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Abstract: (1) Background: This work focuses on improving the efficiency of warehouse operations
with the goal of promoting efficiency in the logistics industry and mitigating logistics-related labor
shortages. Many factors are involved in warehouse operations, such as the optimal allocation of
manpower, the optimal layout design, and the use of automatic guided vehicles, which together affect
operational efficiency. (2) Methods: In this work, we developed an optimal method for operating
a limited number of workers or picking robots in a specific area, coping with cases of sudden
disruptions such as a change in picking order or the blockage of aisles. For this purpose, the number
of pickers, the storage capacity, and other constraints such as sudden changes in picking orders
during the picking process, as well as blockages in the aisles of a warehouse site, are considered.
The total travel distance is minimized using Gurobi, an optimization solver. (3) Results: The picking
routes were optimized in three different scenarios using the shortest route between the starting point
and the picking points, resulting in up to a 31% efficiency improvement in terms of the total distance
traveled. (4) Conclusions: The main contribution of this work is that it focuses on the day-to-day
work situations of sudden changes in the picking order and the presence of route blocks in real-
world logistics warehouse sites. It demonstrates the feasibility of responding to sudden disruptions
and simultaneously optimizing picking routes in real time. This work contributes to the overall
efficiency of logistics by providing a simple, yet practical, data-driven solution for the optimization
of warehouse operations.

Keywords: mathematical optimization; Gurobi; order picking; warehouse operations; logistics;
warehouse layout

MSC: 90B06

1. Introduction

In recent years, there has been a remarkable increase in the global movement of goods
and a corresponding increase in the demand for warehousing. Warehousing is essential
to supply chain management (SCM) because it is responsible for storing not only finished
products, but also parts and materials [1]. It also collects materials from suppliers around
the world and makes them available in a streamlined and consistent manner. Efficient
warehouse operations are critical to maintaining logistics’ efficiency. Warehouse efficiency
contributes to overall logistics efficiency, making warehousing an important sector that
connects every country with the world.

In this work, we focus on the optimization of picking routes in a warehouse with
a simple layout. There are two motivations behind this approach. First, the limited
availability of space. The land available for warehouses in a country like Japan is very
limited. Warehouses and cargo handling facilities are densely clustered around terminals
along the coast, and there is no room to build large warehouses.
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Second, warehouse operations are subject to sudden disruptions such as picking order
changes and aisle blockages. A picking order change occurs when there is an update of the
items to be shipped/picked or a change in staffing. Aisle blocking occurs when a forklift is
parked in the aisle; carts or pallets with products on them are sitting in the area; or someone
else is picking in the area. These disruptions often lead to changes in picking routes. It
adds value to optimize picking routes while managing these disruptions in real time to
generate cost and time savings.

The elements of a warehouse’s layout include everything from the volume of the
warehouse itself to the number of employees, the design and arrangement of racks, and
so on. By adjusting these factors, it is possible to improve the efficiency of warehouse
operations. In addition, the replenishment of inventory may not be smooth, resulting in
significant losses of time and manpower. Optimizing picking routes is an important part of
warehouse operations. A simple but realistic study is needed. Therefore, the purpose of
this work is to optimize picking activities in warehouses.

The aim of this work is to optimize picking routes, taking into account various on-
site factors such as sudden changes in picking orders and unexpected aisle blockages.
We proposed a simple model with low computational resources and a fast execution to
optimize the picking route. The results show that the proposed model can optimize picking
routes by 20% to 31% without negatively affecting service responsiveness.

The main contributions of this work are threefold. First, it takes into account the actual
working situation in a logistics warehouse. Second, it proposes a method for improving
order picking efficiency by 20–31% without compromising service responsiveness, thus
leading to cost savings for logistics companies. Third, it provides a scalable solution that
can be applied to warehouses of different sizes.

In summary, this research demonstrates the feasibility of responding to and optimizing
changes in the picking workload in real time. This makes it possible to improve work
efficiency while maintaining the desired level of service responsiveness. In essence, this
work has developed a method to optimize picking routes, taking into account real-world
operational constraints, and has been able to achieve significant efficiency gains without
compromising customer service. This highlights the potential for improving warehouse
productivity through advanced planning and optimization techniques.

