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Abstract: We used a previously introduced HIV within-host model with sensitive and resistant
strains and validated it with two data sets. The first data set is from a clinical study that investigated
multi-drug treatments and measured the total CD4+ cell count and viral load. All nine patients in
this data set experienced virologic failure. The second data set includes a unique patient who was
treated with a unique drug and for whom both the sensitive and resistant strains were measured as
well as the CD4+ cells. We studied the structural identifiability of the model with respect to each
data set. With respect to the first data set, the model was structurally identifiable when the viral
production rate of the sensitive strain was fixed and distinct from the viral production rate of the
resistant strain. With respect to the second data set, the model was always structurally identifiable.
We fit the model to the first data set using nonlinear mixed effect modeling in Monolix and estimated
the population-level parameters. We inferred that the average time to emergence of a resistant strain
is 844 days after treatment starts. We fit the model to the second data set and found out that the all
the parameters except the mutation rate were practically identifiable.

Keywords: HIV within-host model; two-strain model; identifiability analysis; drug resistance

MSC: 92-08

1. Introduction

HIV was first detected in 1981 when several people were found to have opportunistic
infections and severe immunodeficiency [1]. In the initial years, HIV-infected individuals
were treated with a single drug, which gave rise to a resistant strain fairly quickly [2,3]. In
1995, the highly active antiretroviral therapy (HAART) was introduced, and the patients
started being treated with several drugs of different classes [1]. The new treatment was
expected to reduce the HIV resistance and therapy failure [4]. However, even when patients
were treated with 2–5 medications from 2–3 different classes [5], rebound and treatment
failures still occurred [6]. HIV resistance and viral rebound continue to present a puzzle
that needs to be better understood [7].

Within-host modeling of HIV and HIV drug resistance has a long history [3,8–10].
Multi-strain HIV models for resistance evolution have been developed in many studies
[11,12]. A model of this type was fully analyzed in [13], and a model with immune response
was analyzed in [14]. While the analysis and simulations of multi-strain within-host models
of HIV are well developed, including in the context of multi-scale models [15], very little
has been done in connecting these models to within-host HIV data. Data and single-strain
within-host models have played a significant role in understanding HIV [16], and yet
multi-strain models have not been fit to data, and implications have not been studied based
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on data. In this study, we fit a two-strain within-host model to within-host data of HIV.
One reason for the gap in the literature is perhaps the fact regarding how within-host HIV
data are usually collected. Typically, only the viral load, and possibly the CD4 cell count,
are measured. This way of collecting data leaves doubt about whether the parameters
in a multi-strain model can be identified from so few data sets. To address this problem,
we studied the identifiability of the model relative to the data given. The problem of
identifiability of the parameters was first considered in an epidemic model in [17], and
since then, it has been applied to other epidemic and immuno-epidemic models [18,19].
Identifiability has been applied to within-host single-strain HIV models [20]; however,
we are not aware of identifiability analysis being applied to multi-strain models, even
to multi-strain models studied extensively in the literature, such as the one we consider
in this article [3,8,9]. We studied the identifiability of our previously studied two-strain
model with respect to two data sets. Data set one had the within-host viral load and
CD4+ cells of patients subject to multiple drugs in multiple classes of drugs. Further,
we studied the identifiability of our model with respect to another data set, data set two,
which contained data on the sensitive and resistant strain as well as CD4+ cells for a
patient treated with one drug [3]. With respect to data set two, our model is completely
structurally identifiable; however, collecting strain-specific data is possibly expensive and
difficult, particularly in patients treated with multiple drugs. For that reason, we studied
the structural identifiability of our model with respect to data set one. We further studied
the practical identifiability to understand better how well the specific data allow us to
estimate the parameters.

This paper is structured as follows. In Section 2, we introduce the model. In Section 3,
we perform the identifiability analysis of the model. In Section 3, we study the structural
identifiability with respect to both data sets. In Section 4, we fit the model to the two types
of data sets, and we estimate the parameters. In the case of Data Set 1, we used Monolix [21]
to derive population-level parameters as well. In Section 4, we also study the practical
identifiability of the model with respect to each of the two types of data sets. Section 5
contains the discussion of our results.

2. Model Formulation

HIV primarily targets and infects CD4+ T cells, which play an important role in the
adaptive immune response. In return, infected CD4+ T cells produce HIV viral particles.
For the dynamics of sensitive and resistant HIV, we used the following well-studied HIV
within-host model [3,9].

dT
dt

= λ − dT − ksVsT − krVrT

dTs

dt
= (1 − u)ksVsT − δTs

dVs

dt
= πsTs − cVs

dTr

dt
= uksVsT + krVrT − δTr

dVr

dt
= πrTr − cVr

(1)

These differential equations describe the dynamics of CD4+ T cells (T), cells infected
with drug-resistant virus (Tr), cells infected with drug-susceptible virus (Ts), drug-resistant
viral load (Vr), and drug-susceptible viral load (Vs). The parameter λ represents the
recruitment rate of uninfected CD4+ T cells, d is the per capita death rate of uninfected
T-cells, and kr and ks are the infection rates of target cells by drug-resistant and drug-
susceptible viruses, respectively. Regarding the interplay between susceptible and resistant
strains of the virus, we set u (0 ≤ u < 1) to define the mutation rate from the sensitive strain
to the resistant strain of the virus. πr and πs represent the burst sizes of the drug-resistant
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and drug-susceptible virus, respectively, which are the total number of virus particles
released by a productive infected cell over its lifespan. c is the clearance rate of the virus,
while δ is the death rate of infected CD4+ T cells.

Figure 1 depicts a flow diagram of the model. Table 1 lists the parameters and state
variables of the within-host model (1).

HIV Within-Host Model:
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d death
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Figure 1. Flow diagram describing the interaction between target cells (T), infected cells with
drug-resistant virus (Tr), infected cells with drug-sensitive virus (Ts), drug-sensitive virus (Vs), and
drug-resistant virus (Vr).

Table 1. Definitions of the HIV within-host model (1) parameters and state variables and their units.

