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Abstract: The functional partially linear regression model comprises a functional linear part and
a non-parametric part. Testing the linear relationship between the response and the functional
predictor is of fundamental importance. In cases where functional data cannot be approximated
with a few principal components, we develop a second-order U-statistic using a pseudo-estimate
for the unknown non-parametric component. Under some regularity conditions, the asymptotic
normality of the proposed test statistic is established using the martingale central limit theorem. The
proposed test is evaluated for finite sample properties through simulation studies and its application
to real data.

Keywords: asymptotic normality; functional partially linear regression model; Nadaraya–Watson
estimate; U-statistic

MSC: 62G10; 62G20; 62F03

1. Introduction

In the past few decades, functional data analysis has been widely developed and ap-
plied in various fields, such as medicine, biology, economics, environmetrics, and chemistry
(see [1–5]). An important model in functional data analysis is the partial functional linear
model, which includes the parametric linear part and the functional linear part. To make
the relationships between variables more flexible, the parametric linear part is usually
replaced by the non-parametric part. This model is known as the functional partially linear
regression model, which has been studied in [6–8]. The functional partially linear regression
model is formulated as follows:

Y = g(u) +
∫ 1

0
α(s)X(s)ds + ε, (1)

where Y is the response variable. X(·) denotes the functional predictor, characterized by its
mean function, µ0(·), and covariance operator, C. The slope function α(·) is an unknown
function. g(·) is a general continuous function defined on a compact support Ω. The
random error ε has a mean of zero and a finite variance σ2, and is statistically independent
of the predictor X(·). When g(·) is a constant, model (1) reduces to a functional linear
model. Refer to [9–11] for further details. With g(·) representing the parametric linear
component, model (1) is identified as a partially functional linear model, an area explored
in [12–14].

Hypothesis testing plays a critical role in statistical inference. For testing the linear
relationship between the response and the functional predictor in the functional linear
model, functional principal component analysis (FPCA) is a major idea in constructing
test statistics. See [9,10,15]. Taking into account the flexibility of non-parametric func-
tions, Ref. [6] introduced the functional partially linear model. Refs. [7,8] constructed the
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estimators of the slope functions based on spline and FPCA respectively. They utilized
B-spline for estimating non-parametric components. In the context of predictors with
additive measurement error, ref. [16] investigated estimators for the slope function and non-
parametric component using FPCA and kernel smoothing methods. Ref. [17] established
estimators of the slope function, non-parametric component, and mean of the response
variable in the presence of randomly missing responses.

However, testing the relationship between the response variable and functional pre-
dictor in the functional partially linear regression model has been rarely considered so far.
In this paper, the following hypothesis testing for model (1) will be considered:

H0 : α(t) = α0(t) v.s. H1 : α(t) ̸= α0(t), (2)

where α0(t) denotes an assigned function. Here we assume α0(t) = 0 without compromis-
ing generality. To test (2) within the framework of model (1), a chi-square test was devised
by [18]. This test relies on estimators for the nonlinear and slope functions. The underlying
assumption is that the functional data can be well-approximated by a small number of
principal components.

In particular, we focus on functional data that cannot be approximated with a few
principal components, such as the velocity and acceleration of changes in China’s Air
Quality Index (AQI). If these changes are represented by some curves, the velocity and
acceleration are equivalent to the first and second derivatives of the AQI, respectively.
The number of principal components selected by FPCA may approach approximately 30.
Only several research studies have considered this data structure in the functional data
analysis. Ref. [19] constructed a FLUTE test based on order-four U-statistic for the testing
in the functional linear model, which can be computationally very costly. In order to save
calculation time, ref. [20] developed a faster test using a order-two U-statistic. Inspired by
this, we introduce a non-parametric U-statistic that integrates functional data analysis with
the traditional kernel method to test (2).

The structure of the paper is as follows. Section 2 details the development of a new
test procedure for the functional partially linear regression model. Section 3 presents
the theoretical properties of the proposed test statistic under some regularity conditions.
Section 4 includes a simulation study to evaluate the finite sample performance of the
proposed test. Section 5 presents the application of the test to spectrometric data. The
proofs of the primary theoretical results are presented in Appendix A.

2. Test Statistic

Assume Y and U are random variables taking real values. X(·) is a stochastic process
with sample paths in L2[0, 1], which is the set of all square-integrable functions defined
on [0, 1]. Let ⟨·, ·⟩, ∥ · ∥ represent the inner product and norm in L2[0, 1], respectively.
{(Yi, Xi(·), Ui), i = 1, 2, . . . , n} constitutes a random sample drawn from model (1),

Yi =
∫ 1

0
α(s)Xi(s)ds + g(Ui) + εi, i = 1, 2, . . . , n. (3)

For any given α(t) ∈ L2[0, 1], we move α(t) to the left,

Yi − ⟨Xi, α⟩ = g(Ui) + εi, i = 1, 2, . . . , n. (4)

Hence, model (4) simplifies to a classical non-parametric model. A pseudo-estimate
for the non-parametric function employing Nadaraya–Watson method, can be formulated
as follows:

ĝ(Ui) =
n

∑
j ̸=i

Kh(Uj − Ui)(Yj − ⟨Xj, α⟩)
∑n

k ̸=i Kh(Uk − Ui)
, i = 1, 2, . . . , n, (5)

where Kh(·) = K(·/h)/h with K(·) being a preselected kernel function. A kernel function
maps from the set of real numbers to the set of real numbers. It adheres to the following



Mathematics 2024, 12, 2588 3 of 23

properties: (i) Non-negativity: the kernel function K(·) must be non-negative. (ii) Nor-
malization: The integral (or sum in the discrete case) of the kernel function over the
entire real line must equal 1, which means it can be interpreted as a probability density
function. The bandwidth h in (5) is typically selected through data-driven procedures,
such as cross-validation techniques. Here, we estimate non-parametric g(Ui) without the
ith sample.

Let
W−i = (Wi1, . . . , Wi(i−1), Wi(i+1), . . . , Win)

T ,

⟨X−i, α⟩ = (⟨X1, α⟩, . . . , ⟨Xi−1, α⟩, ⟨Xi+1, α⟩, . . . , ⟨Xn, α⟩)T ,

Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yn)
T , X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)

T ,

where Wij = Kh(Uj −Ui)/ ∑k ̸=i Kh(Uk −Ui). So the pseudo-estimate (5) of non-parametric
function can be reformulated in matrix form as

ǧ(Ui) = WT
−i(Y−i − ⟨X−i, α⟩).

Substituting ǧ(Ui) for g(Ui) in model (3), we have

Y̌i = ⟨X̌i, α⟩+ εi, (6)

where X̌i(t) = Xi(t) − WT
−iX−i(t), Y̌i = Yi − WT

−iY−i. If we denote µit ≜ µ(Ui, t) =

E[X1(t)|Ui], where “≜” stands for “defined as”. Then µ̂it = WT
−iX−i(t) can be the estimator

of the conditional expectation µit for any t ∈ [0, 1].
Given an arbitrary orthonormal basis {ψj}∞

j=1 in L2[0, 1], the functional predictor X(·)
and the slope function α(·) admit the following series expansions: Let p represent the
number of truncated basis functions, as follows:

Xi(t) =
p

∑
j=1

ξijψj(t) +
∞

∑
j=p+1

ξijψj(t), α(t) =
p

∑
j=1

β jψj(t) +
∞

∑
j=p+1

β jψj(t), (7)

where ξij = ⟨Xi, ψj⟩, β j = ⟨α, ψj⟩. Let ξ̌ij = ⟨X̌i, ψj⟩, then the model (6) can be rewritten
as follows:

Y̌i =
∞

∑
j=1

ξ̌ijβ j + εi =
p

∑
j=1

ξ̌ijβ j +
∞

∑
j=p+1

ξ̌ijβ j + εi.

Denote ξi = (ξi1, ξi2, . . . , ξip)
T , which has mean µ and covariance matrix Σ. Let

ξ−i = (ξ1, . . . , ξi−1, ξi+1, . . . , ξn)
T , ξ̌i = (ξ̌i1, ξ̌i2, . . . , ξ̌ip)

T ,

ξ̌−i = (ξ̌1, . . . , ξ̌i−1, ξ̌i+1, . . . , ξ̌n)
T , β = (β1, β2, . . . , βp)

T .

For model (3), the approximation error is defined as follows:

ei =
∫ 1

0
α(s)Xi(s)ds −

p

∑
k=1

ξikβk.

To investigate the influence of the approximation error, we impose the following
conditions on the functional predictors and regression function:

(C1) The functional predictors {Xi(·)}n
i=1 and the regression function α(t) adhere to

the following conditions:
(i) The functional predictors {Xi(·)}n

i=1 reside within a Sobolev ellipsoid of order two,
then there exists a universal constant C, such that ∑∞

j=1 ξ2
ij j

4 ≤ C2, for i = 1, . . . , n.

(ii) The regression function satisfies
∫

α2(t)dt ≤ D, where D is a constant.
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By applying the Cauchy–Schwarz inequality, we obtain the following:

e2
i =

(
∞

∑
j=p+1

ξijβ j

)2

≤
∞

∑
j=p+1

ξ2
ij j

4
∞

∑
j=p+1

j−4α2
j ≤

C2D
p4 .