Various studies (such as [2,3]) have discussed green scheduling while mainly focusing
on manufacturing sites. This research focuses on green scheduling in the warehousing
sector, thus complementing the existing literature.

The rest of the paper is organized in the following manner: Section 2 reviews previous
studies. Section 3 explains the model used and proposes a solution. Experiments and results
are presented in Section 4, and the effectiveness of the proposed method is demonstrated
based on the experimental results. Section 5 discusses the findings. Finally, Section 6
contains a discussion of improvements and developments.

2. Previous Studies

Order picking refers to the picking operations in units of placed orders. Order picking
is a critical and costly activity in warehouses, accounting for up to 55% of all warehouse
operating costs [4]. Layout design and routing are two of the most important research areas
here [5]. Layout design-related research investigates ways to reduce picking time through
efficient product placement and flow design [6]. Routing-related research investigates ways
to reduce picking time by optimizing the picker’s route [3,4,6].

2.1. Layout Design

A number of studies, such as [7–10] have been carried out on warehouse layouts.
For example, Cardona et al. [9] conducted a study using a fishbone layout with diagonal
cross aisles instead of the traditional layout with long and wide aisles that is the main one
used worldwide. Zhou et al. [11] researched picking strategies for a leaf layout warehouse.
Liu et al. [12] studied the best picking path for a chevron layout warehouse.
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One of the research areas related to warehouse layouts is the application of the Internet
of Things (IoT). Trab et al. [10] presented their research on layout and picking routes using
Radio Frequency Identification (RFID) based on product compatibility. Lee et al. [13]
proposed a warehouse management system for intelligent logistics using the IoT. The
authors proposed a picking method suitable for a warehouse management system using
data including factors such as the number of employees and SKUs (stock keeping units),
with the aim of improving the efficiency of warehouse management. Their proposal is
based on fuzzy theory, prioritization, and a comparison of picking methods. Their research
results show that their proposed method improves warehouse management efficiency and
warehouse productivity by reducing picking time. The method used in their paper to
determine the best picking method was considered to be very useful; however, certain
aspects need to be improved in terms of its complexity and flexibility.

2.2. Route Optimization

There are several ways to improve the efficiency of picking operations, such as opti-
mizing locations [8], standardizing work rules [14], and optimizing picking routes [12].

2.2.1. Optimization of the Distance between Two Points

A picking route is optimized by minimizing the distance between two points. Shetty
et al. [1] used the Gurobi solver and the Julia programming language to optimize a picking
route. The authors compared two sample picking routes: one with locations uniformly
distributed throughout the warehouse and another with differentiated locations. A simple
distance matrix approach was used to perform the optimization (Figure 1).
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In particular, a simple layout was used with three vertical racks and two horizontal
racks, with an aisle between each of the racks. In this case, there were three possible picking
routes. Figure 1 shows the proposed route from Location 1 to Location 2: the first route is
from Location 1 to the left, moving outside the racks; the second route is from Location 1 to
the right, moving outside the racks; and the third route uses the aisles between the racks.
In this case, the minimum of the three proposed routes is used to determine the optimal
route between the two points. This approach is flexible, simple, and effective because it can
accommodate changes in the number of racks and corridors.

2.2.2. Optimization of the Routes of Order Picking with Two or More Aisles

Roodbergen and Koster [15] suggested that adding cross aisles to the warehouse layout
can reduce order fulfillment time. The authors studied five picking routes to determine
the optimal routes (Figure 2). The first is the most basic S-shape method. This method
requires the worker to pass through each passageway at least once, resulting in the greatest
total distance traveled. The second is called the return method. In this method, the worker
returns to the lower aisle after picking each item in each aisle. The third method, the
mid-point method, picks from the upper or lower aisle that is closer to the picker. This
method is very effective when the number of items picked per aisle is small. The fourth
method, with the largest gap heuristic, considers the case where there are multiple orders
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in an aisle and picking from one side is preferable to picking from both the upper and
lower aisles. This method always gives better results than the mid-point method. The fifth
method, the combined method, combines the above four methods to suggest a route, from
which the optimal route was suggested.
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In this work, picking route optimization is performed under the assumption that
locations are constant and work rules are uniform.

