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Abstract: Accurately predicting wind speeds is of great significance in various engineering applica-
tions, such as the operation of high-speed trains. Machine learning models are effective in this field.
However, existing studies generally provide deterministic predictions and utilize decomposition
techniques in advance to enhance predictive performance, which may encounter data leakage and
fail to capture the stochastic nature of wind data. This work proposes an advanced framework for
the prediction and early warning of wind speeds by combining the optimized gated recurrent unit
(GRU) and adaptive kernel density estimator (AKDE). Firstly, 12 samples (26,280 points each) were
collected from an extensive open database. Three representative metaheuristic algorithms were
then employed to optimize the parameters of diverse models, including extreme learning machines,
a transformer model, and recurrent networks. The results yielded an optimal selection using the
GRU and the crested porcupine optimizer. Afterwards, by using the AKDE, the joint probability
density and cumulative distribution function of wind predictions and related predicting errors could
be obtained. It was then applicable to calculate the conditional probability that actual wind speed
exceeds the critical value, thereby providing probabilistic-based predictions in a multilevel manner. A
comparison of the predictive performance of various methods and accuracy of subsequent decisions
validated the proposed framework.

Keywords: wind speed forecasting; gated recurrent unit; metaheuristic optimization; machine
learning; kernel density estimation; cumulative distribution function

MSC: 68T20; 60G35; 62M45; 68T05

1. Introduction

In recent years, the coverage of high-speed railway (HSR) networks has been expand-
ing at an accelerated rate; however, at the same time, the greater complexity of the operating
environment poses increasing challenges. One challenge is that high-speed railway trains
often face strong winds. Excessive wind speed can significantly affect the dynamic perfor-
mance of high-speed trains, such as the overturning coefficient [1] and car body rolling
motion [2], thereby endangering the operational safety of trains. At present, the commonly
adopted method worldwide involves monitoring the windy environment along the HSR in
real time, setting a wind speed threshold and establishing an early warning system [3–5],
which relies on an accurate and timely prediction model for the wind speed. However, the
capability of the existing models still needs to be improved, and the delay in the delivery of
warnings also needs to be considered. For example, in China, although a relatively perfect
monitoring and warning system has been established for strong winds along HSR lines,
there is still a delay of 2–3 min in the transfer of warning information [6]. Hence, it is highly
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important to establish a very short-term (i.e., a few seconds to 30 min ahead [7]) prediction
model for wind speed to ensure safety and improve the operational efficiency of HSRs.

The prediction of short-term wind speed has become a popular topic in the fields of
traffic safety and disaster prevention. Generally, the widely used wind speed prediction
models can be classified into (i) physical models; (ii) statistical models, including traditional
statistical methods and artificial intelligence (AI)-based models; and (iii) hybrid models.
Among them, physical models usually consider various meteorological features, including
barometric pressure, temperature, and humidity, for wind speed prediction; there are
models such as numerical weather prediction and weather researcher forecasting, but they
are more suitable for medium- and long-term forecasts [8].

In contrast, statistical models represented by autoregressive integrated moving av-
erage (ARIMA) and its derivatives have shown good performance in short-term wind
speed (and wind energy) prediction [9,10]. A recent investigation into the Hammerstein
autoregressive [11] model suggested its superior ability over ARIMA in capturing diverse
wind speed characteristics, including asymmetric wind speed distributions, nonstationary
time series profiles, and chaotic dynamics. It even outperforms artificial neural network
models in terms of mathematical metrics. It should be noted that new AI-based statistical
models have received the most attention at present. As they are good at capturing the
implicit features in complex nonlinear problems, many excellent algorithms in machine
learning [12–14] and deep learning [15,16], such as the long short-term memory (LSTM)
model and deep belief network, have been widely used in wind speed prediction and have
achieved good results. Nevertheless, concurrent studies [17] have highlighted that predict-
ing wind speed sequences without noise reduction or other preprocessing steps may lead
to significant errors, particularly in ultra-short-term predictions. This is attributed to the
pronounced nonstationary stochastic nature of wind field data, which also demonstrates
the importance of employing hybrid models.

The basic idea of hybrid models is to combine a prediction model (physical or sta-
tistical) with techniques that are able to improve model performance, mainly signal pro-
cessing techniques and intelligent optimization algorithms. Signal processing techniques
in wind speed prediction include wavelet decomposition [18], empirical modal decom-
position [19], and variational mode decomposition [20] and their derivatives, which can
efficiently enhance the signal-to-noise ratio of wind signals and reduce the influence of
nonstationary features on the prediction process. Relevant studies have shown [12] that
the use of front-loaded signal processing techniques can reduce the prediction error of a
model by approximately 30–50% on a given dataset. The use of intelligent optimization
algorithms, on the other hand, is to search for the optimal parameter configurations to
increase the robustness of the prediction models. For example, studies have used genetic
algorithms, cuckoo searches, conjugate gradient algorithms, and improved atomic search
algorithms to determine the optimal parameters for prediction models [21,22]. Notably,
due to variations in datasets, different studies often yield various optimal algorithms and
corresponding parameter settings. However, overall, the use of hybrid models has now
reached a consensus.

