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Abstract: With the development of edge computing and deep learning, intelligent human behavior
recognition has spawned extensive applications in smart worlds. However, current edge computing
technology faces performance bottlenecks due to limited computing resources at the edge, which
prevent deploying advanced deep neural networks. In addition, there is a risk of privacy leakage
during interactions between the edge and the server. To tackle these problems, we propose an
effective, privacy-preserving edge–cloud collaborative interaction scheme based on WiFi, named P-
CA, for human behavior sensing. In our scheme, a convolutional autoencoder neural network is split
into two parts. The shallow layers are deployed on the edge side for inference and privacy-preserving
processing, while the deep layers are deployed on the server side to leverage its computing resources.
Experimental results based on datasets collected from real testbeds demonstrate the effectiveness and
considerable performance of the P-CA. The recognition accuracy can maintain 88%, although it could
achieve about 94.8% without the mixing operation. In addition, the proposed P-CA achieves better
recognition accuracy than two state-of-the-art methods, i.e., FedLoc and PPDFL, by 2.7% and 2.1%,
respectively, while maintaining privacy.

Keywords: human behavior recognition; edge computing; privacy preservation; deep learning

MSC: 68T07

1. Introduction

Human behavior recognition (HBR), empowered by artificial intelligence (AI), has
spawned extensive applications in smart worlds [1,2]. For HBR, the accurate acquisition
of target behavior information through electronics has attracted significant attention in
various scenarios [3,4] such as AR-based real-scene navigation. Existing technologies, such
as satellite positioning systems (e.g., GPS) and radio-frequency identification, generally
require targets to carry specific equipment or electronic tags. This device-based localization
technology is not applicable in certain scenarios [5,6], such as intruder detection under
intelligent security or elderly health monitoring under a smart home, etc. Some device-
free sensing (DFS) technologies, which rely on computer vision and infrared, face many
limitations in practical applications due to the need for light and obstacle-free conditions.

Among these technologies, WiFi-based DFS offers advantages such as a low cost, fast
transmission rates, and fewer condition limitations, such as smoke, walls, and light [7,8].
These merits make it promising for ambient intelligence in areas such as real-time tracking
and monitoring, and health care for the elderly or patients [9,10], etc. In a WiFi-based
HBR system, channel state information (CSI) commonly contains behavior information
of a target [11,12]. To achieve high recognition accuracy, machine learning algorithms
are widely used in CSI-based DFS systems. Among them, deep learning algorithms are
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especially appealing because of their strong capabilities in data processing and feature
extraction, which are crucial for accurate sensing [13,14].

However, a significant challenge is that most existing deep learning-based DFS tech-
nologies have limited generalization ability in changing environments. To tackle this issue,
several methods have been proposed from different perspectives. Zhang et al. [15] proposed
a phase decomposition method to extract multi-path phases from CSI as fingerprints for the
location recognition of a target. Li et al. [16] designed a deep neural network-based domain
adaptation algorithm by conducting fine-grained alignment, which enforces the target
domain to align with its corresponding part of the source domain. This method improved
the performance of inference on the target domain data. Most of the existing work assumes
that the edge side has sufficient computational resources to support high-performance deep
learning models. However, in practical HBR systems, the computational resources of the
edge side are often too limited to deploy complex models.

Benefiting from recent developments in intelligent electronics and integrated termi-
nals, cloud computing and edge computing have significantly advanced the field of HBR.
However, conventional cloud computing architecture suffers from serious problems. As
shown in Figure 1, limited by insufficient computing power at the edge, raw data need
to be uploaded to the cloud for processing and analysis. This cloud AI mode is plagued
by several severe issues, such as privacy leakage risks, constrained intelligence at the
edge for HBR, and high communication overhead [10,17]. This brings challenges to the
development of HBR applications. A primary challenge for current deep learning-based
HBR is preserving the behavior information of the targets.

Figure 1. Challenges and the proposed solutions of shifting from cloud computing to edge computing
architecture.

Since the monitoring system continuously records the user’s activities, there is a risk
of personal information leakage, which leads to privacy issues. Ensuring the privacy pro-
tection of user information has become a critical topic [18,19]. Existing research on privacy
protection related to HBR technology, particularly in location recognition, has primarily
focused on device-based methods like GPS [20,21]. Users’ location information, such as
device ID, coordinates, or motion trajectory, can be decoded in real time and uploaded in
small sizes by their carried devices. Thus, user privacy can be safeguarded by implement-
ing data encryption or mixing puppet information on the device side. However, the system
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architecture of DFS technology based on wireless sensor networks is different. Users do
not need to carry any electronic device, and their behavioral information is recorded in
public wireless signals, leading to inapplicability of the aforementioned privacy protection
schemes. Adding noise or blurring the signals to secure them (even wireless signals) is
not foolproof; the original signals could be reconstructed using generative adversarial
network-based attack models [22,23]. Additionally, there is a risk that performance might
be degraded by the randomly added noise. Some recent studies report the effective fed-
erated learning methods for privacy-preserving DFS [24,25]. However, large number of
signals need to be efficiently processed and uploaded to complex machine learning models
for perceptual training. The large-scale data lead to high processing costs and computa-
tional burden on the device side. The limited computational power at the edge makes it
challenging to support these federated learning-based schemes. Therefore, it is necessary
to explore specific privacy protection mechanisms for the DFS system.