2.2.3. Methodologies for Picking Route Optimization

Order picking route optimization is a process of identifying the order picking se-
quences in a picking route to minimize the travel time/distance. Picking route optimiza-
tion techniques can be categorized into three types: exact, heuristic, and meta-heuristic
algorithms [16]. Exact algorithms are usually based on enumeration or cutting plane meth-
ods. The advantage is that they systematically explore the realizable region of the problem
and eliminate suboptimal solutions. However, they have some limitations, such as being
computationally expensive, requiring large amounts of memory or storage. Heuristic
algorithms are methods that use intuition, general rules, or experience to find a solution
to an optimization problem. Heuristic algorithms are often faster and simpler than exact
algorithms and can handle large or complex problems. However, the solution found is not
guaranteed to be the best. Few studies have proposed exact algorithms [17]. In this paper,
we propose an exact algorithm that requires minimal computational resources.

2.3. Our Research Motivation

In the existing literature, the optimal picking route has been derived by the search
for the shortest distance between two points. However, these studies did not address the
model’s lack of simplicity, the complexity of its implementation, and the sudden change
in picking tasks in the field. To overcome these challenges, in this research we propose a
model which has simplicity and practicality by considering the actual reality of warehouses
based on warehouse workers’ feedback, such as sudden changes in picking tasks (change
of the picking order during the picking process, or order changes, and henceforth) and
blockages existing in the aisles in a warehouse.

3. Model

Figure 3 presents the flowchart of the three scenarios used in this work.
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In the first scenario, we constructed a flow to analyze the efficiency of the optimization
of general picking (Figure 3a). First, information about the warehouse layout, such as
the number of aisles and racks, was specified and, based on the layout information and
the picking location, the order was randomly determined. Then, the picking routes were
compared, and a sensitivity analysis was performed to verify the efficiency improvement
of the optimized picking routes.

In the second scenario, we constructed a flow (Figure 3b) to analyze the efficiency of
picking optimization in a sudden order change situation. Order changes occur when there
is an update to the items to be shipped/picked, or when there is a change in personnel
assignments. This flow covers cases where an order change occurs in the middle of an
optimized route.

In the third scenario (Figure 3c), we constructed a flow to analyze the efficiency of
optimization when picking in the case of a blockage. This scenario covers cases where a
blockage appears in the route. Aisle blocking occurs when a forklift is parked in the aisle;
carts or pallets with products are stopped in the aisle; or someone else is picking in the area.

3.1. Layout Model

To begin with, a simple conventional warehouse layout is used in this work (Table 1).
First, basic information such as the warehouse’s size and capacity are specified, and the
warehouse layout is determined based on this information.

Table 1. Warehouse layout information.

Layout Information Abbreviation and Sample Values

Number of vertical aisles St_aisle (e.g., 10)
Number of horizontal aisles Cross_aisle (e.g., 3)

Number of vertical product storage spaces per rack Vertical_rack (e.g., 4)
Number of horizontal product storage spaces per rack Horizon_rack (e.g., 2)

Number of vertical racks Num_vertical (e.g., 2)
Number of horizontal racks Num_horizon (e.g., 9)
With or without outer rack Yes or No (e.g., No)

From the information presented above, it is possible to draw the warehouse layout
to determine the picking locations of the products. In this paper, two types of warehouse
layouts are used: one is the size of the actual site and the other is a larger scale warehouse
used in the analysis.

Other details that affect the layout include ABC priority, the number of rack levels,
and the location of the picking point. ABC priority is a method for determining where to
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store products based on how frequently they are picked. Increasing the number of tiers
increases the number of SKUs that can be stored. If the racks are too large, they may be
out of the picking range of a human or a robot. It is necessary to select racks within the
picking range, taking into account the size of the products to be stored and the size of the
warehouse itself. In addition, the shortest route can be changed by changing the location of
the picking point, which is the starting point of the picking.

