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Abstract: Specular highlight removal is a challenging task in the field of image enhancement, while it
can significantly improve the quality of image in highlight regions. Recently, deep learning-based
methods have been widely adopted in this task, demonstrating excellent performance by training
on either massive paired data, wherein both the highlighted and highlight-free versions of the same
image are available, or unpaired datasets where the one-to-one correspondence is inapplicable.
However, it is difficult to obtain the corresponding highlight-free version of a highlight image, as
the latter has already been produced under specific lighting conditions. In this paper, we propose
a method for weakly supervised specular highlight removal that only requires highlight images.
This method involves generating highlight-free images from highlight images with the guidance of
masks estimated using non-negative matrix factorization (NMF). These highlight-free images are
then fed consecutively into a series of modules derived from a Cycle Generative Adversarial Network
(Cycle-GAN)-style network, namely the highlight generation, highlight removal, and reconstruction
modules in sequential order. These modules are trained jointly, resulting in a highly effective highlight
removal module during the verification. On the specular highlight image quadruples (SHIQ) and
the LIME datasets, our method achieves an accuracy of 0.90 and a balance error rate (BER) of 8.6 on
SHIQ, and an accuracy of 0.89 and a BER of 9.1 on LIME, outperforming existing methods and
demonstrating its potential for improving image quality in various applications.

Keywords: image processing; specular highlight removal; non-negative matrix factorization;
weakly supervised learning; GANs

MSC: 68U10

1. Introduction

Upon illumination, surfaces composed of highly reflective materials inevitably become
obscured by light spots, leading to a marked deterioration in the quality of the highlighted
regions. Specifically, this phenomenon is particularly conspicuous in image content, where
light spots engender increased interference and uncertainty, especially under complex
lighting conditions. The effective removal of these light spots is therefore crucial, as it
can greatly impact the performance of computer vision tasks that necessitate high-quality
inputs, encompassing applications such as object detection [1], semantic segmentation [2],
and object tracking [3].

The formation of specular highlights is a complex physical phenomenon, resulting in
significant challenges in establishing effective physical models. Despite the availability of
numerous illumination models, the specular reflections generated by diverse materials and
lighting conditions introduce substantial uncertainty. Conventional methods for addressing
this issue can be broadly classified into two primary categories: multi-image and single-
image techniques. Multi-image highlight removal methods typically utilize viewpoint
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dependence, leveraging several images to identify and separate specular and diffuse
pixels [4]. While these methods yield superior performance, they are computationally
intensive. Single-image highlight removal confronts more complex situations, necessitating
the establishment of specific assumptions or conditions. They mainly consist of specific
types of images [5–8], and the estimates of illumination, reflectance, geometry, and surface
material properties [9–19]. However, the current methods for image highlight removal are
susceptible to the erroneous classification of white regions as highlights, particularly in
complex real-world situations.

Following the proposal of convolutional neural networks (CNNs), numerous recent
methods for highlight removal have pivoted towards deep learning, resulting in substan-
tially enhanced performance when benchmarked against traditional approaches.

In the majority of deep learning-based methods, network performance is critically
contingent upon a training set that necessitates laborious annotations. Additionally, these
methods mandate that the training data be either paired or aligned. For example, in the
acquisition of a highlight dataset, it is necessary to obtain both the highlight image and
its corresponding highlight-free image at an identical location. However, capturing such
paired images under natural conditions proves to be a formidable challenge, considering
specular highlights tend to be produced readily in the presence of light. While acquiring
such paired images in a controlled laboratory setting may weaken these issues, it can
compromise the generalizability of the model to real-world scenarios. This reliance on
paired data has become an significant obstacle in the development of large-scale and robust
highlight removal models.

One potential strategy, such as employing unsupervised methods [20], involves the
utilization of unpaired data for training purposes. The collection of highlight-free images
does not directly correspond to the highlight set. However, these unsupervised methodolo-
gies necessitate a sufficient statistical similarity between the two image sets. In practice,
the challenge of capturing highlight-free images with good variety in natural environments
remains unresolved. A recent method [21] proposes a feasible solution to mitigate the data
dependency issue in shadow removal. This approach capitalizes on the observation that an
image encompassing highlight regions inevitably contains highlight-free regions as well,
both of which can be harnessed for highlight removal. Specifically, different regions within
an image can be excerpted to serve as unpaired data for training. Due to the fact that the
data are derived from identical images, the statistical similarity between the two sets of
data is well guaranteed.