Then the approximation error can be ignored as p → ∞. Model (6) becomes as follows:

Y̌i =
p

∑
j=1

ξ̌ijβ j + εi,

which is a high-dimensional partial linear model. Since

E∥(Xi − E[Xi|Ui])(Yi − E(Yi|Ui))∥2 (8)

can be an effective measure for assessing the distance between α(·) and zero for test (2).
Motivated by [21], we construct the following test statistic by estimating (8).

Tnp =

(
1 − 2

n

)−2(n
2

)−1 n

∑
i=2

i−1

∑
j=1

∆ij
(
X̌
)
∆ij
(
Y̌
)
, (9)

where

∆ij
(
X̌
)
=
〈

X̌i − ¯̌X, X̌j − ¯̌X
〉
+

⟨X̌i − X̌j, X̌i − X̌j⟩
2n

,

∆ij
(
Y̌
)
=
(

Y̌i − ¯̌Y
)(

Y̌j − ¯̌Y
)
+

(
Y̌i − Y̌j

)2

2n
,

where ¯̌X(t) and ¯̌Y denote the sample means of X̌i(t) and Y̌i, respectively. By some calcu-
lations, we can obtain E[∆ij(X̌)] = 0, E[∆ij(Y̌)] = 0. The test statistic Tnp quantifies the
discrepancy between α(·) and 0 under the null hypothesis. High values of the test statistic
Tnp suggest evidence in favor of the alternative hypothesis, prompting the rejection of the
null hypothesis.

3. Asymptotic Theory

To achieve the asymptotic properties of the proposed test, we first suppose the follow-
ing conditions based on [19,21]. We denote the following:

µ(Ui) = (µ1(Ui), µ2(Ui), . . . , µp(Ui))
T ≜ E[ξ|Ui],

Σ∗(Ui) = E[ξiξ
T
i |Ui]− µ(Ui)µ

T(Ui), Σ∗ = Σ − E[µ(U1)µ
T(U1)].

A condition on the dimensionality of matrix Σ∗ is stipulated as follows:
(C2) As n → ∞, p → ∞; Σ∗ > 0, tr(Σ4

∗) = o(tr2(Σ2
∗)).

(C3) For a constant m ≥ p, there exists an m-dimensional random vector
Zi = (Zi1, . . . , Zim)

T such that ξi = E[ξi|Ui] + Γ(Ui)Zi. The vector Zi is characterized
by E(Zi) = 0, var(Zi) = Im, and for any Ui, Γ(Ui) is a p × m matrix with Γ(Ui)Γ

T(Ui) =
Σ∗(Ui). It is assumed that each random vector {Zi, i = 1, . . . , n} has finite fourth moments
and E(Z4

ij) = 3 + ∆ for some constant ∆. Moreover, we assume the following:

E
(

Zl1
ij1

Zl2
ij2

· · · Zld
ijd

)
= E

(
Zl1

ij1

)
E
(

Zl2
ij2

)
· · · E

(
Zld

ijd

)
for ∑d

k=1 lk ≤ 4 and j1 ̸= j2 ̸= · · · ̸= jd, where d is a positive integer.
(C4) βTΣ∗β = o(h2), and βTΣ3

∗β = o(tr(Σ2
∗)/n).

(C5) The error term satisfies E[ε4] < +∞.
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(C6) The random variable U is confined to a compact domain Ω, and its density
function f exhibits a continuously differentiable second derivative and bounded away
from 0 on its support. The kernel K(·) is a symmetric probability density with compact
support and is Lipschitz continuous.

(C7) E(ξ1|U1) and g(·) are Lipschitz continuous and admit continuous second-order
derivatives.

(C8) It is assumed that the sample size n and the smoothing parameter h satisfy the
following: lim

n→∞
h = 0, lim

n→∞
nh = ∞, lim

n→∞
nh4 = 0.

(C9) The truncated number p and the sample size n are assumed to satisfy p = o(n2h2).
Condition (C2) is widely utilized in high-dimensional data research (see [21–23]).

Condition (C3) resembles a factor model. To assess local power, we further impose condition
(C4) on the coefficient vector β. In fact, (C4) can serve as the local alternative as its distance
measurement between β and 0. This local alternative can be also found in [21]. (C5) is
the typical assumption for the error term ε. Conditions (C6-C8) are very common in non-
parametric smoothing. (C9) is a technical condition that is needed to derive the theorems.

In practical applications, the data must satisfy conditions (C1-C3) and (C7). Conditions
(C1) and (C7) are generally met for most datasets. (C2) does not specify a relationship
between p and n. The matrix’s positive definiteness ensures that the regression coefficients
can be identified. tr(Σ4

∗) = o(tr2(Σ2
∗)) holds if the eigenvalues of Σ∗ are all bounded or the

largest eigenvalue is of smaller order than (p − b)1/2b−1/4, where b is the number of un-
bounded eigenvalues. Condition (C3) essentially assumes that the functional predictor Xi(t)
is based on a latent factor model, where the factor loadings meet the pseudo-independence
assumption. If X(t) is a Gaussian process, it can be expanded as X(t) = ∑m

j=1

√
λjNjuj(t),

with Nj being independent standard normal random variables. This expansion is a special

case of (C3) when the (i, j)-th element of the transformation matrix Γ is
√

λj⟨uj, ϕi⟩. These
conditions are generally met for most data and do not affect the validity of the proposed
test. Many datasets can be regarded as following a Gaussian process, such as changes in
gene expression levels, logarithmic returns on financial asset prices, soil moisture, and
temperature distribution.

We present the asymptotic theory for the proposed test statistic under the null hypoth-
esis and local alternative (C4) in the subsequent two theorems:

Theorem 1. Under the assumptions of conditions (C1), (C3–C9), it follows that

(i) E(Tnp) = ∥C∗(α)∥2 + o
(√

tr(Σ2
∗)/n

)
;

(ii) Tnp − ∥C∗(α)∥2 =
1
(n

2)

n

∑
i=2

i−1

∑
j=1

⟨Xi − µit, Xj − µjt⟩εiε j + op

(√
tr(Σ2

∗)/n
)

,

where C∗(α) = E[⟨Xi − µit, α⟩(Xi − µit)]. It can be regarded as the covariance operator of a
random variable Xi − µit.

Theorem 2. Assume conditions (C1–C3) and (C5–C9) hold, we then have the following results
under either the null hypothesis or the local alternative (C4):

n(Tnp − ∥C∗(α)∥2)

σ2
√

2tr(Σ2
∗)

D−→ N(0, 1), as n → ∞,

where D−→ represents convergence in distribution.

Theorem 2 demonstrates that, under the local alternative hypothesis (C4), the proposed
test statistic possesses the following asymptotic local power at the nominal significance level α:
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Ψ(β) = Φ

−zα +
n∥C∗(α)∥2

σ2
√

2tr(Σ2
∗)

,

where Φ(·) denotes the cumulative distribution function of the standard normal, and zα

represents its (1 − α)th quantile. We define η(α) = C∗(α)/σ2
√

2tr(Σ2
∗), which represents

the signal-to-noise ratio. When the term η(α) = o(1/n), the power converges to α, then the
power converges to 1 if it has a high order of 1/n. This implies that the proposed test is
consistent. The power performance will be demonstrated through simulations in Section 4.

According to Theorem 2, the proposed test statistic leads to the rejection of H0 at a
significance level α when

nTnp ≥
√

2σ̂2 t̂r(Σ2
∗)zα,

where σ̂2 and t̂r(Σ2
∗)zα serve as consistent estimators for σ2 and tr(Σ2

∗), respectively. We
use a similar method as in [24] to estimate the trace. That is,

t̂r(Σ2
∗) = Y1n − 2Y2n + Y3n,

where Y1n = 1
A2

n
∑
i ̸=j

⟨X̌T
i , X̌j⟩2, Y2n = 1

A3
n

∑
i ̸=j ̸=k

⟨X̌T
i , X̌j⟩⟨X̌T

j , X̌k⟩,

Y2n = 1
A4

n
∑

i ̸=j ̸=k ̸=l
⟨X̌T

i , X̌j⟩⟨X̌k, X̌l⟩ with Am
n = n!/(n − m)!. And the simple estimator

σ̂2 = (n − 1)−1 ∑n
i=1(Y̌i − ¯̌Y)2 is used, which is consistent under the null hypothesis testing.

4. Simulation

This section evaluates the finite sample performance of the proposed test, including
its size and power. The assessment is conducted through a series of simulation studies.
Through numerical simulations, we will validate that the distribution of the proposed test
statistic under the null hypothesis is consistent with the properties stated in Theorem 1. For
each simulation, we create 1000 Monte Carlo samples. The basis expansion and FPCA are
conducted using the R package fda.

To mitigate the probability of both Type I and Type II errors in the testing procedure,
the sample size must be adequately large. However, to maintain computational efficiency
during the numerical simulations, the sample size should not be excessively large. Conse-
quently, the sample size n in this study has been set within a range of 50 to 200. To validate
the effectiveness of our proposed test, the parameters are flexibly set.

