Evaluating Order Allocation Sustainability Using a Novel Framework Involving Z-Number
Abstract
:1. Introduction
- (i)
- A novel framework is proposed to evaluate the sustainability order allocation.
- (ii)
- A conversion process is involved to convert a sustainability evaluation of suppliers into a sustainability evaluation of order allocation objectively.
- (iii)
- The proposed Z-number MCDM approach, which integrates ZITARA and ZCoCoSo, is innovative and effective. ZITARA assigns weights to the indicators based on performance data, eliminating the need for direct comparisons. Additionally, ZCoCoSo combines three aggregator strategies to form a comprehensive measurement.
2. Preliminaries
2.1. The Concept of Trapezoidal Fuzzy Number
2.2. The Concept and Calculation of Z-Number
3. Evaluating Sustainable Order Allocation with MCDM Techniques
3.1. The Order Allocation Evaluation Matrix
- Step 1. Constructing the supplier assessment matrix, ⨂X.
- Step 2. Constructing the order allocation matrix, O.
- Step 3. Converting to the order allocation assessment matrix, ⨂Y.
3.2. ZIARA
- Step 1. Constructing the defuzzification assessment matrix, F.
- Step 2. Determining the indifference threshold, Ij
- Step 3. Generating the normalized matrix, B.
- Step 4. Sorting the assessed order allocations in ascending order under each criterion and determining the dispersion degree of adjacent assessed order allocations
- Step 5. Determining the distance between βij and NIj.
- Step 6. Assigning objective weights to the criteria.
3.3. ZCoCoSo
- Step 1. Obtaining the normalized matrix ⨂G for ZCoCoSo
- Step 2. Computing the score of each assessed order allocation by WSM and WPM
- Step 3. Evaluating the integrated scores based on three strategies
- Step 4. Calculate the final ranking of assessed order allocation
4. Case Study
4.1. Generating the Order Allocation Evaluation Matrix
4.2. Appling ZITARA to Assign the Weight of the Criterion
4.3. Using ZCoCoSo to Determine Order Allocation Sustainability
5. Conclusions
- (i)
- Game theory objectively analyzes the relationship between supplier evaluations and order allocation assessments.
- (ii)
- Z-numbers are integrated into ITARA and CoCoSo to address both qualitative and quantitative criteria, considering uncertainty in expert evaluations and confidence in their judgments.
- (iii)
- ZITARA assessment identifies the top five criteria managers should prioritize when assessing new suppliers’ sustainability.
- (iv)
- ZCoCoSo rankings help managers efficiently allocate orders while incorporating sustainability considerations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alavi, B.; Tavana, M.; Mina, H. A dynamic decision support system for sustainable supplier selection in circular economy. Sustain. Prod. Consum. 2021, 27, 905–920. [Google Scholar] [CrossRef]
- Rahman, H.U.; Zahid, M.; Ullah, M.; Al-Faryan, M.A.S. Green supply chain management and firm sustainable performance: The awareness of China Pakistan Economic Corridor. J. Clean Prod. 2023, 414, 137502. [Google Scholar] [CrossRef]
- Shoaib, M.; Zhang, S.; Ali, H. A bibliometric study on blockchain-based supply chain: A theme analysis, adopted methodologies, and future research agenda. Environ. Sci. Pollut. Res. 2023, 30, 14029–14049. [Google Scholar] [CrossRef] [PubMed]
- Le, M.-T. Sustainable Evaluation of E-Commerce Companies in Vietnam: A Multi-Criteria Decision-Making Framework Based on MCDM. Mathematics 2024, 12, 1681. [Google Scholar] [CrossRef]
- Cantele, S.; Russo, I.; Kirchoff, J.F.; Valcozzena, S. Supply chain agility and sustainability performance: A configurational approach to sustainable supply chain management practices. J. Clean Prod. 2023, 414, 137493. [Google Scholar] [CrossRef]