Parameter Definition Units

λ Recruitment rate of uninfected target cells CD4+ cells mL−1 day−1

ks
Infection rate of target cells by
drug-sensitive virus mL vRNA copies−1 day−1

kr
Infection rate of target cells by
drug-resistant virus mL vRNA copies−1 day−1

u Mutation rate from sensitive strain to
resistant strain dimensionless

πr Burst size of drug-resistant strain 10−3 vRNA copies (CD4+ cells day)−1

πs Burst size of drug-sensitive strain 10−3 vRNA copies (CD4+ cells day)−1

c Clearance rate of free virus day−1

δ Death rate of infected cells day−1

State Variable Definition Units

T Population of Target (CD4+) Cells CD4+ cells per µL

Tr
Population of Infected Target (CD4+)
Cells with Drug-Resistant Virus CD4+ cells per µL

Ts
Population of Infected Target (CD4+)
Cells with Drug-Susceptible Virus CD4+ cells per µL

Vr Drug-Resistant Viral Load vRNA copies mL−1

Vs Drug-Susceptible Viral Load vRNA copies mL−1

3. Identifiability Analysis

Identifiability analysis is an assessment of whether a set of observations can be used to
uniquely (structural identifiability) and accurately (practical identifiability) estimate model
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parameters. Within identifiability analysis, there are two sequential stages: (i) structural
identifiability and (ii) practical identifiability. Structural identifiability is used to evaluate
whether the parameters of a within-host model can be uniquely derived from infinitely
many noise-free data. Structural identifiability analysis relies on the relation between a
model and the observations. Consequently, structural identifiability analysis is a prerequi-
site for parameter estimation. If the model is structurally identifiable, then we may continue
to estimate the parameters from the experimental data. Through practical identifiability
analysis, one evaluates the parameters of the within-host model to see if they can be de-
termined from experimental data with varying degrees of noise. There are a variety of
methods utilized to study structural identifiability, including but not limited to the Taylor
series approach [22], similarity transformation [23], generating series method [24], and
the differential algebra approach [25,26]. Similarly, there are several methods to study
practical identifiability of within-host models. These methods are profile likelihood [27],
Monte Carlo simulations [19,28,29], and the Fisher Information Matrix (FIM) or Correlation
Matrix [30–32]. In this study, we use the differential algebra method to study structural
identifiability and the Monte Carlo simulations to examine the practical identifiability.

Structural Identifiability Analysis

We begin by assessing the structural identifiability of the within-host model and
rewrite the model (1) in the following compact form:

x′(t) = f (x(t), p), x(0) = x0 (2)

y(t, p) = g(x(t), p) (3)

Here, t represents time, x represents the state variables, and p represents the parameter
vector with p = (λ, δ, c, d, ks, kr, πr, πs, u). We refer to y(t, p) as observations; it is a smooth
curve where the data are measured in discrete time. The observations, y(t, p), are functions
of the state variables. The within-host model given in compact form (2) is identifiable if
the parameter vector p can be uniquely determined from the given observation y(t, p), (3).
Otherwise, it is said to be unidentifiable. To begin, we provide the definition of structural
identifiability [19,29].

Definition 1.

Globally identifiable: Let p and p̂ be two distinct parameter vectors. The model (2) is said to
be structurally globally (uniquely) identifiable if

g(x(t), p) = g(x(t), p̂) implies p = p̂.

Locally identifiable: The model (2) is said to be locally structurally locally identifiable if for any
p within an open neighborhood of p̂ in the parameter space,

g(x(t), p) = g(x(t), p̂) implies p = p̂.

In AIDS clinical studies, the viral load and total CD4+ T-cell counts are usually
measured. Therefore, in this study, we performed two the observations: the first one was
the target cells, denoted by y1(t, p), and the second one was the total viral load, denoted by
y2(t, p). With regard to the model variables, the observations can be written as follows:

y1(t, p) = T(t) + Ts(t) + Tr(t) and y2(t, p) = Vr(t) + Vs(t). (4)

To analyze the structural identifiability of the model, we utilized the differential algebra
method [20]. The differential algebra method allows for the removal of the unobserved
state variables, and by doing so, we derive an equation referred to as an input–output
equation, which involves only the model parameters and observed state variables. The
following input–output equations for model (1) with the observations y1(t, p) and y2(t, p)
were obtained using the Differential Algebra for Identifiability of SYstem (DAISY v2.1)
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software [26]. The input–output equations of the system (1) with the observations (4) are
the following monic differential polynomials (5) and (6).

0 = y′′1 + y′1y2
krks(πr − πs)(1 − u)

πr(kr − ksu)− ksπs(1 − u)
+ y′1(d + δ) + y′′2

(d − δ)(ks − kr)

πr(kr − ksu)− ksπs(1 − u)
+

y′2
(c + δ)(d − δ)(ks − kr)

πr(kr − ksu)− ksπs(1 − u)
+ y1y2

δkrks(πr − πs)(1 − u)
πr(kr − ksu)− ksπs(1 − u)

+ y1dδ+

y2
(cdδ − cδ2)(ks − kr) + krksλ(πr − πs)(1 − u)

πr(kr − ksu)− ksπs(1 − u)
− δλ

(5)

and

0 = y′′′1 y′1 + y′′′1 y1δ − y′′′1 λ − y′′21 + y′′1 y′1(c − δ) + y′′1 y1δ(c + δ)− y′′1 λ(c + d)+

y′31
πrπs(ks − kr)

(d − δ)(πr − πs)
+ y′21 y′2

πrkr − πsks

πr − πs
+ y′21 y1

πrπs(ks − kr)(d + 2δ)

(d − δ)(πr − πs)
+

y′21 y2
c(πrkr − πsks)

πr − πs
+ y′21 (c(d + δ)− δ2 +

3λπrπs(ks − kr)

(d − δ)(πr − πs)
) + y′1y′2y1

2δ(πrkr − πsks)

πr − πs
+

y′1y′2
2λ(πrkr − πsks)

πr − πs
+ y′1y2

1
δ(2d − δ)πrπs(ks − kr)

(d − δ)(πr − πs)
+

y′1y1y2
2cδ(πrkr − πsks)

πr − πs
+ y′1y1

(
2cd2δ − cdδ2 − cδ3

d − δ
+

(2dλ + 4δλ)πrπs(ks − kr)

(d − δ)(πr − πs)

)
−

y′1y2
2cλ(πrkr − πsks)

