The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production
Abstract
:1. Introduction
2. Preliminaries
3. Proof of Theorem 1
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winkler, M. Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 2010, 33, 12–24. [Google Scholar]
- Tao, Y.; Winkler, M. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 2012, 252, 692–715. [Google Scholar]
- Ishida, S.; Seki, K.; Yokota, T. Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 2014, 256, 2993–3010. [Google Scholar]
- CieśLak, T.; Stinner, C. New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models. J. Differ. Equ. 2015, 258, 2080–2113. [Google Scholar]
- Zheng, J. Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source. J. Math. Anal. Appl. 2015, 431, 867–888. [Google Scholar]
- Tao, X.; Zhou, A.; Ding, M. Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J. Math. Anal. Appl. 2019, 474, 733–747. [Google Scholar]
- Ding, M.; Wang, W.; Zhou, S.; Zheng, S. Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. J. Differ. Equ. 2020, 268, 6729–6777. [Google Scholar]
- CieśLak, T.; Stinner, C. Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equ. 2012, 252, 5832–5851. [Google Scholar]
- CieśLak, T.; Winkler, M. Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 2008, 21, 1057–1076. [Google Scholar]
- Jia, Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and nonlinear production. Discrete Contin. Dyn. Syst. Ser. B 2023, 28, 4847–4863. [Google Scholar]
- Wang, L.; Li, Y.; Mu, C. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. Ser. A 2014, 34, 789–802. [Google Scholar]
- Wang, X.; Wang, Z.; Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source. Acta Math. Sci. 2024, 44, 909–924. [Google Scholar]
- Winkler, M. Chemotaxis with logistic source: Very weak global solutions and their boundedness properties. J. Math. Anal. Appl. 2008, 348, 708–729. [Google Scholar]
- Winkler, M. Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 2011, 384, 261–272. [Google Scholar]
- Zhuang, M.; Wang, W.; Zheng, S. Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Anal. Real World Appl. 2019, 47, 473–483. [Google Scholar]
- Chen, T.; Li, F.; Yu, P. Nilpotent center conditions in cubic switching polynomial Linard systems by higher-order analysis. J. Differ. Equ. 2024, 379, 258–289. [Google Scholar]
- Ding, X.; Lu, J.; Chen, A. Lyapunov-based stability of time-triggered impulsive logical dynamic networks. Nonlinear Anal. Hybrid Syst. 2024, 51, 101417. [Google Scholar]
- He, X.; Qiu, J.; Li, X.; Cao, J. A brief survey on stability and stabilization of impulsive systems with delayed impulses. Discrete Contin. Dyn. Syst. S 2022, 15, 1797–1821. [Google Scholar]
- Jia, Z.; Yang, Z. Large time behavior to a chemotaxis-consumption model with singular sensitivity and logistic source. Math. Methods Appl. Sci. 2021, 44, 3630–3645. [Google Scholar]
- Jiang, C.; Zhang, F.; Li, T. Synchronization and antisynchronization of N-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 2018, 41, 2625–2638. [Google Scholar]
- Lei, C.; Li, H.; Zhao, Y. Dynamical behavior of a reaction-diffusion SEIR epidemic model with mass action infection mechanism in a heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 2024, 29, 3163–3198. [Google Scholar]
- Li, F.; Liu, Y.; Liu, Y.; Yu, P. Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z(2)-equivariant cubic vector fields. J. Differ. Equ. 2018, 265, 4965–4992. [Google Scholar]
- Li, F.; Liu, Y.; Liu, Y.; Yu, P. Complex isochronous centers and linearization transformations for cubic Z(2)-equivariant planar systems. J. Differ. Equ. 2020, 268, 3819–3847. [Google Scholar]
- Li, F.; Liu, Y.; Yu, P.; Wang, L. Complex integrability and linearizability of cubic Z2-equivariant systems with two 1: Q resonant singular points. J. Differ. Equ. 2021, 300, 786–813. [Google Scholar]
- Marciniak-Czochra, A.; Ptashnyk, M. Boundedness of solutions of a haptotaxis model. Math. Mod. Methods Appl. Sci. 2010, 20, 449–476. [Google Scholar]
- Mi, L. Blow-up rates of large solutions for infinity Laplace equations. Appl. Math. Comp. 2017, 298, 36–44. [Google Scholar]
- Qiu, J.; Yang, X. Convergence of the two-species vlasov-poisson system to the pressureless euler equations. Acta Appl. Math. 2016, 143, 179–187. [Google Scholar]