In this work, simulations are conducted using a conventionally simple layout to avoid
complexity and without using data on product size, human or robot picking range, or
other factors.

3.2. Picking Model
3.2.1. Baseline Scenario

The initial step is to enter the baseline information (Table 2). The orders are added
using a list of orders (a), with the order locations as ordered values. The start and end
points of the picking route, the depots (start points), are included at the beginning of the
order list. The picking points are randomly selected from all the picking points in the
warehouse layout. In our simulation, the number of pickers is set to 1.

Table 2. Baseline scenario’s picking information.

Layout Information Abbreviation and Sample Values

List of orders a
Number of pickers 1 or p (e.g., 1)

We propose a mathematical formulation of the model. The set of all nodes a consists of
all work locations, with each work location as a node, and node(x, y) = (0, 0) indicates the
depot (starting point). The number of nodes is N = length(a). The average speed of the
movement between nodes i and j is constant. The 0, 1 variable xi,j is used as an indicator of
the movement from node i to node j, where 1 means movement between each node and 0
means otherwise.

min∑i∈N ∑j∈N xijlij (1)

subj to ∑i∈N xij = 1 ∀j ∈ N (2)

∑j∈N xij = 1 ∀i ∈ N (3)

xi,j = {0, 1} (4)

ui − uj + Nxijx ≤ N − 1 ∀i, j ∈ N (5)

The goal of this optimization model is to find the shortest path, the optimal solution,
if the picker starts from the starting point, passes through all specified nodes, and returns
to the starting point.

The objective function (1) of the mathematical optimization model shows the minimiza-
tion and optimization of the total travel distance of the order picking route. Constraints (2)
and (3) indicate that one edge enters and one edge leaves each node, i.e., there is only one
visit per node. Constraint (4) states that xi,j is a 0, 1 variable. Constraint (5) is a constraint
used to eliminate subroutes. The variable ui is the value for each node except the depot. It
is applied following the Miller–Tucker–Zemlin (MTZ) formulation to remove subroutes.

3.2.2. Scenario of Order Change

In real workstations, orders are often suddenly added or deleted during the picking
process. The current position is called “now” and is a number on the list. If the “now”
position is a large number, the picking route itself becomes short, so we randomly selected
from three points in the first half of the picking route. When deleting, the coordinates to be
deleted are set to “delete” status and the corresponding number is deleted from the Pick
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Order list. Deletion is also chosen randomly, so that now < delete < length(a) − 1. To add a
job, we use add as the coordinates of the job to be added. Add is appended to the end of
the list. Using each of these expressions (Table 3), we perform a new route optimization. A
flowchart is added to show the process.

Table 3. Picking order change information.

Layout Information Position Expression

Current situation now {now ∈ 1, 2, 3}
Situation of job deletion delete∈[now, length(a) − 1]
Situation of job addition add = [(x,y)]

Moreover, in this case, unlike the baseline optimization, the end point and the start
point are different. Therefore, if i = 0 is the start point (current position) and i = 10 is the
end point, the following objective function and constraints are added:

min ∑
i∈N

∑
j∈N

xijlij − l10,0 (6)

Subj to x10,0 = 1 (7)

3.2.3. Scenario of Route Blockage

Sudden route blocks at actual locations are an obstacle to efficient order picking. Since
this work considers the impact of route blockages on the optimal route, the points to be
blocked are limited to those on the optimized route. Therefore, a node between two points
i and j is randomly selected from all picking routes, and the simulation is performed by
blocking the closest intersection of edge i that is on the adopted route. For a change in the
picking route due to route blocking, consider the case shown in Figure 4 below. In this
case, if a blocking point appears on the optimized route as shown in Figure 4a, the total
distance traveled becomes large if the points are visited in the same order to avoid the
blocking point, as shown in Figure 4b. Therefore, by performing the optimization as shown
in Figure 4c, it is possible to optimize the picking route while avoiding the blocked points
in the optimal order.
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Figure 4. Change in picking route due to route blocks. (a) Optimization before route blockage;
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indicate the order in which picking is performed. The star indicates a route blockage.