Table 1 summarizes the methodologies in related works on wind speed forecasting
and subsequent warning systems. As it shows, for the prediction part, current models
can obtain fine accuracy by using decomposition techniques in advance. This is generally
because the decomposed components are smoother when compared with the original
signal, and more importantly, a decomposition process of the overall signal may leak future
information (i.e., the test set) that should have been unknown. Moreover, solutions [23]
to this issue (step-by-step decomposition) will inevitably increase the training cost. Given
this, using optimization algorithms may be more intuitive and effective. It is also worth
noting that existing methods are dominated by deterministic point prediction; hence, they
cannot reflect the effects of strong randomness and intermittency of the monitored data
or the uncertainty of model parameters on the predicted results, making it difficult to
provide direct warnings and assist decision making. In addition, while there has been
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much progress in modelling medium- and long-term wind speed predictions, the relevant
advances in (ultra) short-term predictions remain relatively slow.

Table 1. Related works on wind speed predictions and warning systems.

Literature

Predicting Model Warning System

Base Model Decomposition
Techniques

Optimization
Algorithm Data Interval Method Level

Ref. [24] ANN — — 10 min Deterministic Multiple
Ref. [19] ARIMA EMD — 1 min Deterministic Multiple
Ref. [25] ANN EEMD GA 10 min Deterministic Single
Ref. [26] ELM/ARIMA ICEEMDAN — 10 min Deterministic Single
Ref. [27] DBM EEMD — 1 h — —
Ref. [28] RNN — HNN 15 min Probabilistic Single
Ref. [29] ELM — AdaBoost 10/20/30 min — —
Ref. [30] RNN/ELM EEMD GA 5min — —
Ref. [31] LSTM/SVM CEEMDAN PSO/IWOA 5 min — —
Ref. [22] SVM WD PSO/IASO 1 h
Ref. [32] GRU VMD PSR/IWOA 10 min
Ref. [6] LSTM — — 1/40 s Probabilistic Multiple

In view of this situation, it is proposed to use hybrid models achieved by parametric
optimization for wind speed prediction and employ probabilistic prediction methods [33]
based on conditional probability. Based on the results of existing studies, the use of
hybrid models can achieve better performance than physical and statistical models, and
the implementation of optimization algorithms can avoid data leakage. More importantly,
with extensive historic data and predicting results, the predictive errors can be used to
enhance final warning decision, which is a totally different perspective compared with
using various features in model training. Specifically, the proposed framework consists
of two main phases: the use of an optimized network to obtain the predicted wind speed
and the use of a kernel estimator to provide probabilistic results for subsequent multilevel
warnings. To achieve this goal, we first predict the wind speed via an optimized recurrent
network and then form the joint kernel density of the wind speed predictions and the
prediction errors. Afterwards, the proposed framework can not only output predictions at
specific timestamps but also estimate the conditional probability that the predictions fall
within the speed limit intervals. In this scenario, a warning system is proposed in which
the predicted values and their conditional probabilities are considered. Table 2 summarizes
the abbreviations used in this work.

Table 2. Abbreviations used in this work.

Term Description Term Description

HSR high-speed railway ORELM online recurrent extreme learning machine
CEC congress on evolutionary computation MAE mean absolute error
CPO crested porcupine optimizer MAPE mean absolute percentage error
GWO gray wolf optimizer RMSE root mean square error
WOA whale optimization algorithm R2 coefficient of determination

ARIMA autoregressive integrated moving average KDE kernel density estimation
AI artificial intelligence AKDE adaptive kernel density estimation

RNN recurrent neural network CDF cumulative distribution function
LSTM long short-term memory MISE mean integrated square error

BiLSTM bidirectional LSTM AMISE asymptotic mean integrated square error
GRU long short-term memory T/F-P/N true/false positive/negative
ELM extreme learning machine T/F-PR true/false positive rate

2. Materials and Methods
2.1. Data Collection

The quality of the dataset is essential for ensuring the validity and predictive perfor-
mance of machine learning models. To provide a solid basis for this work, we collected
an informative dataset of wind speed from a comprehensive worldwide wind database
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named WRDB [34]. Data at 45.00◦ N, 82.00◦ W, for the years 2014, 2011, and 2008 were
collected and denoted as D1, D2, and D3, respectively. Each dataset contains 105,120 data
points of wind speed in one year with a sampling interval of 5 min. Inspection of these
datasets revealed no unusual local outliers or missing values. In addition, each dataset is
divided into four seasons, with each containing approximately 90–92 days, thereby forming
12 samples for model training and testing, denoted as D1/2/3-1/2/3/4 (26,280 points
each). The database contains the wind speed data and related environmental features. In
this work, the temperature and humidity are chosen as the input features. As an example,
the distributions of Dataset 1 are drawn in Figure 1a, along with a curve fitted by the
Weibull function, one of the most commonly used functions for practical wind data; see
Equation (1).

f (x; λ, k) =
k
λ

( x
λ

)k−1
e−( x

λ )
k
(x ≥ 0) (1)

where f (x; λ, k) is the probability density function of the Weibull distribution and where k
and λ are also known as the shape and scale parameters, respectively.
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Figure 1. Distribution of the wind speed and environmental data. (a) Histogram and Weibull fitting
(k = 2.27, λ = 8.94) of the wind speed; (b) distribution of the features and target. Note that Wind,
Tem, Hum, and FD refer to the wind speed, temperature, humidity, and first difference in the wind
speed, respectively.