In order to separate highlight areas from those devoid of highlights, it is initially
necessary to obtain the pertinent highlight masks. These masks can be approximated by
applying highlight detection methods. In this paper, we estimate the highlight masks
by integrating the NMF method, a procedure also employed in [22,23] for analogous
tasks. Once the corresponding masks are acquired, we can excerpt the highlight regions to
compose the highlight training set. Moreover, we utilize the masks from other images for
extracting datasets devoid of highlights from the highlight-free regions, thereby facilitating
the training of the model using these two datasets.

Employing the above idea, we aim to achieve the task of specular highlight removal via
weak supervision, given the absence of ground truth data. This solution draws inspiration
from the recently introduced G2R-ShadowNet [24], which is trained with weak supervision
using solely shadow images and their associated masks. Before generating the masks, we
first detect the existence of highlight conditions in the images using a highlight detection
method. This ensures that our proposed method is specifically applied to images that
contain specular highlights. Once highlights are detected, we generate the highlight-free
dataset by extracting the highlight-free region from the original image, guided by a random
mask calculated by the NMF method applied to a separate image.

The network we propose comprises three principal modules that are jointly trained:
highlight generation, highlight removal, and reconstruction. The highlight generation
module generates artificial highlights, paired with the corresponding highlight-free regions
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from the input highlight image, thereby constructing a paired training dataset. Subse-
quently, the highlight removal module leverages this paired dataset to train its capability
for effective highlight removal. However, it is important to note that the output image
from the highlight removal module may still exhibit discrepancies from the ground truth in
terms of color and illumination. To address this, we introduce a reconstruction module that
utilizes contextual information from the surrounding area to refine the image, resulting
in a more realistic processing outcome. Extensive experiments conducted on the Specular
Highlight Image Quadruples (SHIQ) [25] and LIME [26] datasets have demonstrated the
superiority of our proposed method in comparison to existing techniques for highlight
removal in natural images. The main contributions of this article include the proposal
of a weakly supervised learning framework for specular highlight removal, the develop-
ment of a novel network architecture comprising three jointly trained modules, and the
achievement of superior performance over existing methods.

The remainder of the paper is organized as follows. Section 2 reviews the related work.
Section 3 presents details of our innovations. Section 4 is the experiments part and further
discussions. Section 5 is our conclusion part.

2. Related Works
2.1. Model-Based Methods

Traditional approaches to highlight removal have relied on optimization techniques,
clustering algorithms, and filtering methods to remove the highlight. Multi-image ap-
proaches use multiple input images and generally exploit viewpoint dependence.
Lee et al. [27] introduced a model that incorporates multiple color images captured from
different viewing directions. Guo et al. [28] exploited the correlations between transmission
layers in multiple images to successfully separate these layers. Single-image methods,
which rely solely on a single input image, face a more formidable challenge. Shen et al. [29]
addressed this by conducting an error analysis of chromaticity and employing a meticulous
selection of body colors for each pixel, thereby distinguishing specular highlights from the
color image. For single-image approaches, traditional methods often demand additional
priors. Tan et al. [10] introduced a method that leverages chromaticity analysis to examine
highlights. Based on the dichromatic reflection model [14,30], the removal of specular high-
lights from natural images is rendered feasible and effective. Shen and Zheng [12] analyzed
the distribution of diffuse and specular reflectance components in color space, segregating
them based on their distinct distributions. Yang et al. [14] employed an edge-preserving
low-pass filter to remove highlights identified as noise originating from specular pixels
within the HSI color space. Liu et al. [15] approached the challenge by initially generating
a supersaturated specular-free image, followed by a two-step process that restores satu-
ration based on diffuse chromaticity and specular reflection. Akashi et al. [22] proposed
a modified model rooted in the sparse NMF method, facilitating highlight removal with-
out reliance on spatial priors. While these methods for specular highlight removal have
demonstrated significant advancements and faster processing speeds, the complex ambient
illumination and varied content of scenes of real-world images often prevent them from
producing satisfactory results.

