∀t (10)

s0l − sil −M1(1− Z0ilk) ≤ 0, ∀k, ∀i, ∀l (11)

si1 + P̃i1 + Xt(Yit1 + Rit1)µ− si2 ≤ 0, ∀i (12)

sil ≥ 0, ∀i, ∀l (13)

s0l = 0, ∀l (14)

∑
t∈T

Xt − tm = 0 (15)

sil + p̃il − µt−M1(1−Yilt) ≤ 0, ∀t, ∀i, ∀l (16)

sil + p̃il − µ(t− 1) + M1(1−Yilt) ≥ 0, ∀t, ∀i, ∀l (17)

sil + p̃il − µ(t + 1)−M1(1− Rilt) ≤ 0, ∀t, ∀i, ∀l (18)

sil + p̃il − µt + M1(1− Rilt) ≥ 0, ∀t, ∀i, ∀l (19)

Zijlk ∈ {0, 1}, ∀k, ∀i, ∀j, ∀l (20)

Yilt ∈ {0, 1}, ∀i, ∀l, ∀t (21)

Rilt ∈ {0, 1}, ∀i, ∀l, ∀t (22)

Equation (1) describes the objective function of this study as the weighted sum of the
earliness and tardiness of jobs. Constraints (2) and (3) define the earliness of jobs, while
constraints (4) and (5) define the tardiness of jobs. Constraint (6) ensures that each job
is processed by exactly one machine. Constraint (7) ensures that the first job produced
cannot exceed the total number of machines available. Constraint (8) ensures the feasibility.
Constraint (9) ensures that the immediate precedent and subsequent processes of job j must
be on the same machine. Constraints (10) and (11) calculate the start time of each job. If
the end time of the previous job falls within a suspension shift or if the job’s processing
time spans a suspension shift, the start time of the job must include the suspension shift
time. Constraint (12) ensures that the start time of the second-stage job is later than the
completion time of the same job in the previous stage. Constraint (13) states that all jobs
arrive at time 0. Constraint (14) establishes that the earliest production time for each

Mathematics 2024, 12, 2575 9 of 30

machine is at time 0. Constraint (15) guarantees that the total number of suspension shifts
meets the required criterion. Constraints (16) and (17) determine the interval of the shift
in which the job ends. Constraints (18) and (19) specify the shifts spanned by the job
processing. Finally, constraints (20)–(22) indicate that the decision variables are binary
integers.

4. Solution Method

As the current problem is an NP-hard problem with uncertain processing times, we
adopt the DCE-BRKGA which has the ability to handle uncertainty by co-evolution of
the solution populations and scenario populations. This is an innovative extension of the
original genetic algorithm, addressing its limitation in handling uncertainty problems. The
flowchart of the algorithm is presented in Figure 3.

Figure 3. DCE-BRKGA flowchart.

First, the solution population X1 and scenario population S1 are initialized through
random number encoding, with the current iteration number set to i = 1, as described in
Section 4.1. Each pair of individuals (x, s) formed from the two populations is decoded in
Section 4.2 to calculate the objective function of the complete scheduling solution, where
x ∈ Xi and s ∈ Si. The calculation of the objective function for each pair (x, s) yields the
matrix F(x, s). Next, based on the objective function matrix F(x, s), the fitness values of all
solutions x ∈ Xi and scenarios s ∈ Si are calculated and sorted according to their fitness
values. Considering the differences in risk identification and management capabilities
among decision-makers, two types of individual fitness evaluation methods are proposed.
Detailed information is introduced in Section 4.3. Finally, all individuals in the population
are divided into elite and non-elite individuals. The population is evolved by retaining
elite individuals, mutating individuals, and crossing individuals into the next-generation
population, as shown in Section 4.4.

4.1. Initialization
4.1.1. Solution Population Initialization

The solution is divided into two parts: a scheduling decision and a workshop sus-
pension shift decision. Given a population size of P, the initial population is represented
by a P× (2n + t) matrix Xi, where i represents the iteration number, and each row of the
matrix represents an individual in the population. For convenience, the part representing

Mathematics 2024, 12, 2575 10 of 30

the scheduling decisions is denoted by a P× 2n matrix Ai, and the part representing the
workshop suspension shift decision is denoted by a P× t matrix Bi.

For the matrix Ai, the j-th number of the e-th row is denoted as ai
ej. Thus, the matrix

Ai can also be represented by each row ai
e, Ai = [ai

1, ai
2, · · · , ai

P]
T . Each row ai

e in the matrix
contains 2n real numbers, as shown in Figure 4. For convenience, by treating the processing
of each stage of n jobs as a separate job, these 2n real numbers represent the scheduling
information for 2n jobs. Decoding these 2n real numbers yields the scheduling decision
plan. Among them, jobs j ∈ {1, 2, · · · , n} represent the processing of n jobs in the first
stage, and jobs j ∈ {n + 1, n + 2, · · · , 2n} represent the processing of n jobs in the second
stage. That is, when j ∈ {1, 2, · · · , n}, ai

ej and ai
e,j+n respectively represent the encoding of

the first- and second-stage processing information for the same job.

Figure 4. Solution chromosomal fragments.

There are m1 machines in the workshop used for processing jobs in the first stage, and
there are m2 machines for the second stage. Let M denote the set of all machines in the
workshop: M = {1, 2, · · · , m1 + m2}. The subset {1, 2, · · · , m1} represents the machines
for the first stage, and the subset {m1 + 1, m1 + 2, · · · , m1 + m2} represents the machines
for the second stage. To ensure the feasibility of the scheduling decision ai

e, the encoding
method used is shown in Equation (23).

ai
ej ∈

{
(0, m1], ∀j ∈ 1, 2, · · · , n

(m1, m1 + m2], ∀j ∈ n + 1, n + 2, · · · , 2n
(23)

For the matrix Bi, the j-th number of the e-th row is denoted as bi
ej. Thus, the matrix Bi

can be represented by each row bi
e, Bi = [bi

1, bi
2, · · · , bi

P]
T . Each row bi

e in the matrix contains
t binary (0–1) variables. Since the number of suspension shifts is tm, to ensure the feasibility
of the workshop suspension shift decision bi

e, each row bi
e needs to satisfy Equation (24).

t

∑
j=1

bi
ej = tm (24)

Let us consider an example: suppose there are three jobs, with two machines in the
first stage and three machines in the second stage. The production schedule spans four
shifts, with one of these shifts requiring suspension. The population size P is five. The
initial population X1 is obtained by combining matrices A1 and B1, as shown below:

X1 =


0.1136 1.1037 3.0028 4.8345 2.6842 4.0088 0 0 1 0
0.8455 0.7480 2.5718 2.5088 3.9093 4.7653 1 0 0 0
1.0174 1.4762 4.8187 3.4526 2.9920 4.7296 0 1 0 0
1.6155 0.2605 4.1876 4.1897 4.9889 4.1250 1 0 0 0
0.2479 1.5545 3.7086 3.1028 4.0237 2.4210 0 0 0 1



Mathematics 2024, 12, 2575 11 of 30

4.1.2. Scenario Population Initialization

The initial population of the scenario is represented by a P× 2n matrix Si. In matrix Si,
the first n numbers in each row represent the processing times of n jobs in the first stage, the
j-th number of the e-th row is denoted as p̃i

ej1, the latter n numbers represent the processing
times of n jobs in the second stage, and the (j + n)-th number of the e-th row is denoted as
p̃i

ej2. Due to limited information about the job processing times, it is only known that the
processing time of job j in stage l has an upper bound Ujl and a lower bound Ljl . Therefore,
the generated job processing times must follow a uniform distribution within the specified
range, as shown in Equation (25).

p̃i
ejl ∈ [Ljl , Ujl] (25)

4.2. Decoding

Section 4.1 initializes the solution population and scenario population through en-
coding, and decoding these populations can yield a complete scheduling solution. When
decoding the scheduling decision gene ai

ej, the ceiling part ⌈ai
ej⌉ represents the selected

machine, and the decimal part ai
ej − ⌊ai

ej⌋ in ascending order represents the sequence rela-

tionship on the machine. For the suspension shift decision variable bi
ej, bi

ej = 0 indicates

that the operation can process normally in shift j, and bi
ej = 1 indicates that the operation is

suspended in shift j. The scenario gene p̃i
ejl represents the processing time of job j, which

does not need to be decoded and can be directly used. Therefore, decoding (a, b, p) yields
the complete schedule solution.