Here we compare the proposed test Tnp with the chi-square test Tn constructed by [18].
The cumulative percentage of total variance (CPV) method is used to estimate the number
of principal components in Tn. Let CPV, explained by the first m empirical functional
principal components, be defined as follows:

CPV =
∑m

i=1 λ̂i

∑
p
i=1 λ̂i

,

where {λ̂i}
p
i=1 is the estimate of the eigenvalue of the covariance operator. The smallest

value of m for which CPV (m) surpasses the threshold of 95% is selected in this section.
We denote p as the number of basis functions used to fit curves. The simulated data are
produced according to the following model:

Yi =
∫ 1

0
α(s)Xi(s)ds + g(Ui) + εi, i = 1, 2, . . . , n.

where g(Ui) = 2Ui or g(Ui) = 2 + sin(2πUi), and {Ui, i = 1, 2, . . . , n} is independently
drawn from the uniform distribution on (0, 1). To analyze the impact of different error dis-
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tributions, the following four distributions will be selected: (1) εi∼N(0, 1), (2) εi∼t(3)/
√

3,
(3) εi∼Γ(1, 1)− 1, (4) εi∼(lnorm(0, 1)−

√
e)/
√

e(e − 1). All results about g(Ui) = 2Ui are
presented in Supplementary Materials.

We next report the simulation results for two data structures of the predictor X(t).
1. The predictor X(t) is defined as ∑50

j=1 ξ jϕj(t), with ξ j normally distributed with

mean 0 and variance λj = 10((j− 1/2)π)−2, ϕj(t) =
√

2(j− 1/2)πt for j = 1, 2, . . . , 50. The
slope function α(t) is given by c(

√
2 sin(πt/2) + 3

√
2 sin(3πt/2)), where the coefficient

c ranges from 0 to 0.2. c = 0 corresponds to the null hypothesis. The number of basis
functions used to fit curves and the sample size are taken as follows: p = 11, 49, n = 50, 100.
Under different error distributions, Tables 1 and 2 evaluate the empirical size and power of
both tests for different non-parametric functions when the nominal level α is 0.05.

Table 1. When g(u) = 2u, the empirical size and power for two tests are evaluated.

(n, p) c
N(0,1) t(3) Γ(1, 1) lnorm(0,1)

Tn Tnp Tn Tnp Tn Tnp Tn Tnp

(50,11)

0.00 0.069 0.060 0.074 0.077 0.071 0.071 0.084 0.053
0.05 0.097 0.101 0.133 0.102 0.135 0.107 0.148 0.111
0.10 0.250 0.211 0.292 0.244 0.269 0.225 0.337 0.283
0.15 0.474 0.383 0.555 0.448 0.494 0.415 0.576 0.470
0.20 0.713 0.584 0.761 0.631 0.738 0.602 0.755 0.656

(100,11)

0.00 0.049 0.052 0.055 0.052 0.058 0.059 0.049 0.052
0.05 0.233 0.195 0.275 0.225 0.217 0.195 0.312 0.268
0.10 0.689 0.603 0.746 0.660 0.715 0.618 0.743 0.652
0.15 0.961 0.877 0.956 0.913 0.963 0.899 0.931 0.884
0.20 0.998 0.984 0.986 0.975 0.995 0.975 0.978 0.965

(100,49)

0.00 0.057 0.060 0.050 0.061 0.051 0.049 0.055 0.047
0.05 0.224 0.203 0.282 0.255 0.236 0.225 0.305 0.288
0.10 0.741 0.607 0.757 0.665 0.718 0.615 0.747 0.659
0.15 0.962 0.900 0.947 0.871 0.950 0.884 0.938 0.886
0.20 0.998 0.981 0.987 0.977 0.997 0.978 0.988 0.969

Table 2. When g(u) = 2 + sin(2πu), the empirical size and power for two tests are evaluated.

(n, p) c
N(0,1) t(3) Γ(1, 1) lnorm(0,1)

Tn Tnp Tn Tnp Tn Tnp Tn Tnp

(50,11)

0.00 0.062 0.064 0.072 0.069 0.071 0.072 0.060 0.054
0.05 0.087 0.091 0.109 0.096 0.112 0.103 0.117 0.106
0.10 0.235 0.197 0.250 0.219 0.241 0.208 0.293 0.249
0.15 0.420 0.359 0.502 0.419 0.449 0.389 0.506 0.449
0.20 0.658 0.545 0.724 0.605 0.694 0.573 0.735 0.638

(100,11)

0.00 0.062 0.062 0.050 0.046 0.063 0.060 0.054 0.060
0.05 0.217 0.205 0.239 0.219 0.235 0.208 0.255 0.240
0.10 0.668 0.568 0.714 0.617 0.696 0.605 0.748 0.644
0.15 0.946 0.874 0.947 0.883 0.946 0.852 0.927 0.873
0.20 0.996 0.980 0.993 0.972 1.000 0.979 0.987 0.964

(100,49)

0.00 0.050 0.062 0.056 0.063 0.047 0.067 0.060 0.056
0.05 0.226 0.216 0.249 0.202 0.209 0.199 0.277 0.256
0.10 0.674 0.562 0.734 0.611 0.692 0.582 0.733 0.639
0.15 0.943 0.873 0.943 0.890 0.941 0.855 0.925 0.889
0.20 0.997 0.976 0.994 0.981 0.998 0.980 0.982 0.955
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From Tables 1 and 2, the following can be seen: (i) The performances of both tests
remain consistent across various error distributions and non-parametric functions; (ii) Be-
cause Tnp is intended for functional data beyond the reach of a few principal components,
the power of the proposed test is somewhat less than that of Tn. (iii) The power of the
test increases with the sample size n, but it is not significantly affected by increases in
the parameter value p. In fact, for the functional data structure given in Simulation 1, the
number of principal components selected is relatively small, regardless of the number of
basis functions used to fit the functional data.

2. The functional predictor is constructed using the expansion in (7), with ϕk rep-
resenting the Fourier basis function on [0,1] defined as ϕ1(t) = 1, ϕ2(t) =

√
2sin(2πt),

ϕ3(t) =
√

2cos(2πt), ϕ4(t) =
√

2sin(4πt), ϕ4(t) =
√

2cos(4πt), . . .. The first p of the
basis functions will be used to generate the prediction function and slope function. Let
Xi(t) = ∑

p
j=1 ξijϕj(t), α(t) = ∑

p
j=1 β jϕj(t), where p = 11, 49, 201, 365, n = 50, 100, 200, the

coefficient of slope function {βi = |β|/√p, i = 1, . . . , p} with |β|2 = c ∗ 10−2 and c varying
from 0 to 1. c = 0 corresponds to the case in which H0 is true. The coefficients of predictor
ξij follow the moving average model:

ξij = ρ1Zij + ρ2Zi(j+2) + . . . + ρTZi(p+T−1),

where the constant T adjusts the degree of dependence among the elements of the predictor.
{Zij, Zi(j+1), . . . , Zi(p+T−1)} are drawn independently from the distribution N(0, Ip+T−1)
with T = 10. The element at the (j, k) position of the covariance matrix Σ for coefficient
vector ξi is ∑

T−|j−k|
l=1 ρlρl+|j−k| I{|j − k| < T}, where {ρk, k = 1, . . . , T} is independently

generated from the uniform distribution U(0, 1).
The bandwidth is chosen using cross-validation (CV). At a significance level of

α = 0.05, Table 3 delineates the empirical size and power of the two tests when the function
g(·) is linear. Table 4 presents the results for the case where g(·) is a trigonometric function.

From Tables 3 and 4, the number of basis functions used for fitting functions has a
very important impact on the test. Specifically, (i) Across various error distributions, as
p increases, the empirical size of test Tn significantly exceeds the nominal level, whereas
our proposed test Tnp maintains stable performance; (ii) The power of the test increases
with the sample size n. Conversely, it decreases as the values of p increase. (iii) The
proposed test demonstrates robustness across all scenarios presented in this simulation
study. Actually, for the functional data structure given in Simulation 2, selecting too many
principal components negates the effectiveness of FPCA-based test statistics. Instead, the
proposed test has great advantages (see bold numbers in Tables 3 and 4).

Table 3. When g(u) = 2u, the empirical size and power for two tests are evaluated.

(n, p) c
N(0,1) t(3) Γ(1, 1) lnorm(0,1)

Tn Tnp Tn Tnp Tn Tnp Tn Tnp

(50,11)

0.00 0.097 0.066 0.088 0.076 0.096 0.074 0.104 0.059
0.25 0.378 0.454 0.442 0.518 0.389 0.443 0.487 0.572
0.50 0.589 0.695 0.669 0.749 0.610 0.702 0.725 0.783
0.75 0.765 0.832 0.811 0.861 0.769 0.847 0.832 0.882
1.00 0.865 0.917 0.883 0.925 0.867 0.912 0.889 0.922

(100,11)

0.00 0.060 0.067 0.086 0.064 0.072 0.058 0.062 0.049
0.25 0.511 0.711 0.582 0.738 0.569 0.739 0.618 0.760
0.50 0.820 0.932 0.857 0.932 0.846 0.922 0.841 0.924
0.75 0.949 0.984 0.943 0.975 0.935 0.973 0.917 0.967
1.00 0.982 0.998 0.971 0.986 0.971 0.989 0.958 0.984

(100,49)

0.00 0.245 0.064 0.224 0.058 0.236 0.058 0.202 0.048
0.25 0.541 0.498 0.570 0.543 0.534 0.501 0.563 0.564
0.50 0.754 0.771 0.804 0.807 0.767 0.776 0.769 0.798
0.75 0.884 0.910 0.899 0.936 0.899 0.904 0.879 0.887
1.00 0.957 0.966 0.949 0.968 0.956 0.964 0.928 0.934
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Table 4. When g(u) = 2 + sin(2πu), the empirical size and power for two tests are evaluated.