2.2. Deep-Learning-Based Methods

Recently, deep learning-based methods utilizing CNNs have emerged as the frontier
technology in highlight removal, outperforming traditional techniques by a significant
margin. These data-driven approaches alleviate the need for laborious searches for features
and priors, which might not even be associated with a wide variety of possible scenarios.
Shi et al. [31] proposed a method based on an encoder–decoder CNN architecture, trained
on specular and ground truth image pairs. Fu et al. [25] presented a multi-task network
tailored for specular highlight removal, utilizing a vast dataset comprising natural images
along with their corresponding ground truth information. However, the performance
of these methods is strongly dependent on the quality and quantity of the training data,
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and the task of compiling suitable datasets is always arduous, thus posing limitations on
such methods. Additionally, another challenge faced by data-driven approaches is the
generalization capability, which becomes even more intricate when training with synthetic
data. A potential solution to this challenge lies in the employment of the Generative
Adversarial Network (GAN) framework. Lin et al. [32] introduced a GAN-based approach,
where a generator network is trained to remove specularities and generate diffuse images.
To ascertain the effectiveness of specularity removal, a discriminator network is also
incorporated, solely for the purpose of training.

Muhammad et al. [33] proposed Spec-Net, a network that utilizes an intensity channel
as input to mitigate high-intensity specularities in images with low chromaticity. Further-
more, they proposed Spec-CGAN that considers RGB images as input and generates diffuse
images. Wu et al. [34] proposed a novel GAN approach for specular highlight removal,
guided by an innovative detection mechanism for specular reflection information. Their
method also leverages the attention mechanism to establish a direct mapping between
diffuse regions and specular highlight regions. Nonetheless, these methods remain inher-
ently dependent on data, and the acquisition of paired highlight and highlight-free images
remains a practical challenge.

To address the above-mentioned problem, recent research has paid considerable
attention to the utilization of unpaired data. Yi et al. [20] introduced an unsupervised fine-
tuning framework for deep neural networks, focusing on extracting facial highlights and
tracing their reflections back to the scene to reconstruct the environment map. Yi et al. [35]
further extended this work by introducing an unsupervised method based on local color
distribution image representation. This approach leverages the synergistic benefits of
specular separation and intrinsic image decomposition, requiring only unpaired highlight
and highlight-free images. Fu et al. [36] proposed a novel three-stage framework utilizing
physics-based models and deep learning techniques to progressively eliminate specular
highlights from images, resulting in high-quality specular-free images that are visually
consistent with the original inputs. Xu et al. [37] proposed a bifurcated convolutional neural
network to tackle specular highlight removal. However, it is crucial for unsupervised
methods to ensure sufficient statistical similarity between the highlight and highlight-free
images. Furthermore, even acquiring unpaired highlight-free images can pose difficulties
in certain cases.

In this paper, we propose a weakly supervised specular highlight removal method that
only requires highlight images, addressing the challenges associated with acquiring paired
or unpaired highlight-free images. Our method leverages non-negative matrix factorization
(NMF) to estimate masks for generating highlight-free images, which are then used to
train a Cycle-GAN-style network consisting of highlight generation, highlight removal,
and reconstruction modules. This approach leads to a highly effective highlight removal
module, as demonstrated through extensive experiments on the specular highlight image
quadruples (SHIQ) and the LIME datasets. Our proposed method outperforms existing
approaches for processing natural images, highlighting its potential for improving image
quality in various applications.

3. Proposed Method

The architecture of our proposed network is illustrated in Figure 1, which contains
three jointly trained modules: highlight generation, highlight removal, and reconstruction.
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Figure 1. Training process of our proposed network, including highlight generation G, highlight
removal R, and reconstruction C. The NMF method estimates the highlight mask, which is used to
generate a highlight-free dataset. Consistency between the original and reconstructed images ensures
dataset similarity.

3.1. Mask and Training Data Generation

In order to generate the dataset, we first perform highlight detection as a pre-stage
to identify the potential highlight regions in the image. Subsequently, we perform an
approximate estimation of the position of the highlight mask, which serves as a guide for
cropping out the corresponding highlight regions. After that, we adopt the reflection model
proposed by Phong [38] in our work as follows:

Ldi f f use + Lspecular = SdEd(n · l) + SsEs(v · r)γ (1)

where Sd and Ss denote the material diffuse and specular reflections, Ed and Es represent the
illumination intensity, n and l represent the normal vector and the direction of the incident
light, v indicates the observation direction, r = 2(n · l)− l refers to the fully reflected light
direction, and γ indicates the shininess of the surface material. This model can be widely
applied to represent real-life specular highlights, where Ss in the highlight region is set
to 1 since it can be considered approximately equal to the spectrum of the light source.
Based on the widely used dichromatic reflection model [30], we can combine the NMF
method proposed by [23] to denote the highlight mask by the following method. A color
image I can be defined as I = D + S, where D is similar with Ldi f f use and indicates diffuse
components, and S denotes specular reflection components and is analogous to Lspecular.
In the RGB response of an image, the above combination can be decomposed as follows: R(x)

G(x)
B(x)

 =

 Rd Rs
Gd Gs
Bd Bs

×
[

kd(x)
ks(x)

]
(2)

where the first term on the right side of the equation expressed as a 3 × 2 matrix is the RGB
channel parameter, the last term contains the diffuse and specular reflection coefficients
and is a 2 × N matrix, and N is the total number of pixels in I.