4.3. Individual Evaluation

When facing uncertainty in processing times, due to the lack of specific probability
distribution information, we can only rely on the upper and lower bounds of processing
times to make decisions. Considering the differences in risk identification and manage-
ment capabilities among decision-makers, their focus on performance evaluation metrics
also varies. This paper introduces two evaluation metrics: the average criterion and the
pessimistic criterion. These metrics aim to provide decision-makers with a more com-
prehensive information framework that better reflects the differences in risk preferences
during the decision-making process. Through multidimensional evaluation, this approach
enhances the adaptability and accuracy of decision-making in uncertain environments.

4.3.1. Average Criterion Individual Evaluation Method

The average criterion guides decision-making by considering the overall effect across
all possible scenarios. It calculates the expected values of all potential outcomes to find the
solution that performs best on average. This approach is especially suitable for risk-neutral
decision-makers. Specifically, for the set of all possible processing time scenarios S and the
set of all feasible solutions X, the objective function F(x, s) describes the weighted sum of
earliness and tardiness for a particular solution x under a specific processing time scenario
s. The fitness value fitnessx of solution x can be determined by calculating the unweighted
average of its objective function across all scenarios, as shown in Equation (26).

f itnessx =
∑s∈S F(x, s)
|S| (26)

Within the dual-space co-evolutionary algorithm framework, the evolution objective
of the scenario population should focus on enhancing diversity. This diversity ensures that
the algorithm maintains the robustness and effectiveness of its solutions when facing a
wide range of changing environments. To make the scenario population more diverse, the
fitness value of a scenario individual is transformed into its contribution to the population’s
diversity. This is determined by calculating its distance from other scenarios. The method

Mathematics 2024, 12, 2575 12 of 30

of calculating the distance is based on feature generation, where scenario individual s is
mapped in a two-dimensional space based on two relevant features, as shown in Figure 5:
one is the maximum value of the objective function revealed by the solution population
X, maxx∈X F(x, s), and the other is the minimum value minx∈X F(x, s). For each feature,
scenarios representing extreme values are given high fitness values to encourage expanding
the “space” occupied by the population. For the remaining scenarios, the two nearest
scenarios are identified, and the product of their distances is calculated. The fitness value of
a scenario is the maximum product of the distances along the two axes, giving preference
to scenarios that fill gaps in the population space.

Figure 5. Calculation of scenario population fitness values and distance quantification.

The pseudo-code for Algorithm 1, which calculates the scenario fitness value, is shown
below.

In conclusion, the evaluation of individuals within a population using an average
criterion is designed to identify the solution that exhibits the optimal average performance
across various scenarios throughout the evolutionary process. The objective of evaluating
scenarios is to assemble a set of scenarios that collectively exert the most diverse influence
on the solutions, as illustrated in Figure 6. The star signs represent individuals in each
population. Consequently, the evolution of solutions is framed as a minimization problem,
where individuals x ∈ X from the solution population are ranked in non-decreasing
order based on their fitness values. Conversely, the evolution of scenarios is considered a
maximization problem, necessitating that individuals s ∈ S from the scenario population
be ranked in non-increasing order of their fitness values.

Mathematics 2024, 12, 2575 13 of 30

Algorithm 1 Pseudo-code for the calculation of scenario fitness values
Input: Solution population X, scenario population S, and the |X| × |S|matrix F(x, s)
Output: The fitness values of all individuals in the scenario population S
1: Initialization: Lists B and W of the |S| layer, two-axis distance values Bdists and Wdists

of scenario s, and adaptability value f itnesss of scenario s.
2: for j← 1 to |S| do:
3: s← Sj;
4: Bj

best ← minx∈X F(x, s);

5: Bj
id ← s;

6: W j
worst ← maxs∈S F(x, s);

7: W j
id ← s;

8: end for
9: sort B in ascending order by best

10: sort W in ascending order by worst
11: for j← 2 to |S| − 1 do:
12: Bdist

Bj
id
← (Bj+1

best − Bj
best)× (Bj

best − Bj−1
best);

13: Wdist
W j

id
← (W j

worst −W j−1
worst)× (W j

worst −W j−1
worst);

14: end for
15: for all s ∈ S do:
16: if (s = B1

id) or (s = B|S|id) or (s = W1
id) or (s = W |S|id) then:

17: f itnesss ← +∞;
18: else:
19: f itnesss ← max(Bdists, Wdists);
20: end if
21: end for

Figure 6. Flowchart of co-evolution under the average criterion.

4.3.2. Pessimistic Criterion Individual Evaluation Method

In decision theory, the pessimistic criterion, also known as the mini-max criterion, is a
conservative decision-making method that is applied under conditions of uncertainty. This
criterion assumes that the worst-case scenario will occur and selects the decision option
that results in the least possible loss or minimizes the worst-case outcome. This approach
is particularly suitable for decision-makers who are highly sensitive to risk because it
minimizes potential maximum loss by considering all possible negative outcomes and
choosing the option that guarantees the relatively best result in the worst-case scenario.
Therefore, the fitness value fitnessx of solution x can be determined by calculating its
worst-case objective function across all scenarios, as shown in Equation (27).

f itnessx = max
s∈S

F(x, s) (27)

Mathematics 2024, 12, 2575 14 of 30

However, in the two-stage hybrid flow shop scheduling problem with suspension
shifts in this paper, there are sequential constraints between processes. The completion
time of each job cannot be expressed as a linear combination of the processing times
{p11, p21, . . . , pn1, p12, p22, . . . , pn2} of all jobs. Therefore, it is impossible to derive effective
information about scenarios that would result in extreme performance values for the
solution, making the search space for scenarios the entire feasible domain. According to
Lemmas 1 and 2, Equation (28) can be used as the fitness function for evaluating scenario s.

f itnesss = min
x∈X

F(x, s) (28)

Lemma 1 ([30]). ∃x∗ ∈ X, s∗ ∈ S : F(x∗, s) ≤ F(x∗, s∗) ≤ F(x, s∗) , thus, ∀x ∈ X, s ∈ S,
minx∈X maxs∈S F(x, s) = maxs∈S minx∈X F(x, s) and vice versa.

Lemma 2 ([30]). If (x1, s1) is a solution to the minx∈X maxs∈S F(x, s) problem and (x2, s2) is a
solution to the maxs∈S minx∈X F(x, s) problem, then (x1, s2) is simultaneously a solution to both
the minx∈X maxs∈S F(x, s) and maxs∈S minx∈X F(x, s) problems.

In summary, with the pessimistic criterion, solution evaluation focuses on finding the
best solution in the worst-case scenario. Meanwhile, scenario evaluation aims to identify
the scenario that causes the worst solution performance, as shown in Figure 7. Therefore,
the evolution of solutions is a minimization problem, and the individuals x ∈ X in the
solution population should be sorted in non-decreasing order of their fitness values. In
contrast, the evolution of scenarios is a maximization problem, and the individuals s ∈ S in
the scenario population should be sorted in non-increasing order of their fitness values.

Figure 7. Flowchart of co-evolution under the pessimistic criterion.

4.4. Evolutionary Operations

In the DCE-BRKGA, an elite strategy, mutation, and crossover are used to generate
new populations Xi+1 and Si+1. The elite strategy is used to retain the top Pe individuals,
while mutation and crossover are used to generate P− Pe new candidate individuals. These
individuals form the new generation, which has a population of size P. This process is
repeated until the termination condition is met.

4.4.1. Elite Strategy

Since the individuals in the population were already sorted by fitness values in
Section 4.3, the top Pe individuals are the elite individuals Vi

e , and the remaining individuals
are the non-elite individuals Yi

e . The Pe elite individuals are retained in the next-generation
population.

4.4.2. Mutation

We generate Pm mutated individuals in the same way as the initialization in Section 4.1
and retain them in the next-generation population.