To address the aforementioned problems of HBR, we propose a privacy-preserving
edge–cloud framework, named Privacy-Preserving Convolutional Autoencoder (P-CA).
The P-CA prevents real behavior information leakage during data transmission while
utilizing resource-abundant servers. On the one hand, unlike the previously mentioned
methods, we first propose a data-mix scheme to generate datasets by mixing the amplitude
features of WiFi signals. We then design a convolutional autoencoder neural network
(CANN) for unsupervised training and feature extraction. After the training procedure,
the CANN model can be saved and used to infer the target’s behavior. The backbone of
the CANN is strategically deployed to utilize high computing resources in a cloud server,
while lightweight components of the CANN model are deployed on the edge side for
efficient inference.

On the other hand, based on the theory of Mixup [26], we introduce mixture and
de-mixture operations to prevent information leakage during client–server transmission.
This approach ensures that an attacker can only steal the mixed information, not the
original data or location. Figure 1 demonstrates the advantages of our proposed P-CA for
HBR, comparing it with the cloud computing architecture and highlighting our innovative
edge–cloud architecture.

The major contributions of our study are summarized as follows:

• A privacy-preserving edge–cloud interaction architecture, i.e., P-CA, for indoor WiFi-
based human behavior recognition is proposed. Under this architecture, intelligent
reasoning capabilities at the edge can be greatly improved by privately utilizing
sufficient computing resources of the server.

• A three-layer CANN architecture together with an effective algorithm to learn its
parameters is designed. In the testing mode, the trained model can automatically
output the behavior inference of DFS targets based on CSI features.

• The privacy-preserving and behavior recognition ability of the proposed P-CA is
verified on real-world datasets.

The remainder of this paper is organized as follows. Section 2 introduces the pioneer-
ing related works. Section 3 demonstrates the proposed algorithm. Section 4 presents the
experiments and performance evaluation. Finally, Section 5 concludes this work.

2. Related Work

This section provides a summary of the literature on the development of HBR, specifi-
cally focusing on consumer localization and activity recognition. Subsequently, we briefly
discuss the research related to edge computing for the aforementioned location and activ-
ity recognition.

2.1. Device-Free Human Behavior Recognition

Device-free HBR can be viewed as a target localization and activity recognition task
within the designated monitoring area. Compared with other technologies, such as camera-
based HBR, WiFi-based HBR offers advantages including a low cost, enhanced privacy,
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and fewer condition limitations. However, due to signal interference, such as multi-path
variations and environmental noise, achieving effective HBR remains a challenging task.
To ensure accurate target localization and activity recognition, numerous studies have
focused on exploring high-performance deep learning methods.

Liu et al. [27] conducted six activities of recognition, such as picking and returning
an item on a shelf, based on hand movements and body orientation to analyze consumer
preferences. Tom et al. [28] studied the daily activity patterns of consumers and their energy
demand for reducing energy consumption. Li et al. [29] modeled fingerprint localization
as a subspace matching problem and proposed a Siamese CNN to extract features from
signals and infer the position of the target by comparing the similarity. To improve the
localization accuracy and generality, Zhang et al. [30] proposed an attention-augmented
residual neural network, which exhaustively utilized both local information and global
context in CSI. For robust activity recognition, Wang et al. [31] employed generative
adversarial networks (GANs) for data generation and designed CNNs for human activity
classification. Yang et al. [32] designed a cross-model supervision method based on deep
learning by mapping wireless signal information to accurate computer vision human pose
landmarks. For effective spatial information exploration, Zhou et al. [33] designed a shared
convolution mechanism and a Transformer module to map the CSI of WiFi signals to
landmarks of human poses for movement estimation.

In summary, the aforementioned work has laid a foundation for further HBR research.
Most of the existing work assumes that the edge side has sufficient computational re-
sources to support high-performance deep learning models. Whereas, in practical HBR
systems, the computational resources at the edge side are often too limited to deploy
complex models effectively. Although many methods have been proposed to achieve high
accuracy using complex deep neural networks, research on HBR in edge devices remains
insufficiently explored.