It is assumed that the image under analysis is already registered, as it is captured
from a consistent viewpoint and under controlled lighting conditions, allowing us to focus
on modeling the RGB response without the need for additional registration steps. k(x)
encapsulates the diffuse and specular reflection coefficients, which are combined with the
RGB channel parameters (represented as a 3 × 2 matrix) to model the RGB response of
an image pixel x. Specifically, k(x) is a 2 × N matrix where each column corresponds to
the diffuse and specular reflection coefficients for a given pixel, and N is the total number
of pixels in the image. This matrix is non-negative and often sparse due to the localized
nature of specular reflections. We solve Equation (2) using the NMF [39] method. Since
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the matrix is 3 × 2, we fix the internal dimension of the decomposition to 2 and constrain
ks(x) sparsely by minimizing the ℓ1 norm while holding the ℓ2 norm (see Figure 2).

R i c CNMF

ReconstructionC

R Remove

Insertion i

Connectionc

Figure 2. Testing process overview. The highlight removal module transforms the input into
a highlight-free image, which is compared with the ground truth. The reconstruction output is
also evaluated.

With the guidance of the highlight mask, we crop the highlight region Ih from the
original image I , while the rest of the image Ih is set to 0. Then, from the obtained highlight
masks, we pick a random mask that is larger than the set area and apply it to crop the
highlight-free image I f from the image I , ensuring that the areas of the two images do not
overlap. Figure 3 illustrates the calculated highlight masks, as well as examples of cropped
highlighted and highlight-free images captured under different lighting conditions.

Input Highlight mask Highlight-free image Highlight image

Figure 3. Highlight masks (second column) calculated by NMF from natural images (first column).
Highlight-free images (third column) and highlight images (last column) are obtained by cropping
with the guidance of random masks and corresponding masks crops, respectively.

3.2. Network Architecture

A significant number of unpaired data, generated via the Non-negative Matrix Fac-
torization (NMF) method, are utilized to enhance the performance of the generator G.
Through adversarial training, the generator is tasked with producing increasingly realistic
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synthetic highlight images Ĩh, which are then paired with the corresponding highlight-free
regions of the original image I. We employ a discriminator Dh to accurately discern be-
tween false highlight Ĩh and a real sampled highlight Ih, thereby ensuring the statistical
similarity between these two categories of images.

The objective function derived from the standard generative adversarial network [40],
is formulated to optimize the generator G and its corresponding discriminator Dh , as de-
fined below:

Lg
GAN(G, Dh) = EIh∼p(Ih)

[log(Dh(Ih))] +EIh∼p(Ih)

[
log

(
1 − Dh

(
G
(

I f

)))]
(3)

where p denotes the data distribution.
Meanwhile, to ensure the authenticity of the highlights generated by the generator G,

we incorporate a real highlight Ih into the generator G to generate Ĩ0
h . It should theoretically

be the same as Ih. Then, we apply the identity loss [41] to optimize the generator G via this
restriction, given by

Liden (G) = EIh∼p(Ih)
[∥G(Ih), Ih∥1] (4)

where ∥ .∥1 denotes the ℓ1 norm, which can reflect the pixel-wise deviations.
Then, we use a highlight removal module R trained by the pairs of I f and Ĩh to

remove the fake highlight, which is the output of the generator G, i.e., Ĩh. According to the
classic architecture of Cycle-GAN [42], the highlight removal module R shares the same
architecture with the generator G , while it obtains a highlight-free image Ĩh that should be
identical to the original image I f after processing. R is trained by formulating the following
consistency loss [42], which can also be applied to train generator G,

Lcycle (G, R) = EI f ∼p(I f )

[∥∥∥R
(

G
(

I f

))
, I f

∥∥∥
1

]
(5)

Similarly, another discriminator D f is employed to train the highlight removal module
R, producing more realistic highlight-free images. We apply adversarial loss [40] to train
both R and D f , which is defined as:

Lr
GAN

(
R, D f

)
= EI f ∼p(I f )

[
log

(
D f

(
I f

))]
+EI f ∼p(I f )

[
log

(
1 − D f

(
R
(

Ĩh
)))]

(6)

Since the resulting highlight-free image Ĩ f is confined to a particular region of the
image, R is likely not to take into account the surrounding information of the highlight
areas. Consequently, the processed highlighted areas may exhibit substantial differences in
color and detail compared to the original image I f . To address this limitation, we use the
reconstruction module C to reconstruct the original image I, the fake highlight-free image
Ĩ f , and the mask M, and then synthesize the image Ir by the reconstructed image. Image Ir
is defined as:

Ir =
(

I + Ĩ f − I f

)
⊕ M (7)

where M covers the regions of I f that have content, and ⊕ represents concatenation
operation. The reconstruction module C also adopts the same network architecture as G
and R, except that the input Ir is a 4-channel tensor containing an additional 1 channel for
the mask M. Subsequently, we use the pixel loss to encourage the final output image Ic to
be consistent with I,

Lpixall = EI f ∼p(I f )

[∥∥∥C
(

R
(

G
(

I f

)))
, I
∥∥∥

1

]
(8)

3.3. Module Details

The overall architecture of our proposed three modules is based on Hu et al. [43],
as depicted in Figure 4. This framework commences with three convolutional layers
responsible for downscaling operations, followed by nine residual blocks [44] that serve to
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extract intricate features. The network concludes with three distinct convolutional layers,
which are tasked with generating the output image. Notably, instance normalization [45] is
consistently applied after each convolutional layer to preserve the preservation of unique
image details. The discriminator component is a direct realization of the PatchGAN
model [46], ensuring precise discrimination of the authenticity of the generated images.
Additionally, the notation (P1) represents the first pixel-wise operation within our network
architecture. This operation occurs after the initial convolutional layer and plays a crucial
role in processing the input features before they are passed through the subsequent layers of
the network. For clarity, the filter bank sizes for all convolutional layers are as follows: first
convolutional layer: 64 filters, second convolutional layer: 128 filters, third convolutional
layer: 256 filters, and fourth convolutional layer: 512 filters (with a 7 × 7 kernel size). We
have intentionally used a 7 × 7 kernel size for this layer. The reason behind this choice is to
capture a larger receptive field in the deeper layers of the network, which can be beneficial
for extracting more complex and abstract features from the input data. This larger kernel
size allows the network to learn richer representations by considering a broader context in
the input feature maps.
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Figure 4. The overall architecture of the modules, including three convolutional layers, nine residual
blocks, and three different deconvolutional layers.

3.4. Loss Function

As aforementioned, our proposed approach incorporates four distinct losses: adver-
sarial loss LGAN [40], identity loss Liden [41], cycle consistency loss Lcycle [42], and pixel loss
Lpixel . These losses are jointly optimized for the three interdependently trained modules.
The final loss function L is a weighted sum of the above loss functions:

L = ω1(Lg
GAN + Lr

GAN) + ω2(Lcycle) + ω3(Liden) + ω4(Lpixel). (9)

Although we adopt G2R-Net [24] as a baseline for our network architecture, we en-
countered a unique challenge due to the significant difference in size between the highlight
mask and the shadow mask when generating the training dataset. Specifically, the highlight
region tends to be considerably smaller during the removal process. To address this issue,
we introduce a pixel loss function, analogous to the identity loss, which effectively con-
strains the output image Ic. Following extensive experimental validation, we empirically
determined the optimal weights ω1, ω2, ω3, and ω4 to 1, 1, 20, and 10, respectively, in order
to achieve a balanced optimization of the various loss terms. These ablation studies are
detailed in Section 4.3.

4. Experiments
4.1. Implementation Details

Datasets: In this paper, we conduct experiments utilizing two recent datasets to
validate the efficacy of our proposed approach.