πr − πs
+ y′1

(
cd2 − cdδ + 2cδ2 − d2δ + 2dδ2 − δ3

d − δ
− 3λπrπs(ks − kr)

(d − δ)(πr − πs)

)
+

y′2y2
1

δ2(πrkr − πsks)

πr − πs
+ y′2y1

2δλ(πrkr − πsks)

πr − πs
+ y′2

λ2(πrkr − πsks)

πr − πs
+

y3
1

dδ2πrπs(ks − kr)

(d − δ)(πr − πs)
+ y2

1y2
cδ2(πrkr − πsks)

πr − πs
+ y2

1

(
2cdδ2 +

(2dλ + δλ)πrπs(ks − kr)

(d − δ)(πr − πs)

)
+

y1y2
2cδλ(πrkr − πsks)

πr − πs
+ y1

(
−cδ(d + δ)− λ(d − 2δ)πrπs(ks − kr)

(d − δ)(πr − πs)

)
+

y2
cλ2(πrkr − πsks)

πr − πs
+

(
λ2cδ +

λπrπs(ks − kr)

(d − δ)(πr − πs)

)
.

(6)

Solving the differential polynomials (5) and (6) is equivalent to solving the within-host
model (1) for y1(t, p) and y2(t, p). Therefore, the definition of the structural identifiability
within differential algebra approach becomes verifying that the coefficients of the differen-
tial polynomials (5) and (6) are one-to-one with respect to the parameters [18–20,33].

Definition 2. Let c(p) denote the coefficients of the input–output Equations (5) and (6), where p
is the vector of model parameters. The within-host model is said to be structurally identifiable, that
is, it is structured to reveal its parameters from the observations y1(t, p) and y2(t, p) if and only if

c(p) = c( p̂) =⇒ p = p̂ (7)
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According to Definition 2, we must show that the mapping of the parameter space to
the coefficients is one-to-one. Let us suppose that there is a parameter vector
p̂ = (λ̂, δ̂, ĉ, d̂, k̂s, k̂r, π̂r, π̂s, û) that produces the same target cell and viral load observations.
Then, setting c(p) = c( p̂), we obtain the following system of nonlinear equations:

δ = δ̂

λ = λ̂

c − δ = ĉ − δ̂ =⇒ c = ĉ

c + d = ĉ + d̂ =⇒ d = d̂

krks(πr − πs)(1 − u)
πr(kr − ksu)− ksπs(1 − u)

=
k̂r k̂s(π̂r − π̂s)(1 − û)

π̂r(k̂r − k̂sû)− k̂sπ̂s(1 − û)

(ks − kr)

πr(kr − ksu)− ksπs(1 − u)
=

(k̂s − k̂r)

π̂r(k̂r − k̂sû)− k̂sπ̂s(1 − û)

πrπs(ks − kr)

πr − πs
=

π̂rπ̂s(k̂s − k̂r)

π̂r − π̂s

πrkr − πsks

πr − πs
=

π̂r k̂r − π̂s k̂s

π̂r − π̂s

(8)

Here, we note that the DAISY addresses the nonlinear system of Equations (8) by
substituting random integer values for the parameters p̂. However, those solutions given
by DAISY are not clearly stating the parameter correlations. Furthermore, 0 ≤ u < 1 is
not an integer; such integer solutions can not be accepted. Therefore, we used Wolfram
Mathematica to solve this nonlinear system (8) and obtained the following:

S1 = {λ = λ̂, δ = δ̂, c = ĉ, d = d̂, kr = ks, πr = πs }

S2 =

{
λ = λ̂, δ = δ̂, c = ĉ, d = d̂, kr = k̂r, πs =

(k̂r − k̂s)π̂rπ̂s

(k̂rπ̂r − ksπ̂r + ksπ̂s − k̂sπ̂s)
,

πr = π̂r, u =
(k̂rπ̂r(ks − k̂s(1 − û)) + k̂s(k̂sπ̂s(1 − û)− ks(π̂s(1 − û) + π̂rû)))

(ks(k̂r − k̂s)π̂r)

}

S3 =

{
λ = λ̂, δ = δ̂, c = ĉ, d = d̂, kr =

k̂s(k̂rπ̂r − k̂sπ̂s)(1 − û)
(−k̂rπ̂r + k̂sπ̂s(1 − û) + k̂sπ̂rû)

,

πs =
(k̂r − k̂s)π̂rπ̂s

(k̂rπ̂r − ksπ̂r + ksπ̂s − k̂sπ̂s)
, πr =

(π̂s(k̂rπ̂r − k̂sπ̂s(1 − û)− k̂sπ̂rû))
(k̂rπ̂r − k̂sπ̂s)

,

u =
(ks − k̂r)(k̂rπ̂r − k̂sπ̂s)

ksπ̂s(k̂r − k̂s))

}

We obtained three sets of solutions; S1, S2, and S3, each displaying several parameter
correlations. The parameters λ, δ, c, and d can be identified, but complex correlations exist
between the parameters ks, kr, πs, πr, and u. It is clear that the within-host model is not
structurally identifiable. Upon further inspection, we notice that the solution set S3 is
inadmissible. To show that S3 is not an acceptable solution, we multiply kr and πr in S3
and obtain the following:
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kr × πr =
(k̂s(k̂rπ̂r − k̂sπ̂s)(1 − û))

(−k̂rπ̂r + k̂sπ̂s + k̂sπ̂rû − k̂sπ̂sû)
× (π̂s(k̂rπ̂r + k̂sπ̂s(−1 + û)− k̂sπ̂rû))

(k̂rπ̂r − k̂sπ̂s)

=
k̂s(1 − û)

−(k̂rπ̂r − k̂sπ̂s − k̂sπ̂rû + k̂sπ̂sû)
× (π̂s(k̂rπ̂r + k̂sπ̂s(−1 + û)− k̂sπ̂rû))

=
k̂s(1 − û)

−(k̂rπ̂r + k̂sπ̂s(−1 + û)− k̂sπ̂rû))
× (π̂s(k̂rπ̂r + k̂sπ̂s(−1 + û)− k̂sπ̂rû))

= −k̂sπ̂s(1 − û)

We obtain krπr = −k̂sπ̂s(1 − û), which means that krπr < 0 since 0 < û < 1. As
such, either kr or πr must be negative, which is not possible since all parameters in our
model have positive values. Therefore, solution set S3 is not an admissible solution. We
summarize the structural identifiability results in the following Proposition 1.