2.2. Edge Computing for Human Behavior Recognition

Edge computing has increasingly become prominent in recent years within the field of
target behavior recognition, including location and activity recognition [34–36].
Kwon et al. [36] deployed a tensor processing unit (TPU)-enabled edge computing camera
system in the ceiling of a room and designed a multi-person detection algorithm to run on
the edge TPU for real-time pose estimation of the targets. This system ensures the privacy
of individuals and reduces data transmission/storage. Wu et al. [37] proposed a personal-
ized federated learning framework for human activity recognition within a cloud–edge
architecture in the Internet of Things (IoT) environment, leveraging edge computing for
rapid processing and minimal latency. Narayana et al. [38] used a thermopile in conjunction
with a PIR sensor for location estimation. Since a low-resolution thermopile array only
provides the gait of the target instead of the actual image, they believe that the combination
of the PIR sensor and thermopile is privacy-preserving. Cominelli et al. [39] designed a
randomization approach of CSI. It prevents unauthorized localization by adding randomly
generated measurements to the CSI signal, such as random peaks and random phase
jumps. Shi et al. [40] designed self-powered triboelectric mats and, based on them, a smart
floor monitoring system was proposed for location and activity sensing. This system was
designed by running a deep learning-based model on instant sensory data.

Although the previous research on edge computing is considered to preserve privacy
at the network edge, some data still need to be transmitted between the edge and the
cloud. Moreover, deploying deep learning models with high resource requirements on
edge devices remains challenging.

3. The Proposed Algorithm
3.1. Preliminary

Figure 2 shows an illustration of the indoor HBR system model based on CSI. The de-
tection area is monitored by a transmitter and receiver pair, both of which are MiniPCs
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equipped with an Intel 5300 WiFi card. The two Intel 5300 WiFi cards are equipped with
omnidirectional antennas. Specifically, the CSI signals are collected from the Intel 5300 card
using the open-source CSITool [41]. Note that the received signals between the transmit
antennas and the receive antennas are affected by the target and the environment, such as
reflections from the target, the ceiling, or the furniture. As shown in this figure, the moni-
toring area is divided into a series of grids, and each point within one grid is considered a
potential location, i.e., reference point (RP). Considering that the target in different locations
or activities may lead to various patterns in the collected CSI signals, the ground truth is
obtained by manually labeling the signals collected with the target in each grid.

Figure 2. Illustration of CSI-based indoor HBR system model. It showcases how electromagnetic
waves emitted by a transmitter (T) interact with the environment, causing variations in the signal.
These signals, affected by human behavior, are captured by a receiver (R) for analysis. The system
is designed to detect and interpret human behavior based on the changes in the CSI, which are
processed and analyzed at the edge and server levels.

3.2. Mixture Strategy

The mixture strategies designed in this work are inspired by Mixup [26]. Mixup
constructs new samples by mixing a pair of samples using coefficients, as well as their
corresponding labels. Different from Mixup performed for data augmentation, in this
paper, the mixing operation is mainly for protecting information during data transmission.
The mixture operation is shown in Figure 3, and denoted as

x̂ = λ1xi + (1 − λ1)xj, (1)

ŷ = λ1yi + (1 − λ1)yj, (2)

where i ̸= j, λ1 is the coefficient for mixing two samples randomly sampled from B(α, β) ∈
(0, ∞). x and y denote the raw input sample and the corresponding label. x̂ and ŷ denote
the mixed ones. As shown in this equation, the signals are linearly mixed by element-
wise addition.

In this work, we constructed the entire dataset by employing three different targets.
As is common, each dataset of one target is denoted as one domain. In this paper, random
mixing is adopted for the mixture operation. This means that the two samples for the
mixture are randomly selected from the datasets of different targets, regardless of their
classes or domains. As shown in Equations (1) and (2), the random mixed samples are
obtained by four kinds of mixtures, including (1) yC

i ̸= yC
j and yD

i = yD
j , (2) yC

i = yC
j and

yD
i ̸= yD

j , (3) yC
i ̸= yC

j and yD
i ̸= yD

j , and (4) yC
i = yC

j and yD
i = yD

j , where C denotes
classes and D denotes domains of the sample.
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Figure 3. Illustration of the data or feature mixture strategy used for signal prediction. It shows the
end-to-end process of mixing, classifying, and de-mixing signals to achieve accurate predictions.

Note that in addition to mixing the samples we extend the mixture operation to
intermediate feature maps extracted from shallow layers of the CANN. This means that
the outputs from the first several layer(s) would be utilized in the mixture process. Given
that these intermediate feature maps are projections of the input data, they may already
have extracted important information. Thus, this approach not only improves mixtures for
subsequent feature extraction layers but also protects the information in the raw data.