- Elkington, J. Enter the triple bottom line. In The Triple Bottom Line; Routledge: London, UK, 2013; pp. 1–16. [Google Scholar]
- Keshavarz-Ghorabaee, M. Sustainable supplier selection and order allocation using an integrated rog-based type-2 fuzzy decision-making approach. Mathematics 2023, 11, 2014. [Google Scholar] [CrossRef]
- Hosseini, Z.S.; Flapper, S.D.; Pirayesh, M. Sustainable supplier selection and order allocation under demand, supplier availability and supplier grading uncertainties. Comput. Ind. Eng. 2022, 165, 107811. [Google Scholar] [CrossRef]
- Ali, H.; Zhang, J. A fuzzy multi-objective decision-making model for global green supplier selection and order allocation under quantity discounts. Expert Syst. Appl. 2023, 225, 120119. [Google Scholar] [CrossRef]
- Islam, S.; Amin, S.H.; Wardley, L.J. Machine learning and optimization models for supplier selection and order allocation planning. Int. J. Prod. Econ. 2021, 242, 108315. [Google Scholar] [CrossRef]
- Emirhüseyinoğlu, G.; Ekici, A. Dynamic facility location with supplier selection under quantity discount. Comput. Ind. Eng. 2019, 134, 64–74. [Google Scholar] [CrossRef]
- Liu, P.; Hendalianpour, A.; Fakhrabadi, M.; Feylizadeh, M. Integrating IVFRN-BWM and goal programming to allocate the order quantity considering discount for green supplier. Int. J. Fuzzy. Syst. 2022, 24, 989–1011. [Google Scholar] [CrossRef]
- Cheng, Y.; Peng, J.; Gu, X.; Zhang, X.; Liu, W.; Zhou, Z.; Yang, Y.; Huang, Z. An intelligent supplier evaluation model based on data-driven support vector regression in global supply chain. Comput. Ind. Eng. 2020, 139, 105834. [Google Scholar] [CrossRef]
- Yigin, I.; Taşkin, H.; Cedimoglu, I.; Topal, B. Supplier selection: An expert system approach. Prod. Plan. Control. 2007, 18, 16–24. [Google Scholar] [CrossRef]
- Darzi, M.A. Overcoming barriers to integrated management systems via developing guiding principles using G-AHP and F-TOPSIS. Expert Syst. Appl. 2024, 239, 122305. [Google Scholar] [CrossRef]
- Lin, S.-S.; Zhou, A.; Shen, S.-L. Safety assessment of excavation system via TOPSIS-based MCDM modelling in fuzzy environment. Appl. Soft Comput. 2023, 138, 110206. [Google Scholar] [CrossRef]
- Bihari, R.; Jeevaraj, S.; Kumar, A. Geometric approach for ranking generalized trapezoidal fuzzy numbers and its application in selecting security guard service company. Expert Syst. Appl. 2023, 234, 121052. [Google Scholar] [CrossRef]
- Zadeh, L.A. A note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Hatefi, M.A. Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making. Appl. Soft Comput. 2019, 74, 643–651. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Lo, H.-W.; Liou, J.J.; Huang, C.-N.; Chuang, Y.-C.; Tzeng, G.-H. A new soft computing approach for analyzing the influential relationships of critical infrastructures. Int. J. Crit. Infrastruct. Prot. 2020, 28, 100336. [Google Scholar] [CrossRef]
- Ayyildiz, E.; Taskin Gumus, A.; Erkan, M. Individual credit ranking by an integrated interval type-2 trapezoidal fuzzy Electre methodology. Soft Comput. 2020, 24, 16149–16163. [Google Scholar] [CrossRef]
- Huang, C.-N.; Lo, H.-W. A Hybrid Z-Based MADM model for the evaluation of urban resilience. Math. Probl. Eng. 2021, 2021, 9474753. [Google Scholar] [CrossRef]
- Pribićević, I.; Doljanica, S.; Momčilović, O.; Das, D.K.; Pamučar, D.; Stević, Ž. Novel extension of DEMATEL method by trapezoidal fuzzy numbers and D numbers for management of decision-making processes. Mathematics 2020, 8, 812. [Google Scholar] [CrossRef]
- Hu, Z.; Lin, J. An integrated multicriteria group decision making methodology for property concealment risk assessment under Z-number environment. Expert Syst. Appl. 2022, 205, 117369. [Google Scholar] [CrossRef]
