
Citation: Arnau, R.; Calabuig, J.M.;

García-Raffi, L.M.; Sánchez Pérez,

E.A.; Sanjuan, S. A Bellman–Ford

Algorithm for the Path-Length-

Weighted Distance in Graphs.

Mathematics 2024, 12, 2590. https://

doi.org/10.3390/math12162590

Academic Editor: Andrea Scozzari

Received: 15 July 2024

Revised: 16 August 2024

Accepted: 20 August 2024

Published: 22 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Bellman–Ford Algorithm for the Path-Length-Weighted
Distance in Graphs
Roger Arnau , José M. Calabuig , Luis M. García-Raffi , Enrique A. Sánchez Pérez * and Sergi Sanjuan

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain; ararnnot@upvnet.upv.es (R.A.); jmcalabu@mat.upv.es (J.M.C.);
lmgarcia@mat.upv.es (L.M.G.-R.); ssansil@upvnet.upv.es (S.S.)
* Correspondence: easancpe@mat.upv.es; Tel.: +34-963866000

Abstract: Consider a finite directed graph without cycles in which the arrows are weighted by positive
weights. We present an algorithm for the computation of a new distance, called path-length-weighted
distance, which has proven useful for graph analysis in the context of fraud detection. The idea
is that the new distance explicitly takes into account the size of the paths in the calculations. It
has the distinct characteristic that, when calculated along the same path, it may result in a shorter
distance between far-apart vertices than between adjacent ones. This property can be particularly
useful for modeling scenarios where the connections between vertices are obscured by numerous
intermediate vertices, such as in cases of financial fraud. For example, to hide dirty money from
financial authorities, fraudsters often use multiple institutions, banks, and intermediaries between the
source of the money and its final recipient. Our distance would serve to make such situations explicit.
Thus, although our algorithm is based on arguments similar to those at work for the Bellman–Ford
and Dijkstra methods, it is in fact essentially different, since the calculation formula contains a weight
that explicitly depends on the number of intermediate vertices. This fact totally conditions the
algorithm, because longer paths could provide shorter distances—contrary to the classical algorithms
mentioned above. We lay out the appropriate framework for its computation, showing the constraints
and requirements for its use, along with some illustrative examples.

Keywords: graph; distance; Bellman–Ford; algorithm; path-length-weighted

MSC: 05C38; 90C35

1. Introduction

Algorithms for calculating the (weighted) path distance between vertices in a graph
appeared in the middle of the 20th century, which were motivated by the growing interest
at the time in the applications of the mathematical analysis of graphs. The Bellman–Ford
algorithm is the main reference of these early studies [1]. Dijkstra’s algorithm for solving
the same problem appeared at about the same time [2], and it differs from the other, being
more efficient depending on the particular problem. More specifically, Dijkstra’s algorithm
is best used when you have non-negative weights and need an efficient solution for static
scenarios. Bellman–Ford, on the other hand, is more versatile for situations where edge
weights can be negative and where it is important to detect negative cycles, making it
suitable for more complex or dynamic environments (see [3], p. 604). Thus, Dijkstra’s
algorithm can be used for finding the shortest driving route between two cities or for finding
the shortest path for data packets in a network. However the Bellman–Ford algorithm
can be used for analyzing currency exchange rates to detect arbitrage opportunities or for
analyzing supply chains with possible gains and losses during transport.

After these original works, the growing interest in the subject (due to the numerous
applications that graph theory has found in many fields) has given rise to a great deal

Mathematics 2024, 12, 2590. https://doi.org/10.3390/math12162590 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162590
https://doi.org/10.3390/math12162590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2544-8875
https://orcid.org/0000-0001-8398-8664
https://orcid.org/0000-0003-3985-8453
https://orcid.org/0000-0001-8854-3154
https://orcid.org/0009-0001-5310-2559
https://doi.org/10.3390/math12162590
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162590?type=check_update&version=1


Mathematics 2024, 12, 2590 2 of 16

of research on graph analysis, which often includes the study of these structures when
considered as metric spaces. The idea of also considering a graph as a metric space goes
back to the beginnings of the theory of graphs. Metric notions began to appear explicitly
in mathematical works in the second half of the last century. The main metric that was
considered (and, in a sense, the only one until the latter part of the century) was the so-
called path distance [4–6]: for undirected and connected graphs, this metric evaluated
between two vertices (nodes) is defined as the length of the shortest path between them
(see, for example, [7] §.2.2.2). One of the first advances in the metric analysis of graphs was
the introduction of weights in the definition of the path distance, assigning weights to the
individual paths connecting two consecutive nodes and calculating the infimum of the sum
of these weights. Some recent papers on the subject using weighted distances that have
inspired this paper are [8,9].