From the figure above, we can see that roadblocks cause changes in routes and the
shortest paths. The model is simulated using the following information (Table 4).
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Table 4. Route blockage picking information.

Layout Information Abbreviation and Sample Values

Randomly chosen node (i,j) (s, s + 1) {s ∈ N − 1}
Point to be blocked block = (x,y)

3.3. Analysis Model

To evaluate the accuracy of the model to be optimized, a sensitivity analysis is per-
formed. The reason for performing a sensitivity analysis is to evaluate, quantitatively and
qualitatively, how much a change in the optimization affects the results. The following
formula is used to evaluate the accuracy of the model:

S(x) = δy(total travel distance)/δx(change) (8)

The x parameter specifies the amount of change. For baseline picking optimization,
the parameter x is the number of all orders; for order change optimization, the parameter
x is the number of orders that have changed; and for picking optimization with blocking
points, the parameter x is the number of points to be blocked.

The computation is carried out using Gurobi Optimizer version 10.0.1 in the Python
3.10.11 environment. The Gurobi Optimizer is a high-performance solver that incorporates
the latest technologies into mathematical optimization. The Gurobi Optimizer has a grow-
ing community of users because it derives optimal solutions quickly and accurately. The
simulations are performed on a Fujitsu LIFEBOOK MH75 laptop with Core i5 CPU and
8 GB RAM running the Windows 11 operating system.

4. Experiments

In this section, storage facilities close to the actual size of warehouses were used and
routes were compared to the optimal solution (sample numbers in Table 1). The layout is
plotted in Figure 5. From the plot, the candidate picking locations are x = [0, 1, 2, 3, 4, 5, 6,
7, 8, 9] and y = [1, 2, 3, 4, 6, 7, 8, 9]. The computation is carried out with the Gurobi solver
using the Python language.
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4.1. Baseline Scenario

First, we plot the jobs for the base situation. The elements of the job location used
in the simulation are randomly selected from the depot (0,0) and nine candidate picking
locations corresponding to the layout of the racks. The list a = [(0,0), (7,9), (2,1), (5,9), (5,8),
(3,1), (9,8), (1,8), (7,2), (3,7)] of work locations proposed here is also used in the simulation.
List a is plotted against the warehouse layout in Figure 6a.
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Next, the shortest route between the two points was computed for optimization. The
results are shown in Figure 6b.

The optimization results are summarized in Table 5.

Table 5. Optimization solutions for baseline scenario.

Layout Information Abbreviation and Sample Values

Total distance traveled 86
Movement between two points (i,j) [(0,5), (5,8), (8,6), (6,1), (1,4), (4,3), (3,7), (7,9), (9,2), (2,0)]

Route order of coordinates (x,y) [(0,0), (3,1), (7,2), (9,8), (7,9), (5,8), (5,9), (1,8), (3,7), (2,1), (0,0)]

4.2. Scenario of Order Change

In this section, simulations were performed using randomly selected order change
information, such as a = [(0,0), (3,1), (7,2), (9,8), (7,9), (5,8), (5,9), (1,8), (3,7), (2,1)], with
the now position as 3, the delete position as 7, and add position as [(6,4)]. The original
optimized route and the optimized route after the order change are shown in Figure 7.
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4.3. Scenario of Route Blockage

In this section, simulations were performed using the randomly selected blocked
positions as a set order list a = [(0,0), (7,9), (2,1), (5,9), (5,8), (3,1), (9,8), (1,8), (7,2), (3,7)]. The
optimized route before blockage and after blockage is shown in Figure 8.
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4.4. Scenario of Expansion

In this section, a comparison is made with a scaled version of the warehouse. For
optimization comparisons, randomly selected picking orders were repeated 10 times and
averaged for comparison. The results are plotted in Figure 9.
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4.5. Summary of Results

Ten simulations of each of the three scenarios shown in Figure 9b–d were conducted.
The simulation results are summarized in Table 6. All experiments were executed in less
than 10 s, even on a standard laptop, which is extremely fast. Therefore, reports of the
running time are omitted.
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Table 6. Summary of simulation results.