- Tong, X.; Jiang, H.; Chen, X.; Li, J.; Cao, Z. Deterministic and stochastic evolution of rumor propagation model with media coverage and classage-dependent education. Math. Methods Appl. Sci. 2023, 46, 7125–7139. [Google Scholar]
- Xu, M.; Liu, S.; Lou, Y. Persistence and extinction in the anti-symmetric Lotka-Volterra systems. J. Differ. Equ. 2024, 387, 299–323. [Google Scholar]
- Yan, D.; Pang, G.; Qiu, J.; Chen, X.; Zhang, A.; Liu, Y. Finite-time stability analysis of switched systems with actuator saturation based on event-triggered mechanism. Discrete Contin. Dyn. Syst. S 2023, 16, 1929–1943. [Google Scholar]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar]
- You, L.; Yang, X.; Wu, S.; Li, X. Finite-time stabilization for uncertain nonlinear systems with impulsive disturbance via aperiodic intermittent control. Appl. Math. Comp. 2023, 443, 127782. [Google Scholar]
- Zhang, D.; Chen, F. Global bifurcations and single-pulse homoclinic orbits of a plate subjected to the transverse and in-plane excitations. Math. Methods Appl. Sci. 2017, 40, 4338–4349. [Google Scholar]
- Zhang, X.; Liu, E.; Qiu, J.; Zhang, A.; Liu, Z. Output feedback finite-time stabilization of a class of large-scale high-order nonlinear stochastic feedforward systems. Discrete Contin. Dyn. Syst. S 2023, 16, 1892–1908. [Google Scholar]
- Chaplain, M.; Lolas, G. Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Netw. Heterogen. Media 2016, 1, 399–439. [Google Scholar]
- Tao, Y.; Wang, M. Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity 2008, 21, 2221–2238. [Google Scholar]
- Tao, Y. Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source. J. Math. Anal. Appl. 2009, 354, 60–69. [Google Scholar]
- Tao, Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system. J. Donghua Univ. 2016, 70, 165–174. [Google Scholar]
- Cao, X. Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z. Angew. Math. Phys. 2016, 67, 11. [Google Scholar]
- Tao, Y.; Winkler, M. Large time behavior in a multidimensional chemotaxis-hapotaxis model with slow signal diffusion. SIAM J. Math. Anal. 2015, 47, 4229–4250. [Google Scholar]
- Zheng, J.; Ke, Y. Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in N dimensions. J. Differ. Equ. 2019, 266, 1969–2018. [Google Scholar]
- Tao, Y.; Winkler, M. A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 2011, 43, 685–704. [Google Scholar]
- Li, Y.; Lankeit, J. Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity 2016, 29, 1564–1595. [Google Scholar]
- Wang, Y. Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. J. Differ. Equ. 2016, 260, 1975–1989. [Google Scholar]
- Wang, Y. Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Appl. Math. Lett. 2016, 59, 122–126. [Google Scholar]
- Zheng, P.; Mu, C.; Song, X. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete Contin. Dyn. Syst. Ser. A 2016, 36, 1737–1757. [Google Scholar]
- Jin, C. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete Contin. Dyn. Syst. Ser. B 2018, 23, 1675–1688. [Google Scholar]
- Liu, J.; Zheng, J.; Wang, Y. Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. Z. Angew. Math. Phys. 2016, 67, 21. [Google Scholar]
- Xu, H.; Zhang, L.; Jin, C. Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinear Anal. Real World Appl. 2019, 46, 238–256. [Google Scholar]
- Jia, Z.; Yang, Z. Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion. Appl. Math. Lett. 2020, 103, 106192. [Google Scholar]
- Tao, Y.; Winkler, M. Energy-type estimates and global solvability in a two-dimensional chemotaxis-hapotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 2014, 257, 784–815. [Google Scholar]
- Jin, C. Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull. Lond. Math. Soc. 2018, 50, 598–618. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, B.; Jia, Z. The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production. Mathematics 2024, 12, 2577. https://doi.org/10.3390/math12162577
Ai B, Jia Z. The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production. Mathematics. 2024; 12(16):2577. https://doi.org/10.3390/math12162577
Chicago/Turabian StyleAi, Beibei, and Zhe Jia. 2024. "The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production" Mathematics 12, no. 16: 2577. https://doi.org/10.3390/math12162577
APA StyleAi, B., & Jia, Z. (2024). The Global Existence and Boundedness of Solutions to a Chemotaxis–Haptotaxis Model with Nonlinear Diffusion and Signal Production. Mathematics, 12(16), 2577. https://doi.org/10.3390/math12162577