Proposition 1. As evident by solution sets S1 and S2, the within-host model (1) is not structured
to reveal its parameters from the observations of target cell count, y1(t) = T(t) + Ts(t) + Tr(t),
and viral load measurements, y2(t) = Vr(t) + Vs(t).

Our goal is to obtain a structurally identifiable model from the observations of target
cell count and viral load measurements. We can achieve this goal in two different ways
and present these two ways in this study: (1) fix some parameters so that the remaining
parameters become structurally identifiable or (2) add more information, namely, obser-
vations, to the identifiability analysis. Let us explore the first approach. First, we fix the
rate at which infected cells with sensitive HIV produce new viral particles per day, namely,
the parameter πs. We also impose that the rate at which infected cells with resistant HIV
produce new viral particles is different from the infected cells with sensitive HIV. Therefore,
we add πs = π̂s and πr ̸= πs to the system of nonlinear equations c(p) = c( p̂) given in (8).
We solved the system in Mathematica and obtain the following solution:

L1 = {λ = λ̂, δ = δ̂, c = ĉ, d = d̂, u = û, πs = π̂s,

ks = k̂s, kr = k̂r, πr = π̂r }
L2 = {λ = λ̂, δ = δ̂, c = ĉ, d = d̂, ks = k̂s, πs = π̂s,

kr =
k̂s(k̂rπ̂r − k̂sπ̂s)(1 − û)

π̂r(k̂sû − k̂r) + k̂sπ̂s(1 − û)
, πr =

π̂r(π̂r(k̂sû − k̂r) + k̂sπ̂s(1 − û))
k̂rπ̂r − k̂sπ̂s

,

u = 1 − k̂rπ̂r

k̂sπ̂s
}

A closer look at the solution set L2 reveals that πrkr = − k̂s
π̂r
(1 − û). Since u is less than

one and all the parameters are positive, the equality gives the product of the parameters πr
and kr to be negative, which is not possible. Therefore, the set L2 is not admissible for the
HIV model (1). We can only accept solution set L1, which yields a structurally identifiable
model. We summarize the results in the following Proposition 2.

Proposition 2. If the viral busting rate πs of CD4+ T-cells infected with sensitive virus is known,
and if we further impose that πs and πr are not identical, then the within-host model (1) is structured
to reveal its parameters from the observations of target cell count and viral load measurements.

Now, we explore the second approach to obtaining a structurally identifiable within-
host model, that is, adding more data, hence observations, to the identifiability analysis. In
an AIDS clinical study, it is not possible to measure the infected CD4+ T cells separately,
meaning that the number of CD4+ T cell count includes both healthy and infected cells.
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On the other hand, we found that in this AIDS clinical studies [3,8], drug-sensitive and
drug-resistant viral loads are measured separately. Therefore, the observations in this
AIDS clinical study take the form of the number of target cells, denoted by y1(t, p), the
drug-sensitive viral load, denoted by y2(t, p), and the drug-resistant viral load, denoted by
y3(t, p). With regard to the model (1) variables, the observations can be written as follows:

y1(t, p) = T(t) + Ts(t) + Tr(t) and y2(t, p) = Vs(t) and y3(t, p) = Vr(t) (9)

For within-host model (1) and the observations (9), DAISY gives the following set of
input–output equations:

0 = y′1 − y′2
(d − δ)

πs
− y′3

(d − δ)

πr
+ y1d − y2

c(d − δ)

πs
− y3

c(d − δ)

πr
− λ

0 = y′′1 + y′1y2ks + y′1y3kr + y′1(d + δ) + y1y2ksδ + y1y3krδ + y1dδ−

y2ksλ − y3krλ − δλ

0 = y′1y2
ksπs(1 − u)
(d − δ)

+ y′′2 + y′2(c + δ) + y1y2
ksδπs(1 − u)

d − δ

+ y2
(ksλπsu − ksλπs + cdδ − cδ2)

d − δ

Applying Definition 2, we set c(p) = c( p̂) and obtain the following solution:

λ = λ̂, δ = δ̂, c = ĉ, d = d̂, u = û, πs = π̂s, ks = k̂s,

kr = k̂r, πr = π̂r.

This means that the within-host model (1) is structured to reveal its parameters from the
observations of total CD+ T-cell count, drug-sensitive HIV load, and drug-resistant HIV
load. We state the following Proposition 3.

Proposition 3. The within-host model (1) is structurally identifiable from the observations of
target cell count, y1(t) = T(t) + Ts(t) + Tr(t), drug-sensitive viral load y2(t) = Vs(t), and
drug-resistant viral load y3(t) = Vr(t) measurements.

4. Parameter Estimation and Data
4.1. Estimating Model Parameters from AIDS Clinical Trial Data Set with Nine Patients

Data Set 1: To estimate the parameters of the within-host model (1), we used the
data from the Stanford HIV Drug Resistance Database [34]. Specifically, we used the data
collected from the AIDS Clinical Trial Groups (ACTG) 5257 [35]. The ACTG 5257 study
was performed on treatment-naive people over the age of 18 who had HIV-1 RNA levels
of over 1000 copies/mL. More than 1800 participants were enrolled in the study with a
median age of 37, 24% being women. CD8 T cell count was not reported in the study.
Virologic failure was defined as RNA levels greater than 1000 copies/mL after 16 weeks
and before 24 weeks or 200 copies/mL at or after 24 weeks. It is reported that among those
who received the non-nucleoside reverse transcriptase inhibitor (NNRT) Raltegravir, 3%
experienced virologic failure as a result of drug resistance [35]. From the data set of this
study, we chose 9 patients who were on NNRT and protease inhibitor (PI) regimens and
showing viral failure. However, it is important to note that there is no evidence that these
specific 9 patients experienced virologic failure as a result of developing resistance. In
principle, virologic failure may occur as a result of different reasons such as the patient not
following the prescribed medication regimen.
Estimating Model Parameters From Data Set 1: Since we had data from 9 HIV infected
individuals from the AIDS clinical data set [35], to estimate the parameters of the within-
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host model (1), we used the nonlinear mixed effect modeling approach. The nonlinear
mixed effect model is defined as

y1
i,j = y1(tj, pi) + c1y1(tj, pi)