As shown in Figure 1, the distribution shape of the wind data is consistent with the
probability density function of the Weibull function, which is also proven by a relatively
low (approximately 0.02) Kolmogorov–Smirnov test statistic. The fitted shape parameter k
is 2.27, which is close to the empirical value of 2 in practical research.

2.2. Methodologies
2.2.1. Crested Porcupine Optimizer

Stochastic optimization algorithms are widely used in machine learning to improve
the robustness of models. Recently, meta-inspired optimization algorithms have gained the
attention of researchers and are widely used to address challenging optimization problems.
Most of these algorithms are based on the principles of biology, physics, behavioral science,
or group intelligence and aim to simulate various characteristics of natural systems [35].
The crested porcupine optimizer (CPO) [36] is a new representative of such algorithms. It
simulates the defense strategies of crowned porcupines using four strategies, namely, visual,
sound, odor, and physical attacks, which are ranked by aggressiveness. These strategies
map to four defense regions in the search space, which are activated sequentially on the
basis of the threat level posed by the predator. Statistical analysis of the results shows that
the CPO can achieve better performance in Congress on Evolutionary Computation (known
as CEC) benchmarks [37] than its competitors, such as the well-known gray wolf optimizer
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(GWO) [38], whale optimization algorithm (WOA) [39], and salp swarm algorithm [40],
with improvement rates of up to 83% for CEC2014 and 100% for six real-world engineering
problems. In this work, CPO is implemented to optimize general prediction models, and
the key components are summarized as follows:

1. Population and fitness initialization:

The purpose of this step is to generate an initial population of candidate solutions
within the specified bounds and evaluate the fitness of each solution by using an objective
function for practical problems. Typically, Equations (2) and (3) are employed.

X j
i = lbj + τ0·

(
ubj − lbj

)
(2)

fi = f (Xi) (3)

where X j
i is the j − th dimension of the i − th candidate solution, τ0 is a random value in

[0, 1], and lbj and ubj are the lower and upper bounds of the j − th dimension, respectively.
In addition, fi is the fitness of Xj.

2. Four defensive strategies in CPO

• Exploration phase (strategies 1 and 2)

When the porcupine becomes aware of the predator, it starts flapping its spines to
expand its size. The predator has two options: move towards or move away from the
porcupine (the distance between them decreases or increases). Equations (4) and (5) are
thereby presented on the basis of the average position of randomly selected solutions. For
the second strategy, the porcupine’s voice becomes louder as the predator approaches it.
Gaussian perturbations are used in Equation (6) to update positions to simulate a sound
attack.

xj+1
i = xj

i + τ1·
∣∣∣2τ2·x

j
CP − yj

i

∣∣∣ (4)

yj
i =

(
xj

i + xj
r

)
/2 (5)

xj+1
i = (1 − U1)·x

j
i + U1·

(
y + τ3·

(
xj

r1 − xj
r2

))
(6)

where xj
CP is the global best solution vector; τ1 is a Gaussian random variable; τ2 is a

random value in [0, 1]; yj
i is a vector between the current porcupine and a porcupine

selected randomly from the population whose solution is xj
r; and U1 is a binary vector,

where xj
r1 and xj

r2 are other randomly selected solutions.

• Exploitation phase (strategies 3 and 4)

In this phase, the porcupine first secretes a fetid odor that spreads in the region around
it to prevent the predator from approaching it. To achieve this, fitness-based scaling is used
for updating the positions; see Equations (7)–(10). For the final strategy, the porcupine
resorts to physical attack when a predator is very close and strikes it with short, thick
quills. During a physical attack, the two bodies are strongly fused, representing an inelastic
collision in one dimension; see Equations (11) and (12).

xj+1
i = (1 − U1)·x

j
i + U1·

(
xj

r1 + Sj
i ·
(

xj
r2 − xj

r3

)
− τ4·δ·γt·Sj

i

)
(7)

δ =

{
1 i f rand ≤ 0.5

−1 Else
(8)

γt = 2·rand·
(

1 − j
jmax

) j
jmax

(9)
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Sj
i = exp

 f
(

xj
i

)
∑N

k=1 f
(

xj
k

)
+ ϵ

 (10)

xj+1
i = xj

CP + (α(1 − τ5) + τ5)·
(

δ·xj
CP − xj

i

)
− τ6·δ·γt·Fj

i (11)

Fj
i = τ7·

Si·
(

xj+1
i − xj

r

)
∆j

(12)

where xj
r3 is another randomly selected solution; δ is a parameter used to control the

search direction; γt is a factor; Sj
i is the odor diffusion factor; f

(
xj

i

)
represents the objective

function value of the i − th individual; ϵ is a small value to avoid division by zero; τ4,5,6,7
are random values within [0, 1]; and α is a factor related to convergence speed.