- Lo, H.-W.; Hsu, C.-C.; Huang, C.-N.; Liou, J.J. An ITARA-TOPSIS based integrated assessment model to identify potential product and system risks. Mathematics 2021, 9, 239. [Google Scholar] [CrossRef]
- Khemiri, R.; Elbedoui-Maktouf, K.; Grabot, B.; Zouari, B. A fuzzy multi-criteria decision-making approach for managing performance and risk in integrated procurement–production planning. Int. J. Prod. Res. 2017, 55, 5305–5329. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, R.; Duan, J.; Cheng, W. Comprehensive weight method based on game theory for identify critical transmission lines in power system. Int. J. Electr. Power Energy Syst. 2021, 124, 106362. [Google Scholar] [CrossRef]
- Chang, T.-W.; Pai, C.-J.; Lo, H.-W.; Hu, S.-K. A hybrid decision-making model for sustainable supplier evaluation in electronics manufacturing. Comput. Ind. Eng. 2021, 156, 107283. [Google Scholar] [CrossRef]
- Alper Sofuoğlu, M. Development of an ITARA-based hybrid multi-criteria decision-making model for material selection. Soft Comput. 2019, 23, 6715–6725. [Google Scholar] [CrossRef]
- Dehshiri, S.J.H.; Amiri, M. Evaluation of blockchain implementation solutions in the sustainable supply chain: A novel hybrid decision approach based on Z-numbers. Expert Syst. Appl. 2024, 235, 121123. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Shayganmehr, M.; Kumar, A.; Luthra, S.; Garza-Reyes, J.A. A framework for assessing sustainability in multi-tier supply chains using empirical evidence and fuzzy expert system. J. Clean. Prod. 2021, 317, 128302. [Google Scholar] [CrossRef]
- Mastrocinque, E.; Ramírez, F.J.; Honrubia-Escribano, A.; Pham, D.T. An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Syst. Appl. 2020, 150, 113321. [Google Scholar] [CrossRef]
- Giri, B.C.; Molla, M.U.; Biswas, P. Pythagorean fuzzy DEMATEL method for supplier selection in sustainable supply chain management. Expert Syst. Appl. 2022, 193, 116396. [Google Scholar] [CrossRef]
- Govindan, K.; Shaw, M.; Majumdar, A. Social sustainability tensions in multi-tier supply chain: A systematic literature review towards conceptual framework development. J. Clean Prod. 2021, 279, 123075. [Google Scholar] [CrossRef]
- Yazdani, M.; Torkayesh, A.E.; Stević, Ž.; Chatterjee, P.; Ahari, S.A.; Hernandez, V.D. An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Syst. Appl. 2021, 183, 115354. [Google Scholar] [CrossRef]
- Lo, H.-W.; Liaw, C.-F.; Gul, M.; Lin, K.-Y. Sustainable supplier evaluation and transportation planning in multi-level supply chain networks using multi-attribute-and multi-objective decision making. Comput. Ind. Eng. 2021, 162, 107756. [Google Scholar] [CrossRef]
- Yang, J.-J.; Lo, H.-W.; Chao, C.-S.; Shen, C.-C.; Yang, C.-C. Establishing a sustainable sports tourism evaluation framework with a hybrid multi-criteria decision-making model to explore potential sports tourism attractions in Taiwan. Sustainability 2020, 12, 1673. [Google Scholar] [CrossRef]
- Münch, C.; Benz, L.A.; Hartmann, E. Exploring the circular economy paradigm: A natural resource-based view on supplier selection criteria. J. Purch. Supply Manag. 2022, 28, 100793. [Google Scholar] [CrossRef]
- Shete, P.C.; Ansari, Z.N.; Kant, R. A Pythagorean fuzzy AHP approach and its application to evaluate the enablers of sustainable supply chain innovation. Sustain. Prod. Consum. 2020, 23, 77–93. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Thai, H.T.N.; Tran, N.N.; Tran, T.L.A. Sustainable supplier selection process in edible oil production by a hybrid fuzzy analytical hierarchy process and green data envelopment analysis for the SMEs food processing industry. Mathematics 2018, 6, 302. [Google Scholar] [CrossRef]