(1) SHIQ: The SHIQ dataset is specifically designed for the purpose of highlight detec-
tion and removal, and provides comprehensive annotations including ground truth,
highlight images, and corresponding highlight masks. Each of these components
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comprises approximately 12,000 images, with a resolution of 200 × 200 pixels and
36,000 images in all. Notably, we utilize only the highlight images from this triplet in
our experiments, employing the NMF method to generate the corresponding highlight
masks. The SHIQ dataset was captured in natural scenes, exhibiting a diverse range of
illumination conditions, object materials, and scenarios. For our experiments, we split
the datasets into a training set of 24,000 images, a validation set of 6000 images, and a
test set of 6000 images. We ensure that the ground truth, highlight images, and cor-
responding highlight masks are evenly distributed among them. Specifically, each
subset contains an equal number of images from these three components, with ap-
proximately one-third of the total images allocated to each subset. This balanced
distribution allows us to effectively train, validate, and test our proposed approach.

(2) LIME: The LIME dataset comprises images of diverse materials, including specular
reflection images representative of these materials, and each comprises approximately
25,000 images. Notably, our experiments solely utilize the highlight images within
this dataset. We split the datasets into a training set of 15,000 images, a validation set
of 5000 images, and a test set of 5000 images.

Metrics and Comparison: To evaluate the effectiveness of our proposed method, we
conduct a comparative analysis with various existing approaches, including traditional
methods [10,14,15,22,47] and deep learning-based methods [25,31,35]. Furthermore, we
adopt the widely utilized peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) as performance evaluation metrics, in accordance with the current works [48].
For both of these metrics, a higher value indicates superior performance. Accuracy is a
metric used to measure the performance of a classification model. It is calculated as the
ratio of correct predictions to the total number of predictions made. Balance Error Rate
(BER) is a performance metric specifically designed for imbalanced datasets. It is calculated
as the average of the false positive rate and the false negative rate. The BER provides a
balanced view of the model’s performance, considering both types of errors. The Peak
Signal-to-Noise Ratio (PSNR) measures the quality of image compression or reconstruction
by comparing the signal power to the noise power. The Structural Similarity Index (SSIM)
assesses the visual similarity between two images, considering structural information,
luminance, and contrast.

Experimental Details: Our proposed network is implemented in PyTorch, inspired
partly by the architecture of Cycle-GAN. During the initial stage of the generator, the model
was initialized using a Gaussian distribution with a mean of 0 and a standard deviation of
0.02. The model is trained for 100 epochs, with an initial learning rate of 2 × 10−4 for the
first 50 epochs, followed by a linear decay to zero over the subsequent 50 epochs. The batch
size was consistently set at 1. For data generation, we produced an equivalent number of
cropped non-highlighted images as the original highlight images in the SHIQ dataset to
serve as input for model training. All three modules were involved in the training process
of the network and underwent joint optimization. During the testing process, only the
highlight removal and reconstruction models were utilized to generate the final results.

4.2. Comparison Results

We conduct a comparative analysis of our proposed method with eight existing tech-
niques, containing Tan [10], Yang [11], Shen [12], Akashi [22], Yamamoto [19], Shi [31],
Yi [35], and Fu [25], utilizing the SHIQ dataset. Among these, Yi [35] represents an unsuper-
vised approach that solely relies on unpaired highlight and highlight-free images. Shi [31]
and Fu et al. [25] employ paired highlight and highlight-free images, in addition to corre-
sponding highlight masks and specular reflections for training. The remaining methods
operate on a single image basis, thus eliminating the need for a training set. Furthermore,
we have slightly modified the architecture of our network to facilitate training on paired
highlight and highlight-free images. This adapted version is illustrated in Figure 5, where
we have eliminated the highlight generation module while directly comparing the images
generated by the highlight removal and reconstruction modules with paired ground truth.
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Figure 5. The architecture of the slightly adapted network trained on paired data. I and M denotes
the input image and mask, respectively. I f obtained from the ground truth is the corresponding
highlight-free image with Ĩ f ; Ic is the output of the network, which ought to be consistent with the
ground truth.The other letters have been depicted in Figure 2.

As shown in Figure 5, the blue region represents the workflow of data processing and
reconstruction, encompassing input, transformation, and output stages. The yellow region
highlights the core modules involved in the segmentation task, focusing on generating
accurate segmented outputs.

Qualitative Evaluation: In Figure 6, we present the qualitative results of the aforemen-
tioned highlight removal methods evaluated on the SHIQ dataset. Our analysis reveals
that traditional methods based on statistical and chromaticity analysis exhibit suboptimal
performance in highlight removal and are susceptible to introducing color distortion. Since
traditional methods cannot semantically differentiate between highlights and reflected light
from white materials, white regions in results are often processed as highlights and turn
black. Regarding the deep learning-based methods, Fu et al. [25] and our proposed method
perform well in the treatment of white regions and yield relatively high-quality images.