Scenario Number of
Simulations

Distance before
Optimization

Distance after
Optimization

Reduction in
Distance Sensitivity Index

Baseline
scenario

1 200 187 7% 13
2 190 128 48% 62
3 182 140 30% 42
4 182 142 28% 40
5 182 144 26% 38
6 172 158 9% 14
7 198 164 21% 34
8 154 132 17% 22
9 146 140 4% 6

10 180 152 18% 28
Average 178.6 148.7 20% 29.9

Order change
scenario

1 182 130 40% 52
2 148 114 30% 34
3 131 95 38% 36
4 130 116 12% 14
5 115 101 14% 14
6 161 115 40% 46
7 188 128 47% 60
8 126 90 40% 36
9 124 112 11% 12

10 139 105 32% 34
Average 144.4 110.6 31% 33.8

Route blockage
scenario

1 162 162 0% 0
2 134 134 0% 0 *
3 144 144 0% 0 *
4 142 142 0% 0 *
5 146 146 0% 0 *
6 164 162 1% 2 *
7 164 164 0% 0
8 140 134 4% 6 *
9 144 140 3% 4 *

10 156 156 0% 0
Average 149.6 148.4 1% 4

* Indicates that the picking sequences of the route are updated.

5. Discussion

In the baseline scenario, the shortest path between two points was derived and effi-
ciency improvement methods were considered in terms of the distance traveled. From the
analysis we know that 10 simulations of an order consisting of 16 nodes were performed,
with a maximum sensitivity index of 62, a minimum of 6, and an average of 29.9. Optimiza-
tion reduced the total distance traveled by 20%. The maximum and minimum results also
confirm that the bias in total distance is caused by the bias in the picking order’s location,
and it is clear that optimization has a significant impact on the picking route depending
on the nature of the order. This bias may be due, in part, to not having considered zoned
picking and product classifications.

In the picking order change scenario, optimization is performed taking into account
site factors and changes such as picking order additions and deletions. The simulation
results indicate that a large reduction in the total distance traveled was observed. The results
show that the maximum sensitivity index was 60, the minimum was 12, and the average
was 33.8 when adding a picking order and deleting a picking order, over 10 simulations.
Optimization reduced the total distance traveled by 31%. The improvement is significant,
but there is a limitation in that the reduced values are sensitive to the end point and the
added point.
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In the route blockage scenario, in general, the optimization corresponding to the route
blockage did not result in significant changes in the distance traveled. In this case, a route
blockage at one node was considered and a comparison was made over 10 simulations,
resulting in a maximum sensitivity index of 6, a minimum of 2, and an average of 4.
Optimization resulted in an average decrease of 4 per change. In terms of the total distance
traveled, the optimization resulted in a decrease of only 1%. However, it should be noted
that the picking sequences of the picking routes were updated in 7 out of 10 simulations,
indicating that the optimization was successful. There are two possible reasons for the
change in the picking route. First, there may be an alternative route close to the specified
route. Second, the change in the optimized total travel distance may change significantly
when the blocks are close to an area where picking orders are concentrated.

Based on the results of the sensitivity analysis, and compared to the baseline scenario,
changing the picking order has a higher impact while blockages in the picking route have
a lower impact on the route optimization results. This indicates the importance of route
optimization when the picking order is changed during the picking process.

As a result, the optimization of the picking route using Gurobi was able to improve
efficiency. In particular, Gurobi was able to smoothly guide the optimized route when
dealing with sudden order changes. By having pickers carry smart tablets to receive
information during the picking process, route optimization can be performed and the
warehouse company can respond to changes as quickly as possible. In the route blockage
scenario, the number of changes that occurred was fewer than we expected. It is necessary
to revise the conditions of the nodes’ selection in future studies, so that the proposed model
can be used for different on-site situations.

