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Abstract: In this paper, we investigate the following chemotaxis–haptotaxis system (1) with nonlinear
diffusion and signal production under homogenous Neumann boundary conditions in a bounded
domain with smooth boundary. Under suitable conditions on the data we prove the following: (i) For
0 < γ ≤ 2

n , if α > γ − k + 1 and β > 1 − k, problem (1) admits a classical solution (u, v, w) which

is globally bounded. (ii) For 2
n < γ ≤ 1, if α > γ − k + 1

e + 1 and β > max{ (nγ−2)(nγ+2k−2)
2n − k +

1, (nγ−2)(γ+ 1
e )

n − k + 1} or α > γ − k + 1 and β > max{ (nγ−2)(nγ+2k−2)
2n − k + 1, (nγ−2)(α+k−1)

n − k +
1}, problem (1) admits a classical solution (u, v, w) which is globally bounded.

Keywords: boundedness; chemotaxis–haptotaxis; nonlinear diffusion; signal production

MSC: 35K55; 35K65; 35A07; 35B35

1. Introduction

In the present work, we consider the following chemotaxis–haptotaxis system with
nonlinear diffusion and signal production:



ut = ∇ · (D(u)∇u)−∇ · (H(u)∇v)−∇ · (I(u)∇w) + u(a − µuk−1 − λw), x ∈ Ω, t > 0,

vt = △v − v + g(u), x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

D(u) ∂u
∂ν − H(u) ∂v

∂ν − I(u) ∂w
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1)

where Ω ⊂ Rn(n ≥ 2) is a bounded domain with a smooth boundary, the function
u = u(x, t) denotes the cancer cell density, v = v(x, t) represents the concentration of
matrix-degrading enzymes, and w = w(x, t) represents the density of an extracellular
matrix. We assume that D, H, I ∈ C2([0, ∞)) fulfils, for all s ≥ 0,

D(s) ≥ KD(s + 1)m−1, (2)

0 ≤ H(s) ≤ χs(s + 1)−α and H(0) = 0, (3)

0 ≤ I(s) ≤ ξs(s + 1)−β and I(0) = 0, (4)

with KD, χ, ξ > 0 and α, β, m ∈ R. Moreover, we assume g ∈ C1([0, ∞)) such that

0 ≤ g(s) ≤ Kgsγ for all s ≥ 0, (5)

Mathematics 2024, 12, 2577. https://doi.org/10.3390/math12162577 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162577
https://doi.org/10.3390/math12162577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12162577
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162577?type=check_update&version=1


Mathematics 2024, 12, 2577 2 of 11

where Kg, γ > 0. To this end, we assume that the initial data satisfy
u0, v0, w0 ∈ C2+δ(Ω), δ ∈ (0, 1),

u0, v0, w0 ≥ 0,
∂u0
∂ν |∂Ω = 0, ∂v0

∂ν |∂Ω = 0, ∂w0
∂ν |∂Ω = 0.

(6)

The model (1) is reduced to the chemotaxis system if w ≡ 0, which has been widely
researched by many authors over the past several decades (see [1–15]). In the case of
g(u) = u, Zheng [5] proved that all solutions are global and uniformly bounded if
0 < 2 − α − m < max{k − m, 2

N } or 2 − α = k and µ is large enough. In the case
of g(u) = uγ, Tao et al. [6] considered problem (1), showing that if 1 + γ − α < k or
1 + γ − α = k and µ is large enough, then the solutions of (1) are globally bounded. When
cell growth is neglected and 1 − α − m + γ < 2

N , they also proved that system (1) possesses
a non-negative classical solution (u, v) which is globally bounded. Later, Ding et al. [7]
provided a boundedness result under 1 − α − m + γ < 2

n and proved the asymptotic stabil-
ity when the damping effects of the logistic source are strong enough. Nowadays, there
are more and more mathematical models used to describe complex natural phenomena,
and the results are also very impressive (see [16–34]).

The chemotaxis–haptotaxis model was first proposed by Chalain and Lolas [35]:
ut = △u − χ∇ · (u∇v)− ξ∇ · (u∇w) + u(a − µuk−1 − λw),

vt = △v − v + u,

wt = −vw.