Mathematics 2024, 12, 2575 15 of 30

4.4.3. Crossover

After the mutation operation, crossover is performed to generate new individuals
Wi

e for the next-generation population. To maintain the population size in each gener-
ation, P − Pe − Pm crossover individuals need to be generated. Crossover individuals
Wi

e = [wi+1
e1 , wi+1

e2 , · · · , wi+1
en] are generated, where each gene wi+1

ej is selected from the elite

individual gene vi
ej and non-elite individual gene yi

ej. This selection is controlled by the

biased elite probability ρ ∈ [0, 1], which is predetermined. The gene wi+1
ej can be obtained

by Equation (29).

wi+1
ej =

{
vi

ej i f r(j) ≤ ρ

yi
ej otherwise

(29)

In Equation (29), r(j) is a random number between (0,1). If the generated random
number is less than ρ, the elite individual gene is chosen; otherwise, the non-elite individual
gene is chosen. When performing crossover on the solution population and scenario
population, the scheduling decision part of each individual’s gene is crossed using the
method, while the suspension shift decision part of the gene directly chooses the elite
individual’s gene.

5. Computational Experiments, Results, and Discussion

Under conditions of processing uncertainty, simulation tests are conducted on the
two-stage hybrid flow shop scheduling problem with suspension shifts. The parameters
of the generated data instances are as follows: The number of machines per stage m ∈
{2, 3, 4, 5, 6, 7}, with m1 and m2 both equal to m. The number of jobs n ∈ {10, 15, 20, 25, 30, 35}.
The lower bound of the processing time for job j in stage l follows a uniform distribution
Ljl ∈ [Ljl , γ1Ljl], where L represents the minimum processing time per stage for a job; to
ensure at least four days of workload, L is set to 96m/n. The upper bound of the processing
time for job j in stage l follows a uniform distribution Ujl ∈ [Ljl , (1 + γ2)Ljl], with param-
eters γ1 = 2 and γ2 = 1.5 controlling the relative ranges of the lower and upper bounds.
To test the impact of due dates, the due date dj of job j follows a uniform distribution

(µ − µR/2, µ + µR/2), where µ = (1 − T)E[Cmax] and E[Cmax] = 1
2m ∑n

j=1 ∑2
j=1

Ljl+Ujl
2 .

The parameter T = 0.3 is the tardiness factor, and R ∈ {0.6, 1.2} is the relative range of
the due date window. When R = 0.6, the due dates are tight, and when R = 1.2, the due
dates are relaxed. The weights for job earliness and tardiness follow a discrete uniform
distribution in the range [a, b]. The specific parameter values are shown in Table 2. There
are 72 possible combinations. From these parameter combinations, 28 different scale com-
binations are selected to generate 28 data instances for experimental testing. The specific
data instance numbers and corresponding parameter combinations can be seen in Table 3.

Table 2. Parameters of test data instances.

Parameter Experimental Value Parameter Type

Number of Machines
per Stage

2, 3, 4, 5, 6, 7 6

Number of Jobs 10, 15, 20, 25, 30, 35 6

Lower Bound of
Processing Time

Uniform distribution of Ljl ∈ [ιjl , γ1Ljl],
where L = 96m

n , γ1 = 2
1

Upper Bound of
Processing Time

Uniform distribution of Ujt ∈ [Ljt, (1 + γ2)Ljt],
where γ2 = 1.5 1

Due date

dj ∈ (µ− µR
2 , µ + µR

2),
µ = (1− T)E[Cmax],

E[Cmax] =
1

2m ∑n
j=1 ∑n

l=1
Ljl+Ujl

2 ,
T = 0.3, R ∈ {0.6, 1.2}

2

Earliness\Tardiness
Weight

αj, β j follow a discrete uniform
distribution over the range [1, 9] 1

Mathematics 2024, 12, 2575 16 of 30

Table 3. Results of the analysis of the evolution of the solution space.

Average Criterion Pessimistic Criterion
Data

Instance
Number

Scale
(n×m1×m2×R)

Degree of
Improvement

of Solution

Optimal
Fitness
Value

Coefficient
of

Variation

Average
Running
Time (s)

Optimal
Shifts for

Suspension

Degree of
Improvement

of Solution

Optimal
Fitness
Value

Coefficient
of

Variation

Average
Running
Time (s)

Optimal
Shifts for

Suspension

1 10× 2× 2× 0.6 61.5% 588.1 7.3% 16.2 0 59.2% 611 11.8% 13.5 0
2 10× 2× 2× 1.2 78.4% 396.2 22.7% 25.3 2 70.2% 542.1 14.9% 24.7 0
3 10× 3× 3× 0.6 59.7% 824.4 16.6% 24.2 0 65.9% 1042.8 11.2% 20.2 0
4 10× 3× 3× 1.2 75.3% 515.2 27.4% 39.8 2 74.1% 581.8 13.7% 43.2 2
5 10× 4× 4× 0.6 55.9% 679.3 23.9% 32.3 1 81.2% 787.9 28.4% 36.5 1
6 10× 4× 4× 1.2 87.7% 306.3 26.5% 41.9 2 64.7% 570 9.4% 43.8 3
7 15× 2× 2× 0.6 57.7% 1087.4 9.1% 51.5 1 65.7% 1196.1 5.7% 54.1 1
8 15× 2× 2× 1.2 80.7% 467.1 19.1% 102.2 1 78.3% 552 13.9% 72 0
9 15× 3× 3× 0.6 59.8% 1125.6 13.6% 92.9 0 61.2% 1257.1 8.9% 106.9 1
10 15× 3× 3× 1.2 79.2% 619.7 12.7% 134.1 4 82.2% 621.9 13.1% 102.6 2
11 15× 4× 4× 0.6 75.5% 1026.2 19.2% 124.6 1 77.9% 1087.7 21.2% 105.6 0
12 15× 4× 4× 1.2 81.8% 657.4 12.2% 164.3 0 77.2% 821.4 11.4% 108.5 0
13 20× 2× 2× 0.6 61.3% 1409 6.8% 139.4 1 56.2% 1518.6 4.5% 143.9 0
14 20× 2× 2× 1.2 87.3% 630 14.4% 251.3 1 80.5% 797.7 14.1% 214.8 3
15 20× 3× 3× 0.6 69.1% 1417.1 7.4% 244.5 1 56.6% 1620.6 6.5% 216.9 1
16 20× 3× 3× 1.2 69.9% 1123.1 11.7% 266.3 2 74.8% 1364.4 11.6% 286.2 0
17 20× 4× 4× 0.6 58.3% 1763 11.7% 264.3 0 71.3% 1847.6 8.7% 328.7 1
18 20× 4× 4× 1.2 77.2% 896.9 11.6% 483.7 2 78.0% 967.9 16.9% 362.5 2
19 25× 5× 5× 0.6 66.1% 2211.6 7.0% 693.1 1 68.6% 2335.4 4.5% 773.5 0
20 25× 5× 5× 1.2 78.2% 1270.5 11.2% 936.5 0 78.1% 1498.5 13.5% 937.6 2
21 25× 6× 6× 0.6 72.8% 1544.6 10.7% 821.3 0 71.9% 1757.8 6.1% 930.8 0
22 25× 6× 6× 1.2 75.3% 1437.6 11.0% 1078 0 79.1% 1543.4 11.6% 1145.7 2
23 30× 6× 6× 0.6 74.9% 2773.5 9.4% 1580.7 1 71.9% 3071.8 7.1% 1488.4 0
24 30× 6× 6× 1.2 76.6% 1183.3 7.0% 2374.3 2 82.9% 1241.6 10.9% 2113.5 1
25 30× 7× 7× 0.6 67.7% 2660.2 6.8% 2142.7 0 73.0% 2669.1 9.6% 1826.2 0
26 30× 7× 7× 1.2 78.8% 1591 8.4% 2760.7 1 78.6% 1904.6 6.9% 2582.4 1
27 35× 7× 7× 0.6 68.8% 2696 5.1% 3074.1 0 64.7% 2974.7 5.5% 3475.5 0
28 35× 7× 7× 1.2 80.2% 1515.8 9.2% 6082.5 1 81.9% 1817.1 7.2% 6274.4 2

Average 72.0% 1229.1 12.8% 858.7 1.0 72.4% 1378.7 11.0% 851.2 0.9

Mathematics 2024, 12, 2575 17 of 30

The performance of the BRKGA algorithm is highly sensitive to its parameters: pop-
ulation size P, elite individual proportion Pe, mutant individual proportion Pm, and
elite gene inheritance probability ρ. Referencing the parameter choices recommended
by Gonçalves [31], we set Pe for the DCE-BRKGA dual-space parallel evolution to 0.2, Pm
is set to 0.1, and ρ is set to 0.7. The population size is set to P = 2

√
n× (m1 + m2), where

n is the total number of jobs, and m1 and m2 are the numbers of machines in the first and
second stages, respectively. The stopping criterion is based on 2n non-improving iterations.