As in the case of other notions of fundamental graph theory, the relevant theo-
retical ideas appeared together with research topics from other scientific fields, such
as sociology [10–12]. The definition of different metrics and algorithms to compute them in-
creased greatly in the last decade of the last century, often proposed by problems from other
disciplines such as chemistry or crystallography (see [6,13] and the references therein).
In this sense, there is a particular case that deserves attention, that is, the resistance
distance [14,15]. It is a concept derived from electrical circuit theory and applied to graph
theory. It measures the “effective resistance” between two nodes (vertices) in a graph,
treating the graph as an electrical network where each edge is a resistor. The resistance
distance between two nodes i and j in a graph can be calculated using the Laplacian matrix
L of the graph. Specifically, if L+ denotes the Moore–Penrose pseudoinverse of L, the
resistance distance dr(i, j) is given by

dr(i, j) = L+
ii + L+

jj − L+
ij ,

where L+
ij is the i, j element of L+. This metric is a measure of the ease with which electric

current flows between two points, with a higher resistance distance indicating a more
“difficult” or “costly” connection in the graph’s structure. This concept has applications in
various fields such as data analysis, network reliability, and clustering tasks. Related also
to some ideas in theoretical chemistry [13] and social network analysis [12], this definition
turned out to be a useful tool in the study of molecular configurations in chemistry, although
it has also been used in network analysis and other fields [16–18]. In general, metrics
could play a relevant role when studying properties such as robustness (see, for example,
the survey [19]; see also [20]). The interested reader can find more information on the
applications of metric graphs in the books [7,21,22].

In the same direction, in this paper, we provide an algorithm to compute a new
distance that also appeared in an applied context in connection with the automatic analysis
of fraud in economic networks (see [23]). In this paper, we show that this metric allows one
to consider vertices that are far away when the distance is measured using the path distance,
becoming close with respect to this metric. It is especially useful in the economic analysis of
fraud in business networks, as often the strategy used to hide such fraud is to consider that
the analysis tools to be used against them are based on the path distance: closer vertices
in terms of fewer intermediate nodes means that they are more related vertices. However,
financial fraudsters always try to introduce many intermediate companies (intermediate
nodes) to avoid detection.

Technically, our metric is defined as a weighted metric, but this is achieved by dividing
the sums of weights appearing in the infimum that provides the value of the metric using a
new term that depends on the number of steps involved in the summation. We will show
that this change in the weighting process forces us to radically change the algorithm to
calculate it, since in this new case, longer paths could give shorter distances. However, in the
present work, we consider the case of acyclic directed graphs in order to avoid restrictions
that make it impossible to define a weighted path metric, since continuous passage through



Mathematics 2024, 12, 2590 3 of 16

a cycle could always give a null value to the metric (which would mean that it is not a
metric). There are other ways to avoid this (see, for example, Proposition 4.1 in [23]), but
in our case, we decided to compute the distance between vertices by restricting the set of
possible paths in the infimum that gives it. The way to do this is to avoid cycles and to
consider directed graphs. As a result, what we compute is not a metric on the whole graph
but only a distance between two vertices chosen in it.

Let us give now some basic definitions about graphs and metric spaces. Let us start by
explaining some concepts related to the general definition of what a metric is, which will
be adapted later according to the graph theoretic framework. Let R+ be the non-negative
real numbers. An (extended) quasi-metric on a set Ω is a function d : Ω×Ω→ R+ ∪ {∞}
such that for all a, b, c ∈ Ω, the axioms

1. d(a, b) = 0 = d(b, a) if and only if a = b, and
2. d(a, b) ≤ d(a, c) + d(c, b)

hold. The resulting quasi-metric structure (Ω, d) is called a quasi-metric space. For the
specific framework of this paper, a useful summary of the notions of distance in graphs,
with sufficient explanation and many examples, is given in Chapter 15 in [24].

In this paper, we will deal with the so called path-length-weighted distance, which
was introduced in [23] (§.4).

It should be noted that the version defined there was given for non-directed graphs,
and so the definition we use is slightly different. However, we will also define an extended
quasi-metric in this case by giving the value d(a, b) = ∞ when there is no path for going
from a to b, and considering only allowed paths between vertices.

Since we are interested in how to compute the distance and not in theoretical questions
about its metric space structure, we will focus our attention on the computational algorithm.
All the notions on graph theory that are needed can be found in books on this subject, such
as, for example, [7]. We will introduce some of them in the next section.

2. Main Definitions and Context

Take a weighted directed acyclic graph G = (V, E), where V is the set of vertices
(nodes), and E is the class of edges among them. Let us define what we call a proximity
function. This is an extended function ϕ : V × V → R+ ∪ {∞} that describes by means
of a non-negative real number a relation among node a and node b. It is supposed that
ϕ represents some sort of distance among the nodes, but—and this is crucial—it is not
assumed to be a distance (that is, none of the axioms of the metric are assumed). In the case
where a and b are not connected in the graph, we will write 0, 1, or ∞ depending on how
we write the algorithm, that is, how we decide to codify the links in the graph. So, we will
consider structures (V, E, ϕ) when the graph is provided with a proximity function ϕ.

Consider a non-increasing sequence W := (Wi)
∞
i=1 of positive real numbers that will

be assumed to be the weights associated to the lengths of the paths considered in the
definition of a distance starting from the proximity function ϕ. Although all the graphs are
finite, we will often define W as an infinite sequence using only its first elements. Given
two vertices a, b ∈ V, we define the set of all possible paths from a to b as

P(a, b) = {P = (x0, x1, . . . , xn) : x0 = a, xn = b, (xi−1, xi) ∈ E, n ∈ N}.