(7)

and described the process of cancer cells invading surrounding healthy tissue. In the
absence of reconstruction mechanisms, problem (7), with η = 0, has been studied by
many authors. For instance, Tao Wang [36–38] proved the global solvability and uniform
boundedness for n = 1, 2. For the case of n = 3, the global existence and boundedness
was proved for µ

χ and is sufficiently large (see [36,39]). Later, Tao and Winkler [40] re-

searched how, under the fully explicit condition µ > χ2

8 , the solution (u, v, w) exponentially
stabilizes to a constant stationary solution (1, 1, 0). When µu(1 − u − w) was replaced by
u(a − µuk−1 − λw), Zheng and Ke [41] proved that model (7) possesses a global classical
solution which is bounded for k > 2 or k = 2, with µ being sufficiently large. And they
demonstrated that if µ is large enough, the corresponding solution of (7) exponentially

decays to (( a
µ )

1
k−1 , ( a

µ )
1

k−1 , 0).
In recent years, many authors have begun to study the chemotaxis–haptotaxis model

with nonlinear diffusion, that is
ut = ∇ · (D(u)∇u)− χ∇ · (u∇v)− ξ∇ · (u∇w) + µu(1 − u − w), x ∈ Ω, t > 0,

vt = △v − v + u, x ∈ Ω, t > 0,

wt = −vw, x ∈ Ω, t > 0,

(8)

where D(u) ≥ CD(u + 1)m−1 for all u > 0. Tao and Winkler [42] showed the global

existence of solutions to (8) if m > 2n2+4n−4
n(n+4) for n ≤ 8 or m >

2n2+3n+2−
√

8n(n+1)
n(n+2) for

n ≥ 9. Further, Li Wang et al. [43,44] proved the boundedness of solutions for m > 2 − 2
n ,

and Wang and Zheng et al. [45,46] extended the results to m > 2n
n+2 . Later, Jin [47] obtained

similar results for any m > 0, under a smallness assumption on χ
µ .

Next, we consider problem (1) with g(u) = u, k = 2, a = λ = µ. Liu et al. [48]
proved the global existence and boundedness of solutions for n = 2 if max{1 − α, 1 − β} <
m + 2

n − 1 or for n ≥ 3 if max{1 − α, 1 − β} < m + 2
n − 1 with either m > 2 − 2

n or m ≤ 1.
Afterwards, Xu et al. [49] proved that if m > 0, α > 0, β ≥ 0 for n = 3, problem (1) possesses
a globally bounded weak solution. Subsequently, they discussed the large time behavior of
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solutions and showed that when 0 < m ≤ 1, for appropriately large µ, (u, v, w) → (1, 1, 0)
as t → ∞. Later, Jia et al. [50] extended the boundedness result of [49], which deals with the
global boundedness of solutions with α > 0, β > − 1

6 . This paper is devoted to researching
the boundedness of the solution of (1) with nonlinear diffusion and signal production in
the case of n ≥ 2.

Now, we present the primary result of this paper.

Theorem 1. Let Ω ⊂ Rn(n ≥ 2) be a bounded domain with a smooth boundary and (u0, v0, w0)
that satisfies (6). Suppose that D, H, I and g fulfill (2)–(5). Then,

(i) For 0 < γ ≤ 2
n , if α > γ − k + 1 and β > 1 − k, problem (1) possesses a classical solution

(u, v, w) which is globally bounded.
(ii) For 2

n < γ ≤ 1, if α > γ − k + 1
e + 1 and β > max{ (nγ−2)(nγ+2k−2)

2n − k +

1, (nγ−2)(γ+ 1
e )

n − k+ 1} or α > γ− k+ 1 and β > max{ (nγ−2)(nγ+2k−2)
2n − k+ 1, (nγ−2)(α+k−1)

n
−k + 1}, problem (1) possesses a classical solution (u, v, w) which is globally bounded.

This paper is organized as follows. In Section 2, we present the local existence of
classical solutions to system (1) and recall some preliminaries. In Section 3, we establish the
global existence and boundedness of solutions to system (1).

2. Preliminaries

We first state the local existence result of classical solutions to (1) as follows. In fact,
by a fixed point argument similar to [13,51], it can be proved.