- Rahim, M.; Garg, H.; Khan, S.; Alqahtani, H.; Khalifa, H.A.E.W. Group decision-making algorithm with sine trigonometric p, q-quasirung orthopair aggregation operators and their applications. Alex. Eng. J. 2023, 78, 530–542. [Google Scholar] [CrossRef]
- Seikh, M.R.; Mandal, U. Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem. Eng. Appl. Artif. Intell. 2022, 115, 105299. [Google Scholar] [CrossRef]
Linguistic Terms | Trapezoidal Fuzzy Numbers |
---|---|
Extremely good (EG) | (8, 9, 10, 10) |
Very good (VG) | (7, 8, 9, 10) |
Good (G) | (6, 7, 8, 9) |
Medium good (MG) | (5, 6, 7, 8) |
Fair (F) | (4, 5, 6, 7) |
Medium poor (MP) | (3, 4, 5, 6) |
Poor (P) | (2, 3, 4, 5) |
Very poor (VP) | (1, 2, 3, 4) |
Extremely poor (EP) | (0, 1, 2, 3) |
Linguistic Term | Triangular Fuzzy Number |
---|---|
Very high (VH) | (0.7, 1, 1) |
High (H) | (0.5, 0.7, 0.9) |
Medium (M) | (0.3, 0.5, 0.7) |
Low (L) | (0.1, 0.3, 0.5) |
Very low (VL) | (0, 0, 0.3) |
Confidence of Judgment | |||||
---|---|---|---|---|---|
Assessment | VL | L | M | H | VH |
EP | (0, 0.316, 0.632, 0.949) | (0, 0.548, 1.096, 1.644) | (0, 0.707, 1.414, 2.121) | (0, 0.837, 1.673, 2.509) | (0, 1, 2, 3) |
VP | (0.316, 0.632, 0.949, 1.265) | (0.548, 1.096, 1.644, 2.192) | (0.707, 1.414, 2.121, 2.828) | (0.837, 1.673, 2.509, 3.347) | (1, 2, 3, 4) |
P | (0.632, 0.949, 1.265, 1.581) | (1.096, 1.644, 2.192, 2.739) | (1.414, 2.121, 2.828, 3.535) | (1673, 2.509, 3.347, 4.183) | (2, 3, 4, 5) |
MP | (0.949, 1.265, 1.581, 1.897) | (1.644, 2.192, 2.739, 3.288) | (2.121, 2.828, 3.535, 4.242) | (2.509, 3.347, 4.183, 5.019) | (3, 4, 5, 6) |
F | (1.265, 1.581, 1.897, 2.214) | (2.192, 2.739, 3.288, 3.836) | (2.828, 3.535, 4.242, 4.949) | (3.347, 4.183, 5.019, 5.857) | (4, 5, 6, 7) |
MG | (1.581, 1.897, 2.214, 2.529) | (2.739, 3.288, 3.836, 4.384) | (3.535, 4.242, 4.949, 5.656) | (4.183, 5.019, 5.857, 6.693) | (5, 6, 7, 8) |
G | (1.897, 2.214, 2.529, 2.846) | (3.288, 3.836, 4.384, 4.932) | (4.242, 4.949, 5.656, 6.363) | (5.019, 5.857, 6.693, 7.529) | (6, 7, 8, 9) |
VG | (2.214, 2.529, 2.846, 3.162) | (3.836, 4.384, 4.932, 5.479) | (4.949, 5.656, 6.363, 7.069) | (5.857, 6.693, 7.529, 8.367) | (7, 8, 9, 10) |
EG | (2.529, 2.846, 3.162, 3.162) | (4.384, 4.932, 5.479, 5.479) | (5.656, 6.363, 7.069, 7.069) | (6.693, 7.529, 8.367, 8.367) | (8, 9, 10, 10) |
Dimension | Criteria | References |
---|---|---|
Social | Information sharing (C1) | [33,34,35] |
Worker education, safety and health (C2) | [33,34,36,37,38] | |
Social feedback (C3) | [30,33,37,39] | |
Rights protection of stakeholder (C4) | [35,37,38] | |
Local employment opportunities (C5) | [35,37,40] | |
Environmental | Pollution control capability (C6) | [33,35,36,41] |
Green design (C7) | [33,36,38,41] | |
Environmental certification (C8) | [36,38,41] | |
Product recyclability (C9) | [33,34,41] | |
Renewable energy utilization (C10) | [35,42] | |
Economic | Enterprise size (C11) | [30,37,39] |
Product quality (C12) | [33,36,38] | |
Delivery accuracy (C13) | [33,34,36,38,43] | |
R&D flexibility and coordination (C14) | [33,34,42] | |
Material price (C15) | [33,34,36,43] | |
Product technology and patents (C16) | [34,36] |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
A1 | (EP, H) | (EP, H) | (EP, VH) | (VP, M) | (MP, M) | (P, H) | (EP, H) | (MP, VH) |
A2 | (MP, H) | (VP, H) | (MP, VH) | (MP, M) | (F, M) | (EP, H) | (G, H) | (P, VH) |
A3 | (EG, H) | (EG, H) | (EG, VH) | (EG, M) | (EP, M) | (EG, H) | (MG, H) | (EG, VH) |
A4 | (MG, H) | (VG, H) | (EG, VH) | (VP, M) | (MP, M) | (EG, H) | (MP, H) | (MG, VH) |
C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | |
A1 | (MP, M) | (MG, M) | (VP, M) | (MP, M) | (VP, H) | (MP, VH) | (MP, H) | (F, M) |
A2 | (MP, M) | (VP, M) | (F, M) | (MG, M) | (VP, H) | (EP, VH) | (MP, H) | (MP, M) |