3.3. Framework of the Proposed Privacy-Preserving Convolutional Autoencoder (P-CA)

Figure 4 illustrates the framework of the proposed P-CA approach. It consists of
three parts: data collection and data preprocessing, privacy-preserving model training,
and human behavior inference.

Figure 4. Framework of the proposed privacy-preserving convolutional autoencoder (P-CA) for
human behavior recognition. It consists of three main stages: data collection and preprocessing,
privacy-preserving model training, and results inference.

3.3.1. Data Collection

As demonstrated in Section 3.1, two MiniPCs served as the transceiver and receiver
for CSI data collection. In an orthogonal frequency division multiplexing (OFDM) system,
CSI is an attribute of the communication link. In detail, it reflects accurate multi-path
information on subcarriers between the transmit antennas and receive antennas in an
OFDM system. Generally, the CSI of a link, i.e., the CSI measurement, collected from the ith
transmit antenna and the jth receive antenna carried by the kth subcarrier can be described
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as Hi,j,k. It contains the kth subcarrier information for this link. The definition of the CSI
measurement is as follows:

Hi,j,k = |Hi,j,k|exp(−jϕi,j,k),

i ∈ {1, 2, . . . , Nt}, j ∈ {1, 2, . . . , Nr}, k ∈ {1, 2, . . . , Ns}.
(3)

Here, Nt and Nr represent the number of antennas for the transmitter and receiver, respec-
tively. Ns denotes the number of subcarriers in each radio beam according to the IEEE
802.11 a/g/n standard. |Hi,j,k| and exp(−jϕi,j,k) denote the amplitude and phase informa-
tion of the kth subcarrier channel, respectively. Note that only the amplitude information is
taken in this work.

During dataset acquisition, referencing the common CSI sequence of the WiFi signal
collection mechanism [1,42], M CSI packets are collected at a fixed rate by having a target
in different RPs. The collected packets of the uth RP are Hu = (H1

u, . . . , Hm
u , . . . , HM

u ),
where m ∈ {1, 2, . . . , M} denotes the CSI packets and M represents the maximum value
of data packets for an RP. u ∈ {1, 2, . . . , U} denotes the index of an RP. In detail, the CSI
measurement is collected from the data packet m of the uth RP, named Hm

u . Note that
the value of each element in Hm

u represents the CSI measurement Hi,j,k, as defined in
Equation (3).

Hm
u =


 Hu,m

1,1,1 · · · Hu,m
1,1,Ns

...
. . .

...
Hu,m

1,Nr ,1 · · · Hu,m
1,Nr ,Ns

, · · · ,

 Hu,m
i,1,1 · · · Hu,m

i,1,Ns
...

. . .
...

Hu,m
i,Nr ,1 · · · Hu,m

i,Nr ,Ns

,

· · · ,

 Hu,m
Nt ,1,1 · · · Hu,m

Nt ,1,Ns
...

. . .
...

Hu,m
Nt ,Nr ,1 · · · Hu,m

Nt ,Nr ,Ns




(4)

In this paper, Nt = 1, Nr = 3, Ns = 30, M = 500, and U = 31. Therefore, the size of each
CSI data sample is 3 × 30.

3.3.2. Data Preprocessing

To ensure the accuracy and reliability of the CSI-based HBR model, preprocessing
the collected CSI samples to minimize environmental noise is crucial. Note that each
group of CSI samples contains environmental information, including environmental noise.
Therefore, preprocessing these samples is essential before using them for multi-dimensional
information recognition, to reduce environmental impacts. First, we collected CSI samples
without any target in the detection area for approximately 30 s. Then, we calculated
the average CSI measurements collected from these CSI packets, named H̄vacant. Finally,
the H̄vacant was subtracted from each Hm

u to reduce the influence of the environment:
δHm

u = Hm
u − H̄vacant. In this paper, δHm

u is used for training and testing.
For data preprocessing, we performed amplitude and phase separation, employing

only amplitude information in this work. Additionally, background subtraction was also
utilized to mitigate environmental influences.

3.3.3. Privacy-Preserving Model Training and Human Behavior Inference

The P-CA framework consists of the cloud server side and the edge side. In this work,
privacy preservation is considered during edge–cloud data transmission and in scenarios
involving a potentially malicious cloud server. The privacy-preserving model training
involves secure information transmission between the edge and cloud, along with the
model’s unsupervised pre-training. Information protection is achieved through a mixing
operation, which is illustrated in Section 3.2. The parameters of the encoder network can be
obtained after pre-training of the CANN, and then, the target’s behavior can be predicted
by adding a softmax classifier. The local resource requirements can be reduced since only a
few layers are trained on the edge side.
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From Figure 4, the mixture and corresponding de-mixture operations are applied
directly to the input data and classification outputs only on the edge side. Hence, potential
attackers or the cloud server can only access the mixed information. For input data or
the intermediate feature maps, together with their class labels, they are linearly mixed
by element-wise addition with a pair of coefficients, as illustrated in Equations (1) and (2).
Mixed data can hide original information because entropy increases when element values
from the two samples are combined, therefore preserving privacy. Aware of the value of the
pair of coefficients Λ = [λ; λ′](λ = [λ1, 1 − λ1]

T , λ′ = [λ2, 1 − λ2]
T), the true classification

results can be obtained from the mixed labels, i.e., ŷλ, ŷλ′ , through the de-mixing operation.