Lemma 1. Assume that u0, v0, w0 satisfy (6) and D, H, I and g fulfill (2)–(5). Then, there exists
Tmax ∈ (0, ∞] such that the system (1) admits a classical solution (u, v, w) ∈ C2+δ,1+ δ

2 (Ω ×
(0, Tmax)) with

u ≥ 0, v ≥ 0, w ≥ 0 for all (x, t) ∈ Ω × (0, Tmax) (9)

such that either Tmax = ∞, or

limt→Tmax sup(∥u(·, t)∥L∞(Ω) + ∥v∥W1,∞(Ω)) = ∞.

Then, we will give a useful lemma referred to as a variation of maximal Sobolev
regularity, as obtained in (Lemma 4 [52]).

Lemma 2. Let z0 ∈ W2,p(Ω) and f ∈ Lp(0, T; Lp(Ω)). Then, the following problem
zt = △z − z + f ,
∂z
∂ν = 0,

z(x, 0) = z0(x),

(10)

possesses a unique solution: z ∈ Lp
loc((0,+∞); W2,p(Ω)) and zt ∈ Lp

loc((0,+∞); Lp(Ω)). If
t0 ∈ (0, T), then∫ T

t0

∫
Ω ept|△z|pdxdt ≤ Cp

∫ T
t0

∫
Ω ept| f |pdxdt + Cp∥z(·, t0)∥

p
W2,p(Ω)

, (11)

where Cp is a constant independent of t0.

According to [38], we have the following lemma.

Lemma 3. Assume (u, v, w) be the solution of model (1). Then,

−△w(x, t) ≤ ∥w0∥L∞(Ω)v(x, t) + C for (x, t) ∈ Ω × (0, Tmax), (12)
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where
C := ∥w0∥L∞(Ω) + 4∥∇√

w0∥2
L∞(Ω) +

∥w0∥L∞(Ω)

e . (13)

In order to prove Theorem 1, following the ideas in [43], we firstly state the lemma.

Lemma 4. Assume that D, H, I and g fulfill (2)–(5) with 0 < γ ≤ 1, then we have

(i) There exists K > 0 such that for all t ∈ (0, Tmax)

∥u(·, t)∥L1(Ω) ≤ Kµ− 1
k−1 . (14)

(ii) For r ∈ [1, n
(nγ−2)+

), there exists Kr > 0 such that for all t ∈ (0, Tmax)

∥v(·, t)∥Lr(Ω) ≤ Kr. (15)

where (nγ − 2)+ := max{nγ − 2, 0}.

(iii) Assume that p > max{ nγ
2 , γ} and ∥u(·, t)∥Lp(Ω) ≤ K. Then, there exists Kp > 0 such

that for all t ∈ (0, Tmax)
∥v(·, t)∥L∞(Ω) ≤ Kp. (16)

(iv) Assume that q > nγ and ∥u(·, t)∥Lq(Ω) ≤ K. Then, there exists a positive constant Kq
such that for all t ∈ (0, Tmax)

∥∇v(·, t)∥L∞(Ω) ≤ Kq. (17)

3. Proof of Theorem 1

In this section, we deal with the global existence and boundedness of system (1). We
firstly devote time to establishing the Lp−boundedness of u . For convenience, we denote
T = Tmax.

Lemma 5. Assume that D, H, I and g fulfill (2)–(5) with β > 1 − k. Then,

(i) Let α > γ − k + 1
e + 1 and p > max{1, β, nγ

2 + 1 − k, γ − k + 1
e + 1}. If K0 > 0 fulfills

for all t ∈ (0, T)
∥v(·, t)∥

L
p+k−1
β+k−1 (Ω)

≤ K0, (18)

then,
∥u(·, t)∥Lp(Ω) ≤ K for t ∈ (0, T), (19)

where K > 0 depends on K0, µ.
(ii) Let α > γ − k + 1 and p > max{1, α, β}. If there exists K0 > 0 fulfills for all t ∈ (0, T)

∥v(·, t)∥
L

p+k−1
β+k−1 (Ω)

≤ K0, (20)

then,
∥u(·, t)∥Lp(Ω) ≤ K for t ∈ (0, T), (21)

where K > 0 depends on K0, µ.

Proof. Multiplying the first equation in (1) with p(1+ u)p−1 and integrating by parts yields

d
dt

∫
Ω(u + 1)pdx

≤ −p(p − 1)KD
∫

Ω(u + 1)m+p−3|∇u|2dx + p(p − 1)
∫

Ω(u + 1)p−2H(u)∇u · ∇ vdx

+p(p − 1)
∫

Ω(u + 1)p−2 I(u)∇u · ∇wdx + p
∫

Ω(u + 1)p−1u(a − µuk−1 − λw)dx.