A3 | (MG, M) | (EG, M) | (EG, M) | (EG, M) | (EG, H) | (MG, VH) | (VG, H) | (EG, M) |
A4 | (MG, M) | (MG, M) | (VG, M) | (MP, M) | (VP, H) | (VG, VH) | (P, VH) | (EG, M) |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
A1 | (1.6910, 2.3503, 3.0110, 3.6708) | (2.3150, 3.0875, 3.8590, 4.6305) | (1.1255, 1.8970, 2.6685, 3.4410) | (3.5915, 4.5095, 5.4285, 6.3465) | (2.315, 3.0875, 3.859, 4.6305) | (2.4745, 3.1815, 3.8885, 4.5955) | (1.5435, 2.3150, 3.0875, 3.8590) | (0.5000, 1.4185, 2.3365, 3.2545) |
A2 | (2.9133, 3.5735, 4.2333, 4.8935) | (3.8590, 4.6305, 5.4030, 6.1745) | (0.7720, 1.5435, 2.3150, 3.0875) | (0.4185, 1.3365, 2.2545, 3.1735) | (2.6685, 3.441, 4.2125, 4.984) | (2.4745, 3.1815, 3.8885, 4.5955) | (0.3535, 1.1255, 1.8970, 2.6685) | (4.0095, 4.9285, 5.8465, 6.7645) |
A3 | (4.5868, 5.2470, 5.9070, 6.3890) | (4.9195, 5.6910, 6.4630, 6.881) | (5.8210, 6.5925, 7.3650, 7.718) | (5.0095, 5.9285, 6.8465, 7.7645) | (5.0495, 5.821, 6.5925, 7.365) | (5.3025, 6.0095, 6.7160, 7.0690) | (6.1745, 6.9460, 7.7180, 7.7180) | (5.5915, 6.5095, 7.4285, 8.3465) |
A4 | (4.8935, 5.5533, 6.2125, 6.5985) | (2.3150, 3.0875, 3.8590, 4.6305) | (1.1255, 1.8970, 2.6685, 3.4410) | (6.8465, 7.7645, 8.6835, 9.1835) | (1.897, 2.6685, 3.441, 4.2125) | (4.9490, 5.6560, 6.3625, 6.7160) | (6.1745, 6.9460, 7.7180, 7.7180) | (3.7545, 4.6735, 5.5915, 6.5095) |
C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | |
A1 | (2.9140, 3.7675, 4.6210, 5.4745) | (3.8590, 4.6305, 5.4030, 6.1745) | (2.7340, 3.5055, 4.2770, 5.0495) | (0.4185, 1.2550, 2.0910, 2.9280) | (0.5480, 1.2405, 1.9325, 2.6240) | (0.7070, 1.5605, 2.4140, 3.2675) | (0.7720, 1.5435, 2.3150, 3.0875) | (2.5605, 3.4140, 4.2675, 5.1210) |
A2 | (2.7675, 3.6210, 4.4745, 5.3280) | (0.7720, 1.5435, 2.3150, 3.0875) | (2.3150, 3.0875, 3.8590, 4.6305) | (2.9280, 3.7650, 4.6010, 5.4380) | (1.5145, 2.2060, 2.8985, 3.5915) | (2.9140, 3.7675, 4.6210, 5.4745) | (2.3150, 3.0875, 3.8590, 4.6305) | (3.4140, 4.2675, 5.1210, 5.9745) |
A3 | (6.4745, 7.3280, 8.1815, 8.5345) | (5.3375, 6.1100, 6.8810, 7.299) | (3.8590, 4.6305, 5.4030, 6.1745) | (6.2750, 7.1110, 7.9480, 8.3670) | (5.5385, 6.2305, 6.9230, 6.9230) | (6.8280, 7.6815, 8.5345, 8.5345) | (5.3375, 6.1100, 6.8810, 7.2990) | (0.0000, 0.8535, 1.7070, 2.5605) |
A4 | (4.6210, 5.4745, 6.3280, 7.1815) | (3.4410, 4.2125, 4.9840, 5.7565) | (4.277, 5.0495, 5.8210, 6.5925) | (4.6010, 5.4380, 6.2750, 7.1110) | (4.8465, 5.5385, 6.2305, 6.9230) | (6.4745, 7.3280, 8.1815, 8.5345) | (1.1900, 1.9615, 2.7340, 3.5055) | (1.5605, 2.4140, 3.2675, 4.1210) |
Order Allocation | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 3 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
A2 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
A3 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 1 | 0 | 1 | 1 |
A4 | 0 | 0 | 0 | 3 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 1 | 1 |
Order Allocation | C1 | C2 | … | C16 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
… | |||||||||||||
(3, 0, 0, 0) | 0.964 | 1.340 | 1.716 | 2.092 | 1.320 | 1.760 | 2.200 | 2.639 | … | 1.459 | 1.946 | 2.432 | 2.919 |
(0, 3, 0, 0) | 1.712 | 2.100 | 2.488 | 2.875 | 2.268 | 2.721 | 3.175 | 3.628 | … | 2.006 | 2.508 | 3.009 | 3.511 |
(0, 0, 3, 0) | 4.966 | 5.681 | 6.395 | 6.917 | 5.326 | 6.162 | 6.998 | 7.450 | … | 0.000 | 0.924 | 1.848 | 2.772 |
(0, 0, 0, 3) | 3.724 | 4.226 | 4.728 | 5.022 | 1.762 | 2.350 | 2.937 | 3.524 | … | 1.188 | 1.837 | 2.487 | 3.136 |
(2, 1, 0, 0) | 1.213 | 1.593 | 1.973 | 2.353 | 1.636 | 2.080 | 2.525 | 2.969 | … | 1.642 | 2.133 | 2.625 | 3.116 |
(2, 0, 1, 0) | 2.298 | 2.787 | 3.276 | 3.701 | 2.655 | 3.227 | 3.799 | 4.243 | … | 0.973 | 1.605 | 2.238 | 2.870 |
(2, 0, 0, 1) | 1.884 | 2.302 | 2.720 | 3.069 | 1.467 | 1.956 | 2.445 | 2.934 | … | 1.369 | 1.910 | 2.451 | 2.991 |