(a)input  (h)Yi 2020(b)Tan 2008  (c)Yang 2011  (d)Shen 2013  (e)Akashi 2014  (f)Yamamoto 2019 (g)Shi 2017  (i)Fu 2021 (j)Ours

Figure 6. A visual comparison between our method and the state-of-the-art method is performed
on the SHIQ dataset. It can be seen that our method has the advantage of recovering highlight-free
images more clearly [10–12,19,22,25,31,35].

Quantitative Evaluation: The quantitative results of the various methods are shown
in Table 1. It can be seen that our proposed method achieves a satisfactory performance.
Table 2 reveals that the accuracy and equilibrium error rates achieved by our method are
better than other methods, especially in SSIM with the highest score, and it outperforms the
recently proposed methods using unpaired images [35] and based on a single image [19].
Compared with [25] that utilizes paired data and more additional information, our method
achieves competitive results in PSNR and better results in SSIM on both datasets. As men-
tioned in [48], PSNR does not match well with the perceived visual quality and SSIM is
more effective in characterizing the visual similarity between images. This phenomenon
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can also be seen in the last row of the image obtained by [25], as depicted in Figure 6.
The blue pattern in the figure deviates somewhat compared to the ground truth. We can
also discern that the effectiveness of our proposed method can be improved significantly by
incorporating corresponding highlight-free images and training our network with paired
datasets. Nonetheless, in the absence of corresponding ground truth, our approach still ex-
hibits commendable performance, effectively minimizing the need for constructing paired
datasets at the cost of a marginal decrement in accuracy.

Table 1. Quantitative comparison of the proposed method with state-of-the-art highlight removal
methods. ‘N/A’ indicates that the method relies only on a single image for processing. ‘Hig.’
represents highlight and ‘S’ denotes specular highlight. ‘Unpaired’ indicates that there is no corre-
spondence between the classes of the training set.

Method Training Data
SHIQ LIME

PSNR (dB) SSIM PSNR (dB) SSIM

Tan [10] N/A 11.04 0.40 13.21 0.52
Yang [11] N/A 14.31 0.50 17.64 0.58
Shen [12] N/A 13.90 0.42 14.08 0.51

Akashi [22] N/A 14.01 0.52 16.13 0.55
Yamamoto [19] N/A 19.54 0.63 19.89 0.63

Shi [31] Hig.Free + Hig.Mask + S (Paired) 18.21 0.61 24.21 0.76
Yi [35] Hig.Free (Unpaired) 21.32 0.72 26.77 0.79

Fu [25] Hig.Free + Hig.Mask + S (Paired) 34.13 0.86 37.01 0.91

Ours N/A 30.94 0.96 32.86 0.97
Hig.Free (Paired) 31.86 0.97 33.43 0.98

Table 2. We have used accuracy and balance error rates (BERs) for comparison, where our results are
marked in bold.

Dataset Method
SHIQ LIME

Accuracy BER Accuracy BER

Tan [10] 0.62 17.8 0.70 19.9
Akashi [22] 0.69 24.1 0.59 21.2

Fu [25] 0.85 10.7 0.88 11.3
Ours 0.90 8.6 0.89 9.1

4.3. Ablation Study

To investigate the efficacy of each component within our proposed network, we
conduct an ablation study to assess the impact of their absence on the experimental results
on the SHIQ dataset. Firstly, we experimentally examine the value of introducing an
additional discriminator D f by comparing two configurations: one with a discriminator
specifically designed for highlight-free images, while the other without. Furthermore, we
evaluate the influence of the reconstruction module C through a similar experimental setup.
The quantitative results are summarized in Table 3, which reveals that the inclusion of the
new discriminator and reconstruction module indeed enhances the overall performance of
the network.

Table 3. Ablation study to validate the effectiveness of discriminator Dh on the SHIQ.