All experiments are conducted on a desktop computer with an AMD Ryzen 9 5900X
12-Core (3.70 GHz; AMD, Santa Clara, CA, USA) CPU and 32 GB RAM, using Python 3.9
and Gurobi 11.0.0 as the experimental tools.

5.1. Solution Evolution

To evaluate the algorithm’s ability to generate high-quality solutions, we can analyze
the performance improvement during iterations and the performance differences across
multiple runs. Figure 8 shows the iterative process for data Instance 11, illustrating the
changes in the fitness values of the best solution in each generation, making it easy to
observe the evolution and convergence. Despite fluctuations caused by changes in the
scenario population during evolution, the fitness values under both evaluation criteria sig-
nificantly improved and eventually stabilized. To quantify the performance improvement,
we analyze the iteration process that generated the optimal solution. Using the scenario
population from the final generation of that iteration, we calculate the initial solution’s
fitness value finitial and the final optimal solution’s fitness value f f inal . These values are
used to compute the improvement during the iteration, as shown in Equation (30). Table 3
records the improvement for each data instance under different evaluation metrics, show-
ing consistent improvement across both metrics, with an average improvement of about
72%.

Degree o f improvement o f the solution =
f f inal − finitial

finitial
× 100% (30)

Figure 8. Evolution of the solution’s fitness values (Instance 11, with the average criterion on the left
and the pessimistic criterion on the right).

In this study, each data instance is run ten times to ensure result reliability, and we
record the fitness values of the final solutions for each run. The lowest fitness value among
these runs is selected as the optimal fitness value for each data instance. As shown in
the “Optimal Fitness Value” column in Table 3 and Figure 9, the optimal fitness values
obtained using the pessimistic criterion are generally higher than those obtained using
the average criterion. This indicates that the pessimistic criterion tends to consider the
worst-case scenarios, leading to relatively poorer fitness values.

Mathematics 2024, 12, 2575 18 of 30

Figure 9. Optimal fitness values for the average and the pessimistic criterion.

To assess the algorithm’s stability and reliability, we analyze the coefficient of variation
of the fitness values from ten runs. The “Coefficient of Variation” column in Table 3 and
Figure 10 show average values of 12.8% and 11.0% for the two evaluation criteria, indicating
some variability between runs due to the different scenario populations generated each
time. Specifically, when the number of jobs n is 10, the coefficient of variation is unstable,
sometimes exceeding 20%. This is likely because with fewer jobs, the processing time of
each job becomes more critical, and minor adjustments to solutions can lead to significant
changes in fitness values.

Figure 10. Coefficients of variation for the average and pessimistic criterion.

Table 3 provides a quantitative analysis of the average run times, revealing that run
times are significantly affected by the scale of the data instances. As the number of jobs
and machines increases, so does the run time. Additionally, when the due dates are more
relaxed, the run time tends to increase. This may be because relaxed due dates imply
ample capacity, requiring more suspension shifts to meet production needs. To further
verify this observation, Table 3 also records the number of suspension shifts corresponding
to the optimal solution. The data show that in instances with R = 1.2, the optimal

Mathematics 2024, 12, 2575 19 of 30

solutions generally require more suspension shifts than those with R = 0.6, supporting the
above findings.

5.2. Algorithm Comparison Experiments

To further verify the performance of the algorithm in terms of the quality of the
generated solution, this paper compares the BRKGA with the Gurobi solver and the RKGA
under deterministic scenarios.

5.2.1. Comparative Experiments with the BRKGA and Gurobi

Since this problem is NP-hard, Gurobi can only solve relatively small data instances.
This paper designs 12 small data instances so that Gurobi can achieve optimal solutions
within a reasonable time. The method for generating data instances is similar to that in
Section 5, with two machines per stage and the number of jobs n ∈ {4, 6, 8, 10, 12}; the other
parameters are generated in the same way. Each data instance generates a fixed scenario
within the processing time range. In this deterministic scenario, a comparative experiment
is conducted between the BRKGA and Gurobi; we limit the suspension shifts to no more
than one and compare the minimum objective values obtained by both methods.

As shown in Table 4, the final objective value obtained by the BRKGA is, on average,
7.08% higher than the optimal value obtained by Gurobi. In terms of the average run time,
when n = 12 and m1 = m2 = 2, Gurobi takes over an hour to solve the problem, while the
BRKGA completes it within 8 s. This demonstrates that the BRKGA can effectively solve
the problem in a much shorter time.

Table 4. The BRKGA and Gurobi solve for the optimal value and average run time of the data
instance.

Scale Optimal Solution Average Run Time
(n × m1 × m2 × R) Gurobi BRKGA Deviation Gurobi BRKGA

4× 2× 2× 0.6 960 979 1.98% 0.02 0.18
4× 2× 2× 1.2 719 784 9.04% 0.03 0.18
6× 2× 2× 0.6 441 467 5.90% 0.36 0.71
6× 2× 2× 1.2 338 362 7.10% 0.34 0.70
8× 2× 2× 0.6 894 965 7.94% 1.29 2.05
8× 2× 2× 1.2 517 564 9.09% 2.06 1.73
10× 2× 2× 0.6 917 998 8.83% 242.80 3.55
10× 2× 2× 1.2 837 898 7.29% 283.02 2.96
12× 2× 2× 0.6 498 521 4.62% 3864.32 7.60
12× 2× 2× 1.2 398 434 9.05% 4510.70 7.87

Average 651.9 697.2 7.08% 890.49 2.75

5.2.2. Comparative Experiments with the BRKGA and RKGA

This paper compares the optimal solutions generated by the RKGA [32] and the
BRKGA under two different fitness criteria in a fixed scenario. Comparative experiments
are conducted on 14 data instances, with the results shown in Table 5 and Figure 11. The
average deviation of the final best value of the BRKGA from that of the RKGA is −49.7%
under the average criterion and −50.4% under the pessimistic standard. Furthermore,
Figure 11 indicates that, compared to the average criterion, the pessimistic criterion results
in a smaller variance in the deviation of the BRKGA relative to the RKGA across the
14 data instances. Although the main advantage of the proposed heuristic method is
that it generates scenarios simultaneously, which is not evaluated in this experiment, the
results support that the BRKGA under a co-evolutionary mechanism yields better solutions
than the RKGA. The BRKGA’s advantages become more apparent as the scale of the data
instances increases.

In addition to comparing the optimal values of the two algorithms, their average run
times were also compared, as shown in Table 6. It can be seen that under both evaluation
criteria, the BRKGA’s average run time is longer. This is because the RKGA is more likely
to get trapped in local optima, leading to early termination of iterations. This reflects the
BRKGA’s advantage in balancing search depth and breadth. The BRKGA’s elite strategy

Mathematics 2024, 12, 2575 20 of 30

and biased selection strategy effectively balance the search breadth (exploring new potential
solutions) and depth (optimizing known solutions), ensuring that the algorithm neither
gets trapped in local optima too early nor fails to effectively approach the global optimum.

Table 5. Optimization of BRKGA and RKGA for solving data instances under different evaluation
criteria.

Instance Scale Average Criterion Pessimistic Criterion
Number (n × m1 × m2 × R) RKGA BRKGA Deviation RKGA BRKGA Deviation

1 10× 2× 2× 0.6 764.5 597.6 −21.8% 840.3 623.4 −25.8%
2 10× 2× 2× 1.2 905.6 509.3 −43.8% 1106.9 589.5 −46.7%
3 10× 3× 3× 0.6 1265.2 869.0 −31.3% 1647.8 854.2 −48.2%
4 10× 3× 3× 1.2 1041.6 592.4 −43.1% 1338.0 740.6 −44.6%
5 10× 4× 4× 0.6 1099.0 642.0 −41.6% 1785.4 811.7 −54.5%
6 10× 4× 4× 1.2 1022.9 445.6 −56.4% 1381.2 447.9 −67.6%
7 15× 2× 2× 0.6 2032.6 1145.5 −43.6% 1887.2 1259.3 −33.3%
8 15× 2× 2× 1.2 1337.8 564.7 −57.8% 1629.2 659.6 −59.5%
9 15× 3× 3× 0.6 2633.0 1143.3 −56.6% 2557.0 1315.8 −48.5%

10 15× 3× 3× 1.2 1947.5 594.7 −69.5% 1751.7 750.8 −57.1%
11 15× 4× 4× 0.6 2544.3 1194.8 −53.0% 2777.7 1258.7 −54.7%
12 15× 4× 4× 1.2 2068.5 692.9 −66.5% 1513.9 775.3 −48.8%
13 20× 2× 2× 0.6 2551.5 1483.0 −41.9% 2988.4 1582.8 −47.0%
14 20× 2× 2× 1.2 2212.1 701.3 −68.3% 2502.0 752.0 −69.9%

Average 1673.3 798.3 −49.7% 1836.2 887.3 −50.4%

Figure 11. Relative deviation of the final optimal values sought by the BRKGA and the RKGA.