3. Simple case using the CPO

Below is the presentation of a straightforward optimization task aimed at finding the
minimum value of a function given by Equation (13). Given the bounds of (−100, 100) and
a dimension of 2, the minimum value is 710.6958 at (64.55, 64.55), as shown in Figure 2a.
Figure 2b shows the search trajectories of 10 porcupines under 100 iterations when CPO is
used in this case.

f (x) = 418.9829·d − ∑d
i=1xisin

(√
|xi|

)
(13)

where d is a natural number representing the dimension of the function.
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2.2.2. Gated Recurrent Unit

Wind speed prediction is a very specific but meaningful task in time series forecasting
in engineering applications. Generally, time series data differ from other types of data
because of their temporal nature and ordered sequence of observations. Recurrent neural
networks (RNNs) can capture temporal dependencies in data by maintaining an internal
state or memory, enabling them to process time-dependent sequences. Frameworks, in-
cluding gated recurrent units (GRUs) and long short-term memory (LSTM) networks, were
subsequently developed to address the problem of vanishing gradients when RNNs are
used. Research has indicated that the LSTM and GRU architectures achieve high accuracy in
time series prediction. However, the GRU exhibits comparable or even better performance
than LSTM in many tasks while requiring fewer parameters, thereby consuming fewer
computational resources [41–43]. In this work, a GRU is employed to predict wind speed
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series. The general equations of a single-layer GRU cell are shown in Equations (14)–(17)
and Figure 3 for illustration.

zt = σ(Wzxt + Uzht−1 + bz) (14)

rt = σ(Wrxt + Urht−1 + br) (15)
∼
ht = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (16)

ht = (1 − zt)⊙ ht−1 + zt ⊙
∼
ht (17)

where xt is the input at time step t, ht−1 is the hidden state from step t − 1, and σ denotes
the sigmoid activation function, where zt and rt are the update and reset gates at step t,

respectively. In addition,
∼
ht and ht are the candidate hidden state and hidden state at step t,

respectively; tanh denotes the hyperbolic tangent activation function; ⊙ is the element–wire
operator; Wz, r, h and Uz,r,h are weight matrices; and bz, r, h are bias vectors.
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2.2.3. Interval Forecasts via Kernel Density Estimation

Extensive studies have shown the effectiveness and accuracy of neural networks in
time series forecasting tasks. However, these studies generally present a deterministic point
prediction for these tasks and hence cannot capture the uncertainties in measured wind
speed data as well as the difference between the predicted and true values. To address
this, we propose employing kernel density estimation (KDE) to obtain interval values of
prediction. It contains two main steps: (i) estimate the kernel density and (ii) generate
confidence intervals via bootstrap resampling.

The main challenge of using this technique is to find an optimized bandwidth for the
KDE. The standard univariate KDE of a discrete sequence D = {x1, x2, . . . , xn} from an
unknown function f (x) is shown in Equation (18). Notably, the asymptotic convergence of
f̂ (x|D, h) toward the underlying f (x) is significantly affected by the choice of bandwidth
(h) rather than the kernel function (K).

f̂ (x|D, h) =
1

nh∑n
i=1K

(
x − xi

h

)
(18)

where K is a kernel function satisfying
∫

K(x)dx = 1 and h is the bandwidth.
A plausible way to choose the bandwidth is to minimize the mean integrated square

error (MISE); see Equation (19). Under an integrability assumption on f (x), we can further
define the asymptotic mean integrated square error (AMISE), as shown in Equation (20).
Afterwards, the value of the bandwidth that minimizes the AMISE is given by Equation (21).
The computationally simplest method for choosing a global bandwidth is based on replac-
ing the unknown R( f ′′ ) in Equation (21) with its value for a parametric family [44]. For
example, Scott’s rule [45] is widely adopted, as shown in Equation (22). Additionally, a
natural extension of the standard KDE uses adaptive KDE (AKDE), which is obtained when
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h is no longer a global constant. Considering the effectiveness and efficiency of various
algorithms, an AKDE method [46] employing a localized MISE and a scaled parameter is
used in this work. A simple case below presents the results of KDE using various rules for
comparison, as shown in Figure 4a.

MISE
(

f̂h

)
= E

{∫ (
f̂h(y)− f (y)

)2
dy

}
=

∫
Bias

(
f̂h(y)

)2
dy +

∫
Var

(
f̂h(y)

)
dy

(19)

where Bias
(

f̂h(y)
)
= h2

2 µ2(K) f ′′ (x) + o
(
h2) and Var

(
f̂h(y)

)
= 1

nh R(K) f (x) + o
(

1
nh

)
are

the bias and variance operators, respectively and where µ2(K) =
∫

y2K(y)dy > 0 and
R(K) =

∫
K2(y)dy.