[yi, yj] = [ŷλ, ŷλ′ ]Λ−1, (5)

In addition, the summation coefficients are produced by the edge clients, and are only
kept on the edge. Therefore, the transmitted data, feature maps, or correct classes cannot
be recovered by the cloud or attackers.

3.3.4. Convolutional Autoencoder Neural Network (CANN)

The CANN leverages the merits of convolutional spatial feature extraction and unsu-
pervised pre-training of the autoencoder. In the stage of unsupervised pre-training, features
underlying the mixed data are extracted by reconstructing the input data.

After pre-training the CANN, the decoder network is removed. Then, several fully
connected layers and a classifier are deployed following the encoder part for inference. Note
that we utilize convolutional operations with a stride of 2 instead of pooling operations
in this CANN architecture. In the unsupervised pre-training, mean square error is used
to minimize the gap between the input signal and the recovered one. For the supervised
training of the encoder network, the cross-entropy function is utilized. It computes the
error between the estimated result y′ and ground truth y. The cost function is defined as

J(θ) =
1
S

S

∑
s=1

ys · log(y′
s(θ)), (6)

where θ denotes the trainable parameters in the encoder network, and S = M × U denotes
the sum sample number. Other detail settings such as ‘dropout’, activation function,
and optimization algorithm are taken from [43].

In addition, the majority of the computations are delegated to the cloud by deploying
the main model on the server. With only a few layers of the CANN situated on the edge
side, the computational load of the edge device is significantly reduced. Despite the mixing
and de-mixing operations for privacy preservation, the main task of the few layers on the
edge is to infer the behavior of the target. For the tightly resource-constrained edge device,
fewer computations are beneficial for more effective and efficient inference.

4. Performance Evaluation

This section evaluates the performance of the P-CA approach using the real-world
experimental dataset illustrated in Section 3.1. All the experiments are implemented in
PyTorch 1.13.1 on a system with two GeForce GTX 1080 Ti GPUs and 64 GB memory.

4.1. Configuration of Experiments

The real-world experimental dataset for localization is collected in an apartment,
and the monitoring area includes a living room and a bedroom. The transmitter and
receiver are deployed at the opposite end of the living room. The transmit antennas and
receive antennas are all placed 1.2 m above the ground. Specifically, we select 26 RPs in the
living room and 5 RPs in the bedroom. The grid for each RP is 0.5 m × 0.5 m. The other
experimental setup is for activity recognition, which is deployed in an indoor office room.
The transmit antennas and receive antennas are placed 3 m apart in a line-of-sight condition.
The activity involved a target moving and performing actions over a 20-s period.
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Data description: In this paper, two groups of datasets are collected, including the
location data group and the activity data group. To explore the influence of different
targets, we employed three different targets to construct three sub-datasets for location
recognition. The localization dataset is named L-dataset, and sub-datasets of each different
target are named L-data1, L-data2, and L-data3. As mentioned, the L-dataset is collected in
an apartment, which has 31 RPs in total. The samples are collected by the target standing
in each RP for a fixed time period of approximately 30 s, and 500 samples at each RP
are selected.

Different from the L-dataset, the data for activity recognition is from a public dataset [44],
which is called the A-dataset in this paper. The A-dataset has a total of 417 samples, which
contains seven classes, including bed, fall, pick up, run, sit down, stand up, and walk
(https://github.com/ermongroup/Wifi_Activity_Recognition, accessed on 28 September
2023). Note that these samples were collected by six different volunteers. Based on our
previous experiments, dividing the A-dataset into six sub-datasets by target leads to serious
overfitting. This is because each sub-dataset contains too few samples. Therefore, we
directly employ the whole A-dataset for training. For both the L-dataset and A-dataset,
80% of them are randomly selected for training and the remaining 20% are used for testing.

Compared methods: In this work, we compared the proposed P-CA with two state-of-
the-art (SOTA) methods, i.e., Federated Localization (FedLoc) [24] and Privacy-Preserving
Device-Free Localization (PPDFL) [25]. Both methods use a privacy-preserving
edge–cloud interaction scheme based on federated learning, in addition to implementing
HBR based on deep learning models. Both approaches use a privacy-preserving edge–cloud
interaction scheme based on federated learning, in addition to implementing HBR based on
deep learning models. To ensure the fairness of the comparison experiments, we conduct
evaluation experiments on the same dataset.