Table 6. Average run times of BRKGA and RKGA solving data instances under different evaluation
criteria.

Instance Scale Average Criterion Pessimistic Criterion
Number (n × m1 × m2 × R) RKGA BRKGA RKGA BRKGA

1 10× 2× 2× 0.6 7.6 11.6 6.6 11.9
2 10× 2× 2× 1.2 10 16.2 9.1 21.8
3 10× 3× 3× 0.6 10.8 20.8 12.8 20.3
4 10× 3× 3× 1.2 13.4 28.9 15.3 26.3
5 10× 4× 4× 0.6 13.4 22.7 11.8 35.8
6 10× 4× 4× 1.2 16.3 37.1 18.9 38.3
7 15× 2× 2× 0.6 20.1 64.4 24.8 47.7
8 15× 2× 2× 1.2 32.1 71.3 30.6 121.1
9 15× 3× 3× 0.6 31.4 82.5 30.7 88.9

10 15× 3× 3× 1.2 43.3 101.1 41.1 101.9
11 15× 4× 4× 0.6 54.2 151.3 40.3 112.9
12 15× 4× 4× 1.2 47.2 210.4 49.9 115
13 20× 2× 2× 0.6 63 173.9 47.5 150.2
14 20× 2× 2× 1.2 75.7 196.9 63.7 211.3

Average 31.3 84.9 28.8 78.8

Mathematics 2024, 12, 2575 21 of 30

5.3. Analysis Based on the EVPI and VSS Indicators

The DCE-BRKGA is a heuristic algorithm, so its results, including solutions and
scenarios, are not guaranteed to be optimal. When evaluated using the average criterion,
the problem is classified as a stochastic optimization problem. For such problems, the EVPI
and VSS are used to assess the benefits of the stochastic optimization solutions obtained by
the DCE-BRKGA under uncertainty. This evaluation helps quantify the potential value and
effectiveness of the algorithm’s solutions when accounting for uncertainty.

Figure 12 illustrates the framework for calculating the EVPI and VSS. The EVPI is
the difference between the optimal fitness value randomized adaptation (RA) obtained by
the stochastic method and the “wait-and-see” (WS) value. The WS value represents the
average performance metric of the optimal solutions for each scenario, assuming perfect
information is available in advance. The DCE-BRKGA evolves based on two parallel
BRKGAs, where solutions and scenarios co-evolve. To obtain comparable metrics, a similar
heuristic algorithm, a single BRKGA, is used to generate the “wait-and-see” solutions.
Unlike the two parallel BRKGAs, the single BRKGA evolves only the solution population,
assuming fixed (deterministic) scenarios. The VSS compares the optimal fitness value
RA obtained by the stochastic method with the expected value from using the expected
solution (EEV) considering only the average scenario. A single-space BRKGA generates
the expected result, where the processing time for the average scenario is derived from the
mean of the processing times for all scenarios.

Figure 12. Framework for calculating EVPI and VSS.

To further verify the potential value and efficiency of the DCE-BRKGA, the expected
value of perfect information as a percentage (EVPI%) is used to evaluate the value of
obtaining perfect information. This value is defined as the degree of deviation between the
RA obtained by the DCE-BRKGA and the WS obtained by the “wait-and-see” method and
is calculated as:

EVPI% =
RA−WS

WS
× 100%, (31)

The value of the stochastic solution as a percentage (VSS%) represents the degree of
deviation of the expected value with respect to the RA and is calculated as:

VSS% =
EEV− RA

RA
× 100%, (32)

Mathematics 2024, 12, 2575 22 of 30

This study uses 28 data instances to calculate the EVPI and VSS, and the results are
shown in Table 7 and Figure 13. For the EVPI, the results indicate that if uncertainty
is eliminated, potential improvements of 2.4% to 20.3% can be expected, assuming the
scenario population is representative and decisions are made. This value is very useful
for manufacturers as it helps them understand the value of investing in better prediction
methods.

Regarding the VSS, this metric directly measures the impact of using a stochastic
method compared to a similar deterministic method. The results show that the considera-
tion of uncertainty in the decision-making process can achieve additional value gains of
0.9% to 69.9%. This finding highlights the importance and potential benefits of incorporat-
ing uncertainty into decision-making.

Figure 13. Results of the EVPI and VSS calculations.

Table 7. Calculation of EVPI and VSS.

Instance
Number RA WS EEV EVPI EVPI% VSS VSS%

1 588.1 559.3 631.6 28.8 5.1% 43.5 7.4%
2 396.2 386.9 598.9 9.3 2.4% 202.7 51.2%
3 824.4 778.2 1152.3 46.2 5.9% 327.9 39.8%
4 515.2 470.2 616.1 45.0 9.6% 100.9 19.6%
5 679.3 595.9 965.9 83.4 14.0% 286.6 42.2%
6 306.3 272.6 324.4 33.7 12.4% 18.1 5.9%
7 1087.4 1012.2 1120.4 75.2 7.4% 33.0 3.0%
8 467.1 424.2 825.8 42.9 10.1% 358.7 76.8%
9 1125.6 1036.1 1486.0 89.5 8.6% 360.4 32.0%
10 619.7 553.1 755.9 66.6 12.0% 136.2 22.0%
11 1026.2 885.8 1190.9 140.4 15.9% 164.7 16.0%
12 657.4 582.5 1117.1 74.9 12.9% 459.7 69.9%
13 1409 1366.6 1472.7 42.4 3.1% 63.7 4.5%
14 630 523.7 772.2 106.3 20.3% 142.2 22.6%
15 1417.1 1336.2 1550.1 80.9 6.1% 133.0 9.4%
16 1123.1 990.5 1296.0 132.6 13.4% 172.9 15.4%
17 1763 1507.1 1791.7 255.9 17.0% 28.7 1.6%
18 896.9 789.1 904.8 107.8 13.7% 7.9 0.9%
19 2211.6 2111.1 2378.5 100.5 4.8% 166.9 7.5%
20 1270.5 1222.2 1380.7 48.3 4.0% 110.2 8.7%
21 1544.6 1487.0 1877.4 57.6 3.9% 332.8 21.5%
22 1437.6 1293.3 1694.0 144.3 11.2% 256.4 17.8%
23 2773.5 2568.6 3353.7 204.9 8.0% 580.2 20.9%
24 1183.3 1133.2 1370.6 50.1 4.4% 187.3 15.8%
25 2660.2 2478.5 2816.5 181.7 7.3% 156.3 5.9%
26 1591 1494.1 1940.6 96.9 6.5% 349.6 22.0%
27 2696 2605.9 3066.2 90.1 3.5% 370.2 13.7%
28 1515.8 1462.3 2082.7 53.5 3.7% 566.9 37.4%

Mathematics 2024, 12, 2575 23 of 30

5.4. Scenario Evolution

This section aims to evaluate the quality of the final scenario population obtained
using the average criterion, focusing on diversity and representativeness. In Section 5.1,
we discussed that the fluctuations in solution fitness values (see Figure 8) when using the
average criterion are caused by the non-monotonic evolution of the scenario population.
Due to strategies to increase the scenario population diversity, scenarios are ranked based
on their differential impact on the solutions. This means that the addition or removal of
a single individual can significantly change the fitness of another individual. However,
in this study, the fitness of each scenario is quantified to guide the population towards
certain features, with the focus being on the overall structure of the population rather
than the fitness of individual scenarios. Therefore, when considering the quality of the
scenario population, two key features are: diversity—the goal is to obtain scenarios that
have different impacts on the solutions; representativeness—since the scenario population
cannot cover all possible scenarios, it is essential to ensure that the selected scenarios reflect
the performance of the solutions across all potential scenarios.