The length of a path P = (x0, x1, . . . , xn) is denoted by l(P) = n, and its total distance
is denoted by

d(P) = Wn · s(P),

where s(P) = ∑n
i=1 ϕ(xi−1, xi) is the sum of path weights of the path P. Given two points

a, b ∈ V, we define an extended quasi-metric in V as the function on V ×V by

dϕ(a, b) = inf{d(P) : P ∈ P(a, b)},



Mathematics 2024, 12, 2590 4 of 16

with the convention that inf{∅} = ∞. As in the original definition in [23] (§.4), we will call
it the path-length-weighted quasi-metric. The reader can find there the proof that it defines
a metric. Given two paths P = (x0, x1, . . . , xn) ∈ P(a, b) and Q = (y0, y1, . . . , ym) ∈ P(b, c),
we define the concatenation of both as

P ⊔Q = (x0, x1, . . . xn, y1, . . . , ym).

Write V = {vi : i = 0, ..., n} for the vertices of the graph. As in the classical math
distance case, we are interested in this paper in computing the distance from any of the
points in V to v0.

3. Previous to the Algorithm

Consider the weighted directed graph without cycles G = (V, E) and fix a vertex
to which we want to measure the distance from any other vertex of the graph. Write
V = {vi : i = 0, ..., n}, and suppose that we want to compute the distance from any other
node of the graph to v0.

In both the Bellman–Ford and Dijkstra algorithms, the shortest distances from the
source node v0 to all other nodes in a graph are computed by selecting the closest unvisited
node to the current node. In this process, all edges leaving it to unvisited nodes are
examined, updating the distance from these nodes if the distance through the selected node
is less than the currently known distance. Thus, the updated distance is given by the path
from this node to the current node and the path of least distance between the current node
and the source.

We introduce the following formal operation ⊞ to describe the updated distance
calculation in a simpler way. Fix a vertex v0 ∈ V, and let us write vselected for the vertex
from which we want to compute the distance to v0, and vcurrent is another vertex that
belongs to one of the paths from vselected to v0. Let us define

(d(R), l(R))⊞ (d(P), l(P)) := (Wl(P)+l(R) · d(R) +
Wl(P)+l(R)

Wl(P)
· d(P), l(P) + l(R)), (1)

where R ∈ P(vselected, vcurrent) and P ∈ P(vcurrent, v0) define the path with the shortest
distance between the current node and the source.

This weighted sum substitutes the normal addition used in the Bellman–Ford algo-
rithm, and it allows us to change the weights when the length of the path increases. Unlike
the Bellman–Ford algorithm, this algorithm has the additional complexity in that the path
with the shortest distance between two nodes does not have to be the one that passes
through the nodes with the shortest distances, since the number of steps must be taken
into account. As illustrated in Example 1, replacing the normal sum of the Bellman–Ford
algorithm with the weighted sum is not sufficient, as it is crucial to take the path length
into account in each distance calculation to ensure that no path possibility is discarded.

Example 1. Consider the graph in Figure 1. We will calculate the path-length-weighted distance
from v5 to v0. For this purpose, we consider the weights associated with the lengths of the paths as

W :=
(

1
t

)∞

t=1
. This means that the distance between nodes is the average of the path weights.

The first step in calculating the distance has to take into account, of course, the only way
forward in the graph: going from v5 to v0. For the following steps, we clearly have that the path
with the smallest distance between the nodes v4 and v0 is

P := (v4, v3, v0),

with a length l(P) = 2 and a distance d(P) = 3+1
2 = 2 = dϕ(v4, v0).



Mathematics 2024, 12, 2590 5 of 16

Since v5 is only directly connected to v4, when we apply a Bellman–Ford-type algorithm, the
computation of dϕ(v5, v0) is determined by the path Q = (v5, v4) ⊔ P, which results in

(d(P), l(Q)) = (ϕ(v5, v4), 1)⊞ (d(P), l(P)) =
(

ϕ(v5, v4) + 3 + 1
3

, l(P) + 1
)
= (8, 3).

In spite of this, the path with the shortest distance between the nodes v5 and v0 is

Q′ = (v5, v4, v2, v1, v0),

with a length l(Q′) = 4 and an associate distance d(Q′) = 20+3+4+2
4 = 7.25 < 8 = d(Q).

Figure 1. A graph in which a Bellman–Ford-type algorithm used to calculate the smallest distance
between two nodes would not work. The weight of each edge is written on the corresponding arrow.

Consequently, as shown in Example 1, the shortest distance from an unvisited node
to the current node for the metric presented in this article does not have to be calculated
from the path with the shortest distance between the current node and the source. Given
three vertices a, b, c ∈ V, this implies that the path with the shortest distance from a to c
passing through b is not necessarily the union of the paths with the shortest distance from
a to b and from b to c. In order to not consider all possible paths in the calculation of the
distances, multi-objective optimization can be used, which allows us to restrict attention to
the set of possible paths with the smallest distance and to make tradeoffs within this set.

