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Abstract: This paper identifies patterns in total and per capita CO2 emissions among 208 countries
considering different emission sources, such as cement, flaring, gas, oil, and coal. This research
uses linear and non-linear dimensional reduction techniques, combining K-means clustering with
principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), which
allows the identification of distinct emission profiles among nations. This approach allows effective
clustering of heterogeneous countries despite the highly dimensional nature of emissions data. The
optimal number of clusters is determined using Calinski–Harabasz and Davies–Bouldin scores, of
five and six clusters for total and per capita CO2 emissions, respectively. The findings reveal that for
total emissions, t-SNE brings together the world’s largest economies and emitters, i.e., China, USA,
India, and Russia, into a single cluster, while PCA provides clusters with a single country for China,
USA, and Russia. Regarding per capita emissions, PCA generates a cluster with only one country,
Qatar, due to its significant flaring emissions, as byproduct of the oil industry, and its low population.
This study concludes that international collaboration and coherent global policies are crucial for
effectively addressing CO2 emissions and developing targeted climate change mitigation strategies.
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MSC: 94A17; 62B10; 62H30; 62H30; 62P20

1. Introduction

The accumulation of carbon dioxide in the atmosphere is rapidly increasing, causing
global climate change that negatively impacts both natural and human systems. As tem-
peratures rise globally, communities face more severe events such as intense hurricanes,
prolonged heatwaves, and rising sea levels. These changes threaten ecosystems, biodiver-
sity, food security, and access to clean drinking water, becoming a ruthless global threat
that requires immediate attention [1].

Although the correlation between increased CO2 emissions and climate change is
well documented, it presents an interesting paradox when considering economic growth.
Industrialization and economic progress have historically led to increased burning of fossil
fuels and subsequent CO2 emissions, but the repercussions of climate change, such as
natural disasters, can obstruct economic growth and human welfare [2]. This contradiction
underscores the pressing need for a transition to sustainable development models that
address both environmental and economic challenges.

Evidence suggests that urban cities are responsible for about 70% of global energy-
related CO2 emissions [3]. Several factors influence CO2 emissions, including GDP per
capita, the proportion of fossil fuels in energy consumption, urbanization, industrialization,
and political factors [4–6]. Moreover, research [7,8] indicates that population size, real GDP,
and non-renewable energy are the main drivers of carbon emissions. Additionally, logistics
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performance can be linked to CO2 emissions between countries and global supply chain
networks, which are crucial factors in explaining how CO2 emissions are classified [9–11].

This research aims to identify patterns in CO2 emissions among 208 countries at
both general and per capita levels using cluster analysis with K-means combined with
principal component analysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE). This investigation explores the diverse distribution of CO2 emissions and identifies
underlying trends at the global level. The optimal number of clusters is determined using
Calinski–Harabasz and Davies–Bouldin scores, resulting in five clusters for general CO2
emissions and six for per capita emissions. It is worth mentioning that sources of CO2
emissions include cement production, coal combustion, natural gas usage, CO2 flaring, and
oil consumption. Each of these factors impacts a country’s carbon footprint in distinct ways.

The main findings obtained in this investigation indicate significant disparities in
CO2 emissions, with China, USA, and Russia being the highest absolute emitters, while
Qatar leads in per capita emissions. PCA effectively clustered the most polluting countries,
whereas t-SNE revealed complex patterns related to population, industrial capability,
fossil fuel dependence, and urbanization. These results also highlight significant global
discrepancies in CO2 emissions and emphasize the necessity for tailored, region-specific
strategies for emission reduction.

The document is organized as follows: Section 2 provides a literature review on CO2
emissions and global inequalities; Section 3 describes the data collection process along
with an exploratory analysis; Section 4 presents the methodologies used, i.e., PCA and
t-SNE combined with K-means; Section 5 provides the empirical results obtained and their
discussion; Section 6 offers a general discussion of the implications of the findings; and
finally, Section 7 presents the conclusions.

2. Literature Review

Reducing carbon dioxide emissions is crucial in combating climate change. Academic
discussions revolve around eclectic strategies based on the implementation of policies
by different countries to decrease carbon emissions through multiple agreements. These
approaches are evaluated for their efficacy, impact on economic growth, and well-being,
considering the diverse characteristics of the nations involved. For instance, the authors
of [1] analyze global CO2 emissions through temporal and spatial patterns, emphasizing
the urgency of the situation and proposing a practical approach toward a sustainable future.
Likewise, the authors of [12] further confirm the effectiveness of this approach, showing
the impact of nuclear energy and environmental fiscal policies in reducing emissions in
high-emitting countries.

Notable disparities in global environmental impacts are highlighted by differences
in CO2 emissions in various regions, particularly between urban and rural areas and
across geopolitical borders. These differences are the result of variations in economic
development and access to technology, which has implications for international climate
policy and sustainable development. According to the authors of [13], urban and rural
residents in Shandong Province in China produce significantly different amounts of CO2
emissions, with urban residents generating three times more CO2 emissions than their
rural counterparts, mainly due to lifestyle consumption patterns and resource access
discrepancies. Similarly, the authors of [3] state that urban cities are accountable for about
70% of the world’s energy-related CO2 emissions, underscoring the significance of curbing
emissions in urban centers where the impacts of industrialization and urbanization are
most pronounced.

On the other hand, the authors of [14] show the link between geopolitical risks and
CO2 emissions inequality among 38 economies, involving both developed and developing
nations. They reveal that geopolitical instability can worsen emissions by influencing
economic stability, energy security, and environmental policy implementation. In contrast,
the authors of [15] examine spatial variations and temporal fluctuations in global CO2
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emissions, identifying regions and nations that will benefit most from targeted interventions
and international cooperation aimed at reducing emissions.