(22)
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Since (u + 1)k ≤ 2k−1(uk + 1), we have

p
∫

Ω(u + 1)p−1u(a − µuk−1 − λw)dx

≤ |a|p
∫

Ω(u + 1)pdx − µp
2k−1

∫
Ω(u + 1)k+p−1dx + µp

∫
Ω(u + 1)p−1dx

≤ − 5µ

6·2k−1

∫
Ω(1 + u)p+k−1dx + C1,

(23)

where C1 = (3 · 2k+1)
p

k−1 (|a|p)
p+k−1

k−1 |Ω|µ− p
k−1 + (3 · 2k+1)

p−1
k |Ω|µp

k+p−1
k . It follows from

(22) and (23) that

d
dt

∫
Ω(u + 1)pdx

≤ p(p − 1)
∫

Ω(u + 1)p−2H(u)∇u · ∇vdx + p(p − 1)
∫

Ω(u + 1)p−2 I(u)∇u · ∇ wdx

− 5µ

6·2k−1

∫
Ω(1 + u)p+k−1dx + C1.

(24)
Define

φ(u) :=
∫ u

0 (1 + σ)p−2H(σ)dσ for u ≥ 0.

We infer from (3) that

0 ≤ φ(u) ≤ χ
∫ u

0 (1 + σ)p−α−1dσ.

This implies for u ≥ 0

φ(u) ≤


2χ

|p−α| , for p < α,

χ ln(1 + u), for p = α,
χ

p−α (1 + u)p−α, for p > α.

(25)

Integrating by parts the first term of (24), we obtain that

p(p − 1)
∫

Ω(1 + u)p−2H(u)∇u · ∇ vdx

= p(p − 1)
∫

Ω ∇φ(u) · ∇v dx

≤ p(p − 1)
∫

Ω φ(u)|△v|dx.

(26)

Case (i). Combining (25) with (26) yields, for γ − k + 1
e + 1 < p < α and n ≥ 2,

p(p − 1)
∫

Ω(1 + u)p−2H(u)∇u · ∇vdx ≤ 2χp(p−1)
|p−α|

∫
Ω |△v|dx

≤ 2χp(p−1)
|p−α|

∫
Ω |△v| n

2 dx + C2,
(27)

where C2 = 2χp(p−1)|Ω|
|p−α| . For p > α, we obtain

p(p − 1)
∫

Ω(1 + u)p−2H(u)∇u · ∇ vdx

≤ χp(p−1)
p−α

∫
Ω(1 + u)p−α|△v|dx,

≤ µ

3·2k

∫
Ω(1 + u)p+k−1 + C3

∫
Ω |△v|

p+k−1
k+α−1 ,

(28)

where C3 = (3 · 2k)
p−α

α+k−1 ( χp(p−1)
p−α )

p+k−1
α+k−1 µ− p−α

α+k−1 . For p = α, we obtain

p(p − 1)
∫

Ω(1 + u)p−2H(u)∇u · ∇ vdx

≤ p(p − 1)χ
∫

Ω ln(1 + u)|△v|dx,

≤ p(p − 1)χ
∫

Ω(1 + u)
1
e |△v|dx,

≤ µ

3·2k

∫
Ω(1 + u)p+k−1 + C4

∫
Ω |△v|

e(p+k−1)
e(p+k−1)−1 ,

(29)
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where C4 = (3 · 2k)
1

e(p+k−1)−1 (χ(p − 1))
e(p+k−1)

e(p+k−1)−1 µ
− 1

e(p+k−1)−1 .
Denote ψ(u) =

∫ u
0 (1 + σ)p−2 I(σ)dσ for all u ≥ 0. We infer from (4) and p > β that

0 ≤ ψ(u) ≤ ξ
p−β (1 + u)p−β, (30)

for u ≥ 0. This, together with Lemma 3 and β > 1 − k, means that

p(p − 1)
∫

Ω(1 + u)p−2 I(u)∇u · ∇ wdx

= −p(p − 1)
∫

Ω ψ(u) · △ wdx

≤ p(p − 1)∥w0∥L∞(Ω)