4.2. Performance of the Proposed Privacy-Preserving Convolutional Autoencoder (P-CA)
4.2.1. Effectiveness and Contribution of Mixture Strategies to the P-CA

In this part, we evaluate the effectiveness of two mixture strategies, i.e., mixing the
raw data and mixing the intermediate feature maps.

Figure 5 presents the visualization of a raw single sample and a mixed one. After the
mixture operation, over 90% of the amplitude values in subcarriers are different from
the raw data. Figure 6 shows the visualization of feature maps before and after mixture
operations. Figure 6a denotes the raw feature map extracted from the shallow layer of
the CANN. Here, this feature map means the output of the last layer of the CANN at
the edge, and different colors in this figure denote different values. Figure 6b presents a
visualization of the mixed feature maps. The results are obtained by randomly selecting
two intermediate feature maps. After this mixture operation, privacy information in the
raw feature maps could be hidden. The distribution and patterns have been changed after
mixing, regardless of the data or feature maps. Figure 7 illustrates the clustering results
of raw data and the mixing data. Through the operations of data and feature mixing, it
becomes very hard to separate the data into correct classes (see Figure 7b,d). Since only the
edge client holds the coefficient values for mixing and de-mixing, the cloud server has no
access to the raw data or features. The third party thus cannot infer the correct behavior,
i.e., location and activity, of the target.

To explore the influence of mixing strategies, we implemented a series of experiments
on the proposed P-CA with and without mixing operations. Table 1 summarizes the
corresponding comparison results. In this table, P-CA (w/o mix) denotes training and
testing the raw data without mixing strategies. P-CA (data mix) represents the random
mixing of the training data before transferring it to the cloud. P-CA (feature mix) denotes
transferring the mixed feature maps to the cloud for training and testing.

https://github.com/ermongroup/Wifi_Activity_Recognition
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(a) Visualization of sample 1 (b) Visualization of sample 2

Figure 5. Comparison of the data samples before and after data mixing operation.
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(a) Raw feature map
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(b) Mixed feature map

Figure 6. Comparison of raw feature map learned by the P-CA without mixture and the feature map
after the mixture operation. (a) shows a visualization of a raw feature map extracted from the shallow
layer of the CANN, and (b) presents a random mixed feature map.

(a) Raw data cluster (b) Mixed data cluster (c) Feature maps cluster (d) Mixed feature maps cluster

Figure 7. Comparison of raw data cluster and mixed data cluster. (a) Visualization of the cluster
results on raw data. (b) Visualization of the cluster results on mixed data. (c) Visualization of the
cluster results on raw feature maps. (d) Visualization of the cluster results on mixed feature maps.

Table 1. Localization accuracy comparison of the proposed P-CA without mixture, with data mixing,
and with feature mixing.

Training
Data

Testing
Data

P-CA
(w/o mix)

P-CA
(data mix)

P-CA
(feature mix)

L-data1 L-data1 94.8% 78.9% 88.0%

L-dataset L-dataset 93.8% 77.4% 79.6%

L-data1
L-data2 +
L-data3 16% 45.3% 73%

From the results of the first row in Table 1, 80% of the L-data1 are employed as training
data and 20% as testing data. The P-CA without mixture achieved a location recognition
accuracy of 94.8%. After mixing, whether mixing data or features, the localization accuracy
decreased. However, P-CA with the feature mixing performed better. Compared to data
mixing, it achieved an accuracy of 88.0%, which is only 5% less than P-CA without mixture.
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4.2.2. Performance of the Edge–Cloud Interactive P-CA for HBR

In this part, the performance of P-CA is evaluated based on three datasets collected
from different targets for HBR, including human localization and activity recognition.

Human localization: The distributions of samples collected from different targets are
distinct, even within the same location. Therefore, to evaluate the performance of P-CA
with various mixing strategies, we extended the experiment to the L-dataset. The L-dataset
includes L-data1, L-data2, and L-data3. As the results in the second row of Table 1 show,
the accuracies of P-CA (without mix), P-CA (data mix), and P-CA (feature mix) all decline.
However, the difference between P-CA (without mix) and P-CA (data mix) remains at
approximately 5%. Additionally, P-CA (feature mix) outperforms P-CA (data mix). These
results suggest that features extracted by the shallow layers provide better mixtures for the
main model, thereby enhancing inference accuracy.