(1, 2, 0, 0) | 1.463 | 1.846 | 2.230 | 2.614 | 1.952 | 2.401 | 2.850 | 3.299 | … | 1.824 | 2.320 | 2.817 | 3.313 |
(1, 0, 2, 0) | 3.632 | 4.234 | 4.835 | 5.309 | 3.991 | 4.694 | 5.398 | 5.847 | … | 0.486 | 1.265 | 2.043 | 2.821 |
(1, 0, 0, 2) | 2.804 | 3.264 | 3.724 | 4.045 | 1.614 | 2.153 | 2.691 | 3.229 | … | 1.278 | 1.873 | 2.469 | 3.064 |
(0, 2, 1, 0) | 2.797 | 3.294 | 3.790 | 4.223 | 3.287 | 3.868 | 4.449 | 4.902 | … | 1.337 | 1.980 | 2.622 | 3.265 |
(0, 2, 0, 1) | 2.383 | 2.809 | 3.234 | 3.591 | 2.099 | 2.597 | 3.096 | 3.593 | … | 1.733 | 2.284 | 2.835 | 3.386 |
(0, 1, 2, 0) | 3.881 | 4.487 | 5.093 | 5.570 | 4.307 | 5.015 | 5.723 | 6.176 | … | 0.669 | 1.452 | 2.235 | 3.018 |
(0, 1, 0, 2) | 3.053 | 3.517 | 3.981 | 4.306 | 1.930 | 2.473 | 3.016 | 3.559 | … | 1.460 | 2.061 | 2.661 | 3.261 |
(0, 0, 2, 1) | 4.552 | 5.196 | 5.839 | 6.285 | 4.138 | 4.891 | 5.644 | 6.141 | … | 0.396 | 1.228 | 2.061 | 2.894 |
(0, 0, 1, 2) | 4.138 | 4.711 | 5.284 | 5.654 | 2.950 | 3.620 | 4.290 | 4.833 | … | 0.792 | 1.533 | 2.274 | 3.015 |
(1, 1, 1, 0) | 2.547 | 3.040 | 3.533 | 3.962 | 2.971 | 3.548 | 4.124 | 4.573 | … | 1.155 | 1.793 | 2.430 | 3.067 |
(1, 1, 0, 1) | 2.133 | 2.555 | 2.977 | 3.330 | 1.783 | 2.277 | 2.770 | 3.264 | … | 1.551 | 2.097 | 2.643 | 3.189 |
(1, 0, 1, 1) | 3.218 | 3.749 | 4.280 | 4.677 | 2.803 | 3.424 | 4.045 | 4.538 | … | 0.882 | 1.569 | 2.256 | 2.942 |
(0, 1, 1, 1) | 3.467 | 4.002 | 4.537 | 4.938 | 3.119 | 3.744 | 4.370 | 4.867 | … | 1.065 | 1.756 | 2.448 | 3.140 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | |
A1 | 2.6807 | 3.4731 | 2.2829 | 4.9690 | 3.4731 | 3.5350 | 2.7013 | 1.8774 | 4.1943 | 5.0168 | 3.8914 | 1.6731 | 1.5863 | 1.9873 | 1.9294 | 3.8408 |
A2 | 3.9034 | 5.0168 | 1.9294 | 1.7957 | 3.8266 | 3.5350 | 1.5112 | 5.3873 | 4.0478 | 1.9294 | 3.4731 | 4.1830 | 2.5525 | 4.1943 | 3.4731 | 4.6943 |
A3 | 5.5471 | 6.0181 | 6.9090 | 6.3873 | 6.2069 | 6.3038 | 7.2034 | 6.9690 | 7.6713 | 6.4364 | 5.0168 | 7.4600 | 6.4614 | 7.9658 | 6.4364 | 1.2803 |
A4 | 5.8373 | 3.4731 | 2.2829 | 8.1543 | 3.0548 | 5.9503 | 7.2034 | 5.1323 | 5.9013 | 4.5984 | 5.4351 | 5.8563 | 5.8846 | 7.6713 | 2.3478 | 2.8408 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | C15 | C16 | |
A1 | 0.1492 | 0.1932 | 0.1703 | 0.2332 | 0.2097 | 0.1829 | 0.1451 | 0.0969 | 0.1923 | 0.2790 | 0.2184 | 0.0873 | 0.0962 | 0.0911 | 0.1360 | 0.3035 |
A2 | 0.2172 | 0.2790 | 0.1439 | 0.0843 | 0.2311 | 0.1829 | 0.0812 | 0.2782 | 0.1856 | 0.1073 | 0.1949 | 0.2182 | 0.1548 | 0.1922 | 0.2448 | 0.3709 |
A3 | 0.3087 | 0.3347 | 0.5154 | 0.2998 | 0.3748 | 0.3262 | 0.3869 | 0.3599 | 0.3517 | 0.3580 | 0.2816 | 0.3891 | 0.3920 | 0.3651 | 0.4537 | 0.1012 |
A4 | 0.3249 | 0.1932 | 0.1703 | 0.3827 | 0.1845 | 0.3079 | 0.3869 | 0.2650 | 0.2705 | 0.2557 | 0.3051 | 0.3055 | 0.3570 | 0.3516 | 0.1655 | 0.2245 |
NIj | 0.0028 | 0.0028 | 0.0037 | 0.0023 | 0.0030 | 0.0026 | 0.0027 | 0.0026 | 0.0023 | 0.0028 | 0.0028 | 0.0026 | 0.0030 | 0.0023 | 0.0035 | 0.0040 |
Dimension | Social | |||||
Criteria | C1 | C2 | C3 | C4 | C5 | |
Weight | 0.0409 | 0.0363 | 0.1260 | 0.0660 | 0.0529 | |
Rank | 13 | 15 | 1 | 7 | 11 | |
Dimension | Environmental | |||||
Criteria | C6 | C7 | C8 | C9 | C10 | |
Weight | 0.0455 | 0.0909 | 0.0677 | 0.0404 | 0.0610 | |
Rank | 12 | 2 | 6 | 14 | 9 | |
Dimension | Economic | |||||
Criteria | C11 | C12 | C13 | C14 | C15 | C16 |
Weight | 0.0247 | 0.0640 | 0.0771 | 0.0685 | 0.0812 | 0.0570 |
Rank | 16 | 8 | 4 | 5 | 3 | 10 |
Order Allocation | C1 | C2 | … | C16 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(3, 0, 0, 0) | 0.139 | 0.148 | 0.189 | 0.231 | 0.177 | 0.235 | 0.293 | 0.352 | … | 0.416 | 0.254 | 0.318 | 0.381 |
(0, 3, 0, 0) | 0.247 | 0.232 | 0.275 | 0.317 | 0.304 | 0.363 | 0.424 | 0.484 | … | 0.571 | 0.328 | 0.393 | 0.459 |