∫
Ω vψ(u)dx + p(p − 1)C

∫
Ω ψ(u)dx

≤ ξ p(p−1)
p−β ∥w0∥L∞(Ω)

∫
Ω(1 + u)p−βvdx + ξCp(p−1)

p−β

∫
Ω(1 + u)p−βdx

≤ µ

3·2k−1

∫
Ω(1 + u)p+k−1dx + C5

∫
Ω v

p+k−1
β+k−1 dx + C6,

(31)

where
C5 = (3 · 2k)

p−β
β+k−1 ( ξ p(p−1)

p−β ∥w0∥L∞(Ω))
p+k−1
β+k−1 µ

− p−β
β+k−1 ,

C6 = (3 · 2k)
p−β

β+k−1 ( ξCp(p−1)
p−β )

p+k−1
β+k−1 |Ω|µ− p−β

β+k−1 .

For γ − k + 1
e + 1 < p < α, we infer from (18), (24), (27) and (31) that

d
dt

∫
Ω(1 + u)p ≤ − µ

2k

∫
Ω(1 + u)p+k−1dx + 2χp(p−1)

|p−α|
∫

Ω |△v| n
2 dx + C7, (32)

where C7 = C5K
p+k−1
β+k−1
0 + C1 + C2 + C6. Since

n
2

∫
Ω(1 + u)pdx ≤ µ

3·2k−1

∫
Ω(1 + u)p+k−1dx + C8, (33)

where C8 = ( n
2 )

p+k−1
k−1 (3 · 2k−1)

p
k−1 |Ω|µ− p

k−1 . Combining (32) with (33), we obtain

d
dt

∫
Ω(1 + u)pdx + n

2

∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫
Ω(1 + u)p+k−1dx + 2χp(p−1)

|p−α|
∫

Ω |△v| n
2 dx + C9,

(34)

where C9 = C7 + C8; this, together with the variation-of-constants formula, shows that∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫ t
t0

∫
Ω e−

n
2 (t−s)(1 + u)p+k−1dxds + 2χp(p−1)

|p−α|
∫ t

t0

∫
Ω e−

n
2 (t−s)|△v| n

2 dxds

+e−
n
2 (t−t0)

∫
Ω(1 + u(·, t0))

pdx + C9
∫ t

t0
e−

n
2 (t−s)ds

≤ − µ

3·2k

∫ t
t0

∫
Ω e−

n
2 (t−s)(1 + u)p+k−1dxds + 2χp(p−1)

|p−α|
∫ t

t0

∫
Ω e−

n
2 (t−s)|△v| n

2 dxds + M0 + C9,

(35)

where M0 =
∫

Ω(1 + u(·, t0))
pdx is a positive constant. Since p > nγ

2 + 1 − k, we have from
Lemma 2 and (5) that

2χp(p−1)
|p−α|

∫ t
t0

∫
Ω e−

n
2 (t−s)|△v| n

2 dxds

≤ 2χp(p−1)Cn
|p−α|

∫ t
t0

∫
Ω e−

n
2 (t−s)u

nγ
2 dxds + 2χp(p−1)Cn

|p−α| ∥v(·, t0)∥
n
2

W2, n
2 (Ω)

≤ µ

3·2k

∫ t
t0

∫
Ω e−

n
2 (t−s)(u + 1)p+k−1dxds + C10,

(36)

where Cn, C10 is a positive constant related to n and independent of t0. From the combina-
tion of (35) and (36), we conclude that∫

Ω(u + 1)pdx ≤ C11. (37)
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where C11 = M0 + C9 + C10.
For p > α, we infer from (18), (24), (28) and (31) that

d
dt

∫
Ω(1 + u)pdx ≤ − µ

3·2k−1

∫
Ω(1 + u)p+k−1dx + C3

∫
Ω |△v|

p+k−1
α+k−1 dx + C12. (38)

where C12 = C5K
p+k−1
β+k−1
0 + C1 + C6. Define

m := p+k−1
α+k−1 ,

we have from (38) that

d
dt

∫
Ω(1 + u)pdx + m

∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫
Ω(1 + u)p+k−1dx + C3

∫
Ω |△v|mdx + C13,

(39)