6. Conclusions and Limitations

In this work, order picking optimization was performed considering different real
on-site conditions of order picking in a warehouse. A simple but practical approach was
used to perform the optimization, resulting in reduced travel distances and increased route
efficiency. Most importantly, it provides flexibility for the warehouse to respond in real time
to sudden disruptions such as changes in picking tasks and route blockages in a warehouse.

The constraints were kept as simple as possible to be practical. Comparisons were
made through a sensitivity analysis to intuitively identify areas for improvement, resulting
in a reduction in the total travel distance and improved picking efficiency. The optimization
was based on actual situations that occur in real warehouse operations, such as changes in
picking orders and the presence of blockages in warehouse sites. In addition, the actual size
of the warehouse and the type of work were considered in the experiments. The results
show that our proposed algorithm could reduce the total travel distance by 20% in the
baseline scenario and by 31% in the picking order change scenario. In total, 70% of the
routes were updated to alternative routes in the blockage scenario.

Our research contributes to warehouse operations in three ways:
(1) It takes into account the actual size and working situations in a warehouse. The

model itself is easy to implement, and each of the optimizations takes less than 10 seconds,
which can be performed by the picker in the field using a smart tablet to obtain real-time
picking route guidance. As such, it is highly practical.

(2) It improves order picking efficiency by 20–31% without compromising service
responsiveness, which directly leads to cost savings for logistics companies.

(3) The model can be enriched/extended to deal with other actual on-site scenarios,
and it can be easily scaled to optimize order picking for warehouses of different sizes.

In future studies, two points of improvement could be considered. First, the com-
plexity of the model. In this work, a simple model was constructed with a focus on easy
implementation. The model could be further extended to include more constraints, such
as intersections on the route and capacity constraints, so that it can handle optimization
for automatic robot picking. Second, the implementation of dynamic simulations. In this
work, picking with only one picker was considered, but in a real warehouse, many workers
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work in the same place at the same time, and there are problems that cannot be understood
simply by plotting an optimized picking route. From this point of view, simulating their
movement along their picking route over time would contribute further to on-site picking
optimization. In addition, introducing RFID information would make it possible to include
location data in these simulations. This would make it possible to determine the exact
shortest route.

Author Contributions: Conceptualization, D.U. and E.H.; methodology, D.U. and E.H.; software,
D.U.; validation, D.U. and E.H.; data curation, D.U.; writing—original draft preparation, D.U. and
E.H.; writing—review and editing, D.U. and E.H.; visualization, D.U.; supervision, E.H.; funding
acquisition, E.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI, Grant Numbers JP 23K04076 and JP 21H01564.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: Daiki Ueno was employed by the Mitsui-Soko Co., Ltd. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

References
1. Shetty, N.; Sah, B.; Chung, S.H. Route Optimization for Warehouse Order Picking Operations via Vehicle Routing and Simulation.

SN Appl. Sci. 2020, 2, 311. [CrossRef]
2. Gong, Q.; Li, J.; Jiang, Z.; Wang, Y. A Hierarchical Integration Scheduling Method for Flexible Job Shop with Green Lot Splitting.

Eng. Appl. Artif. Intell. 2024, 129, 107595. [CrossRef]
3. Wang, S.; Zhu, B.; Wang, M. Green Scheduling Study for Machine Production Line with Robots. In Proceedings of the 2023

3rd Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence and Big Data Forum, Guangzhou, China, 22–24
September 2023; Association for Computing Machinery: New York, NY, USA, 2024; pp. 131–135.

4. Burinskiene, A. Order Picking Process at Warehouses. Int. J. Logist. Syst. Manag. 2010, 6, 162. [CrossRef]
5. Tajima, E.; Suzuki, M.; Ishigaki, A.; Hamada, M.; Kawai, W. Effect of Picker Congestion on Travel Time in an Order Picking

Operation. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, 19. [CrossRef]
6. de Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and Control of Warehouse Order Picking: A Literature Review. Eur. J. Oper.