AMISE
(

f̂h

)
=

1
nh

R(K) +
h4

4
µ2(K)

2R( f ′′ ) (20)

hAMISE =

[
R(K)

µ2(K)
2R( f ′′ )

]1/5

n−1/5 (21)

hAMISE = 1.06σn−1/5 (22)

where R( f ′′ ) =
∫
[ f ′′ (y)]2dy and where σ and n are the sample standard deviation and

number of points (1-dimensional), respectively. Note that a more robust estimate should
consider the sample interquartile; see Ref. [47].
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2.3. Proposed Framework

The main objective of this work is to establish a multilevel warning system by integrat-
ing various methods. By implementing prediction models, an optimization algorithm, and
an adaptive estimator, we can naturally propose a framework for wind speed forecasting
and establish a multilevel early warning system. The proposed framework comprises
three main parts corresponding to the utilized algorithms: (i) using an optimized GRU
model to predict the wind speed, (ii) performing AKDE and obtaining various confidence
intervals, and finally, (iii) deciding the warning level. Figure 5 illustrates the main idea of
this framework.
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The warning system generates warning levels on the basis of the conditional probabil-
ity of predicting values exceeding predefined thresholds. After training and optimizing
the GRU, the joint KDE of the predictions and the predicted errors of the wind data can be
obtained. Hence, this framework can not only predict the future wind speed y0 but also
evaluate the conditional probability of P(y0 + e ≥ 15 | y = y0), where e is the prediction
error between y0 and the ground truth. Here, 15 (m/s) serves as the threshold for the speed
limit of the HSR train. Two rule-of-thumb values of 0.40 and 0.80 for P, corresponding to
two warning levels, are used. That is, the wind speed at the next step y0 is first predicted
by the GRU or general predictive models; then, the conditional probability P is calculated
and compared with threshold values of 0.40 and 0.80. Because the joint distribution is
built on the basis of previous predictions and prediction errors, it is reasonable to infer
that this multilevel warning method can consider the randomness of predictions and has
greater credibility.

3. Results and Analysis
3.1. Performance Criteria of the Prediction Models

To objectively evaluate the prediction performance of the GRU and other RNNs used
in this work, various metrics, including the root mean square error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and coefficient of determination
(R2), are used. The expressions of these metrics are shown in Equations (23)–(26).

RMSE =

√
1
N ∑N

t=1(yt − ŷt)
2 (23)

MAE =
1
N ∑N

t=1

∣∣yt − ŷt
∣∣ (24)

MAPE =
1
N ∑N

t=1

∣∣∣ yt−ŷt
yt

∣∣∣ (25)
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R2 = 1 − ∑N
t=1(yt − ŷt)

2

∑N
t=1(yt − yt)

2 (26)

where N is the length of the time series and where yt and ŷt are the actual and predicted
values, respectively.

The multilevel warning system for speed limits actually serve as a binary classification
model. The decision for the model is whether to implement a speed limit, whereas the
real situation is whether the actual wind speed reaches 15 m/s. Hence, predictions can be
categorized as true positive (TP), false positive (FP), true negative (TN), or false negative
(FN). Furthermore, the true positive rate (TPR, also known as recall or sensitivity), false
positive rate (FPR), and overall accuracy can be defined, as shown in Table 3.

Table 3. Definitions of the prediction results of the warning systems.

Total Population = P + N
Predicted Conditions

Overall Accuracy: TP+TN
TP+TN+FP+FNPositive Negative

Actual
conditions

Positive TP FN TPR = TP/(TP + FN)

Negative FP TN FPR = FP/(FP + TN)

3.2. Results of Optimization for RNNs

An accurate prediction of the wind speed is essential to the final decision of the
warning system. To maximize the performance of RNNs, three optimization algorithms,
CPO, GWO, and the WOA, are used to optimize the parameters of a two-layer GRU model.
The details are as follows: (i) A sequence of length 3200 in D1-1 (see Section 2.1) is selected
for optimization. (ii) The training-test split ratio, batch size, and training epochs are 80/20,
512, and 100, respectively. (iii) Four features, including the wind speed and its first-order
difference, temperature, and humidity, are used to predict the next step wind speed. (iv) For
a fair comparison, the population size (agent number) and iteration epoch for all algorithms
are set as 30 and 20, respectively.

Table 4 summarizes the range, initial value, and optimized selection of the parameters.
Additionally, the obtained parameters are used to train and test the entire D1-1 sequence,
and the model performance is shown in Table 4, where the best results are marked in bold
and underline. The results of the optimization and prediction are shown in Figure 6.

Table 4. Optimization using various algorithms and their performance.

Model Parameters Range
Initial Searching Range Optimized Parameters

CPO GWO WOA CPO GWO WOA

GRU

Learning rate 0.001~0.03 0.001~0.029 0.001~0.029 0.002~0.029 0.007 0.03 0.020
Dropout rate 0~0.3 0.002~0.285 0.010~0.291 0.003~0.289 0.002 0.082 0.211
Hidden size 16~64 16~62 17~63 21~62 54 53 21

Lookback 16~128 18~128 19~120 24~128 121 128 121

Model performance
(on the test set of the entire D1-1)

MAPE: 1.28% 1.54% 1.52%

MAE: 0.127 0.145 0.145

RMSE: 0.194 0.220 0.222

R2: 0.992 0.990 0.990

Note: The best results are in bold and underlined.