Methods
Metrics

PSNR (dB) SSIM

Without discriminator Dh 30.41 0.959
Without reconstruction module C 27.35 0.939

Full structure 30.92 0.964
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Subsequently, our loss function is comprised of adversarial loss, identity loss, cycle
consistency loss, and pixel loss. The adversarial loss LGAN facilitates the generators to
produce more realistic images, while the cycle consistency loss Lcycle serves a similar
purpose, ensuring that the generated image aligns closely with the ground truth in terms
of color and texture. The identity loss Liden constrains the highlight generator G to focus
exclusively on the generation of highlights, preventing it from producing non-highlight
content. Additionally, the pixel loss Lpixel aids the network in further enhancing the
processed highlight areas. To demonstrate the effectiveness of each loss component, we
conducted a series of experiments, and the quantitative results are presented in Table 4.
Notably, for the situation that the adversarial loss LGAN or the identity loss Liden is absent,
the generation module fails to generate high-quality highlights, significantly impacting
subsequent processing steps and resulting in a considerable decline in performance metrics.
In contrast, when the cycle consistency loss Lcycle is removed, the reconstruction module
C, which is trained alongside the generator G, can partially fulfill the task of highlight
removal, leading to a relatively smaller decline in performance. Finally, the removal of the
pixel loss Lpixel contributes to a degradation in performance, highlighting the advantage of
utilizing the entire image as a constraint. We also present qualitative results in Figure 7,
which are generally in alignment with the quantitative findings described above, further
validating the effectiveness of each loss component.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Ablation study of loss functions on SHIQ dataset. (a): input images; (b–e) are the results of
experiments without LGAN , Liden, Lcycle, and Lpixel , respectively; (f): with full loss; (g): ground truth.

Table 4. Ablation study of loss functions on the SHIQ.

Methods
Metrics

PSNR (dB) SSIM

Without LGAN 20.17 0.872
Without Liden 22.35 0.908
Without Lcycle 30.26 0.958
Without Lpixel 28.72 0.949

Full loss 30.92 0.964

To further evaluate the impact of different weights for the identity loss Liden and pixel
loss Lpixel , we conducted additional experiments. Specifically, we varied the value of ω3
to 1, 5, 10, 20, and 30, respectively. The quantitative results are presented in Table 5, and
indicate that appropriately increasing the weight of the identity loss results in improved
performance. Similarly, pixel loss Lpixel shares functional similarities with identity loss Liden,
and our experiments suggest that a weight of 10 for Lpixel achieves the optimal performance.
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Table 5. Effectiveness of various identity loss Liden changes to the proposed method on SHIQ.

Liden 1 5 10 20 30

PSNR (dB) 21.85 26.37 29.95 30.92 30.20

SSIM 0.898 0.936 0.959 0.964 0.957

4.4. Limitations

While our proposed approach demonstrates satisfactory performance in numerous
cases, it encounters challenges in certain cases, such as the example depicted in Figure 8.
When highlight regions partially cover the surface material as illustrated in Figure 6, our
method typically performs well. However, when applied to tasks involving the entire ma-
terial, the performance is poor. As shown in Figure 8, where specular reflection covers the
entire knife, the resulting color differs slightly from the actual image. This discrepancy may
be attributed to our reconstruction module, which incorporates surrounding information
of the highlighted regions to optimize these regions. Since the highlight encompasses the
entire object, there is a lack of relevant information in the surrounding area, leading to the
decreased performance of our method.

(a) (b) (c) (d)

Figure 8. Failure cases of our method on the SHIQ dataset. Top row: input specular highlight
images. Middle row: our removal methods. Bottom row: ground truth. (a,b) are the cases where the
specular highlight covers the entire area. (c,d) are the cases where the specular highlight is caused by
the glass.

Furthermore, certain failures arise due to reflections originating from the glass, as ob-
served in Figure 8, particularly when there are diverse backgrounds beneath the glass.
In such cases, our highlight removal and reconstruction module may struggle to discern
whether the reflection stems from the background or the glass itself, given the limited
number of specular reflections caused by glass in our training set. Consequently, accu-
rately reproducing the background information beneath the glass in the highlighted areas
becomes challenging in the final result.

5. Conclusions

In this paper, we have introduced a novel approach for specular highlight removal
through weak supervision, which operates without reliance on ground truth data. Our
proposed network comprises three key modules: highlight generation, highlight removal,
and reconstruction, all of which are trained jointly. Compared to state-of-the-art methods
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that require additional preprocessed and annotated data, including highlight-free images,
specular highlights, and highlight masks, our method achieves competitive performance
both qualitatively and quantitatively. Extensive experiments conducted on the SHIQ and
LIME datasets have validated the efficacy of our proposed approach.

For future work, we plan to further explore the potential of weak supervision in
specular highlight removal tasks and aim to enhance the generalization ability of our
network to tackle more complex and diverse real-world scenarios. Additionally, we will
investigate how to integrate our method with other image processing techniques for more
efficient and comprehensive image quality improvement.
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