ξϵi,j ϵij ∼ N(0, σ2) (10)

y2
i,j = y2(tj, pi) + c2y2(tj, pi)

ξϵi,j ϵij ∼ N(0, σ2) (11)

where y1(tj, pi) is the model prediction of total CD4+ T-cell counts at time tj of the ith
individual, and y1

i,j is the CD4+ T-cell count of the ith individual at time tj. Similarly,
y2(tj, pi) is the model prediction of the total viral load on log scale at time tj of the ith
individual, and y2

i,j is the log scale viral load data of the ith individuals at time tj. The

terms c1y1(tj, pi)
ξ and c2y2(tj, pi)

ξ represent the statistical error models. In most cases,
ξ = 0, which corresponds to the constant (or additive) error model, and when ξ = 1, it is
called the relative (proportional) error model. We assume that the total CD4+ T-cell count
follows an additive error model, while the viral load data follow a relative error model. The
pi = (λ, δ, c, d, ks, kr, πr, πs, u) is the parameter vector for the ith individual. The random
effect is then defined as

pi = p̃ + ηi ηi ∼ N(0, ω2
i )

where p̃ is the fixed population parameter, and ηi is the random effect. The individual
parameters pi follow a normal distribution whose mean is the fixed population parameter
p̃, and the standard deviation is ωi.

We use the stochastic approximation estimation-maximization (SAEM) algorithm in
Monolix [21] to estimate the mean and standard deviation of parameters pi. We assume that
the individual parameters pi are log-normally distributed, with mean ln( p̃) and standard
deviation ωi. We set the initial drug-resistant viral load to zero and further set the initial
number of infected cells with sensitive and resistant viruses to zero. Hence, Vr(0) = 0
viral RNA copies per ml, Ts(0) = 0, Tr(0) = 0 cells per µL. Seven of the nine HIV-positive
patients had a known total target cell count at time t = 0, which ranges between 20 and
308 cells per microliter. Therefore, we set the initial target cell count to the mean of the
7 patients and set T(0) = 178 cells per µL, and we set the initial sensitive viral load,
Vs(0) = 5204600 viral RNA copies/ml, to the mean of the 9 patients. The structural
identifiability analysis indicates that fixing the parameter πs is necessary to determine the
remaining parameters uniquely. Therefore, we set πs = 4.57 viral RNA copies per cell per
day. The estimated values for each patient (pi) and the fixed population parameters (p̃) and
their standard deviations (ωi) are presented in Table 2.

Table 2. Monolix parameter estimation results for each HIV-infected individual and the fixed
population parameters and their standard deviations.

Patient ID λ d ks kr πr c δ u

260108 3.1432 0.0052 1.7003 × 10−5 2.0280 × 10−5 14.2923 2.6698 0.0151 2.2205 × 10−16

260176 8.5243 0.0146 1.7020 × 10−5 2.0086 × 10−5 13.9616 3.0708 0.0153 2.2205 × 10−16

260141 2.2569 0.0070 1.7086 × 10−5 2.2728 × 10−5 14.8627 1.5793 0.0153 2.2205 × 10−16

260051 5.3588 0.0086 1.7076 × 10−5 2.2009 × 10−5 14.3102 3.1006 0.0152 2.2205 × 10−16

260055 6.7139 0.0077 1.7129 × 10−5 2.0807 × 10−5 13.5409 4.1148 0.0153 2.2205 × 10−16

260275 1.4573 0.0069 1.7190 × 10−5 2.4921 × 10−5 16.3691 1.0295 0.0155 2.2205 × 10−16

260219 2.1811 0.0057 1.7189 × 10−5 2.0317 × 10−5 13.8618 1.7939 0.0154 2.2205 × 10−16

260222 6.2164 0.0082 1.7144 × 10−5 1.9117 × 10−5 12.9615 3.5886 0.0152 2.2205 × 10−16

260278 5.0414 0.0086 1.7000 × 10−5 2.2101 × 10−5 14.7130 2.8675 0.0153 2.2205 × 10−16

p̃ 3.86 0.0075 0.000017 0.000022 14.12 2.42 0.015 2.2205 × 10−16

ωi 0.6 0.36 0.025 0.11 0.11 0.42 0.031 3.58

Table 2 shows that infected CD4+ T cells die at a higher rate than uninfected cells,
which is consistent with prior findings. The half-lives of uninfected cells are 92 days on
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average, and infected cells are 46 days, based on the fixed population estimates d̃ and δ̃
(ln(2)/0.0075 = 92 and ln(2)/0.015 = 46). The clearance rate of HIV is c̃ = 2.42 per day,
giving a half-life of 7 h. For the 9 HIV-infected individuals, the production rate of CD4+ T
cells ranged from 1.46 to 8.52 cells per day per milliliter of blood. CD4+ cells infected with
a resistant virus produce 14.12 viral RNA copies per cell per day, higher than the cells
infected with a sensitive virus. The infection rate of the resistant virus (k̃r = 2.2 × 10−5

per viral particle per day in a mL blood) was larger than the infection rate of the sensitive
virus (k̃s = 1.7 × 10−5 per viral particle per day in a mL blood). All nine HIV patients
had an estimated mutation rate of zero. This implies that mutation occurs at a single
time rather than continually. Drug-resistance mutations are probably best modeled as a
dirac-delta function.

Figure 2 shows predictions for each patient using the within-host model (1) with the
parameters given in Table 2. We present the total viral load prediction by the within-host
model (1) in Figure 2a, resistant viral load prediction in Figure 2b, and sensitive viral load
in Figure 2c. After starting NNRT and PI antiviral therapy, patients’ total viral load clearly
stays below 100 (2 on log scale) viral RNA copies. However, about two years into the
treatment, virologic failure is detected (see dashed lines in Figure 2a). Furthermore, in all
nine individuals, the resistant virus fully eliminated the sensitive virus. Despite following
the same NNRT and PI regimen, the nine patients had significantly different total CD4+

cell counts (see Figure 3).