Assume that, at a particular step of the algorithm, two or more paths P, Q ∈ P(a, b)
are found between the vertices a, b ∈ V. Define on P(a, b) an order given by P ⪯ Q if and
only if

l(P) ≥ l(Q) and s(P) ≤ s(Q). (2)

It is straightforward to see that it is an order relation. Note also that it implies that
d(P) ≤ d(Q). The following result shows that it is sufficient to explore the minimal paths
of P(a, b) (in the sense defined by ⪯), i.e., those residing in the following Pareto front,

P∗(a, b) =
{

P ∈ P(a, b) : {P′ ∈ P(a, b) : P′ ⪯ P, P ̸= P′} = ∅
}

. (3)

This front is illustrated in Figure 2.

Proposition 1. Consider a graph G and the corresponding elements defined above. Fix a, b ∈ V,
and let P, P′ ∈ P(a, b) such that P ⪯ P′. Then, for any c ∈ V and R ∈ P(b, c), we have that the
paths Q = P ⊔ R and Q′ = P′ ⊔ R in P(a, c) satisfy Q ⪯ Q′, and, in particular, d(Q) ≤ d(Q′).

This means that, once you have found a better path (in terms of ⪯), you can discard the worst
one (and stop the exploration), as it will not be used to find any distance between the last vertices.



Mathematics 2024, 12, 2590 6 of 16

Figure 2. Example of a Pareto front associated with the possible paths in a graph. The framed dots
represent all possible paths from one node to another. The red dots represent the set of paths needed
to calculate distances, with P∗ being the set of all of them.

Proof. Consider P = (x0, x1, . . . , xn), P′ = (x′0, x′1, . . . , x′m), and R = (y0, y1, . . . , yr) in the
statement. Then, we have that

d(Q) = Wl(Q) ·
(

n

∑
i=1

ϕ(xi−1, xi) +
r

∑
i=1

ϕ(yi−1, yi)

)
,

d(Q′) = Wl(Q′) ·
(

m

∑
i=1

ϕ(x′i−1, x′i) +
r

∑
i=1

ϕ(yi−1, yi)

)
.

Recall that P ⪯ P′. Then, l(Q) = l(P)+ l(R) ≥ l(P′)+ l(R) = l(Q′), and so Wl(Q) ≤Wl(Q′).
Moreover,

n

∑
i=1

ϕ(xi−1, xi) = s(P) ≤ s(P′) =
m

∑
i=1

ϕ(x′i−1, x′i).

Thus, we obtain Q ⪯ Q′.

Remark 1. It is easy to see that Proposition 1 also works if the composition of the paths is done
in the opposite way. That is, the same conclusion holds if Q = R ⊔ P and Q′ = R ⊔ P′ belong to
P(a, c), with R ∈ P(a, b) and P, P′ ∈ P(b, c).

4. The Algorithm

Taking into account the ideas of the previous section, in this part of the paper, we
explain the algorithm to compute the path-length-weighted distance in a graph. To make
the new algorithm more efficient, the sum of the weights—s(P)—will be used in the
calculations instead of the distance—d(P)—which will be calculated in the last step. The
counting parameter m will be used to indicate the step number in the algorithm, that is,
the length of the path. Let V = {vi : i = 0, ..., n} denote the set of all nodes, where v0
represents the source node. In this context, we define Di, with vi ∈ V, as the set of all
computed tuples as (si, li), where (to simplify notation) si denotes the sum of all weights
of a path P ∈ P(vi, v0), and li represents its length. We introduce the following formal



Mathematics 2024, 12, 2590 7 of 16

operation⊕ to describe the process of adding a new node in terms of the sum of all weights.
Once a couple of adjacent vertices vi, vj are fixed, we write

ϕ(vj, vi)⊕ (si, li) :=
(
si + ϕ(vj, vi), li + 1

)
. (4)

This definition is closely related to (but of course not the same as) that of ⊞ given in
Equation (1), but, as we noted above, it is written in terms of s rather than d. Finally, we set
the (ordered) set dϕ = {dϕ(vi, v0) : vi ∈ V}.

The new algorithm that we propose follows the next steps. The parameter m ∈ N
gives the size of the paths that are considered at each step connecting any vertex vi with
the source node v0:

(1) Initialization: For m = 0, initialize the algorithm by doing Di = {(∞, 0)} for i =
1, ..., n− 1, and D0 = {(0, 0)}. We have that li = 0 for all i, since we are considering
steps of length equal to 0 at the beginning. Now, consider the “set of vertices connected
to v0 by a path of length 0”, that is, {v0}. Also, put, according to the definition,
s0 = l0 = 0.

(2) Search for all paths: Put m = 1. Consider the set of adjacent vertices to v0,

A0 := {vj ∈ V \ {v0} : ϕ(vj, v0) ∈ R+},

that is, all the vertices that are connected to v0. For vj ∈ A0, consider the quantities

ϕ(vj, v0)⊕ (s0, l0) = (ϕ(vj, v0), 1)

given by Equation (4) and add them to the set Dj that has been initialized as only
containing (∞, 0), that is,

Dj = Dj ∪ {(ϕ(vj, v0), 1)}.