where C13 = (3 · 2k)
p

k−1 m
p+k−1

k−1 |Ω|µ− p
k−1 + C12. Recalling Lemma 2, it can be obtained from

(39) that∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫ t
t0

∫
Ω e−m(t−s)(1 + u)p+k−1dxds + C3

∫ t
t0

∫
Ω e−m(t−s)|△v|mdxds

+e−m(t−t0)
∫

Ω(1 + u(·, t0))
pdx + C13

∫ t
t0

e−m(t−s)ds

≤ − µ

3·2k

∫ t
t0

∫
Ω e−m(t−s)(1 + u)p+k−1dxds + C3Cm

∫ t
t0

∫
Ω e−m(t−s)(1 + u)mγdxds

+C3Cm∥v(·, t0)∥m
W2,m(Ω)

+ C14,

(40)

where C14 = M0 + C13 and Cm is a positive constant related to m and independent of t0.
Since α > r − k + 1

e + 1, mγ < p + k − 1; we have from Young’s inequality that

C3Cm
∫ t

t0

∫
Ω e−m(t−s)(1 + u)mγdxds

≤ µ

3·2k

∫ t
t0

∫
Ω e−m(t−s)(1 + u)p+k−1dxds + C15,

(41)

where C15 = 1
m (3 · 2k)

mγ
p+k−1−mγ (C3Cm)

p+k−1
p+k−1−mγ |Ω|µ− mγ

p+k−1−mγ .
Inserting (41) into (40), we have∫

Ω(u + 1)pdx ≤ C16, (42)

where C16 = C3Cm∥v(·, t0)∥m
W2,m(Ω)

+ C14 + C15.
For p = α, we infer from (18), (24), (29) and (31) that

d
dt

∫
Ω(1 + u)pdx ≤ − µ

3·2k−1

∫
Ω(1 + u)p+k−1dx + C4

∫
Ω |△v|

e(p+k−1)
e(p+k−1)−1 dx + C17, (43)

where C17 = C5K
p+k−1
β+k−1
0 + C1 + C6. Define

m̃ := e(p+k−1)
e(p+k−1)−1 ,

Similar to (40), we have∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫ t
t0

∫
Ω e−m̃(t−s)(1 + u)p+k−1dxds + C4Cm̃

∫ t
t0

∫
Ω e−m̃(t−s)(1 + u)m̃γdxds

+C4Cm̃∥v(·, t0)∥m̃
W2,m̃(Ω)

+ C18,

(44)

where Cm̃, C18 is a positive constant related to m̃ and independent of t0.
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Since α = p > r − k + 1
e + 1, m̃γ < p + k − 1; we have from Young’s inequality that

C4Cm̃
∫ t

t0

∫
Ω e−m̃(t−s)(1 + u)m̃γdxds ≤ µ

3·2k

∫ t
t0

∫
Ω e−m̃(t−s)(1 + u)p+k−1dxds + C19, (45)

where C19 = 1
m̃ (3 · 2k)

m̃γ
p+k−1−m̃γ (C4Cm̃)

p+k−1
p+k−1−m̃γ |Ω|µ− m̃γ

p+k−1−m̃γ . Inserting (45) into (44),
we have ∫

Ω(u + 1)pdx ≤ C20, (46)

where C20 = C4Cm̃∥v(·, t0)∥m̃
W2,m̃(Ω)

+ C18 + C19.
Case (ii). For p > α and α > γ − k + 1, define

m := p+k−1
α+k−1 ,

we have from (40) that∫
Ω(1 + u)pdx

≤ − µ

3·2k

∫ t
t0

∫
Ω e−m(t−s)(1 + u)p+k−1dxds + C3Cm

∫ t
t0

∫
Ω e−m(t−s)(1 + u)mγdxds

+C3Cm∥v(·, t0)∥m
W2,m(Ω)

+ C21.

(47)

Since α > r − k + 1, then mγ < p + k − 1. We infer from Young’s inequality and (47) that∫
Ω(u + 1)pdx ≤ C22, (48)

where C22 is a positive constant. This completes the proof of Lemma 5.

Lemma 6. Assume that D, H, I and g fulfill (2)–(5). Then,

(i) For 0 < γ ≤ 2
n , if α > γ − k + 1 and β > 1 − k, there exists a constant C > 0 such that

∥v(·, t)∥W1,∞(Ω) ≤ C.