(a) (b) (c)

Figure 2. Monolix fitting results for 9 HIV infected patients. In columns (a–c), the red dots are the total
viral load in log scale, including both the sensitive and resistant strains. (a) presents the within-host
model (1) prediction of the total viral load in log scale (blue lines) together with the data. The dashed
line gives the time when the total viral load exceeds 200 viral RNA copies per mL. (b) presents the
within-host model (1) prediction of the resistant virus and the data. The dashed line gives the time
when the resistant virus first appears in the system. (c) presents the within-host model (1) prediction
of the sensitive virus together with the data.
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(a) (b) (c)

Figure 3. Monolix fitting results for 9 HIV infected patients. In columns (a–c), the red dots are the
total CD4+ cell count, including the cells infected with both the sensitive and resistant strains. In
columns (a–c), the blue curve is the within-host model (1) prediction of the total CD4+ cell count.

The dashed line in Figure 2a indicates the time of virologic failure as defined by
the clinical trial authors [35]. Specifically, it shows the point at which, after 24 weeks of
antiretroviral therapy, the overall viral load surpasses 200 viral RNA levels. However, the
point at which the patient first exhibits the resistant virus is marked by the dashed line in
Figure 2b. We see at least a 100-day relapse between the initial emergence of the resistant
virus and the detection of virologic failure for each patient. We present in Figure 4 the
distribution of these time points. Patients develop resistant viruses on average 844 days
after the initiation of the treatment, but detection occurs 970 days after.

Figure 4. The left-hand-side figure presents the distribution of the time points at which the resistant
virus first appeared (see Figure 2b). The right-hand-side figure presents the distribution of the time
points at which virologic failure is detected (see Figure 2a). Bars represent the empirical distributions,
and the red curve is the theoretical distribution. Dashed lines are the mean of the distributions.
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Practical Identifiability Analysis

Monolix provides the distribution of the parameters obtained by fitting the within-host
model to the AIDS clinical trial data (see Figure 5), as well as the correlations between the
random effects η (see Figure A1). Figure A1 indicates that the parameter λ is correlated
with c, d, kr and πr. These parameters also exhibit bimodal distributions (refer to Figure 5),
particularly for λ and c. The parameters λ and c have the highest Pearson correlation
coefficient (0.88). The correlation between parameters λ and d is substantial with a Pearson
coefficient of 0.64. The Pearson correlation between parameters λ and kr is −0.51, while that
for λ and πr is −0.31. The correlation threshold for claiming that a parameter is practically
unidentifiable based on the Pearson coefficient is unclear. Based on our earlier studies
[30], we claim that the parameters λ and c are practically unidentifiable from fitting the
within-host model (1) to the AIDS clinical trial data with nonlinear mixed effect modeling.

Figure 5. Parameter distribution generated by fitting within-host model (1) to the total viral load and
total CD4+ cell count data.

4.2. Estimating Model Parameters from Published Data with Single HIV Patient

Data Set 2: Our structural identifiability analysis shows that measuring sensitive and
resistant viral loads separately can uniquely determine the parameters of the within-host
model (1). However, we failed to find any AIDS clinical trials in the Stanford HIV Drug
Resistance Database [34] that assessed both resistant and sensitive viruses individually. On
the other hand, we did find a clinical trial with data published in [3] where the resistant
and sensitive virus were measured separately. We used the published data in [3] where
HIV-infected individuals were prescribed with the non-nucleoside reverse transcriptase
(NNRT) inhibitor Nevirapine (NVP), and their response to the medication was assessed
at specific time points: 0, 14, 28, 56, and 140 days after initiating therapy. During these
evaluations, the total CD4+ T-cell count per µL was measured, along with the presence of
HIV strains (per µL plasma) that are sensitive or resistant to NVP [3].

We fit the within-host model (1) using two separate data sets, each with distinct
characteristics. To begin, in clinical study [35], data are available for around 1400 days,
nearly 4 years, whereas in study [3], data are only available for 140 days (roughly 0.4 year).
While it takes two years of treatment for the viral failure to develop in [35], in [3] it happens
in just fourteen days. Furthermore, the total CD4+ cell count in [3] is very small compared
to the same data in [35]. The HIV viral RNA copies are measured in a mililiter of blood
in [35] and in µL of blood in [3]. Since the main objective of this study was to perform
an identifiability analysis of drug-resistant model parameters using clinical data sets, we
proceeded with the available data sets [3,35].
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Estimating Model Parameters from Data Set 2: To estimate the within-host model (1)
parameters, we fit the predicted total CD4+ cell count and drug-resistant and drug-sensitive
viral loads to the published data in [3]. Simply put, we minimized the Euclidean distances
between the model predictions and the data. Specifically, we minimized the following
objective function with constraints to estimate the model parameters.

p̂ = min
p

(
4

∑
j=1

(y1(tj, p)− y1,j)
2

)1/2

+

(
4

∑
j=1

(y2(tj, p)− y2,j)
2

)1/2

+

(
4

∑
j=1

(y3(tj, p)− y3,j)
2

)1/2

s.t. δ ≥ d and πr ≥ πs and lb ≤ p ≤ ub

(12)

where lb and ub are the lower and upper bounds for the parameters p, respectively. We
assume known initial conditions. The initial conditions are determined by the data at
the initiation of the treatment. As before, we set Ts(0) = 0, Tr(0) = 0 cells per µL, and
Vr(0) = 0 RNA copies per µL. The total CD4+ cell count at t = 0 is 116 cells per µL;
therefore, we set T(0) = 116, and the total viral load at t = 0 is 130 viral RNA copies per
µL, that is, Vs(0) = 130. Because the drug-sensitive virus decreases significantly during
the first 14 days of the therapy and the drug-resistant virus emerges after 14 days, we
assume that the drug-resistant parameters are time-dependent. Moreover, we suppose that
the parameters kr, πr, and u vary with time. They are specifically described as the step
functions listed below.

kr(t) =

{
0 t < 14
kr t ≥ 14

πr(t) =

{
0 t < 14
πr t ≥ 14

u(t) =

{
0 t < 14
u t ≥ 14

(13)

We numerically solved (12) using fmincon in Matlab R2024a Update 3, and we present
the optimal values p̂ in Table 3. The within-host model predictions with the estimated
values are presented in Figure 6.