(3) Path filtering: The main idea of the algorithm is to update the sets Dj as m grows
when repeating step (2). For a given m following 1 (make m = 2 for the immediate
step), we have that Dj is the set of tuples (s, l) of all paths P ∈ P(vj, v0) of lengths less
than or equal to m. We need to reduce the size of these sets by eliminating some non-
essential elements. According to Proposition 1, Equation (3) will be used to discard
the tuples belonging to those paths that give a greater distance than others. We do
that by replacing

Dj by P∗(Dj),

which is defined for any Dj as

P∗(Dj) =
{
(s, l) ∈ Dj : {(s′, l′) ∈ Dj : (s′, l′) ̸= (s, l), s′ ≤ s and l′ ≥ l} = ∅

}
.

Note that in the case that a given vj has any path of size m go to v0, this step will
remove the tuple (∞, 0) from the set Dj.

(4) Repeat: Repeat steps (2) and (3) until m is greater than the maximum length of all
paths in the graph connecting v0.

(5) Distance computation: Finally, once the final versions of the sets Di have been cal-
culated, we proceed to the calculation of the distances. Then, for each vi ∈ V, the
distance from the node vi to the source node v0 is given by

dϕ(vi, v0) = min
(si ,li)∈Di

{
Wli · si

}
.

Note that this way of calculating the distance, although it can be laborious, guarantees
that it works for any non-increasing sequence of weights W.



Mathematics 2024, 12, 2590 8 of 16

The reader can find below Algorithm 1, which is a visual representation illustrating the
steps of the proposed algorithm. This diagram serves as a helpful visual aid to complement
the step-by-step explanation provided above.

Algorithm 1: Path length weight (ϕ, W, n, v0)
Input : ϕ, n, W, v0
V ← {vi : i ∈ {0, . . . n}};
D ← {D[vi] = {[inf, 0]} : i ∈ {1, . . . n}};
D[v0]← {[0, 0]};
Q← {v0};
m← 1;
while (m ≤ n) and (Q ̸= ∅) do

for vi in Q do
Ai ← {vj ∈ V − {vi} : ϕ[vj, vi] ̸= inf};
for vj in Ai do

for [si, li] in D[vi] do
s← si + ϕ[vj, vi];
if [s, li + 1] /∈ D[vj] then

Add [s, li + 1] to D[vj];
end

end
D[vj]← P∗(D[vj]);

end
end
Q← {vi ∈ V −Q : [inf, 0] /∈ D[vi]};
m← m + 1;

end
d← (0, ..., n)
for vi in V do

d[vi]← min(W[li] · si : [si, li] ∈ D[vi])
end
return d;

5. Examples of Graphs

In this section, we will present some examples to show the properties of the explained
algorithm. We will explore some different cases in order to demonstrate that the conditions
of the requirements are necessary to obtain a suitable algorithm. Also, our idea is to present
different classes of graphs, which can be associated using topological properties, to show
that our technique works in different situations.

We start with an example of a tree-type graph. After that, we will show that our
algorithm also works for a centered-star-type graph. Finally, we will also present a case of
a graph with no singular topological structure to prove the generality of our procedure.

To visualize the graphs, the Kamada–Kawai layout algorithm [25] has been used,
which is a method for drawing two-dimensional graphs where the nodes are placed so that
the distances in the drawing are proportional to the shortest distances between them in the
original graph. In this way, it is possible to observe how the drawing of the graph changes
depending on the distance used. The numbers shown on the arrows are the corresponding
values of ϕ, except where other notation is explained. Let us remark that the “distances”
that are written in the figures are the ones that can be computed: recall again that we are
working with directed graphs with no cycles, so it may happen that we can compute the
“distance” from v1 to v2 but not the “distance” from v2 to v1. In this case, we write in the
corresponding edge the one that can be computed:



Mathematics 2024, 12, 2590 9 of 16

(1) Tree-type graph: In this type of graph, all nodes are connected to each other by
exactly one single path, and there are no cycles (closed paths). For the calculation
of the distance, we use the weights associated with the inverse of the lengths of

the paths—this is W :=
(

1
t

)∞

t=1
. The comparison among Figures 3 and 4 shows the

particular nature of the metric we have defined, in which two points v0 and vi that are
more distanced in the tree (with more intermediate nodes) are, however, nearer than
one of the vertices that crosses the path that connects v0 with vi. The reader can see
this, for example, in the comparison of the position and distances between v0 and v11
(the path-length-weighted distance is 2.333), and between v0 and v13 (the path-length-
weighted distance is 2.250). Moreover, the distances between v0 and v1 and between
v0 and v3 are equal, although it is necessary to pass through v1 to reach v0 from v3.
This effect is especially remarkable in the case of trees, where the usual path distance
between a vertex and the root increases with the number of branches separating them.
We have seen that for our distance, however, this is not necessarily true.

(2) Centered-star-type graph: In these graphs, there is a central node—v0 in Figure 5—which
is directly connected to all other nodes in the graph. Compared to Figure 6, where

the weights W =
(

1
t

)∞

t=1
were used, Figure 7 shows how the graph changes when

applying the distance calculation with the weights W =
(

1
t2

)∞

t=1
In this case, the

distance decreases as the path length increases. This is again a relevant difference
with the usual weighted path distance case, and it could be used to model different
network behaviors where proximity in terms of number of intermediate nodes does
not adequately represent the desired relationships between nodes.