(n, p) c
N(0,1) t(3) Γ(1, 1) lnorm(0,1)

Tn Tnp Tn Tnp Tn Tnp Tn Tnp

(50,11)

0.00 0.099 0.069 0.087 0.075 0.086 0.063 0.101 0.064
0.25 0.353 0.420 0.423 0.484 0.383 0.434 0.482 0.538
0.50 0.574 0.661 0.640 0.714 0.602 0.677 0.695 0.758
0.75 0.751 0.806 0.783 0.849 0.750 0.814 0.804 0.860
1.00 0.841 0.893 0.869 0.913 0.842 0.897 0.874 0.913

(100,11)

0,00 0.067 0.058 0.060 0.054 0.065 0.055 0.072 0.059
0.25 0.486 0.662 0.545 0.713 0.537 0.697 0.591 0.742
0.50 0.783 0.901 0.819 0.906 0.814 0.907 0.832 0.916
0.75 0.930 0.983 0.918 0.966 0.930 0.980 0.915 0.955
1.00 0.976 0.996 0.959 0.983 0.977 0.994 0.954 0.972

(100,49)

0.00 0.236 0.066 0.212 0.066 0.218 0.061 0.243 0.065
0.25 0.543 0.475 0.540 0.506 0.526 0.480 0.658 0.612
0.50 0.744 0.745 0.781 0.791 0.747 0.750 0.835 0.815
0.75 0.885 0.892 0.890 0.911 0.875 0.891 0.913 0.913
1.00 0.948 0.964 0.937 0.956 0.938 0.955 0.947 0.956

To more effectively verify the accuracy of the asymptotic theory underlying our
proposed test statistic, Table 5 provides the mean and standard deviation (sd) of the test
statistic under different scenarios. From Table 5, it is observed that when c = 0, the mean
of our proposed test statistic fluctuates around zero, and the standard deviation fluctuates
around one. This aligns with the theoretical expectations. As c increases, the mean of the
test statistic moves further away from zero, and the standard deviation moves further away
from one, indicating a departure from the null hypothesis.

Table 5. Mean and standard deviations of our proposed test statistics across different scenarios.

(n, p) c
N(0,1) t(3) Γ(1, 1) lnorm(0,1)

mean sd mean sd mean sd mean sd

(50,11)

0.00 −0.0333 0.9374 −0.0061 0.9418 −0.0043 0.9994 −0.0247 0.9825
0.25 1.7738 2.2073 1.3510 1.9616 1.2082 1.8621 1.6662 2.2812
0.50 3.3189 2.7381 2.6000 2.5333 2.3050 2.4013 3.1053 3.0144
0.75 4.7067 3.0726 3.7388 2.9395 3.3175 2.7857 4.3626 3.5327
1.00 5.9521 3.2898 4.7717 3.2447 4.2325 3.0603 5.4780 3.9246

(100,11)

0.00 −0.0200 0.9308 −0.0064 0.9198 −0.0638 0.9361 −0.0263 0.9369
0.25 3.7480 3.0049 2.6939 2.5895 2.3069 2.4523 3.0643 3.0377
0.50 7.0041 3.8159 5.1654 3.4800 4.5174 3.2602 5.7955 4.2112
0.75 9.8990 4.2990 7.4175 4.1336 6.5733 3.8412 8.2343 5.0734
1.00 12.5121 4.6155 9.4800 4.6283 8.4585 4.2903 10.4237 5.7426

(100,49)

0.00 −0.0344 0.9647 −0.0853 0.9221 −0.0634 0.9468 −0.0322 0.8838
0.25 1.3974 1.6203 2.4578 2.0814 2.2854 2.0247 2.7763 2.3084
0.50 2.6816 2.0302 4.6292 2.7638 4.2755 2.6032 5.0716 3.1856
0.75 3.8472 2.3259 6.4930 3.2520 6.0145 2.9903 6.9775 3.7744
1.00 4.9262 2.5550 8.1087 3.5979 7.5483 3.2715 8.6025 4.2086

(100,201)

0.00 −0.0284 0.9996 −0.0464 0.9366 −0.0799 0.9973 −0.1059 0.9523
0.25 0.5965 1.1769 0.9410 1.2687 0.8517 1.2541 1.0221 1.3276
0.50 1.1730 1.3154 1.8179 1.5234 1.6749 1.4624 1.9941 1.6616
0.75 1.7107 1.4365 2.5847 1.7106 2.4135 1.6295 2.8149 1.9165
1.00 2.2170 1.5368 3.2742 1.8666 3.0751 1.7569 3.5290 2.1234

(200,365)

0.00 −0.1197 0.9914 −0.1129 0.9450 −0.0892 0.9681 −0.1104 0.9420
0.25 0.8032 1.2129 3.3462 1.8678 3.0628 1.6937 3.3950 1.9900
0.50 1.6756 1.3740 5.9872 2.3996 5.5453 2.0681 5.9918 2.6471
0.75 2.4867 1.5036 8.0726 2.7188 7.5441 2.3124 8.0182 3.0317
1.00 3.2467 1.6108 9.7640 2.9315 9.1963 2.4703 9.6570 3.2855



Mathematics 2024, 12, 2588 10 of 23

Furthermore, to verify the asymptotic theory of our proposed test, we consider the
case where (n, p) = (200, 365). Figures 1 and 2 draw the null distributions and the q-q
plots Tnp, corresponding to g(u) = 2u and g(u) = 2 + sin(2πu), respectively. The null
distributions are represented by the dashed lines, while the solid lines are density function
curves of standard normal distributions.
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Figure 1. The null distributions and q-q plots of our proposed test when g(u) = 2u.
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Figure 2. The null distributions and the q-q plots of our proposed test when g(u) = 2 + sin(2πu).

For different n, p, Figures 3 and 4, respectively, show the empirical power functions
of the proposed test statistics. These figures are presented for four different error distri-
bution functions. The function g(·) is linear in Figure 3 and trigonometric in Figure 4.
When (n, p) = (200, 201), (100, 201), (200, 365), the empirical power functions of the pro-
posed test are represented by solid lines, dashed lines, and dotted lines, respectively. From
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Figures 3 and 4, it can be seen that the power increases rapidly as long as c increases slightly.
The test’s power is positively related to the sample size n and inversely related to the magni-
tude of p. The proposed test is stable under different error distributions. These are consistent
with the conclusions in Tables 3 and 4.
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Figure 3. Empirical power functions of our proposed test when g(u) = 2u.
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Figure 4. Empirical power functions of our proposed test when g(u) = 2 + sin(2πu).

It is worth noting that, theoretically, a kernel function K(·) is sufficient if it satisfies the
conditions of symmetry and Lipschitz continuity. In practical applications, however, the
choice of kernel function should be based on the characteristics and requirements of the
data. For instance, the Epanechnikov kernel is more suitable for bounded data, while the
Gaussian kernel is better suited for data with long tails. In this simulation study, according
to the given data setting, the Epanechnikov kernel was chosen. To compare the effects of
the two kernels, we replaced the Epanechnikov kernel used to generate Figure 4 with a



Mathematics 2024, 12, 2588 12 of 23

Gaussian kernel to produce Figure 5. From Figures 4 and 5, it can be observed that the
impact of the two kernels on the test is relatively minor.
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Figure 5. Empirical power functions of our proposed test with the Gaussian kernel when g(u) =
2 + sin(2πu).

The numerical simulations show that our proposed test performs well for the data
types. However, with larger sample sizes, the numerical simulations in this paper require
considerable computational time, which is a limitation of the proposed test statistic. Ad-
ditionally, its performance on the datasets that violate the assumptions (C1–C3) and (C7),
such as when the real data are not in a Sobolev ellipsoid of order two, remains to be seen.

5. Application

This section applies the proposed test to the spectral data, which has been described
and analyzed in the literature (see [25,26]). This dataset can be obtained on the following
platforms: http://lib.stat.cmu.edu/datasets/tecator (accessed on 16 July 2024). Each meat
sample is characterized by a 100-channel spectrum of absorbance, along with the moisture
(water), fat, and protein contents. The absorbance is calculated as the negative logarithm
base 10 of the transmittance, as measured by the spectrometer. The three contents, measured
in percent, are determined by analytic chemistry. The dataset comprises 240 samples,
partitioned into 5 subsets for the validation of models and extrapolation studies. In this
section, we utilize a total of 215 samples, which include both training and test samples
drawn from the 5 subsets. The spectral measurement data consist of curves, represented
by Xi(·), corresponding to absorbance values recorded at 100 equally spaced wavelengths
from 850 nm to 1050 nm. Let Yi represent the fat content as the response variable, Zi
represent the protein content, and Ui represent the moisture content. Similar to [27], the
following two models will be used to assume the relationship between them:

Yi =
∫ 1050

850
α(t)Xi(t)dt + g(Zi) + εi, (10)

Yi =
∫ 1050

850
α(t)Xi(t)dt + g(Ui) + εi. (11)

http://lib.stat.cmu.edu/datasets/tecator
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The present investigation primarily focuses on the test in models (10) and (11):
α(t) = 0. The number of basis functions used for fitting function curves p is selected
as 129. Figure 6 shows the estimation of slope function α(t) in models (10) and (11).

Figure 6. (a) The estimator of the slope function in model (10); (b) the estimator of the slope function
in model (11).