To evaluate the generalization ability of P-CA, we trained the model using L-data1
and tested it on L-data2 and L-data3. The accuracy obtained by P-CA (without mix) is 16%,
indicating a failure in inference. Although P-CA (data mix) achieves a better accuracy of
45.3%, it is still below 50%. P-CA (feature mix) achieves the highest localization accuracy of
73%. These results suggest that mixing feature maps not only prevents information leakage
but also maintains higher recognition accuracy. Additionally, employing the feature mixing
strategy improves the generalization ability of the model. For samples collected from new
situations not encountered during training, the feature mixing operation helps the model
achieve higher inference accuracy.

Since P-CA (feature mix) demonstrates the best performance, additional experiments
were conducted to evaluate its effectiveness on different datasets. Figure 8 shows the
training process of P-CA (feature mix) on L-data1 and L-data1/2. L-data1/2 denotes a
combination of L-data1 and L-data2. To assess the stability of the training process, each
experiment was repeated 30 times. The bold lines in the figure represent the average
accuracy and loss, while the shaded areas indicate the corresponding variances. The small
size of the shaded areas suggests that the 30 training iterations are stable.
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Figure 8. Training procedure of P-CA (feature mix) on L-data1 and L-data2/3.

Figure 9 illustrates the cumulative distribution function (CDF) of the 30 testing accu-
racies of P-CA (feature mix) on L-data2/3 and L-data3. Although both groups of testing
accuracies range between 70% and 86%, the results on L-data3 are better. Specifically, the
average testing accuracy on L-data3 is 78.6%, which is 5.6% higher than that on L-data2/3.
This indicates that P-CA trained on L-data1/2 outperforms the model trained on L-data1
alone. Therefore, combining different datasets, i.e., different targets, may enhance the
performance of P-CA.
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Figure 9. Testing accuracy of P-CA (feature mix) on L-data2/3 and L-data3. Note that testing on
L-data2/3 indicates P-CA was trained on L-data1, and testing on L-data3 indicates P-CA was trained
on L-data1/2.

Human activity recognition: To enhance the evaluation of human behavior, we con-
ducted experiments on human activity recognition in addition to location recognition.
Figure 10 presents the cumulative distribution function (CDF) plot of the accuracy for 30
activity recognition tests, comparing P-CA (data mix) and P-CA (feature mix). The accuracy
of P-CA (data mix) ranges from 85.0% to 95.0%, while the accuracy of P-CA (feature mix)
ranges from 80.0% to 95.0%. This suggests that P-CA (data mix) demonstrates more stable
performance in activity recognition tasks. However, since the majority of accuracies for
both mixing strategies are around 90%, it can be concluded that data mixing and feature
mixing achieve comparable results.

Figure 10. Testing accuracy of P-CA (data mix) and P-CA (feature mix) on activity recognition. Note
that the CDF plot is based on tests conducted 30 times.

Table 2 summarizes the average training and testing accuracy for activity recognition
using P-CA (w/o mix), P-CA (data mix), and P-CA (feature mix). Similar to its performance
in location recognition, the implementation of mixing strategies in P-CA achieved privacy
preservation with a slight reduction in accuracy. Specifically, P-CA (feature mix) attained
an accuracy of 87.8%, which is only 1.6% lower than that of P-CA (data mix). Additionally,
P-CA (data mix) achieved an accuracy of 89.4%, which is comparable to the accuracy of
P-CA (w/o mix). These results suggest that the proposed P-CA with mixing strategies
effectively balances privacy preservation and accuracy.
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Table 2. Activity recognition accuracy comparison of the proposed P-CA without mixing, with data
mixing, and with feature mixing.

P-CA
(w/o mix)

P-CA
(data mix)

P-CA
(feature mix)

Training
accuracy 100% 89.7% 87.9%

Testing
accuracy 93.0% 89.4% 87.8%

In summary, according to the evaluation results, the proposed P-CA scheme effectively
achieves the edge–cloud interaction mechanism for HBR. Such a mechanism means the
edge clients are able to employ complex deep learning models. However, in contrast to the
federated learning approach, federated learning does not sufficiently consider the problem
of limited computational power at the edge. As a result, although federated learning is
capable of privacy-preserving edge–cloud interactions, it cannot leverage server computing
power to support the deployment of complex models. In this work, the proposed P-CA is
able to effectively address this problem.

4.2.3. Performance Comparison with the State-of-the-Art Methods

To quantify the level of privacy protection offered by our proposed mixture strategy,
we proposed an evaluation metric named the privacy protection rate (PPR). The PPR is de-
fined as PPR = (ACCP−CA − ACCTM)/ACCP−CA. Here, ACCTM denotes the recognition
accuracy achieved by the threat model, and ACCP−CA denotes the accuracy obtained by
the proposed P-CA. We assume the threat model as an attack scenario in which the cloud
server has full access to the entire model, including the classifier. This scenario represents
one of the most severe attack conditions as the cloud server normally lacks full access to the
model from the edge. It implies that if the server obtains the raw data, it could infer real
human behaviors. However, by employing the mixture strategies, even if the cloud server
manages to steal the whole model it would only achieve poor recognition performance.