As shown in Table 4 and Figure 6, all optimization algorithms have a board and
satisfactory range for parameters since the initial search. According to the convergence
curves in Figure 6a, the CPO obtains its optimized result at epoch 7 with an MAE loss of
0.00851, which is faster and better than those of the other two approaches. Figure 6b,c
clearly show the search trends of lookback size, hidden size, and learning rate when the
CPO is used. Along with Table 4, it is found that all optimization methods select a similar
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and relatively larger lookback size but vary in the choices of the other three parameters.
For example, the CPO tends to select a lower learning rate and dropout rate and a higher
hidden size, whereas the WOA performs the opposite. When the obtained parameters are
applied to the full D1-1 dataset (26,280 points), as shown in Figure 6d, the performance of
the GRUs is consistent with their performance on the shorter sequence (3200 points). That
is, all optimized GRUs can accurately predict the wind speed, and among them, the GRU
optimized by CPO performs the best predictions in terms of various metrics, including the
MAPE, MAE, RMSE, and R2.
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3.3. Results of Various Prediction Models

To demonstrate and further compare the prediction performance of diverse statistical
and RNN models, another randomly selected continuous sequence of 3200 points from D1-2
is chosen for prediction. Methods such as ARIMA, extreme learning machine (ELM [48]),
RNN (GRU, LSTM, and bidirectional LSTM), and transformer [49] are employed. For
machine learning methods, parameters such as the lookback size, dropout rate, learning
rate, and hidden size in RNNs, as well as the hidden size in the online recurrent ELM
(ORELM [50]), are optimized via the CPO. To determine the order of ARIMA, an autocor-
relation function and partial autocorrelation function measures are utilized. The selected
parameters and prediction results are shown in Table 5 and Figure 7.
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Table 5. Parameters and prediction performance of various models.

Model Key Parameters
Metrics

MAPE MAE RMSE R2

Learning rate Dropout rate Hidden size Lookback
GRU 0.01 0.02 63 24 2.06% 0.2108 0.1280 0.9964
LSTM 0.02 0.01 44 22 2.14% 0.2105 0.1305 0.9964

BiLSTM 0.01 0.001 57 21 2.25% 0.2187 0.1354 0.9961

ARIMA *
p d q —
1 1 3 — 2.20% 0.2112 0.1350 0.9963
3 1 1 — 2.19% 0.2111 0.1345 0.9964

Hidden size Reg_lambda Forgetting factor
ELM 30 0.001 — 2.50% 0.2195 0.1425 0.9961

ORELM 29 0.001 0.9485 3.81% 0.2142 0.3092 0.9922

Layers Dropout rate No. of heads FFN_dim
Transformer * 2 0.1 18 256 2.83% 0.2849 0.2066 0.9928

* Note: Parameters p, d, and q in ARIMA are the order of autoregressive, degree of differencing, and order of
moving average, respectively; for the transformer model, FFN_dim refers to the dimension of the feedforward
layer. The best results of all methods are in bold and underlined.
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Frankly speaking, all applied methods show powerful applicability for the prediction
of wind speed data. The prediction errors of ORELM are relatively high because the
method uses an online recurrent training method, which benefits its application in real-time
problems. Nevertheless, it is still more strongly affected by the choice of parameters, such
as the forgetting factor; hence, the implementation of a proper optimization method is
necessary. As shown in Figure 7b, the overall loss can be greatly reduced when optimized
parameters are used. Moreover, it is clear that the optimized GRU model performs better
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than the other models do in nearly all the statistical metrics, except for the MAE. In
addition, there are no distinct lag patterns in the prediction values, which is essential
for the subsequent development of early warning systems. With these results, the CPO-
GRU method is then applied to all the collected samples of wind speed. The prediction
performance of the CPO-GRU on the collected dataset is summarized in Table 6. Note that
the agent number is 30, the optimization epoch is 20, and the training epoch is 100. As
shown in Table 6, the optimized parameters generally yield good prediction performance,
indicating the effectiveness of the proposed method.

Table 6. Predicting results on the collected dataset via the CPO-GRU method.