The calculation results are as follows: (i) For model (10), the value of the statistic is
Tnp = 31.186; p-value is 0. (ii) For model (11), the value of the statistic is Tnp = −0.867;
p-values are 0.386. From this, we can see that the model test (10) is significant, while the
model test (11) is not significant. This result can also be reflected in Figure 6. It is obvious
that the estimated value of α(t) on the right side of Figure 6 is much smaller than that on
the left side.

6. Conclusions

To test (2), this paper first provides a pseudo-estimate of the non-parametric function
g(u) using kernel methods with a fixed coefficient function β(t). The pseudo-estimate
is then substituted into the model, converting the original model into a linear one. This
allows for the construction of the second-order U-test statistic employed in this paper,
utilizing the corresponding testing methods from functional linear models. The proposed
test does not require estimating the covariance operator of the predictor function. It follows
a normal distribution asymptotically under both a null hypothesis and a local alternative.
Moreover, numerical simulations show that our proposed test performs better than the
test constructed in [18] when functional data cannot be approximated by a few principal
components. Finally, the real data are applied to our proposed test to verify its feasibility.

Additionally, the proposed test is adaptable to cases where the response variable is
functional, which is a focus for our upcoming research. In the real world, the proposed
test requires real data to meet some technical conditions (C1–C3, C7). When data fail to
satisfy these conditions, the viability of the test presented in this paper requires further
investigation. Therefore, future work may focus on broadening the test’s applicability. The
calculation of the statistics in numerical simulations requires optimization for efficiency.
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Appendix A

Several lemmas are established to facilitate the proofs of Theorems 1 and 2. Without
loss of generality, we assume that µ0(t) = 0 and E[g(U)] = 0. Let Cn =

√
log(1/h)/(nh) +

h2. With reference to the asymptotic theory of non-parametric estimation, the pseudo-
estimation of the non-parametric function satisfies sup

u∈Ω
∥ǧ(u)− g(u)∥ = Op(Cn). Denote

Dg(Ui) = g(Ui)− ǧ(Ui), Dµit = µit − µ̂it,

for i = 1, 2, . . . , n. Similarly to the lemmas in [21], it is easy to derive the following lemmas.

Lemma A1. If (C1), (C3), and (C4) hold, it can be demonstrated that for any square matrix, M,

(i) E
[

Z1ZT
1 MZ1ZT

1

]
= M + MT + tr(M)Ip + ∆diag(M);

(ii) E
[

Z1ZT
2 MZ2ZT

1

]
= tr(M)Ip;

(iii) E
[
(⟨X1 − µ1t, α⟩⟨X1 − µ1t, X2 − µ2t⟩⟨X2 − µ2t, α⟩)2

]
= o(tr(Σ2

∗)).

Lemma A2. Given that conditions (C1–C3) and (C5–C9) are satisfied, the following results
are obtained.

(i) E
[
⟨X̌1, X̌2⟩4

]
= o(ntr2(Σ2

∗));

(ii) E
[
⟨C∗(X̌1), X̌1⟩2

]
= o(ntr2(Σ2

∗)).

Lemma A3. If (C1–C9) hold, then we can obtain the following:

(i) E
[
⟨X̌1, X̌1⟩

]
= O(tr(Σ∗));

(ii) E
[
Y̌2

1

]
= O(1);

(iii) E
[
⟨ ¯̌X12, ¯̌X12⟩

]
= O(tr(Σ∗)/n);

(iv) E
[

¯̌Y2
12

]
= O

(
C2

n

)
;

(v) E
[
⟨ ¯̌X12, ¯̌X12⟩ ¯̌Y2

12

]
= O

(
tr(Σ∗)/n2

)
,

where ¯̌Xij(t),
¯̌Yij represent the sample means of X̌(t) and Y̌ without ith and jth samples, for

i, j = 1, 2, . . . , n. That is

¯̌Xij(t) =
1

n − 2 ∑
k ̸=i,j

X̌k(t),
¯̌Yij =

1
n − 2 ∑

k ̸=i,j
Y̌k.
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Proof of Theorem 1. Rewrite

n
n − 2

∆ij
(
X̌
)
≜ P(1)

ij + P(2)
ij + P(3)

ij + P(4)
ij ,

n
n − 2

∆ij
(
Y̌
)
≜ L(1)

ij + L(2)
ij + L(3)

ij + L(4)
ij ,

where

P(1)
ij =

(
1 − 1

n

)
⟨X̌i, X̌j⟩, P(2)

ij = − 1
2n
(
⟨X̌i, X̌i⟩+ ⟨X̌j, X̌j⟩ − 2E

[
⟨X̌1, X̌1⟩

])
,

P(3)
ij = −

(
1 − 2

n

)
⟨X̌i + X̌j,

¯̌Xij⟩, P(4)
ij =

(
1 − 2

n

)(
⟨ ¯̌Xij,

¯̌Xij⟩ −
E[⟨X̌1, X̌1⟩]

n − 2

)
,

L(1)
ij =

(
1 − 1

n

)
Y̌iY̌j, L(2)

ij = − 1
2n

(
Y̌2

i + Y̌2
j − 2E

[
Y̌2

1

])
,

L(3)
ij = −

(
1 − 2

n

)(
Y̌i + Y̌j

) ¯̌Yij, L(4)
ij =

(
1 − 2

n

)(
¯̌Y2
ij −

E
(
Y̌2

1
)

n − 2

)
,

then the expectation of test statistic Tnp is as follows:

E[Tnp] = ∑
j<i

4

∑
l,k=1

E
[

P(l)
ij L(k)

ij

]
.

To prove the conclusion (i) in Theorem 1, it needs to be calculated one by one for
(l, k), l, k = 1, 2, 3, 4. Because of the similarity to calculations in different cases of (l, k), here,
we mainly consider the case where (l, k) = (1, 1),

E
[

P(1)
ij L(1)

ij

]
≜ G(1,1)

1 + G(1,1)
2 + G(1,1)

3 + G(1,1)
4 + G(1,1)

5 + G(1,1)
6 ,

where

G(1,1)
1 =

(n − 1)2

n2 E[⟨X1 − µ̂1t, X2 − µ̂2t⟩Dg(U1)Dg(U2)],

G(1,1)
2 =

(n − 1)2

n2 E[⟨X1 − µ̂1t, α⟩⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X2 − µ̂2t, α⟩],

G(1,1)
3 =

(n − 1)2

n2 E[⟨X1 − µ̂1t, X2 − µ̂2t⟩ε1ε2],

G(1,1)
4 =

2(n − 1)2

n2 E[⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X2 − µ̂2t, α⟩Dg(U1)],

G(1,1)
5 =

2(n − 1)2

n2 E[⟨X1 − µ̂1t, X2 − µ̂2t⟩Dg(U1)ε2],

G(1,1)
6 =

2(n − 1)2

n2 E[⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X1 − µ̂1t, α⟩ε2].

For the above six items, we will analyze them one by one. Firstly, we consider the first
term. We have the following:

E[⟨X1 − µ̂1t, X2 − µ̂2t⟩Dg(U1)Dg(U2)]

= 2E[⟨Dµ1t, X2 − µ2t⟩Dg(U1)Dg(U2)] + E[⟨Dµ1t, Dµ2t⟩Dg(U1)Dg(U2)]

= O
(

W12W21

(
ξT

2 ξ2 − µT(U2)ξ2

)
g2(U1)

)
= O

(
tr(Σ∗)/n2h

)
,

then G(1,1)
1 = o

(√
tr(Σ2

∗)/n
)

holds. For the second term, we have the following:
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E[⟨X1 − µ̂1t, α⟩⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X2 − µ̂2t, α⟩]
= E[⟨X1 − µ1t, α⟩⟨X1 − µ1t, X2 − µ2t⟩⟨X2 − µ2t, α⟩]
+ 2E[⟨Dµ1t, α⟩⟨Dµ1t, Dµ2t⟩⟨Dµ2t, α⟩]
+ 2E[⟨X1 − µ1t, α⟩⟨Dµ1t, Dµ2t⟩⟨Dµ2t, α⟩]
+ 2E[⟨X1 − µ1t, α⟩⟨X2 − µ2t, Dµ1t⟩⟨Dµ2t, α⟩]
+ 2E[⟨X1 − µ1t, α⟩⟨X1 − µ1t, Dµ2t⟩⟨Dµ2t, α⟩]
+ 2E[⟨Dµ1t, α⟩⟨X1 − µ1t, Dµ2t⟩⟨Dµ2t, α⟩]
+ 2E[⟨X1 − µ1t, α⟩⟨Dµ1t, Dµ2t⟩⟨X2 − µ2t, α⟩]

= ∥C∗(α)∥2 + O
(

2βΣ2
∗β/nh + βTΣ∗βtr(Σ∗)/n2

)
.

Combined with (C1), (C3), and (C9), G(1,1)
2 = ∥C∗(α)∥2 + o

(√
tr(Σ2

∗)/n
)

holds. The

error term εi with a mean of zero is independent of the predictor; hence, it is easy to see that
both the third term G(1,1)

3 and the sixth term G(1,1)
6 are zero. For the other two cross terms,

G(1,1)
4 and G(1,1)

5 , we need to prove that they are high-order infinitesimals of
√

tr(Σ2
∗)/n.