(0, 0, 3, 0) | 0.718 | 0.627 | 0.706 | 0.764 | 0.715 | 0.822 | 0.934 | 0.994 | … | 0.000 | 0.121 | 0.241 | 0.362 |
(0, 0, 0, 3) | 0.538 | 0.467 | 0.522 | 0.554 | 0.236 | 0.313 | 0.392 | 0.470 | … | 0.338 | 0.240 | 0.325 | 0.410 |
(2, 1, 0, 0) | 0.175 | 0.176 | 0.218 | 0.260 | 0.220 | 0.278 | 0.337 | 0.396 | … | 0.468 | 0.279 | 0.343 | 0.407 |
(2, 0, 1, 0) | 0.332 | 0.308 | 0.362 | 0.409 | 0.356 | 0.431 | 0.507 | 0.566 | … | 0.277 | 0.210 | 0.292 | 0.375 |
(2, 0, 0, 1) | 0.272 | 0.254 | 0.300 | 0.339 | 0.197 | 0.261 | 0.326 | 0.391 | … | 0.390 | 0.250 | 0.320 | 0.391 |
(1, 2, 0, 0) | 0.211 | 0.204 | 0.246 | 0.289 | 0.262 | 0.320 | 0.380 | 0.440 | … | 0.520 | 0.303 | 0.368 | 0.433 |
(1, 0, 2, 0) | 0.525 | 0.467 | 0.534 | 0.586 | 0.536 | 0.626 | 0.720 | 0.780 | … | 0.139 | 0.165 | 0.267 | 0.369 |
(1, 0, 0, 2) | 0.405 | 0.360 | 0.411 | 0.447 | 0.217 | 0.287 | 0.359 | 0.431 | … | 0.364 | 0.245 | 0.323 | 0.400 |
(0, 2, 1, 0) | 0.404 | 0.364 | 0.418 | 0.466 | 0.441 | 0.516 | 0.594 | 0.654 | … | 0.381 | 0.259 | 0.343 | 0.427 |
(0, 2, 0, 1) | 0.344 | 0.310 | 0.357 | 0.396 | 0.282 | 0.346 | 0.413 | 0.479 | … | 0.494 | 0.298 | 0.370 | 0.442 |
(0, 1, 2, 0) | 0.561 | 0.495 | 0.562 | 0.615 | 0.578 | 0.669 | 0.764 | 0.824 | … | 0.190 | 0.190 | 0.292 | 0.394 |
(0, 1, 0, 2) | 0.441 | 0.388 | 0.439 | 0.475 | 0.259 | 0.330 | 0.402 | 0.475 | … | 0.416 | 0.269 | 0.348 | 0.426 |
(0, 0, 2, 1) | 0.658 | 0.574 | 0.645 | 0.694 | 0.555 | 0.653 | 0.753 | 0.819 | … | 0.113 | 0.161 | 0.269 | 0.378 |
(0, 0, 1, 2) | 0.598 | 0.520 | 0.583 | 0.624 | 0.396 | 0.483 | 0.572 | 0.645 | … | 0.226 | 0.200 | 0.297 | 0.394 |
(1, 1, 1, 0) | 0.368 | 0.336 | 0.390 | 0.437 | 0.399 | 0.473 | 0.550 | 0.610 | … | 0.329 | 0.234 | 0.317 | 0.401 |
(1, 1, 0, 1) | 0.308 | 0.282 | 0.329 | 0.368 | 0.239 | 0.304 | 0.370 | 0.435 | … | 0.442 | 0.274 | 0.345 | 0.417 |
(1, 0, 1, 1) | 0.465 | 0.414 | 0.472 | 0.516 | 0.376 | 0.457 | 0.540 | 0.605 | … | 0.251 | 0.205 | 0.295 | 0.384 |
(0, 1, 1, 1) | 0.501 | 0.442 | 0.501 | 0.545 | 0.419 | 0.500 | 0.583 | 0.649 | … | 0.303 | 0.229 | 0.320 | 0.410 |
Order Allocation | ⨂Sk | ⨂Pk | ||||||
---|---|---|---|---|---|---|---|---|
(3, 0, 0, 0) | 0.133 | 0.192 | 0.251 | 0.310 | 13.885 | 14.319 | 14.597 | 14.808 |
(0, 3, 0, 0) | 0.165 | 0.222 | 0.283 | 0.344 | 14.067 | 14.460 | 14.714 | 14.909 |
(0, 0, 3, 0) | 0.696 | 0.853 | 0.966 | 1.030 | 14.714 | 15.762 | 15.908 | 15.982 |
(0, 0, 0, 3) | 0.364 | 0.446 | 0.525 | 0.590 | 14.903 | 15.127 | 15.304 | 15.432 |
(2, 1, 0, 0) | 0.144 | 0.202 | 0.262 | 0.321 | 14.074 | 14.416 | 14.664 | 14.860 |
(2, 0, 1, 0) | 0.321 | 0.412 | 0.489 | 0.550 | 14.899 | 15.099 | 15.265 | 15.377 |
(2, 0, 0, 1) | 0.210 | 0.277 | 0.342 | 0.403 | 14.436 | 14.709 | 14.918 | 15.078 |
(1, 2, 0, 0) | 0.154 | 0.212 | 0.272 | 0.333 | 14.129 | 14.460 | 14.702 | 14.893 |
(1, 0, 2, 0) | 0.508 | 0.633 | 0.727 | 0.790 | 15.308 | 15.493 | 15.641 | 15.726 |
(1, 0, 0, 2) | 0.287 | 0.361 | 0.434 | 0.497 | 14.709 | 14.948 | 15.135 | 15.275 |
(0, 2, 1, 0) | 0.342 | 0.432 | 0.510 | 0.573 | 14.958 | 15.148 | 15.309 | 15.419 |
(0, 2, 0, 1) | 0.231 | 0.296 | 0.363 | 0.426 | 14.538 | 14.788 | 14.984 | 15.136 |
(0, 1, 2, 0) | 0.519 | 0.643 | 0.738 | 0.801 | 15.337 | 15.513 | 15.657 | 15.742 |
(0, 1, 0, 2) | 0.298 | 0.371 | 0.444 | 0.508 | 14.755 | 14.983 | 15.165 | 15.301 |
(0, 0, 2, 1) | 0.585 | 0.717 | 0.819 | 0.883 | 15.426 | 15.613 | 15.756 | 15.837 |
(0, 0, 1, 2) | 0.475 | 0.582 | 0.672 | 0.736 | 15.237 | 15.417 | 15.566 | 15.662 |
(1, 1, 1, 0) | 0.331 | 0.422 | 0.500 | 0.561 | 14.936 | 15.128 | 15.291 | 15.401 |
(1, 1, 0, 1) | 0.221 | 0.287 | 0.353 | 0.415 | 14.505 | 14.759 | 14.958 | 15.112 |
(1, 0, 1, 1) | 0.398 | 0.497 | 0.580 | 0.643 | 15.091 | 15.276 | 15.431 | 15.533 |