Dataset
Parameters Metric

Learning Rate Dropout Rate Hidden Size Lookback R2 MAPE MAE RMSE

D1-1 0.0155 0.2320 39 26 0.9987 1.78% 0.0885 0.1416
D1-2 0.0149 0.1261 50 17 0.9913 3.84% 0.1744 0.2882
D1-3 0.0192 0.0030 45 16 0.9965 2.09% 0.1043 0.1838
D1-4 0.0128 0.0063 52 55 0.9917 1.86% 0.1192 0.3060

D2-1 0.0211 0.1958 60 92 0.9990 1.72% 0.0603 0.1045
D2-2 0.0145 0.0097 20 125 0.9931 3.58% 0.1164 0.1893
D2-3 0.0018 0.0483 60 128 0.9961 2.42% 0.1192 0.2427
D2-4 0.0299 0.0390 50 90 0.9982 0.98% 0.0666 0.1384

D2-1 0.0170 0.1583 37 17 0.9978 1.13% 0.0742 0.1421
D2-2 0.0129 0.0027 34 114 0.9687 4.34% 0.1456 0.3681
D2-3 0.0156 0.1093 33 22 0.9970 2.10% 0.0809 0.1576
D2-4 0.0141 0.0565 50 102 0.9969 0.97% 0.0988 0.1925

3.4. Results of Multilevel Warning

Previous analysis has demonstrated the effectiveness of the proposed prediction
method. With accurate prediction values, it is then applicable to form an early warning
system of the wind speed for decision making in train operations. As shown in Figure 5,
a multilevel early warning system is proposed on the basis of the conditional probability
of predicting values exceeding predefined thresholds. To achieve this, for each dataset
(D1, D2, and D3), a joint KDE of wind speed predictions and prediction errors is first
calculated from 80% of the data points (i.e., the training set) and then used for evaluating
the conditional probability P(y0 + e ≥ 15 | y = y0) of the remaining 20%, where y0 and e
are the prediction of the wind speed and the prediction error between y0 and the ground
truth, respectively. Notably, in practical uses, there is no need for data splitting in this
phase as previous monitoring and prediction data can be used to form the joint KDE. As an
example, the joint kernel density and related cumulative distribution function (CDF) of the
prediction and prediction errors of D1-1 are shown in Figure 8a,b, respectively.
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To demonstrate the effectiveness of the proposed multilevel warning system, Table 7
shows the decisions at certain positions made by the deterministic and probability-based
methods when predicting data. For the deterministic method, the decision of whether to
limit the train speed completely depends on the accuracy of the prediction model. When
the predicted speed exceeds 15 m/s, a decision to limit the train speed will be made (e.g.,
points 3030 and 3031); otherwise, an opposite decision will be made (e.g., points 3025
and 3505). As shown in Table 7, when the actual wind speed is close to the threshold
speed, the prediction performance is never sufficient at some points. Nevertheless, when a
probabilistic method is utilized, a better result can be achieved, e.g., at points 3030, 3031,
3612, and 4896. Note that the decision of level 1 is made when the conditional probability
is greater than 0.4, whereas that of level 2 is 0.8.

Table 7. Decisions made by various methods at points close to the critical wind speed.

Sequence
ID

Values Ideal
Decision

Deterministic Probabilistic
True (m/s) Pred. (m/s) p * Decisions Y/N Decision_1 Y/N Decision_2 Y/N

3025 15.01 14.91 0.1218 1 0 N 0 N 0 N
3030 14.99 15.02 0.5695 0 1 N 1 N 0 Y
3031 14.85 15.01 0.5136 0 1 N 1 N 0 Y
3505 15.09 14.97 0.2987 1 0 N 0 N 0 N
3508 14.94 15.08 0.8010 0 1 N 1 N 1 N
3514 15.02 14.94 0.2127 1 0 N 0 N 0 N
3547 14.87 15.08 0.8010 0 1 N 1 N 1 N
3612 14.97 15.01 0.5136 0 1 N 1 N 0 Y
4893 15.03 14.93 0.1773 1 0 N 0 N 0 N
4896 14.98 15.07 0.7637 0 1 N 1 N 0 Y

Note that p * is the conditional probability of a given predicting value (Pred.) made by CPO-GRU. For decisions,
1 means the train speed should be limited, while 0 indicates the opposite. For judgements, Y means a wrong
decision while N indicates the opposite. Improved results are marked with background colors.

To further compare the performance of the proposed framework, a general LSTM
model is used to provide a benchmark for decision making. The LSTM model is trained
for 100 epochs at a learning rate of 0.01, a dropout rate of 0.1, a hidden size of 64, and a
lookback size of 64. The results are summarized in Table 8. Here, the event is positive
when the actual speed exceeds 15 m/s. The proposed CPO-GRU-KDE framework generally
improves the overall accuracy, especially the TPR (see Table 3), of the prediction, which is
highly significant for the presented case.

Table 8. Result of warning decisions for the collected dataset.

Dataset
Total No. of

Positive
(v ≥ 15 m/s)

Total No. of TP TPR Overall Accuracy

LSTM CPO_GRU
CPO_GRU_KDE (CGK)

LSTM CGK LSTM CGK
Level 1 Level 2

D1-1 185 135 164 164 168 0.7297 0.9081 0.9903 0.9967
D1-2 3 2 2 2 2 0.6667 0.6667 0.9996 0.9996
D1-3 15 0 8 8 6 0.0000 0.5333 0.9971 0.9988
D1-4 103 82 90 90 89 0.7961 0.8738 0.9959 0.9975
D2-1 53 40 52 52 50 0.7547 0.9811 0.9975 0.9998
D2-2 0 0 0 0 0 — — 1.0000 1.0000
D2-3 293 289 292 292 291 0.9863 0.9966 0.9965 0.9977
D2-4 73 67 61 66 68 0.9178 0.9315 0.9977 0.9990
D3-1 83 79 81 81 79 0.9518 0.9518 0.9990 0.9992
D3-2 0 0 0 0 0 — — 1.0000 1.0000
D3-3 0 0 0 0 0 — — 1.0000 1.0000
D3-4 437 393 408 415 410 0.8993 0.9497 0.9910 0.9926
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3.5. Discussions