In fact,

E[⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X2 − µ̂2t, α⟩Dg(U1)]

= E[⟨X1 − µ1t, α⟩⟨X1 − µ1t, Dµ2t⟩Dg(U2)]

+ E[⟨Dµ1t, α⟩⟨Dµ1t, X2 − µ2t⟩Dg(U2)]

+ E[⟨Dµ1t, α⟩⟨X1 − µ1t, Dµ2t⟩Dg(U2)]

+ E[⟨X1 − µ1t, α⟩⟨Dµ1t, Dµ2t⟩Dg(U2)]

+ E[⟨Dµ1t, α⟩⟨Dµ1t, Dµ2t⟩Dg(U2)]

= O
(

nE[W2
23βT(ξ1ξT

1 − ξ1µT(U1))ξ3g(U3)]
)

= O
(

E[βTΣ∗(U1)µ(U2)g(U2) f−1(U2)]/nh
)

= o
(√

tr(Σ2
∗)/n

)
.

Finally, for G(1,1)
5 , we have the following:

E[⟨X1 − µ̂1t, X2 − µ̂2t⟩Dg(U1)ε2]

= E[⟨X1 − µ1t + Dµ1t, X2 − µ2t + Dµ2t⟩(−W12ε2
2)]

= E[(ξ1 − µ(U1))
Tξ1W21W12σ2] + E[W2

12ξT
2 (ξ2 − µ(U1))σ

2]

= O
(

tr(Σ∗)/n2h
)

.

Using (C3) and the following fact tr2(Σ∗) ≤ ptr(Σ2
∗), we obtain tr(Σ∗)/

√
tr(Σ2

∗) = o(nh),

i.e., A(1,1)
5 = o

(√
tr(Σ2

∗)/n
)

. Then, the following can be seen:

E
[

P(1)
ij L(1)

ij

]
= ∥C∗(α)∥2 + o

(√
tr(Σ2

∗)/n
)

.

The conclusion (i) of Theorem 1 follows from the calculation of E
[

P(1)
ij L(1)

ij

]
and the

proof of Theorem 1 in [21]. Conclusion (ii) is addressed in Theorem 2’s proof; here we
omit it.
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Proof of Theorem 2. By Theorem 1, we have the following:

n(E(Tnp)− ∥C∗(α)∥2)

σ2
√

2tr(Σ2
∗)

= o(1),

then we only need to prove the following:

n(Tnp − ETnp)

σ2
√

2tr(Σ2
∗)

D−→ N(0, 1). (A1)

We denote T(k,l)
np = n(n

2)
−1 ∑

i>j

(
P(k)

ij L(l)
ij − E

(
P(k)

ij L(l)
ij

))
with k, l = 1, 2, 3, 4. The subse-

quent result is established:

n(Tnp − ETnp) =
4

∑
k=1

4

∑
l=1

T(k,l)
np .

In order to derive the asymptotic properties of the above equation, we will find the
asymptotic order of all terms T(k,l)

np . These items are divided into the following two groups
according to the treatment methods.

• Group 1: (k, l) = (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3).
• Group 2: (k, l) = (2, 2), (2, 4), (3, 2), (3, 4), (4, 2), (4, 4).

Since the methods are similar, the cases of (k, l) = (1, 1) and (k, l) = (2, 2) will be consid-
ered, respectively, in detail in each group. Firstly, for T(1,1)

np , we can rewrite the following:

T(1,1)
np ≜ T(1,1)

np,1 + T(1,1)
np,2 + T(1,1)

np,3 + T(1,1)
np,4 + T(1,1)

np,5 + T(1,1)
np,6 + T(1,1)

np,7 + T(1,1)
np,8 + T(1,1)

np,9 , (A2)

where

T(1,1)
np,1 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩Dg(Ui)Dg(Uj)− E[⟨Xi − µ̂it, Xj − µ̂jt⟩

Dg(Ui)Dg(Uj)]

}
,

T(1,1)
np,2 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xj − µ̂jt, α⟩Dg(Ui)− E[⟨Xi − µ̂it, Xj

− µ̂jt⟩]⟨Xj − µ̂jt, α⟩Dg(Ui)

}
,

T(1,1)
np,3 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xi − µ̂it, α⟩Dg(Uj)− E[⟨Xi − µ̂it, Xj

− µ̂jt⟩]⟨Xi − µ̂it, α⟩Dg(Uj)

}
,

T(1,1)
np,4 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩Dg(Ui)ε j − E[⟨Xi − µ̂it, Xj

− µ̂jt⟩Dg(Ui)ε j]

}
,
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T(1,1)
np,5 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩Dg(Uj)εi − E[⟨Xi − µ̂it, Xj

− µ̂jt⟩Dg(Uj)εi]

}
,

T(1,1)
np,6 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xj − µ̂jt, α⟩εi

}
,

T(1,1)
np,7 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xi − µ̂it, α⟩ε j

}
,

T(1,1)
np,8 =

2(n − 1)
n2 ∑

j<i

{
⟨Xi − µ̂it, α⟩⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xj − µ̂jt, α⟩ − E[⟨Xi

− µ̂it, α⟩⟨Xi − µ̂it, Xj − µ̂jt⟩⟨Xj − µ̂jt, α⟩]
}

,

T(1,1)
np,9 =

2(n − 1)
n2 ∑

j<i
⟨Xi − µ̂it, Xj − µ̂jt⟩εiε j.

To prove (A1), we shall prove the following:

T(1,1)
np − ET(1,1)

np

σ2
√

2tr(Σ2
∗)

=
T(1,1)

np,91

σ2
√

2tr(Σ2
∗)

+ op(1), (A3)

where T(1,1)
np,91 = 2(n−1)

n2 ∑
j<i

⟨Xi − µit, Xj − µjt⟩εiε j.

It is easy to see that the means of nine items in the right equation of (A2) are all zero.
To calculate their asymptotic order, it is necessary to prove their second moment. Due to
the similarity in calculating the first eight items, we use the first item T(1,1)

np,1 as an example
to consider.

E
[
(T(1,1)

np,1 )
2
]
=

n2

(n
2)

2

n

∑
i=2

E
[

Q(1,1)
i,1 Q(1,1)

i,1

]
+

n2

(n
2)

2

n

∑
i=2

∑
j ̸=i

E
[

Q(1,1)
i,1 Q(1,1)

j,1

]
+ o(tr(Σ2

∗)),

where

Q(1,1)
i,1 =

i−1

∑
j=1

⟨Xi − µ̂it, Xj − µ̂jt⟩Dg(Ui)Dg(Uj).

For i ̸= j, let us calculate E
[

Q(1,1)
i,1 Q(1,1)

i,1

]
and E

[
Q(1,1)

i,1 Q(1,1)
j,1

]
.

E
[

Q(1,1)
i,1 Q(1,1)

i,1

]
= (i − 1)E

[
⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X1 − µ̂1t, X2 − µ̂2t⟩Dg(U1)

2Dg(U2)
2
]

+ (i − 1)(i − 2)E
[
⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X1 − µ̂1t, X3 − µ̂3t⟩Dg(U1)

2Dg(U2)Dg(U3)
]

≜ (i − 1)B(1,1)
11 + (i − 1)(i − 2)B(1,1)

12 ,

E
[

Q(1,1)
i,1 Q(1,1)

j,1

]
= Ξ1E

[
⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X1 − µ̂1t, X3 − µ̂3t⟩Dg(U1)

2Dg(U2)Dg(U3)
]
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+ Ξ2E
[
⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X3 − µ̂3t, X4 − µ̂4t⟩Dg(U1)Dg(U2)Dg(U3)Dg(U4)

]
≜ Ξ1B(1,1)

12 + Ξ2B(1,1)
13 ,

where Ξ1 = (i − 1) ∧ (j − 1), Ξ2 = (i − 1)(j − 1)− (i − 1) ∧ (j − 1).
Using the Cauchy–Schwarz inequality and Lemma A.2, we can obtain

B(1,1)
11 = O(C4

n
√

ntr(Σ2
∗)).

For B(1,1)
12 and B(1,1)

13 ,

B(1,1)
12 = E

[
⟨X1 − µ̂1t, X2 − µ̂2t⟩⟨X1 − µ̂1t, X3 − µ̂3t⟩Dg(U1)

2Dg(U2)Dg(U3)
]

= O
(

E
[
W23tr(Σ∗(U1)Σ∗(U3))Dg(U1)

2Dg(U2)Dg(U3)
]

+ E
[
W13W21tr(Σ∗(U1)Σ∗(U3))Dg(U1)

2Dg(U2)Dg(U3)
]

+ E
[
W12W13tr(Σ∗(U1))tr(Σ∗(U3))Dg(U1)

2Dg(U2)Dg(U3)
]

+ E
[
µT(U1)µ(U2)µ

T(U3)µ(U1)Dg(U1)
2Dg(U2)Dg(U3)

])
= O

(
E
[
tr(Σ∗(U1)Σ∗(U2))g2(U1)g(U2)]/n2 + E2[tr(Σ∗(U1))g2(U1)]/n3

+ E[µT(U2)µ(U1)µ
T(U1)µ(U2)g(U1)/n2]

+ E[µT(U2)µ(U1)µ
T(U1)µ(U2)g2(U1)g2(U2)/n2]),

B(1,1)
13 = O

(
E[DµT(U1)Dµ(U2)(µ(U3)− µ̂(U3))

T(µ(U4)− µ̂(U4))

Dg(U1)Dg(U2)Dg(U3)Dg(U4)]
)

= O
(

µT(U1)µ(U2)µ
T(U3)µ(U4)g(U1)g(U2)g(U3)g(U4)/n2

)
.