Table 3. Estimated parameter values for the within-host model (1) obtained by fitting to total CD4+

cell count and NVP-sensitive and NVP-resistant strains. The units of each parameter and the lower
bounds used in the constraint optimization problem (12) are presented.

Parameter [lb,ub] Estimated Value Units

λ [0, 100] 11.64 cells µL−1 day−1

d [0.01, 1] 0.0144 day−1

ks [0, 1] 0.1220 µL vRNA copies−1 day−1

kr [0, 1] 0.0007 µL vRNA copies−1 day−1

u [0, 1] 0.0140 dimensionless
πr [0, 100000] 40.03 vRNA copies CD4+ cells day−1

πs [0, 100000] 0.1839 vRNA copies CD4+ cells day−1

c [0, 100] 7.47 day−1

δ [0.05, 1] 0.4705 day−1

4.3. Structural Identifiability Analysis of Within-Host Model with Time-Dependent Parameters

To estimate the parameters from the second data set [3], we used the following within-
host model with time-dependent parameters (13),
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(a) (b) (c)

Figure 6. (a) Model predictions (blue curves) of the drug-sensitive viral load with drug-sensitive
viral load data (red circles). (b) Model predictions (blue curves) of the drug-resistant viral load with
drug-resistant viral load data (red circles). (c) Model predictions (blue curves) of the total CD4+ cell
count with total CD4+ cell count data (red circles).

dT
dt

= λ − dT − ksVsT − kr(t)VrT

dTs

dt
= (1 − u(t))ksVsT − δTs

dVs

dt
= πsTs − cVs

dTr

dt
= u(t)ksVsT + kr(t)VrT − δTr

dVr

dt
= πr(t)Tr − cVr

(14)

Since the time-dependent parameters are only step functions, the model (14) can be consid-
ered as a coupled ODE system with constant coefficients (see Figure 7). Therefore, we study
the structural identifiability of the model (14) by studying the structural identifiability
of the coupled system with constant ODEs. When t < 14, the within-host model with a
time-dependent parameter reduces to the following system with constant coefficients:

dTc

dt
= λ − dTc − ksVTc

dIc

dt
= ksVTc − δIc

dV
dt

= πs Ic − cV

(15)

where Tc(t) denotes the number of target cells, Ic(t) denotes the number of infected target cells
and V(t) denotes the HIV. The system starts with initial conditions Tc(0) = 116, Ic(0) = 0,
and V(0) = 130. Then, the within-host model (1) with time-dependent parameters (13) starts
at time t = 14 with initial conditions T(14) = Tc(14), Ts(14) = Ic(14),Vs(14) = V(14), Tr(14) =
0,Vr(14) = 0. We studied the structural identifiability analysis of the within-host model (1) from
the observations of total target cell count, y1(t) = T(t) + Ts(t) + Tr(t), drug-sensitive viral load
y2(t) = Vs(t), and drug-resistant viral load y3(t) = Vr(t) observations in Section 3. When t < 14,
the model reduces to (15); therefore, we need to study the structural identifiability of the within-host
model (15) from the observations of y1(t) = Tc(t)+ Ic(t) and viral load y2(t) = V(t). We follow
the same steps as in Section 3 and first obtain the input–output equations:
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0 = y′1 + y′2
(δ − d)

πs
+ y2

(δ − d)
πs

c + y1d − λ

0 = −y′′2 − y′2y2ks − y′2(c + δ) + y2
2ksc + y1y2πsks − y2cδ

Solving c(p) = c(q), we obtain a unique solution

λ = λ̂, δ = δ̂, c = ĉ, d = d̂, πs = π̂s, ks = k̂s.

Hence, we conclude that model (15) is structurally identifiable from the observations
relevant to it.

T′
c = λ − dTc − ksVTc

I′c = ksVTc − δIc

V′ = πs Ic − cV

Tc(0) = 116
Ic(0) = 0
V(0) = 130

T′ = λ − dT − ksVsT − krVrT

T′
s = (1 − u)ksVsT − δTs

V′
s = πsTs − cVs

T′
r = uksVsT + krVrT − δTr

V′
r = πrTr − cVr

T(14) = Tc(14)
Ts(14) = Ic(14)
Vs(14) = V(14)
Tr(14) = 0
Vr(14) = 0

t = 0 t = 14observations
y1(t) = Tc + Ic, y2(t) = V

observations
y1(t) = T + Ts + Tr, y2(t) = Vs, y3(t) = Vr

Figure 7. The within-host model (14) with time-dependent parameters (13) as a coupled system of
ODEs with constant parameters.

4.4. Practical Identifiability Analysis of Within-Host Model Parameters from Data Set 2

To study whether the parameters can be identified from the Data Set 2, we performed
Monte Carlo simulations. We set the estimated parameters p̂ from constraint optimization
problem (12) as the true parameter set and assumed that the data satisfy the following
statistical error models:

y1,j = y1(tj, p̂) + ϵj (16)

y2,j = y2(tj, p̂) + ϵj (17)

y3,j = y3(tj, p̂) + ϵj where ϵj ∼ N(0, σ2) (18)

where y1(tj, p̂) is the model prediction of total CD4+ T-cell count at time tj and y1,j is
the CD4+ T-cell count data at time tj, where tj = {14, 28, 56, 140}. Similarly, the y2(tj, p̂),
and y3(tj, p̂) are the model prediction of the drug-sensitive and drug-resistant viral load
at time tj, respectively; y2,j and y3,j are the drug-sensitive and drug-resistant viral load
data at time tj, respectively. Simply, we assume that the measured data follow a normal
distribution whose mean is the model prediction and standard deviation is σ. We generate
M = 1000 data sets using the error models (16)–(18) with increasing noise levels by setting
σ = 0.01, 0.05, 0.1, and 0.2. Then, we fit each of the 1000 data sets to the within-host model
by minimizing (12). This would result in 1000 parameter estimates for each noise level.
Since, the true parameter set that generated the data set is known, we can compute the
Average Relative Estimation (ARE) error by

ARE(p) = 100% × 1
M

M

∑
j=1

| p̂ − pj|
| p̂| (19)
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where p̂ is the true parameter vector, and pj is the estimated parameter vector from the
data set j with j = 1, 2, . . . , M = 1000. We use ARE to determine whether a parameter is
practically identifiable or not by using the following Definition 3 [28,36].