5.4.1. Diversity

The diversity of the scenario population relates to the calculation of the scenario
fitness values introduced in Section 4.3.1. Figure 14 uses the previously introduced two-
dimensional coordinate system, as shown in Figure 5, where each scenario in the population
is mapped based on the worst and best fitness values it “causes” in the solution population.
This figure compares the initial and final generations of the scenario population as mapped
within the final solution population. Compared to the initial scenario population (blue
triangles), the final generation (red circles) occupies a larger “space”, with greater distances
between scenarios, indicating higher diversity. The population’s skewed distribution is
because the two features used to map scenarios are correlated; higher worst fitness values
tend to accompany higher best fitness values. Considering that the solution population
tends to converge towards similarly well-performing solutions, we do not expect to see a
single scenario simultaneously adversely affecting one solution while benefiting another in
the final generation.

Based on this mapping, population diversity can be measured from two perspectives:
the range occupied in the space and the dispersion among scenarios. To quantitatively
assess the space and dispersion, this study records the extremum and standard deviations
for the two features. The metrics for the initial and final generations of the 28 data instances
are detailed in Table 8.

To compare the initial and final generations of the scenario population in terms of
occupied space and dispersion, this study introduces additional evaluation metrics: the
extremum deviation ratio (EDR) and the standard deviation ratio (SDR). The EDR measures
the expansion of the final generation’s range on the worst- and best-fitness-value axes
compared to the initial generation. The SDR measures the increase in dispersion of the final
generation relative to the initial generation.

Table 9 and Figure 15 show that, on average, the final generation’s EDR on the worst-
fitness-value axis is 1.58 times that of the initial generation, with the SDR 1.76 times
greater than that of the initial generation. On the best-fitness-value axis, the EDR is 2.19
times greater and the SDR is 2.47 times greater than for the initial generation. These results
indicate that population diversity has improved in both dimensions, with a more significant
improvement in the best-fitness-value dimension.

Mathematics 2024, 12, 2575 24 of 30

Table 8. Calculation of scenario population diversity metrics.

Primary Scenario Population Last Scenario Population

Instance Scale Feature of Worst
Fitness Value

Feature of Best
Fitness Value

Feature of Worst
Fitness Value

Feature of Best
Fitness Value

Number (n × m1 × m2 × R) Max Min σ Max Min σ Max Min σ Max Min σ

1 10× 2× 2× 0.6 1529 1028 115 835 640 69 1553 1039 207 908 574 143
2 10× 2× 2× 1.2 2725 2356 105 780 393 106 2746 2374 114 797 391 133
3 10× 3× 3× 0.6 2657 1842 245 1126 743 113 2652 1770 237 1205 631 157
4 10× 3× 3× 1.2 2564 1810 250 775 466 74 2636 1827 193 860 417 120
5 10× 4× 4× 0.6 3297 2862 129 920 661 79 3277 2741 172 1015 573 144
6 10× 4× 4× 1.2 2130 1836 72 596 268 138 2307 1992 87 699 222 164
7 15× 2× 2× 0.6 2161 1814 91 1253 1058 100 2324 1855 151 1484 974 166
8 15× 2× 2× 1.2 3843 3601 76 554 446 109 4238 3634 192 885 421 143
9 15× 3× 3× 0.6 3216 2702 142 1458 995 108 3639 2502 343 1741 946 239
10 15× 3× 3× 1.2 2419 2138 74 755 621 112 2424 2052 108 827 577 72
11 15× 4× 4× 0.6 2520 2157 90 1211 873 205 2684 2144 175 1447 775 207
12 15× 4× 4× 1.2 1455 1073 116 830 452 146 1786 1043 223 1406 377 338
13 20× 2× 2× 0.6 4624 4069 164 1552 1421 90 5037 4019 284 1757 1334 134
14 20× 2× 2× 1.2 1315 1026 78 796 505 100 1560 971 174 1105 475 206
15 20× 3× 3× 0.6 3260 2789 148 1614 1340 69 3552 2702 249 1805 1223 135
16 20× 3× 3× 1.2 4320 3623 185 1442 1025 106 4306 3556 192 1801 843 241
17 20× 4× 4× 0.6 6807 5883 216 2018 1630 113 6976 5752 314 2376 1377 238
18 20× 4× 4× 1.2 1992 1675 81 1006 740 74 2505 1686 240 1462 693 206
19 25× 5× 5× 0.6 4598 3941 147 2436 2129 79 5023 3821 319 2853 1909 226
20 25× 5× 5× 1.2 3975 3281 169 1675 1072 138 4118 3157 279 2194 854 393
21 25× 6× 6× 0.6 3430 2737 149 1928 1442 100 3581 2475 289 2119 1241 234
22 25× 6× 6× 1.2 7863 6426 323 1735 1204 109 8671 6289 748 2086 1048 288
23 30× 6× 6× 0.6 7003 5792 286 3126 2657 108 7651 5357 614 3479 2295 329
24 30× 6× 6× 1.2 4420 3592 174 1535 995 112 4814 3541 312 1892 938 249
25 30× 7× 7× 0.6 7030 5722 342 3272 2470 205 7852 4774 798 3759 1945 479
26 30× 7× 7× 1.2 5805 4666 312 1931 1353 146 5950 4457 345 2417 1202 303
27 35× 7× 7× 0.6 4734 4092 117 2858 2502 90 4935 4031 283 3187 2468 222
28 35× 7× 7× 1.2 5784 5128 168 1740 1277 100 5935 5096 242 2111 1071 275

Mathematics 2024, 12, 2575 25 of 30

Table 9. Calculation of the EDR and SDR on the two feature axes.

Instance Scale Feature of Worst
Fitness Value

Feature of Best
Fitness Value

Number (n × m1 × m2 × R) EDR SDR EDR SDR

1 10× 2× 2× 0.6 1.03 1.80 1.71 2.44
2 10× 2× 2× 1.2 1.01 1.09 1.05 1.19
3 10× 3× 3× 0.6 1.08 0.97 1.50 1.31
4 10× 3× 3× 1.2 1.07 0.77 1.43 1.33
5 10× 4× 4× 0.6 1.23 1.33 1.71 1.74
6 10× 4× 4× 1.2 1.07 1.21 1.46 2.02
7 15× 2× 2× 0.6 1.35 1.66 2.61 3.05
8 15× 2× 2× 1.2 2.49 2.52 4.31 5.62
9 15× 3× 3× 0.6 2.21 2.41 1.72 1.81

10 15× 3× 3× 1.2 1.32 1.47 1.87 1.76
11 15× 4× 4× 0.6 1.49 1.94 1.98 2.40
12 15× 4× 4× 1.2 1.94 1.93 2.72 3.60
13 20× 2× 2× 0.6 1.83 1.73 3.23 3.69
14 20× 2× 2× 1.2 2.04 2.22 2.17 2.64
15 20× 3× 3× 0.6 1.81 1.68 2.13 1.97
16 20× 3× 3× 1.2 1.08 1.04 2.29 2.27
17 20× 4× 4× 0.6 1.33 1.46 2.57 2.12
18 20× 4× 4× 1.2 2.58 2.96 2.89 2.80
19 25× 5× 5× 0.6 1.83 2.17 3.08 2.86
20 25× 5× 5× 1.2 1.38 1.65 2.22 2.85
21 25× 6× 6× 0.6 1.60 1.94 1.81 2.34
22 25× 6× 6× 1.2 1.66 2.32 1.95 2.65
23 30× 6× 6× 0.6 1.89 2.15 2.53 3.03
24 30× 6× 6× 1.2 1.54 1.79 1.77 2.22
25 30× 7× 7× 0.6 2.35 2.34 2.26 2.34
26 30× 7× 7× 1.2 1.31 1.11 2.10 2.07
27 35× 7× 7× 0.6 1.41 2.42 2.02 2.47
28 35× 7× 7× 1.2 1.28 1.44 2.25 2.74

Average 1.58 1.76 2.19 2.47

Figure 14. First-generation scenario populations vs. last-generation scenario populations
(Instance 11).