(ii) For 2
n < γ ≤ 1, if α > γ − k + 1

e + 1 and β > max{ (nγ−2)(nγ+2k−2)
2n − k +

1, (nγ−2)(γ+ 1
e )

n − k+ 1} or α > γ− k+ 1 and β > max{ (nγ−2)(nγ+2k−2)
2n − k+ 1, (nγ−2)(α+k−1)

n
−k + 1}, there exists a constant C > 0 such that ∥v(·, t)∥W1,∞(Ω) ≤ C.

Proof. Case (i). Since 0 < γ ≤ 2
n , we have

nγ − 2 ≤ 0. (49)

Lemma 4(ii) yields that

∥v(·, t)∥Ls(Ω) ≤ C23 for all t ∈ (0, T), (50)

for any s ≥ 1. Taking p1 > max{ nγ
2 , 1, α, β}, this implies p1+k−1

β+k−1 > 1, and so we obtain

∥v(·, t)∥
L

p1+k−1
β+k−1 (Ω)

≤ C24 for all t ∈ (0, T), (51)

which, along with Lemma 5(ii), we have for all t ∈ (0, T)

∥u(·, t)∥Lp1 (Ω) ≤ C25. (52)

Since p1 > nγ
2 , we infer from Lemma 4(iii) that

∥v(·, t)∥L∞(Ω) ≤ C26 for all t ∈ (0, T). (53)
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By Lemma 5(ii), again, and letting p2 > max{nγ, 1, α, β}, one can find

∥u(·, t)∥Lp2 (Ω) ≤ C27 for all t ∈ (0, T). (54)

From this, together with Lemma 4(iv), we obtain

∥∇v(·, t)∥L∞(Ω) ≤ C28 for all t ∈ (0, T). (55)

This completes the proof of Case (i).

Case (ii). For 2
n < γ ≤ 1. Since β > (nγ−2)(nγ+2k−2)

2n − k + 1 and β >
(nγ−2)(γ+ 1

e )
n −

k + 1, we have
nγ
2 < n

nr−2 (β + k − 1) + 1 − k,

γ − k + 1
e + 1 < n

nγ−2 (β + k − 1) + 1 − k,

β < n
nr−2 (β + k − 1) + 1 − k.

(56)

Taking max{ nγ
2 , γ − k + 1

e + 1, β} < p3 < n
nr−2 (β + k − 1) + 1 − k, then

p3+k−1
β+k−1 ∈ (1, n

nγ−2 ). (57)

By Lemma 4(ii), we obtain

∥v(·, t)∥
L

p3+k−1
β+k−1 (Ω)

≤ C29 for all t ∈ (0, T), (58)

from which, along with Lemma 5(i), we have

∥u(·, t)∥Lp3 (Ω) ≤ C30 for all t ∈ (0, T). (59)

Since p3 > nγ
2 , applying Lemma 4(iii), we obtain

∥v(·, t)∥L∞(Ω) ≤ C31 for all t ∈ (0, T). (60)

By Lemma 5(i), again, and letting p4 > max{nγ, γ − k + 1
e + 1, β}, one can find

∥u(·, t)∥Lp4 (Ω) ≤ C32 for all t ∈ (0, T). (61)

From this, together with Lemma 4(iv), we obtain for all t ∈ (0, T)

∥∇v(·, t)∥L∞(Ω) ≤ C33. (62)

Similarly, we infer from β > max{ (nγ−2)(nγ+2k−2)
2n − k + 1, (nγ−2)(α+k−1)

n − k + 1} that
there exists a positive constant p5 such that

max{ nγ
2 , α, β} < p5 < n

nr−2 (β + k − 1) + 1 − k, (63)

thus p5+k−1
β+k−1 ∈ (1, n

nγ−2 ). Combining Lemmas 4(iii) and 5(ii), we have ∥u(·, t)∥Lp5 (Ω) ≤ C34

and ∥v(·, t)∥L∞(Ω) ≤ C35. Using Lemmas 5(ii) and 4(iv), we deduce that ∥∇v(·, t)∥L∞(Ω) ≤ C36.
This completes the proof of Case (ii).

Proof of Theorem 1. From Lemma 6 and the well-known Moser iteration (Lemma 3.6, [49]),
we obtain the boundedness of ∥u∥L∞(Ω). The proof of Theorem 1 is complete by Lemma 1.
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