Table 3 summarizes the accuracy obtained by a threat model that uses mixed data or
mixed features as input and the corresponding PPR of the proposed P-CA under these
two scenarios. The results show that the threat model (data mix) achieves an accuracy of
37.4% and the threat model (feature mix) achieves an accuracy of 42.9%. Both accuracies
are far below 50%, indicating failing recognition. The corresponding PPR values of the
proposed P-CA are 0.60 and 0.54, respectively. Given the severity of the assumed threat
model, it can be inferred that P-CA with mixture strategies could achieve even better PPR
under less severe attack scenarios.

Table 3. Privacy protection rate (PPR) of the proposed P-CA under two threat models, including
threat model (data mix) and threat model (feature mix).

Dataset Threat Model
(data mix)

Threat Model
(feature mix)

PPR
(data mix)

PPR
(feature mix)

L-dataset 37.4% 42.9% 0.60 0.54

To further demonstrate the performance of the proposed P-CA, we conducted compar-
ative experiments using two representative state-of-the-art technologies: FedLoc [24] and
PPDFL [25]. FedLoc is designed based on the mainstream federated averaging (FedAvg)
mechanism, which is a benchmark method for human behavior recognition. PPDFL is a
state-of-the-art method enhanced by the theory of convex-hull optimization for human
behavior recognition. Both of the two methods protect client privacy at the edge by training
a central global model without requiring clients to share their original data.

No matter whether FedLoc, PPDFL, or our proposed P-CA, they all aim to achieve high
recognition accuracy while simultaneously protecting privacy. FedLoc and PPDFL preserve
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privacy by sharing gradients instead of raw data. And our P-CA models protect privacy
by mixing raw data or feature maps. Therefore, we compare the accuracy obtained by
P-CA and the aforementioned two methods. Table 4 summarizes the localization accuracy
achieved by FedLoc, PPDFL, and our proposed P-CA models. The results show that P-CA
(feature mix) achieves the highest accuracy of 79.6%, outperforming PPDFL and FedLoc by
2.1% and 2.7%, respectively. P-CA (data mix) also surpasses FedLoc by 0.5%. These findings
demonstrate that our proposed model can achieve superior recognition performance while
ensuring privacy protection. Additionally, unlike FedLoc and PPDFL, which rely solely
on edge devices to run client models, our P-CA leverages an edge–cloud interaction
architecture. This allows it to utilize server computing power, enabling the deployment of
more complex models and yielding more promising recognition performance.

Table 4. Localization accuracy comparison of the proposed P-CA with Federated Localization
algorithm (FedLoc) [24] and Privacy-Preserving Device-Free Localization algorithm (PPDFL) [25].

Dataset FedLoc [24] PPDFL [25] P-CA
(data mix)

P-CA
(feature mix)

L-dataset 76.9% 77.5% 77.4% 79.6%

5. Discussion and Conclusions

In this work, we propose a trustworthy edge–cloud collaborative deep learning model
interaction method, known as P-CA. Utilizing strategies such as network structure splitting
and data mixing, P-CA allows the edge to effectively utilize the high computational re-
sources of cloud servers to deploy complex models for precise human behavior recognition.
Simultaneously, it significantly reduces the risk of privacy leakage of users’ data.

Extensive experimental evaluations are conducted under various conditions on both
our testbed localization dataset and publicly available activity recognition datasets. Ex-
perimental results show that our approach preserves the correct distribution of data and
underlying patterns. The P-CA with data mixing achieves a comparable activity recogni-
tion accuracy of 89.4%, while the P-CA with feature mixing obtains a location recognition
accuracy of 88.0%, which outperforms the state-of-the-art methods FedLoc and PPDFL.
The corresponding PPRs of the proposed P-CA are 0.60 and 0.54. These observations demon-
strate that the proposed P-CA effectively preserves privacy, reduces edge computations,
and maintains acceptable HBR accuracy.

Discussion: There are three promising directions for future work based on the cur-
rent research. First, due to the potential noise and variability in the collected CSI data,
developing robust noise-resistant methods is crucial for the field of HBR. Models such as
variational autoencoders and sparse autoencoders could effectively mitigate noise inter-
ference. Second, addressing the trade-off between privacy preservation and accuracy is
essential. In this study, mixing coefficients were manually adjusted through trial-and-error
experiments, which constrained the search range. Future research should explore more
effective methodologies, such as heuristic algorithms like particle swarm optimization,
to determine multiple weight factor distributions or reinforcement learning for multi-
objective optimization. Finally, investigating transfer learning and domain adaptation
methods could enhance the model’s robustness and generalization ability across varying
targets and scenarios.
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