(3) Graph with no singular topological structure: Let us now consider a graph that does
not have an easily definable shape or pattern, such as a tree or a star. The example
that we chose is shown in Figure 8. It is a non-connected graph. This graph can be
separated into two connected subgraphs—that is, its two connected components—to
calculate the distances of the nodes. In spite of this, as can be seen in Figure 9, our
algorithm also worked without the need to separate these graphs into their connected

components. The weights W =
(

1
t

)∞

t=1
were again considered.

Figure 3. Example of a tree-type graph.



Mathematics 2024, 12, 2590 10 of 16

Figure 4. Distances calculated from the graph in Figure 3. In this case, the numbers appearing in the
arrows are the quasi-metrics and not the values of ϕ.

Figure 5. Example of a centered-star-type graph.



Mathematics 2024, 12, 2590 11 of 16

Figure 6. Distances calculated for the graph in Figure 5 for W =
(

1
t

)∞

t=1
.

Figure 7. Distances calculated for the graph in Figure 5 using the square of the inverse of the path

lengths W =
(

1
t2

)∞

t=1
.



Mathematics 2024, 12, 2590 12 of 16

Figure 8. Example of a graph with no singular topological structure.

Figure 9. Distances calculated for the graph in Figure 8.

6. Special Cases: Constraints on the Weights and on the Proximity Matrix to Improve the
Efficiency of the Algorithm

To reduce the complexity of the algorithm, algebraic conditions can be imposed on
both the proximity matrix and the weights associated with the length of the paths. The
trivial case is when these weights are all equal to a constant W. In this case, the distance
coincides with the weighted path metric (see [24], p. 258) multiplied by the constant W.
Therefore, the calculation of the distance can be performed using the Bellman–Ford or
Dijkstra algorithms.



Mathematics 2024, 12, 2590 13 of 16

In this section, we will consider the weights associated with the inverse of a power

of the lengths of the paths W :=
{

1
tk

}∞

t=1
, with the power k being greater than or equal to

1. The importance of these weights lies in the fact that it is the natural generalization of
the case where the power k is equal to 1, i.e., the case where the distance between nodes
coincides with the average of the path weights. This class of weights, which have been
already used in the previous sections as general examples, is also relevant for applications
(see [23]).

The results provided in this section can be implemented directly in the algorithm to
make it faster. We explain the requirements that have to be met, as well as the procedures
for using them.

Proposition 2. Consider a graph G = (V, E) and the weights associated with the lengths of the

paths W :=
{

1
tk

}∞

t=1
, with k ≥ 1. Fix a, b ∈ V, and let P, P′ ∈ P(a, b) such that l(P) ≥ l(P′),

and d(P) ≤ d(P′). Then, for any c ∈ V and R ∈ P(b, c) such that d(P′) ≤ d(R), we have that
the paths Q = P ⊔ R and Q′ = P′ ⊔ R in P(a, c) satisfy d(Q) ≤ d(Q′).

Proof. Consider P = (x0, x1, . . . , xn), P′ = (x′0, x′1, . . . , x′m), and R = (y0, y1, . . . , yr) in the
statement so that l(P) = n, l(P′) = m, and l(R) = r. Then,

d(Q) = d(P ⊔ R) = ∑n
i=1 ϕ(xi−1, xi) + ∑r

i=1 ϕ(yi−1, yi)

(n + r)k =
n · d(P) + r · d(R)

(n + r)k ,

d(Q′) =
m · d(P′) + r · d(R)

(m + r)k .

Then, by hypothesis,

d(P) ≤ m · d(P′)
m

=

=
m

n ·m
(
m · d(P′)

)
+

n−m
n ·m

(
m · d(P′)

)
≤

≤ m · d(P′)
n

+
n−m

n
d(R).

This implies that n · d(P) ≤ m · d(P′) + (n−m)d(R). Therefore,

(n + r)k(m + r)d(Q) = (n + r)k(m + r)

(
n · d(P) + r · d(R)

(n + r)k

)
=

= n ·m · d(P) + n · r · d(P) + (m + r)(r · d(R)) ≤
≤ n ·m · d(P′) + r ·m · d(P′) + (n−m)(r · d(R)) + (m + r)(r · d(R)) =

= (n + r)
(
m · d(P′) + r · d(R)

)
=

= (n + r)(m + r)kd(Q′) ≤

≤
(

n + r
m + r

)k−1
(n + r)(m + r)kd(Q′) =

= (n + r)k(m + r)d(Q′),

so d(Q) ≤ d(Q′).

Proposition 3. Consider a graph G = (V, E) and the weights associated with the lengths of the

paths W :=
{

1
tk

}∞

t=1
, with k ≥ 1. Fix a, b ∈ V, and let P, P′ ∈ P(a, b) such that l(P) ≤ l(P′),

and d(P) ≤ d(P′). Then, for any c ∈ V and R ∈ P(b, c) such that d(R) ≤ d(P), we have that
the paths Q = P ⊔ R and Q′ = P′ ⊔ R in P(a, c) satisfy d(Q) ≤ d(Q′).



Mathematics 2024, 12, 2590 14 of 16

The proof of this result is analogous to Proposition 2, so it will be omitted.