So, we can have T(1,1)
np,1 = op

(√
tr(Σ2

∗)

)
. We apply similar methods to the T(1,1)

np,1 , the

terms {T(1,1)
np,k , k = 2, . . . , 7} are all equal to op(

√
tr(Σ2

∗)). For T(1,1)
np,9 , we rewrite

T(1,1)
np,9 ≜ T(1,1)

np,91 + T(1,1)
np,92 + T(1,1)

np,93 + T(1,1)
np,94,

where

T(1,1)
np,91 =

2(n − 1)
n2

n

∑
i=2

i−1

∑
j=1

{
⟨Xi − µit, Xj − µjt⟩εiε j

}
,

T(1,1)
np,92 =

2(n − 1)
n2

n

∑
i=2

i−1

∑
j=1

{
⟨Xi − µit, Dµjt⟩εiε j

}
,

T(1,1)
np,93 =

2(n − 1)
n2

n

∑
i=2

i−1

∑
j=1

{
⟨Xj − µjt, Dµit⟩εiε j

}
,

T(1,1)
np,94 =

2(n − 1)
n2

n

∑
i=2

i−1

∑
j=1

{
⟨Dµit, Dµjt⟩εiε j

}
.
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Since the means of the above four formulas are zero, in order to prove that (A3) is
true, it is necessary to verify that the second moments of T(1,1)

np,9k, k = 2, 3, 4 are higher-order

infinitesimals of the quantity tr(Σ2
∗). In fact,

E[T(1,1)
np,92]

2 = E[T(1,1)
np,93]

2

=
4(n − 1)2σ4

n4

n

∑
i=2

{
(i − 1)E

[
⟨X1 − µ1t, Dµ2t⟩

]2}
= O

(
E[⟨X1 − µ1t, Dµ2t⟩⟨X1 − µ1t, Dµ2t⟩]

)
= O

(
nE[W2

23ξT
3 Σ∗(U1)ξ3]

)
= o(tr(Σ2

∗)),

E[T(1,1)
np,94]

2 = O
(
E[⟨Dµit, Dµjt⟩⟨Dµit, Dµjt⟩]

)
= O

(
E[tr(Σ∗(U3)µ(U1)µ

T(U1) f−1(U3))]/nh
)
+ O

(
tr2(Σ∗)/n2h

)
= o(tr(Σ2

∗)).

Then Equation (A3) holds. Similarly, for Group 2, i.e., when (k, l) = (2, 2), (2, 4), (3, 2),
(3, 4), (4, 2), (4, 4), there is a similar proof process for the asymptotic behavior of each item
in the group. Here, we only consider T(2,2)

np . By careful calculation, we have the following:

E[(⟨X̌1, X̌1⟩+ ⟨X̌2, X̌2⟩ − 2E(⟨X̌1, X̌1⟩))2]

= O(E[⟨X1 − µ1t, X1 − µ1t⟩2] + E2[⟨X1 − µ1t, X1 − µ1t⟩]
+ E[⟨X1 − µ1t, X1 − µ1t⟩⟨X2 − µ2t, X2 − µ2t⟩])

= O(E[(ξ1 − µ(U1))
T(ξ1 − µ(U1))(ξ1 − µ(U1))

T(ξ1 − µ(U1))]

+ E[(ξ1 − µ(U1))
T(ξ1 − µ(U1))(ξ2 − µ(U2))

T(ξ2 − µ(U2))]

+ E2[(ξ1 − µ(U1))
T(ξ1 − µ(U1))])

= O(E[2tr(Σ2
∗(U1)) + tr2(Σ∗) + ∆tr(diag(ΓT(U1)Γ(U1))Γ

T(U1)Γ(U1))]).

Using the fact that

E[tr(diag(ΓT(U1)Γ(U1))Γ
T(U1)Γ(U1))] = E[tr(Σ2

∗(U1))] = O(tr(Σ2
∗)),

we have the following:

E[(⟨X̌1, X̌1⟩+ ⟨X̌2, X̌2⟩ − 2E(⟨X̌1, X̌1⟩))2] = O(tr2(Σ∗) + tr(Σ2
∗)). (A4)

In addition, by a simple calculation, we have the following:

E[(Y̌2
1 + Y̌2

2 − 2E[Y̌2
1 ])

2] = 2E[(Y̌2
1 )

2] + 2E[Y̌2
1 Y̌2

2 ]− 4E2[Y̌2
1 ] = O(1). (A5)

Combining (A4), (A5) with the Cauchy–Schwarz inequality, we have the following:

E|T(2,2)
np | ≤ 1

4n

√
E[(⟨X̌1, X̌1⟩+ ⟨X̌2, X̌2⟩ − 2E(⟨X̌1, X̌1⟩))2]

√
E[Y̌2

1 + Y̌2
2 − 2E(Y̌2

1 )]
2

= o
(√

tr(Σ2
∗)

)
.
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We denote the following: Ťnp1 ≜ (n
2)

−1/2 n
∑

i=2

i−1
∑

j=1
⟨Xi − µit, Xj − µjt⟩εiε j, by condition

(C1), we only need to consider the following: Ťnp = (n
2)

−1/2 n
∑

i=2

i−1
∑

j=1
(ξi − µ(Ui))

T(ξ j −

µ(Uj))εiε j. Then, by Slutsky’s theorem, if the following conclusion can be obtained, Theo-
rem 2 will be proved.

Ťnp√
var(Ťnp)

D−→ N(0, 1).

By some simple calculations, we have var(Ťnp) = σ4tr(Σ2
∗). Let Zni = ∑i−1

j=1⟨Xi −

µit, Xj − µjt⟩εiε j/
√
(n

2), vni = E[Z2
ni|Fi−1], Xui = (ξi, Ui, εi)

T , where Fi = {Xu1, . . . , Xui}
is a σ-algebra produced by {Xui, k = 1, . . . , i}, Vn = ∑n

i=2 vni. The condition E[Zni|Fi] = 0
is readily verifiable, and the sequence {∑

j
i=2 Zni,Fj : 2 ≤ j ≤ n} constitutes a mean-zero

martingale. Adherence to the Martingale central limit theorem is ensured by verifying the
following conditions:

Vn

var(Ťnp)

P−→ 1, as n → ∞; (A6)

n

∑
i=2

σ−4tr−1(Σ2
∗)E{Z2

ni I(|Zni| > ησ2
√

tr(Σ2
∗))|Fi−1}

P−→ 0 for ∀ η > 0. (A7)

Note that

vni =
σ2

(n
2)

i−1

∑
j=1

{
ε2

j (ξ j − µ(Uj))
TΣ∗(ξ j − µ(Uj)) + 2 ∑

k<l<i
εkε l(ξk − µ(Uk))

TΣ∗(ξl − µ(Ul))
}

.

Then, we define the following:

Vn

var(T̃np)
≜ Cn1 + Cn2,

where

Cn1 =
1

(n
2)σ

2tr(Σ2
∗)

∑
j<i

ε2
j (ξ j − µ(Uj))

TΣ∗(ξ j − µ(Uj)),

Cn2 =
2

(n
2)σ

2tr(Σ2
∗)

∑
k<l<i

εkε l(ξk − µ(Uk))
TΣ∗(ξl − µ(Ul)).

The equality E[Cn1] = 1 can be readily confirmed, and we have the following:

var(Cn1) = E[C2
n1]− 1

=
1

n4(σ4Σ2
∗)2

n

∑
i=2

(
(i − 1)E

[
(ξ1 − µ(U1))

TΣ∗(ξ1 − µ(U1))(ξ1 − µ(U1))
TΣ∗(ξ1

− µ(U1))σ
4ε4

1

]
+ (i − 1)(i − 2)E

[
(ξ1 − µ(U1))

TΣ∗(ξ1 − µ(U1))(ξ2

− µ(U2))
TΣ∗(ξ2 − µ(U2))σ

4ε2
1ε2

2

])
+

1
n4(σ4Σ2

∗)2

n

∑
i=2

∑
j ̸=i

(
(i − 1) ∧ (j − 1)E[(ξ1 − µ(U1))

TΣ∗(ξ1 − µ(U1))(ξ1

− µ(U1))
TΣ∗(ξ1 − µ(U1))σ

4ε4
1] + ((i − 1)(j − 1)− (i − 1) ∧ (j − 1))E[(ξ1

− µ(U1))
TΣ∗(ξ1 − µ(U1))(ξ2 − µ(U2))

TΣ∗(ξ2 − µ(U2))σ
4ε2

1ε2
2]
)
− 1



Mathematics 2024, 12, 2588 22 of 23

=
E[ε4

1]

nσ4tr2(Σ2
∗)

O(E[(ξ1 − µ(U1))
TΣ∗(ξ1 − µ(U1))(ξ1 − µ(U1))

TΣ∗(ξ1 − µ(U1))])

=
E[ε4

1]

nσ4tr2(Σ2
∗)

O(E[tr(Σ∗(U1)Σ∗Σ∗(U1)Σ∗)] + tr2(Σ∗(U1)Σ∗)

+ ∆tr(diag(ΓT(U1)Σ∗Γ(U1))Γ
T(U1)Σ∗Γ(U1)))

=
E[ε4

1]

nσ4tr2(Σ2
∗)

O(tr(Σ4
∗) + tr2(Σ2

∗)),

By (C2), we have Cn1
P−→ 1. Similarly, we can obtain E[Cn2] = 0, and we have

the following:

var(Cn2) = E[C2
n2]

= O
( 2

(n
2)

2tr2(Σ2
∗)

n

∑
i=2

((i − 1)(i − 2)E[(ξ1 − µ(U1))
TΣ∗(ξ2 − µ(U2))(X2

− µ(U2))
TΣ∗(ξ1 − µ(U1))] +

n

∑
i=2

∑
j ̸=i

(i − 1) ∧ (j − 1)((i − 1) ∧ (j − 1)− 1)

E[(ξ1 − µ(U1))
TΣ∗(ξ2 − µ(U2))(ξ2 − µ(U2))

TΣ∗(ξ1 − µ(U1))])
)

= O

(
tr(Σ4

∗)

tr2(Σ2
∗)

)
.