(0, 1, 1, 1) | 0.408 | 0.507 | 0.591 | 0.655 | 15.122 | 15.300 | 15.452 | 15.552 |
Order Allocation | ⨂Mk | ⨂Uk | ⨂Qk | R(⨂Hk) | Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(3, 0, 0, 0) | 0.0464 | 0.0469 | 0.0472 | 0.0475 | 2.0000 | 2.4765 | 2.9420 | 3.4026 | 0.8240 | 0.8530 | 0.8728 | 0.8887 | 0.5140 | 20 |
(0, 3, 0, 0) | 0.0472 | 0.0475 | 0.0477 | 0.0479 | 2.2559 | 2.7120 | 3.1894 | 3.6628 | 0.8366 | 0.8630 | 0.8815 | 0.8966 | 0.5362 | 17 |
(0, 0, 3, 0) | 0.0511 | 0.0537 | 0.0536 | 0.0534 | 6.3001 | 7.5607 | 8.4172 | 8.9081 | 0.9059 | 0.9767 | 0.9919 | 1.0000 | 0.8770 | 1 |
(0, 0, 0, 3) | 0.0506 | 0.0504 | 0.0503 | 0.0503 | 3.8163 | 4.4461 | 5.0537 | 5.5516 | 0.8974 | 0.9154 | 0.9305 | 0.9418 | 0.6757 | 8 |
(2, 1, 0, 0) | 0.0471 | 0.0473 | 0.0475 | 0.0477 | 2.0946 | 2.5586 | 3.0265 | 3.4906 | 0.8358 | 0.8593 | 0.8774 | 0.8924 | 0.5230 | 19 |
(2, 0, 1, 0) | 0.0504 | 0.0502 | 0.0501 | 0.0500 | 3.4865 | 4.1927 | 4.7837 | 5.2506 | 0.8946 | 0.9118 | 0.9261 | 0.9363 | 0.6567 | 11 |
(2, 0, 0, 1) | 0.0485 | 0.0485 | 0.0485 | 0.0486 | 2.6207 | 3.1417 | 3.6520 | 4.1234 | 0.8609 | 0.8809 | 0.8971 | 0.9101 | 0.5742 | 16 |
(1, 2, 0, 0) | 0.0473 | 0.0474 | 0.0476 | 0.0478 | 2.1794 | 2.6369 | 3.1089 | 3.5773 | 0.8396 | 0.8625 | 0.8802 | 0.8950 | 0.5303 | 18 |
(1, 0, 2, 0) | 0.0524 | 0.0521 | 0.0520 | 0.0519 | 4.9294 | 5.8812 | 6.6044 | 7.0827 | 0.9297 | 0.9479 | 0.9622 | 0.9709 | 0.7753 | 4 |
(1, 0, 0, 2) | 0.0497 | 0.0495 | 0.0495 | 0.0495 | 3.2214 | 3.7961 | 4.3546 | 4.8389 | 0.8815 | 0.8999 | 0.9152 | 0.9271 | 0.6270 | 13 |
(0, 2, 1, 0) | 0.0507 | 0.0504 | 0.0503 | 0.0502 | 3.6526 | 4.3465 | 4.9462 | 5.4222 | 0.8994 | 0.9158 | 0.9299 | 0.9400 | 0.6687 | 9 |
(0, 2, 0, 1) | 0.0489 | 0.0488 | 0.0488 | 0.0489 | 2.7899 | 3.2976 | 3.8162 | 4.2962 | 0.8682 | 0.8867 | 0.9022 | 0.9148 | 0.5879 | 14 |
(0, 1, 2, 0) | 0.0525 | 0.0522 | 0.0521 | 0.0520 | 5.0125 | 5.9578 | 6.6853 | 7.1681 | 0.9321 | 0.9497 | 0.9638 | 0.9724 | 0.7808 | 3 |
(0, 1, 0, 2) | 0.0499 | 0.0496 | 0.0496 | 0.0496 | 3.3056 | 3.8737 | 4.4364 | 4.9251 | 0.8849 | 0.9026 | 0.9175 | 0.9293 | 0.6334 | 12 |
(0, 0, 2, 1) | 0.0530 | 0.0528 | 0.0527 | 0.0525 | 5.5189 | 6.5270 | 7.2996 | 7.7921 | 0.9412 | 0.9599 | 0.9743 | 0.9829 | 0.8184 | 2 |
(0, 0, 1, 2) | 0.0521 | 0.0517 | 0.0516 | 0.0515 | 4.6729 | 5.4899 | 6.1792 | 6.6738 | 0.9236 | 0.9404 | 0.9545 | 0.9639 | 0.7500 | 5 |
(1, 1, 1, 0) | 0.0506 | 0.0503 | 0.0502 | 0.0501 | 3.5701 | 4.2700 | 4.8652 | 5.3366 | 0.8975 | 0.9141 | 0.9282 | 0.9383 | 0.6629 | 10 |
(1, 1, 0, 1) | 0.0488 | 0.0486 | 0.0487 | 0.0488 | 2.7066 | 3.2204 | 3.7346 | 4.2102 | 0.8656 | 0.8844 | 0.9000 | 0.9127 | 0.5814 | 15 |
(1, 0, 1, 1) | 0.0513 | 0.0510 | 0.0509 | 0.0508 | 4.0813 | 4.8427 | 5.4826 | 5.9631 | 0.9105 | 0.9272 | 0.9412 | 0.9509 | 0.7046 | 7 |
(0, 1, 1, 1) | 0.0515 | 0.0511 | 0.0510 | 0.0509 | 4.1645 | 4.9195 | 5.5638 | 6.0488 | 0.9129 | 0.9292 | 0.9431 | 0.9527 | 0.7105 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-Y.; Yeng, C.-L.; Lin, Y.-K. Evaluating Order Allocation Sustainability Using a Novel Framework Involving Z-Number. Mathematics 2024, 12, 2585. https://doi.org/10.3390/math12162585
Lin K-Y, Yeng C-L, Lin Y-K. Evaluating Order Allocation Sustainability Using a Novel Framework Involving Z-Number. Mathematics. 2024; 12(16):2585. https://doi.org/10.3390/math12162585
Chicago/Turabian StyleLin, Kuan-Yu, Cheng-Lu Yeng, and Yi-Kuei Lin. 2024. "Evaluating Order Allocation Sustainability Using a Novel Framework Involving Z-Number" Mathematics 12, no. 16: 2585. https://doi.org/10.3390/math12162585
APA StyleLin, K. -Y., Yeng, C. -L., & Lin, Y. -K. (2024). Evaluating Order Allocation Sustainability Using a Novel Framework Involving Z-Number. Mathematics, 12(16), 2585. https://doi.org/10.3390/math12162585