Res. 2007, 182, 481–501. [CrossRef]
7. Bertolini, M.; Mezzogori, D.; Zammori, F. Enhancing Manual Order Picking through a New Metaheuristic, Based on Particle

Swarm Optimization. Mathematics 2023, 11, 3077. [CrossRef]
8. Zhai, M.; Wang, Z. Optimizing Rack Locations in the Mobile-Rack Picking System: A Method of Integrating Rack Heat and

Relevance. Mathematics 2024, 12, 413. [CrossRef]
9. Cardona, L.F.; Soto, D.F.; Rivera, L.; Martínez, H.J. Detailed Design of Fishbone Warehouse Layouts with Vertical Travel. Int. J.

Prod. Econ. 2015, 170, 825–837. [CrossRef]
10. Trab, S.; Bajic, E.; Zouinkhi, A.; Abdelkrim, M.N.; Chekir, H. RFID IoT-Enabled Warehouse for Safety Management Using Product

Class-Based Storage and Potential Fields Methods. Int. J. Embed. Syst. 2018, 10, 71–88. [CrossRef]
11. Lee, C.K.M.; Lv, Y.; Ng, K.K.H.; Ho, W.; Choy, K.L. Design and Application of Internet of Things-Based Warehouse Management

System for Smart Logistics. Int. J. Prod. Res. 2018, 56, 2753–2768. [CrossRef]
12. Zhou, L.; Liu, H.; Zhao, J.; Wang, F.; Yang, J. Performance Analysis of Picking Routing Strategies in the Leaf Layout Warehouse.

Mathematics 2022, 10, 3149. [CrossRef]
13. Liu, H.; Wang, F.; Zhao, J.; Yang, J.; Tan, C.; Zhou, L. Performance Analysis of Picking Path Strategies in Chevron Layout

Warehouse. Mathematics 2022, 10, 395. [CrossRef]
14. Vanheusden, S.; van Gils, T.; Ramaekers, K.; Cornelissens, T.; Caris, A. Practical Factors in Order Picking Planning: State-of-the-Art

Classification and Review. Int. J. Prod. Res. 2023, 61, 2032–2056. [CrossRef]
15. Roodbergen, K.J.; Koster, R. Routing Methods for Warehouses with Multiple Cross Aisles. Int. J. Prod. Res. 2001, 39, 1865–1883.

[CrossRef]
16. Zhang, J.; Zhang, X.; Zhang, Y. A Study on Online Scheduling Problem of Integrated Order Picking and Delivery with Multizone

Vehicle Routing Method for Online-to-Offline Supermarket. Math. Probl. Eng. 2021, 2021, 6673079. [CrossRef]
17. Masae, M.; Glock, C.H.; Grosse, E.H. Order Picker Routing in Warehouses: A Systematic Literature Review. Int. J. Prod. Econ.

2020, 224, 107564. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s42452-020-2076-x
https://doi.org/10.1016/j.engappai.2023.107595
https://doi.org/10.1504/IJLSM.2010.030958
https://doi.org/10.1299/jamdsm.2020jamdsm0072
https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/10.3390/math11143077
https://doi.org/10.3390/math12030413
https://doi.org/10.1016/j.ijpe.2015.03.006
https://doi.org/10.1504/IJES.2018.089436
https://doi.org/10.1080/00207543.2017.1394592
https://doi.org/10.3390/math10173149
https://doi.org/10.3390/math10030395
https://doi.org/10.1080/00207543.2022.2053223
https://doi.org/10.1080/00207540110028128
https://doi.org/10.1155/2021/6673079
https://doi.org/10.1016/j.ijpe.2019.107564

	Introduction 
	Previous Studies 
	Layout Design 
	Route Optimization 
	Optimization of the Distance between Two Points 
	Optimization of the Routes of Order Picking with Two or More Aisles 
	Methodologies for Picking Route Optimization 

	Our Research Motivation 

	Model 
	Layout Model 
	Picking Model 
	Baseline Scenario 
	Scenario of Order Change 
	Scenario of Route Blockage 

	Analysis Model 

	Experiments 
	Baseline Scenario 
	Scenario of Order Change 
	Scenario of Route Blockage 
	Scenario of Expansion 
	Summary of Results 

	Discussion 
	Conclusions and Limitations 
	References