5.4.2. Representativeness

Since the generated scenarios only have boundary information for processing times,
it is difficult to assess the accuracy and representativeness of the generated scenarios.
Nonetheless, we can measure them based on the precision. A representative scenario
population should have a similar impact on the solutions. To test this, we evaluated the
best solution found for each data instance using both the final generation’s P scenario from
the same run and 10P scenarios generated from ten runs. By calculating the fitness value
increase percentage (FVIP), we compared the differences in fitness values for the best

Mathematics 2024, 12, 2575 26 of 30

solutions from these two sets of scenarios, as shown in Equation (33), where S represents
the set of P scenarios from the final generation of the same run, and AS represents the set
of 10P scenarios generated from ten runs.

FVIP =
∑s∈AS F(x, s)/|AS| −∑s∈S F(x, s)/|S|

∑s∈S F(x, s)/|S| (33)

Figure 16 shows the test results for 28 data instances. On average, the impact on fitness
of the two scenario sets is similar, with a range of 0.2% to 8.7%. The table shows more
negative values, indicating that the scenarios generated in the same run (S) tend to slightly
underestimate the performance of the best solution. However, this is an average trend
rather than a universal rule.

Figure 15. EDR and SDR on two feature axes.

Figure 16. Fitness value increase percentage.

5.5. Decision Support

Ultimately, this method aims to support decision-makers by providing a range of
high-quality solutions tailored to different risk preferences, supplemented by visual tools to
demonstrate the potential impacts of uncertainty on these solutions. This section will delve
into the outputs provided to decision-makers and the potential computational limitations.

Mathematics 2024, 12, 2575 27 of 30

The number of solutions obtainable using this method depends on the available time
or computational resources. Even with limited resources, each solution’s fitness criteria
can be run once to compare the best solutions generated under two different evaluation
metrics. For example, Figure 17 shows the best results for Instance 24 under different
evaluation criteria. The vertical axis represents the objective value of each optimal solution
in each scenario. In this data instance, the solution under the pessimistic criterion performs
better in most scenarios, while the solution under the average criterion performs better in a
few scenarios. Besides comparing the objective values of different solutions, the solutions
can also be converted into Gantt charts to visually display scheduling and workshop
suspensions (see Figures 18 and 19). This feature is crucial for applying the method in
decision support systems. For ‘, decision-makers can adjust the Gantt chart to modify the
final solution and test these new solutions within the generated scenario set. Additionally,
decision-makers can include specific scenarios in the initial population. However, there
must be certain limitations to ensure that the number of randomly generated individuals in
the population meets the minimum requirements.

Figure 17. Final generated objective value for optimal solution (Instance 24).

Figure 18. Gantt chart of optimal solutions under the average criterion (Instance 24).

Mathematics 2024, 12, 2575 28 of 30

Figure 19. Gantt chart of optimal solutions under the pessimistic criterion (Instance 24).

6. Conclusions

This study regards workshop suspension shifts as a tool to adjust capacity and ensure
on-time delivery. We propose a two-stage hybrid flow shop scheduling model with suspen-
sion shifts, addressing the gap in integrated the optimization of workshop suspensions and
scheduling. We design the DCE-BRKGA to solve the scheduling problem under uncertain
processing times. This method is highly applicable and provides robust solutions without
requiring decision-makers to define scenarios or their probability distributions, needing
only the upper and lower bounds of uncertainty parameters. In terms of application, the
study considers both average and pessimistic criteria, offering a comprehensive informa-
tion framework for decision-makers and enhancing adaptability and accuracy in uncertain
environments through visual comparisons of the solutions. We quantified the benefits
by using the VSS and EVPI on 28 datasets. Compared to the average scenario, the VSS
results show that the proposed algorithm achieves additional value gains ranging from
0.9% to 69.9%. Furthermore, the EVPI indicates that the algorithm could potentially im-
prove outcomes by 2.4% to 20.3% after eliminating uncertainty. These results demonstrate
that the DCE-BRKGA effectively provides robust solutions even in the absence of known
processing time distributions.

In this work, we assume that all workshop suspension shifts have the same priority.
However, if we prioritize suspension shifts during rest days to reduce overtime, the
model could have broader practical applications. Additionally, our current approach sets
the objective as Min ∑i∈N(αiEi + βiTi), effectively balancing the conflicting objectives of
minimizing earliness and tardiness through a weighted sum. While this method addresses
these objectives within a single optimization framework, it does not fully explore the
potential of multi-objective optimization, particularly in terms of generating a Pareto
frontier of optimal solutions. Future work could focus on developing algorithms that
explicitly consider Pareto-optimal solutions, offering a more comprehensive analysis of
the trade-offs between multiple objectives. Moreover, optimizing the algorithm to reduce
computation time remains crucial. Currently, evaluating the fitness of all individuals
results in high computational costs, whereas sampling too few individuals increases the
algorithm’s randomness. Therefore, effective sampling strategies and fitness evaluation are
important areas for further exploration to enhance the algorithm’s efficiency and robustness.

Author Contributions: Conceptualization, L.H. and D.L.; Data curation, L.H.; Formal analysis, Z.H.
and L.H.; Funding acquisition, D.L.; Investigation, Z.H. and L.H.; Methodology, L.H. and D.L.; Project
administration, D.L.; Resources, D.L.; Software, Z.H. and L.H.; Supervision, D.L.; Validation, Z.H.
and D.L.; Visualization, Z.H. and L.H.; Writing—original draft, Z.H. and L.H.; Writing—review and
editing, Z.H. and D.L. All authors have read and agreed to the published version of the manuscript.

Mathematics 2024, 12, 2575 29 of 30

Funding: This research is supported by National Natural Science Foundation of China [grant No.
72171054] and the Fujian Provincial Natural Science Foundation [grant No. 2023J06015].

Data Availability Statement: The original data presented in the study are openly available in
GitHub at https://github.com/nbzj/Data-Instances-of-Co-Evolutionary-Algorithm-for-THFSP-
with-suspension-shifts.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DCE-BRKGA dual-space co-evolutionary biased random key genetic algorithm
BRKGA biased random key genetic algorithm
EVPI expected value of perfect information
EVPI% expected value of perfect information as a percentage
VSS value of the stochastic solution
VSS% value of the stochastic solution as a percentage
HFSP hybrid flow shop scheduling problem
THFSP two-stage hybrid flow shop scheduling problem
RKGA random key genetic algorithm
RA randomized adaptation
WS wait-and-see
EEV expected value using the expected solution
FVIP fitness value increase percentage
EDR extremum deviation ratio
SDR standard deviation ratio

References
1. Meng, L.; Zhang, C.; Shao, X.; Zhang, B.; Ren, Y.; Lin, W. More MILP models for hybrid flow shop scheduling problem and its

extended problems. Int. J. Prod. Res. 2020, 58, 3905–3930. [CrossRef]
2. Wang, S.; Liu, M. A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem. Comput. Oper. Res. 2013,

40, 1064–1075. [CrossRef]
3. Oliveira, B.B.; Carravilla, M.A.; Oliveira, J.F.; Costa, A.M. A co-evolutionary matheuristic for the car rental capacity-pricing

stochastic problem. Eur. J. Oper. Res. 2019, 276, 637–655. [CrossRef]
4. Lin, R.; Wang, J.Q.; Oulamara, A. Online scheduling on parallel-batch machines with periodic availability constraints and job

delivery. Omega 2023, 116, 102804. [CrossRef]
5. Nguyen, A.H.G.; Sheen, G.J.; Yeh, Y. An approximation algorithm for the two identical parallel machine problem under machine

availability constraints. J. Ind. Prod. Eng. 2023, 40, 54–67. [CrossRef]
6. Yu, T.S.; Han, J.H. Scheduling proportionate flow shops with preventive machine maintenance. Int. J. Prod. Econ. 2021, 231, 107874.