Remark 2. It is trivial to see that Propositions 2 and 3 also work if the paths Q = R ⊔ P and
Q′ = R ⊔ P′ in P(a, c) are used, being in this case R ∈ P(a, b) and P, P′ ∈ P(b, c).

These propositions propose to define in P(a, b) and for each R ∈ P(b, c) the order
relation P ⪯1

R Q given by the conditions

l(P) ≥ l(Q) and d(P) ≤ d(Q) ≤ d(R)

(suggested by Proposition 2), and the order relation P ⪯2
R Q given by

l(P) ≤ l(Q) and d(R) ≤ d(P) ≤ d(Q)

(suggested by Proposition 3).
As can be seen, these order relations are more restrictive than the order relation ⪯

used in the previous sections (although they depend on the path R), since they are given as
a function of the distance d, while ⪯ is a function of the sum of the weights s.

To reduce the set of paths suitable for calculating the distance with our algorithm
using these order relations, we need them to not depend on the path R. This can be done
by imposing some additional properties to the graph. In particular, this works if the graph
meets one of the following conditions, which are different depending on the order relation
we will use:

1 Requirements for the order ⪯1
R: Let G = (V, E) be a weighted directed graph with no

cycles. The condition we impose in this case is the following: for all a, b, c in V, with
P(a, b) being non-empty and b connected to c—that is, (b, c) ∈ E—the inequality

d(P) ≤ ϕ(b, c) (5)

holds for all P ∈ P(a, b). Note that this requirement is independent of R, so we write
⪯1 for the associate order relation. As it is not always possible to verify this condition
given a graph, we will check that for all (a, b), (b, c) ∈ E, it is satisfied that

ϕ(a, b) ≤ ϕ(b, c). (6)

It is obvious that this condition implies (5). Using this, we can simplify the algorithm.
Clearly, in this case, it is enough to explore the paths of the following Pareto front:

P∗1 (a, b) =
{

P ∈ P(a, b) : {P′ ∈ P(a, b) : P′ ⪯1 P, P ̸= P′} = ∅
}

. (7)

2 Requirements for the order⪯2
R: As above, let G = (V, E) be a weighted directed graph

with no cycles. The requirement is, in this case, the following: for all a, b, c in V, with
P(a, b) being non-empty and b connected to c—that is, (b, c) ∈ E—the inequality

d(P) ≥ ϕ(b, c) (8)

has to be satisfied for all P ∈ P(a, b). A sufficient condition to be checked is that for
all (a, b), (b, c) ∈ E, it is satisfied that ϕ(a, b) ≥ ϕ(b, c). Again, this implies (8). In this
case, it is enough to consider the following paths:

P∗2 (a, b) =
{

P ∈ P(a, b) : {P′ ∈ P(a, b) : P′ ⪯2 P, P ̸= P′} = ∅
}

. (9)

To show how the path filters explained above work for each of the algorithms, we
will calculate the distance from node v0 to v6 in the graph illustrated in Figure 10 (which
satisfies the requirements given by (6)) using the weights associated with the path lengths



Mathematics 2024, 12, 2590 15 of 16

W :=
(

1
t

)∞

t=1
. Since v6 is only directly connected by v5, the computation of dϕ(v0, v6) is

determined by the paths Q = P ⊔ (v5, v6), with P ∈ P(v0, v5):

(1) P1 = (v0, v1, v3, v5), with l(P1) = 3, s(P1) = 15, and d(P1) = 5;
(2) P2 = (v0, v2, v3, v5), with l(P2) = 3, s(P2) = 18, and d(P2) = 6;
(3) P3 = (v0, v2, v4, v5), with l(P3) = 3, s(P3) = 21, and d(P3) = 7;
(4) P4 = (v0, v3, v5), with l(P4) = 2, s(P4) = 13, and d(P4) = 6.5;
(5) P5 = (v0, v5), with l(P5) = 1, s(P5) = 5, and d(P5) = 5.

Figure 10. Example of a graph satisfying (6).

In this case, if we use the general path filtering given by (3), we would obtain the
possible paths

P∗(v0, v5) = {P1, P4, P5},

since P1 ⪯ P2 ⪯ P3.
Instead, if we use the path filtering for this particular case given by (7), we have that

P1 ⪯1 P2 ⪯1 P3, P1 ⪯1 P4, and P1 ⪯1 P5, obtaining directly

P∗1 (v0, v5) = {P1}.

Therefore, for the calculation of dϕ(v0, v6), we only have to compute the distance
associated with the path Q = P1 ⊔ (v5, v6), that is, dϕ(v0, v6) = d(Q).

Author Contributions: Software, R.A. and S.S.; Validation, R.A., L.M.G.-R. and S.S.; Formal analysis
R.A., E.A.S.P. and S.S.; Conceptualization, J.M.C. and L.M.G.-R.; Investigation, J.M.C. and E.A.S.P.;
Writing—review and editing, J.M.C.; Writing—original draft, E.A.S.P. and S.S.; supervision, E.A.S.P.;
Visualization, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Agencia Estatal de Investigación under grant number
PID2022-138342NB-I00. The research of the first author was funded by the Universitat Politècnica de
València through the Programa de Ayudas de Investigación y Desarrollo (PAID-01-21). The research of
the other authors was also funded by the European Union’s Horizon Europe research and innovation
program under the Grant Agreement No. 101059609 (Re-Livestock).