Previous analysis has demonstrated the advances of the proposed framework. In this
section, further discussions are presented to explore the reason behind these advances.
In this work, to enhance the model performance, optimization algorithms are used for
RNN, ELM, and transformer models. In general, using parameter optimization will not
affect the properties of the model but will only find better results in the solution space.
Hence, the advantage of using parametric optimization is distinct. The final choice of
CPO is determined by its actual performance, as shown in Table 7. This is also the case
for selecting the optimal model. As shown in Table 6, the GRU model performs the best
over the other models. In addition, GRU has a simpler and more efficient structure when
compared with other RNN models. Nevertheless, it is worth noting that using RNN models
for time series may encounter the lagging problem—the predictive value lagging the truth
value—especially when having only one training feature. Figure 9 plots the predicting
results using only the previous wind speed data with MAE as the loss function. It is
obvious that despite having fine metrics (R2 of 0.98), the model actually provides ineffective
predictions because of the occurrence of the lagging problem, which means the prediction
is dominantly affected by the last one-step data. In other words, the model performance
is similar to that of a naive forecast. Under this situation, the warning systems, especially
those using deterministic methods, cannot perform well because the warning decisions
would be lagging.
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To further demonstrate the effectiveness of using probabilistic methods, two more
threshold values, 12 m/s and 14 m/s, are selected to calculate the conditional probability,
i.e., P(y0 + e ≥ 12 | y = y0 and P(y0 + e ≥ 14 | y = y0 , respectively. The same joint kernel
density and CDF of D1-1 dataset shown in Figure 8 are used. As plotted in Figure 10a, the
conditional probability of predictions arises with the increase in threshold value. Therefore,
a smaller threshold provides a broader envelope. Then, the prediction results are plotted
together with their conditional probability in Figure 10b for comparison. It can be observed
how the conditional probability follows the prediction values, which is achieved by the
implementation of predicting error in historic data. On this basis, the final prediction values
are statistically evaluated by considering both the current result of model prediction and
previous database of prediction errors. This is achieved beyond the normal process of
model prediction. Therefore, the subsequent decision of a warning system for the future
data can be improved. As long as the model performance stays consistent, the predicting
accuracy can be improved by compensating the predicting error.
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4. Conclusions

In this work, we proposed a framework for wind speed prediction and related multi-
level warning systems based on the combination of an optimized neural network and an
adaptive kernel density estimator. The performance of various optimization algorithms,
machine learning-based models, and probabilistic decision processes were evaluated. The
results proved that the proposed framework performs well on the collected data. The main
conclusions are as follows:

1. Recurrent networks perform well in predicting wind speeds. Nevertheless, their
performance can be efficiently optimized by using a proper algorithm. A comparison
of various algorithms, including ARIMA, ELM, and transformer, demonstrates that
the GRU performs best on the collected database.

2. The results of various optimization algorithms indicate the significance of parameter
optimization. The search trace of diverse parameters can provide valuable information
for model selection. For example, in the present case, the lookback size greatly affects
the model performance, while the model can achieve similar performance at diverse
dropout rates, learning rates, or hidden sizes.

3. An analysis of the prediction results indicates that the CPO-GRU model outperforms
the other combinations, with metrics of 1.28%, 0.127, 0.194, and 0.992 for the MAPE,
MAE, RMSE, and R2, respectively, in the present case. In addition, it achieves similar
and excellent performance on all collected databases.

4. By using adaptive kernel estimators, the joint kernel density and cumulative distribu-
tion function of the predicted values and prediction errors can be obtained, thereby
calculating the conditional probability at a given prediction of the wind speed. A
comparison between the deterministic and probabilistic methods indicates that all
methods yield high overall accuracy—due to the relatively large sample size—but
also that the proposed framework can significantly address the TPR, which is valuable
for practical decision making, especially when the predictions are near the critical
value.

It is worth noting the proposed framework may encounter the lagging problem, which
is a common issue in the use of RNNs. In this work, by using the L1loss function and various
input features, such as temperature and humidity, the lagging problem is not obvious in the
present results. Nevertheless, when the features are limited in practical use, the prediction
performance should be further examined. In addition, by using joint kernel estimation and
a related probabilistic approach, an advanced warning system was successfully established.
The achievement of this system relies on a sufficient historic database of predictions and
corresponding prediction errors. If this is not the case, the deterministic warning method,



Mathematics 2024, 12, 2581 17 of 18

i.e., comparing the newest prediction value with the threshold value, should be used
instead. Further studies should be conducted to address these issues.
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