Combined with tr(Σ4
∗) = o(tr2(Σ2

∗)), we have Cn2
P−→ 0. Thus, Equation (A6)

holds. Finally, we only need to prove (A7). Hence, leveraging the law of large numbers
and the fact that E[Z2

ni I(|Zni| > ησ2tr(Σ2
∗))] ≤ E(Z4

ni|Fi−1)/(η2σ4tr(Σ2
∗)), it suffices to

demonstrate that ∑2≤i≤n E(Z4
ni) = o(tr2(Σ2

∗)). Through straightforward computations, we
obtain the following result:

n

∑
i=2

E[Z4
ni]

=
1

(n
2)

2 ∑
j<i

E[((ξi − µ(Ui))
T(ξ j − µ(Uj)))

4ε4
i ε4

j ] +
n

∑
i=2

E[Z4
ni]

=
1

(n
2)

2 ∑
j<i

∑
k ̸=j

E[((ξi − µ(Ui))
T(ξ j − µ(Uj)))

2((ξi − µ(Ui))
T(ξk − µ(Uk)))

2ε4
i ε2

j ε2
k]

=
E2(ε4

1)

(n
2)

2

n

∑
i=2

(i − 1)E[(ξ1 − µ(U1))
T(ξ2 − µ(U2))]

4 +
3σ4E(ε4

1)

(n
2)

2

n

∑
i=2

(i − 1)(i − 2)

E
[
((ξ1 − µ(U1))

T(ξ2 − µ(U2)))
2((ξ1 − µ(U1))

T(ξ3 − µ(U3))
2)
]

= O
(

E[(ξ1 − µ(U1))
T(ξ2 − µ(U2))]

4

n2

)
+ O

(
E[(ξ1 − µ(U1))

TΣ∗(ξ1 − µ(U1))]
2

n

)
Combining (C2) and Lemma 2, Equation (A7) holds. Thus, the proof of Theorem 2

is completed.

References
1. Crainiceanu, C.M.; Staicu, A.M.; Di, C.Z. Generalized multilevel functional regression. J. Am. Stat. Assoc. 2009, 104, 1550–1561.

[CrossRef] [PubMed]
2. Wang, J.; Zhou, F.; Li, C.; Yin, N.; Liu, H.; Zhuang, B.; Huang, Q.; Wen, Y. Gene Association Analysis of Quantitative Trait Based

on Functional Linear Regression Model with Local Sparse Estimator. Genes 2023, 14, 834. [CrossRef] [PubMed]
3. Kokoszka, P.; Miao, H.; Zhang, X. Functional dynamic factor model for intraday price curves. J. Financ. Econom. 2014, 13, 456–477.

[CrossRef]

http://doi.org/10.1198/jasa.2009.tm08564
http://www.ncbi.nlm.nih.gov/pubmed/20625442
http://dx.doi.org/10.3390/genes14040834
http://www.ncbi.nlm.nih.gov/pubmed/37107592
http://dx.doi.org/10.1093/jjfinec/nbu004


Mathematics 2024, 12, 2588 23 of 23

4. Rigueira, X.; Araújo, M.; Martínez, J.; García-Nieto, P.J.; Ocarranza, I. Functional Data Analysis for the Detection of Outliers
and Study of the Effects of the COVID-19 Pandemic on Air Quality: A Case Study in Gijón, Spain. Mathematics 2022, 10, 2374.
[CrossRef]

5. Yao, F.; Müller, H.G. Functional quadratic regression. Biometrika 2010, 97, 49–64. [CrossRef]
6. Lian, H. Functional partial linear model. J. Nonparametr. Stat. 2011, 23, 115–128. [CrossRef]
7. Zhou, J.; Chen, M. Spline estimators for semi-functional linear model. Stat. Probab. Lett. 2012, 82, 505–513. [CrossRef]
8. Tang, Q. Estimation for semi-functional linear regression. Statistics 2015, 49, 1262–1278.
9. Zhang, Y.; Wu, Y. Robust hypothesis testing in functional linear models. J. Stat. Comput. Simul. 2023, 93, 2563–2581. [CrossRef]
10. Kokoszka, P.; Maslova, I.; Sojka, J.; Zhu, L. Testing for lack of dependence in the functional linear model. Can. J. Stat. 2008, 36,

207–222. [CrossRef]
11. James, G.M.; Wang, J.; Zhu, J. Functional linear regression that’s interpretable. Ann. Stat. 2009, 37, 2083–2108. [CrossRef]
12. Shin, H. Partial functional linear regression. J. Stat. Plan. Inference 2009, 139, 3405–3418. [CrossRef]
13. Yu, P.; Zhang, Z.; Du, J. A test of linearity in partial functional linear regression. Metrika 2016, 79, 953–969. [CrossRef]
14. Hu, H.; Zhang, R.; Yu, Z.; Lian, H.; Liu, Y. Estimation and testing for partially functional linear errors-in-variables models.

J. Multivar. Anal. 2019, 170, 296–314.
15. Smaga, Ł. General linear hypothesis testing in functional response model. Commun. Stat.-Theory Methods 2019, 50, 5068–5083.
16. Zhu, H.; Zhang, R.; Li, H. Estimation on semi-functional linear errors-in-variables models. Commun. Stat.-Theory Methods 2019, 48,

4380–4393. [CrossRef]
17. Zhou, J.; Peng, Q. Estimation for functional partial linear models with missing responses. Stat. Probab. Lett. 2020, 156, 108598.

[CrossRef]
18. Zhao, F.; Zhang, B. Testing linearity in functional partially linear models. Acta Math. Appl. Sin. Engl. Ser. 2024, 40, 875–886.

[CrossRef]
19. Hu, W.; Lin, N.; Zhang, B. Nonparametric testing of lack of dependence in functional linear models. PLoS ONE 2020, 15, e0234094.

[CrossRef]
20. Zhao, F.; Lin, N.; Hu, W.; Zhang, B. A faster U-statistic for testing independence in the functional linear models. J. Stat. Plan.

Inference 2022, 217, 188–203. [CrossRef]
21. Zhao, F.; Lin, N.; Zhang, B. A new test for high-dimensional regression coefficients in partially linear models. Can. J. Stat. 2023,

51, 5–18. [CrossRef]
22. Cui, H.; Guo, W.; Zhong, W. Test for high-dimensional regression coefficients using refitted cross-validation variance estimation.

Ann. Stat. 2018, 46, 958–988. [CrossRef]
23. Zhong, P.; Chen, S. Tests for high-dimensional regression coefficients with factorial designs. J. Am. Stat. Assoc. 2011, 106, 260–274.

[CrossRef]
24. Chen, S.; Zhang, L.; Zhong, P. Tests for high-dimensional covariance matrices. J. Am. Stat. Assoc. 2010, 105, 810–819. [CrossRef]
25. Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice; Springer: New York, NY, USA, 2006.
26. Shang, H.L. Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density.

Comput. Stat. 2014, 29, 829–848. [CrossRef]
27. Yu, P.; Zhang, Z.; Du, J. Estimation in functional partial linear composite quantile regression model. Chin. J. Appl. Probab. Stat.

2017, 33, 170–190.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math10142374
http://dx.doi.org/10.1093/biomet/asp069
http://dx.doi.org/10.1080/10485252.2010.500385
http://dx.doi.org/10.1016/j.spl.2011.11.027
http://dx.doi.org/10.1080/00949655.2023.2195657
http://dx.doi.org/10.1002/cjs.5550360203
http://dx.doi.org/10.1214/08-AOS641
http://dx.doi.org/10.1016/j.jspi.2009.03.001
http://dx.doi.org/10.1007/s00184-016-0584-x
http://dx.doi.org/10.1080/03610926.2018.1494836
http://dx.doi.org/10.1016/j.spl.2019.108598
http://dx.doi.org/10.1007/s10255-023-1040-0
http://dx.doi.org/10.1371/journal.pone.0234094
http://dx.doi.org/10.1016/j.jspi.2021.08.002
http://dx.doi.org/10.1002/cjs.11665
http://dx.doi.org/10.1214/17-AOS1573
http://dx.doi.org/10.1198/jasa.2011.tm10284
http://dx.doi.org/10.1198/jasa.2010.tm09560
http://dx.doi.org/10.1007/s00180-013-0463-0

	Introduction
	Test Statistic
	Asymptotic Theory
	Simulation
	Application
	Conclusions
	Appendix A
	References