Definition 3. Let ARE be the average relative estimation error of the parameter p. The practical
identifiability of parameter p is determined by comparing ARE to the measurement error.

i. If 0 ≤ ARE ≤ σ, then parameter p is (strongly) practically identifiable;
ii. If σ < ARE ≤ 10σ, then parameter p is weakly practically identifiable;
iii. If 10σ < ARE, then parameter p is not practically identifiable.

A model is said to be practically identifiable when all parameters p of the model are practically
identifiable(Table 4).

Table 4. Monte Carlo simulation results for the second data set. The ARE of each parameter is
presented for each noise level.

Parameter ARE with
σ = 1%

ARE with
σ = 5%

ARE with
σ = 10%

ARE with
σ = 20%

λ 0.26 0.97 1.92 4.26
d 2.85 13.46 21.27 31.31
ks 1.69 7.12 14.52 33. 28
kr 1.29 6.62 13.18 22.35
u 5.95 38.26 108.38 211.75
πr 0.6 2.6 4.45 8.12
πs 1.52 6.68 13.2 26.43
c 0.24 1 2.34 5.62
δ 0.74 3.17 6.44 13.32

Following Definition 3, we claim that the parameters λ, πr, c, and δ are practically iden-
tifiable, and the parameters d, ks, kr, u, and πs are weakly practically identifiable (Table 5).

Table 5. Monte Carlo simulation results with high-frequency data, one data point for each day for
140 days. The ARE of each parameter is presenting for each noise level.

Parameter ARE with
σ = 1%

ARE with
σ = 5%

ARE with
σ = 10%

ARE with
σ = 20%

λ 0.01 0.1 0.23 0.56
d 0.2 1.54 3.69 8.06
ks 0.08 0.53 1.25 2. 99
kr 0.08 0.52 1.07 2.39
u 0.53 4.24 9.26 21.01
πr 0.02 0.21 0.52 1.27
πs 0.06 0.44 1.07 2.49
c 0.01 0.09 0.2 0.46
δ 0.06 0.33 0.71 1.49

From Definition 3, we claim that the parameters λ, πr, c, δ, d, ks, kr, πs are practically
identifiable, while the parameter u is weakly practically identifiable. This shows that
collecting more frequent data drastically improves the identifiability of parameters, which,
in turn, strengthens the confidence in our results.

5. Discussion

In this paper, we consider a sensitive strain-resistant strain model of HIV, which has
been previously discussed in [8,9]. The model has been thoroughly analyzed [9] but has
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never been fit to data. Our goal here was to connect the model to within-host HIV data.
We used two data sets: Data Set 1, which is an excerpt of a large data set of Stanford Drug
Resistance Clinical Trial group [35], and Data Set 2, which consists of data published in [3].
Data Set 2 is an older data set of the occurrence of resistance with respect to one drug and
measures both the sensitive- and resistant-strain viral load as well as CD4+ cells. Data Set 1
is a newer data set of virologic failure when patients are on ART, that is, multiple drugs in
multiple classes of drugs, and it measures only the total viral load and CD4+ cells.

The problem of fitting models to data is generally an ill-posed problem [19], meaning
that multiple parameter combinations may result in the same fits. So, this problem needs to
be studied rigorously to understand the accuracy of our parameter estimations. Thus, our
first goal was to study the structural identifiability of our model with respect to each data
set. We found that our model is structurally identifiable with respect to Data Set 1 if πs is
known and fixed, and πr is distinct from πs. On the other hand, our model is structurally
identifiable with respect to Data Set 2 with no conditions. These results hold regardless of
the quality of the data given.

We fit the model to the two data sets in different models. From Data Set 1, we had nine
patients exhibiting virologic failure; we use mixed effects modeling and Monolix [21] to fit
all nine patients simultaneously and infer “population-level” parameters. Monolix gives
correlations of parameters, and we concluded that parameter λ is correlated with c, d, kr,
and πr. Thus, according to Monolix, the above parameters are not practically identifiable,
but the level at which they can be determined remains unknown. We fit our model to Data
Set 2 using least squares. We performed Monte Carlo simulations to gauge the practical
identifiablity of the parameters. We conclude that parameters λ, πr, c, δ are practically
identifiable (that is, identifiable within the measurement error), parameters πs, d, ks, kr are
weakly practically identifiable (that is identifiable within 10 times the measurement error),
and u is not identifiable. We surmise that if u = u(t) is a delta function, it may make the
remaining parameters identifiable, but this needs to be investigated in the future. Mutation
as a delta function has been considered in an epidemiological context [37].

With reasonably reliably estimated parameters, we can draw the following conclusions.
First, Data Set 1 does not give the viral load of the sensitive and resistant (to all drugs)
strains separately; however, we are now capable with the help of the model to infer the
viral load of sensitive (to at least one drug) strains and the resistant-to-all-drugs strain.
Second, since Data Set 1 does not give data on the sensitive and resistant strains separately,
it is not clear from the data when the drug-resistant strain emerges during treatment. We
can now estimate this moment patient-by-patient or by a population-level average. The
population-level average of the time of emergence of the resistant strain is 844 days after
treatment regiment starts. In this case, the population-level virologic failure occurs at
970 days after the treatment’s start date. Because in Data Set 2 sensitive and resistant strains’
viral loads are given separately, the time of emergence of the resistant strain can be inferred
from the data. This happens at day 14 after the start of treatment. From this comparison,
we see how much more superior ART is to the single-drug treatment used in the early days
of HIV. However, because with multiple drugs used at the same time, resistant strains of
each drug can occur and collecting these type of detailed data is difficult or impossible, it
is imperative to develop tools, such as the ones in this article, to be able to decipher that
information from data on total viral load and total CD4+ cells.
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Appendix A. Data Set 1

Figure A1. Monolix result with the correlation between random effects. Pearson’s correlation
coefficient between the random effect ηλ and ηc is 0.88. Pearson’s correlation coefficient between the
random effect ηλ and ηd is 0.64. Pearson’s correlation coefficient between the random effect ηλ and
ηkr is −0.51. Pearson’s correlation coefficient between the random effect ηλ and ηπr is −0.31.
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