[CrossRef]
7. Nicosia, G.; Detti, P.; Pacifici, A. Robust Job-Sequencing with an Uncertain Flexible Maintenance Activity. Comput. Ind. Eng. 2023,

185, 109610.
8. Lee, C.Y.; Leon, V.J. Machine scheduling with a rate-modifying activity. Eur. J. Oper. Res. 2001, 128, 119–128. [CrossRef]
9. Nourelfath, M.; Châtelet, E. Integrating production, inventory and maintenance planning for a parallel system with dependent

components. Reliab. Eng. Syst. Saf. 2012, 101, 59–66. [CrossRef]
10. Lu, Z.; Zhang, Y.; Han, X. Integrating run-based preventive maintenance into the capacitated lot sizing problem with reliability

constraint. Int. J. Prod. Res. 2013, 51, 1379–1391. [CrossRef]
11. Liu, Y.; Zhang, Q.; Ouyang, Z.; Huang, H.Z. Integrated production planning and preventive maintenance scheduling for

synchronized parallel machines. Reliab. Eng. Syst. Saf. 2021, 215, 107869. [CrossRef]
12. Zheng, X.; Zhou, S.; Xu, R.; Chen, H. Energy-efficient scheduling for multi-objective two-stage flow shop using a hybrid ant

colony optimisation algorithm. Int. J. Prod. Res. 2020, 58, 4103–4120. [CrossRef]
13. Shahgholi Zadeh, M.; Katebi, Y.; Doniavi, A. A heuristic model for dynamic flexible job shop scheduling problem considering

variable processing times. Int. J. Prod. Res. 2019, 57, 3020–3035. [CrossRef]
14. Framinan, J.M.; Fernandez-Viagas, V.; Perez-Gonzalez, P. Using real-time information to reschedule jobs in a flowshop with

variable processing times. Comput. Ind. Eng. 2019, 129, 113–125. [CrossRef]
15. Yue, Q.; Zhou, S. Due-window assignment scheduling problem with stochastic processing times. Eur. J. Oper. Res. 2021,

290, 453–468. [CrossRef]

https://github.com/nbzj/Data-Instances-of-Co-Evolutionary-Algorithm-for-THFSP-with-suspension-shifts
https://github.com/nbzj/Data-Instances-of-Co-Evolutionary-Algorithm-for-THFSP-with-suspension-shifts
http://doi.org/10.1080/00207543.2019.1636324
http://dx.doi.org/10.1016/j.cor.2012.10.015
http://dx.doi.org/10.1016/j.ejor.2019.01.015
http://dx.doi.org/10.1016/j.omega.2022.102804
http://dx.doi.org/10.1080/21681015.2022.2052195
http://dx.doi.org/10.1016/j.ijpe.2020.107874
http://dx.doi.org/10.1016/S0377-2217(99)00066-1
http://dx.doi.org/10.1016/j.ress.2012.02.001
http://dx.doi.org/10.1080/00207543.2012.693637
http://dx.doi.org/10.1016/j.ress.2021.107869
http://dx.doi.org/10.1080/00207543.2019.1642529
http://dx.doi.org/10.1080/00207543.2018.1524165
http://dx.doi.org/10.1016/j.cie.2019.01.036
http://dx.doi.org/10.1016/j.ejor.2020.08.029

Mathematics 2024, 12, 2575 30 of 30

16. Ghaedy-Heidary, E.; Nejati, E.; Ghasemi, A.; Torabi, S.A. A simulation optimization framework to solve stochastic flexible
job-shop scheduling problems—Case: Semiconductor manufacturing. Comput. Oper. Res. 2024, 163, 106508. [CrossRef]

17. Liu, X.; Chu, F.; Zheng, F.; Chu, C.; Liu, M. Parallel machine scheduling with stochastic release times and processing times. Int. J.
Prod. Res. 2021, 59, 6327–6346. [CrossRef]

18. Lu, C.C.; Ying, K.C.; Lin, S.W. Robust single machine scheduling for minimizing total flow time in the presence of uncertain
processing times. Comput. Ind. Eng. 2014, 74, 102–110. [CrossRef]

19. Wang, S.; Cui, W. Approximation algorithms for the min-max regret identical parallel machine scheduling problem with
outsourcing and uncertain processing time. Int. J. Prod. Res. 2021, 59, 4579–4592. [CrossRef]

20. Xiao, S.; Wu, Z.; Dui, H. Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop
Scheduling. Mathematics 2022, 10, 4048. [CrossRef]

21. Ali, O.; Abbas, Q.; Mahmood, K.; Bautista Thompson, E.; Arambarri, J.; Ashraf, I. Competitive Coevolution-Based Improved
Phasor Particle Swarm Optimization Algorithm for Solving Continuous Problems. Mathematics 2023, 11, 4406. [CrossRef]

22. Lei, H.; Wang, R.; Laporte, G. Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary
algorithm. Comput. Oper. Res. 2016, 67, 12–24. [CrossRef]

23. Zhao, F.; He, X.; Wang, L. A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient
scheduling of no-wait flow-shop problem. IEEE Trans. Cybern. 2020, 51, 5291–5303. [CrossRef] [PubMed]

24. Xiao, Q.z.; Zhong, J.; Feng, L.; Luo, L.; Lv, J. A cooperative coevolution hyper-heuristic framework for workflow scheduling
problem. IEEE Trans. Serv. Comput. 2019, 15, 150–163. [CrossRef]

25. Wang, Z.Y.; Pan, Q.K.; Gao, L.; Jing, X.L.; Sun, Q. A cooperative iterated greedy algorithm for the distributed flowshop group
robust scheduling problem with uncertain processing times. Swarm Evol. Comput. 2023, 79, 101320. [CrossRef]

26. Ming, F.; Gong, W.; Wang, L.; Lu, C. A tri-population based co-evolutionary framework for constrained multi-objective
optimization problems. Swarm Evol. Comput. 2022, 70, 101055. [CrossRef]

27. Gu, J.; Gu, M.; Cao, C.; Gu, X. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling
problem. Comput. Oper. Res. 2010, 37, 927–937. [CrossRef]

28. Herrmann, J.W. A genetic algorithm for minimax optimization problems. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1099–1103.

29. Resende, M.G.; de Sousa, J.P.; Jensen, M.T. A new look at solving minimax problems with coevolutionary genetic algorithms. In
Metaheuristics Computer Decision-Making; Springer: Boston, MA, USA, 2004; pp. 369–384.

30. Jensen, M.T. Robust and Flexible Scheduling with Evolutionary Computation; Citeseer: Princeton, NJ, USA, 2001.
31. He, X.; Pan, Q.K.; Gao, L.; Wang, L.; Suganthan, P.N. A greedy cooperative co-evolutionary algorithm with problem-specific

knowledge for multiobjective flowshop group scheduling problems. IEEE Trans. Evol. Comput. 2021, 27, 430–444. [CrossRef]
32. Suhaimi, N.; Nguyen, C.; Damodaran, P. Lagrangian approach to minimize makespan of non-identical parallel batch processing

machines. Comput. Ind. Eng. 2016, 101, 295–302. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cor.2023.106508
http://dx.doi.org/10.1080/00207543.2020.1812752
http://dx.doi.org/10.1016/j.cie.2014.04.013
http://dx.doi.org/10.1080/00207543.2020.1766721
http://dx.doi.org/10.3390/math10214048
http://dx.doi.org/10.3390/math11214406
http://dx.doi.org/10.1016/j.cor.2015.09.002
http://dx.doi.org/10.1109/TCYB.2020.3025662
http://www.ncbi.nlm.nih.gov/pubmed/33095728
http://dx.doi.org/10.1109/TSC.2019.2923912
http://dx.doi.org/10.1016/j.swevo.2023.101320
http://dx.doi.org/10.1016/j.swevo.2022.101055
http://dx.doi.org/10.1016/j.cor.2009.07.002
http://dx.doi.org/10.1109/TEVC.2021.3115795
http://dx.doi.org/10.1016/j.cie.2016.09.018

	Introduction
	Literature Review
	Workshop Scheduling Research Considering Suspending Operations
	Workshop Scheduling Research Considering Uncertain Processing Time
	Application Research on Co-Evolutionary Algorithms

	Problem Definition
	Solution Method
	Initialization
	Solution Population Initialization
	Scenario Population Initialization

	Decoding
	Individual Evaluation
	Average Criterion Individual Evaluation Method
	Pessimistic Criterion Individual Evaluation Method

	Evolutionary Operations
	Elite Strategy
	Mutation
	Crossover

	Computational Experiments, Results, and Discussion
	Solution Evolution
	Algorithm Comparison Experiments
	Comparative Experiments with the BRKGA and Gurobi
	Comparative Experiments with the BRKGA and RKGA

	Analysis Based on the EVPI and VSS Indicators
	Scenario Evolution
	Diversity
	Representativeness

	Decision Support

	Conclusions
	References