Data Availability Statement: All the algorithms presented in this paper are available in a GitHub
repository. It can be accessed through the following link: https://github.com/serjj99/path_length_
weighted_distance (accessed on 12 July 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/serjj99/path_length_weighted_distance
https://github.com/serjj99/path_length_weighted_distance


Mathematics 2024, 12, 2590 16 of 16

References
1. Bellman, R. On a Routing Problem. Q. Appl. Math. 1958, 16, 87–90. [CrossRef]
2. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
3. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001.
4. Entringer, R.C.; Jackson, D.E.; Snyder, D.A. Distance in graphs. Czechoslov. Math. J. 1976, 26, 283–296. [CrossRef]
5. Hakimi, S.L.; Yau, S.S. Distance matrix of a graph and its realizability. Q. Appl. Math. 1965, 22, 305–317. [CrossRef]
6. Klein, D.J. Graph geometry via metrics. In Topology in Chemistry; Woodhead Publishing: Sawston, UK, 2002; pp. 292–315.
7. Brandes, U. Network Analysis: Methodological Foundations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005.
8. Chen, J.; Safro, I. Algebraic distance on graphs. SIAM J. Sci. Comput. 2011, 33, 3468–3490. [CrossRef]
9. Goddard, W.; Oellermann, O.R. Distance in graphs. In Structural Analysis of Complex Networks; Springer: Berlin/Heidelberg,

Germany, 2011; pp. 49–72.
10. Barnes, J.A.; Harary, F. Graph theory in network analysis. Soc. Netw. 1983, 5, 235–244. [CrossRef]
11. Harary, F.; Norman, R.Z. Graph Theory as a Mathematical Model in Social Science; Institute for Social Research, No. 2; University of

Michigan: Ann Arbor, MI, USA, 1953.
12. Stephenson, K.; Zelen, M. Rethinking centrality: Methods and examples. Soc. Netw. 1989, 11, 1–37. [CrossRef]
13. Klein, D.J.; Randić, M. Resistance distance. J. Math. Chem. 1993, 12, 81–95. [CrossRef]
14. Chebotarev, P. A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Discret. Appl. Math.

2011, 159, 295–302. [CrossRef]
15. Yang, Y.; Klein, D.J. Two-point resistances and random walks on stellated regular graphs. J. Phys. A Math. Theor. 2019, 52, 075201.

[CrossRef]
16. Bozzo, E.; Franceschet, M. Resistance distance, closeness, and betweenness. Soc. Netw. 2013, 35, 460–469. [CrossRef]
17. Bu, C.; Yan, B.; Zhou, X.; Zhou, J. Resistance distance in subdivision-vertex join and subdivision-edge join of graphs. Linear

Algebra Appl. 2014, 458, 454–462. [CrossRef]
18. Yang, Y.; Klein, D.J. Comparison theorems on resistance distances and Kirchhoff indices of S, T-isomers. Discret. Appl. Math. 2014,

175, 87–93. [CrossRef]
19. Oehlers, M.; Fabian, B. Graph metrics for network robustness—A survey. Mathematics 2021, 9, 895. [CrossRef]
20. Mester, A.; Pop, A.; Mursa, B.E.M.; Greblă, H.; Diosan, L.; Chira, C. Network analysis based on important node selection and

community detection. Mathematics 2021, 9, 2294. [CrossRef]
21. Buckley, F.; Harary, F. Distance in Graphs; Addison-Wesley: Redwood City, CA, USA, 1990.
22. Fouss, F.; Saerens, M.; Shimbo, M. Algorithms and Models for Network Data and Link Analysis; Cambridge University Press:

Cambridge, UK, 2016.
23. Calabuig, J.M.; Falciani, H.; Sapena, A.F.; Raffi, L.G.; Sánchez Pérez, E.A. Graph distances for determining entities relationships:

A topological approach to fraud detection. Int. J. Inf. Technol. Decis. Mak. 2023, 22, 1403–1438. [CrossRef]
24. Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009.
25. Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1090/qam/102435
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.21136/CMJ.1976.101401
http://dx.doi.org/10.1090/qam/184873
http://dx.doi.org/10.1137/090775087
http://dx.doi.org/10.1016/0378-8733(83)90026-6
http://dx.doi.org/10.1016/0378-8733(89)90016-6
http://dx.doi.org/10.1007/BF01164627
http://dx.doi.org/10.1016/j.dam.2010.11.017
http://dx.doi.org/10.1088/1751-8121/aaf8e7
http://dx.doi.org/10.1016/j.socnet.2013.05.003
http://dx.doi.org/10.1016/j.laa.2014.06.018
http://dx.doi.org/10.1016/j.dam.2014.05.014
http://dx.doi.org/10.3390/math9080895
http://dx.doi.org/10.3390/math9182294
http://dx.doi.org/10.1142/S0219622022500730
http://dx.doi.org/10.1016/0020-0190(89)90102-6

	Introduction
	Main Definitions and Context
	Previous to the Algorithm
	The Algorithm
	Examples of Graphs
	Special Cases: Constraints on the Weights and on the Proximity Matrix to Improve the Efficiency of the Algorithm
	References