According to [4,16], different factors affect CO2 emissions, including GDP per capita,
the proportion of fossil fuels in energy consumption, urbanization, industrialization, de-
mocratization, the indirect impacts of trade, and political polarization. These factors make it
challenging to develop emissions reduction strategies and manage energy production while
understanding how economic and political structures can support or hinder reduction
efforts. Likewise, the authors of [7,8] identified population, real GDP, and non-renewable
energy as the primary drivers of carbon emissions. Thus, CO2 emission patterns vary
across countries and their populations due to the different factors that characterize them.

Furthermore, several studies have highlighted the importance of cap-and-trade poli-
cies in managing emissions within supply chains. For example, the authors of [17] propose
a sustainable supply chain management model showing the effectiveness of unregulated
cap-and-trade strategies in reducing emissions. Similarly, the authors of [18] investigate
the nexus between economic growth and environmental degradation in 28 countries classi-
fied by income level, emphasizing the role of error-component models in understanding
emissions dynamics. Likewise, the authors of [6] explore the interaction among economic
growth, energy–electricity consumption, CO2 emissions, and urbanization in Latin Amer-
ica, underscoring the complex interaction between these factors and their implications for
policy formulation. Finally, the authors of [18] develop gray machine learning models for
forecasting energy consumption, carbon emissions, and energy generation, highlighting
the role of optimized gray systems in accurate prediction and sustainable development.

Given the relevance of and concern about the measurement of carbon emissions and
the evidence of its implications, this research extends the current global CO2 emissions
analysis literature by employing a comprehensive methodological approach to identify
patterns among 208 countries. Recent studies have explored various aspects of CO2
emissions using different methodologies. For instance, the authors of [19] utilized principal
component analysis (PCA) and empirical orthogonal functions (EOFs) to analyze CO2
emissions patterns across multiple spatial scales, focusing on 26 indicators. Their study
reveals three core components accounting for 93% of global CO2 variation, reflecting
emission trajectories and associated economic metrics.

In a more localized approach, the authors of [20] proposed a prediction algorithm
combining principal component analysis (PCA), grid search (GS), and K-nearest neighbors
(KNNs) to forecast regional agricultural carbon emissions. Their study focused on Zhejiang
Province, China, demonstrating the effectiveness of this combined approach in predicting
agricultural carbon emissions, which outperformed other prediction models in terms
of accuracy.

While the approach proposed shares similarities with two previous studies [19,20] in
the use of PCA and the analysis of multiple indicators, this present research goes further
by incorporating K-means clustering and t-distributed stochastic neighbor embedding
(t-SNE) visualization techniques on a global scale. This combination of methods allows
for a more nuanced understanding of aggregate and per capita emission patterns. Unlike
previous studies primarily focused on individual factors, regional analyses, or specific
sectors like agriculture, this investigation integrates linear and non-linear dimensional
reduction techniques, defining the optimal number of clusters through Calinski–Harabasz
and Davies–Bouldin scores.

This study aims to provide an interpretation of global CO2 emission patterns by
building on and extending previous research methodologies. A heatmap was developed
using the Pearson correlation coefficient relationships between different types of CO2
emissions, including cement, flaring, gas, oil, and coal. This multifaceted approach covers
a broad spectrum of countries, and provides a robust understanding of aggregate and per
capita emission patterns.

The findings from this research are expected to contribute significantly to developing
targeted climate change mitigation strategies and inform international collaboration efforts
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to reduce global CO2 emissions. In this sense, the authors of [20] demonstrate the potential
of machine learning approaches for regional predictions that encompass global and broader
policy implications. Furthermore, the methodology proposed in this research could be
adapted to various scales, from international to regional, opening new avenues for future
research in this critical area of environmental science.

3. Data Collection and Exploratory Analysis

This research uses CO2 and greenhouse gas emissions information from Our World
in Data (OWD) [21]. The dataset in OWD includes more than 70 variables during the
period 2010–2022, a period selected due to the greater availability and consistency of
data from the sample of countries examined. Although this database includes a broad
range of variables related to CO2 emissions, this research focused only on those closely
related to CO2 emissions: six at the country level and six at the per capita level. These
classifications were chosen because they offer the most complete information, aligning with
the research objective of clustering countries based on their types of emissions. We leave
aside variables such as industrial capacity, dependence on fossil fuels, and urbanization.
Detailed descriptions of the selected variables are provided in Table 1.

Table 1. Variables and description.

ID Variable OWD Description

1 CO2
Total annual CO2 emissions, excluding land-use change,
measured in million tons.

2 cement_CO2 Annual CO2 emissions from cement, measured in million tons.
3 coal_CO2 Annual CO2 emissions from coal, measured in million tons.
4 flaring_CO2 Annual CO2 emissions from flaring, measured in million tons.
5 gas_CO2 Annual CO2 emissions from gas, measured in million tons.
6 oil_CO2 Annual CO2 emissions from oil, measured in million tons.

7 CO2_per_capita Total annual CO2 emissions per capita, excluding land-use
change, measured in tons per person.

8 cement_CO2_per_capita Annual CO2 emissions per capita from cement, measured in
tons per person.

9 coal_CO2_per_capita Annual CO2 emissions per capita from coal, measured in tons
per person.

10 flaring_CO2_per_capita Annual CO2 emissions per capita from flaring, measured in
tons per person.

11 gas_CO2_per_capita Annual CO2 emissions per capita from gas, measured in tons
per person.

12 oil_CO2_per_capita Annual CO2 emissions per capita from oil, measured in tons
per person.

As was noted above, the data used for analysis span from 2010 to 2022, a period chosen
because most countries have complete annual data. To ensure that individual countries’
effects are considered, nations that previously belonged to a category are excluded. For
example, instead of grouping all Asian countries, each country is considered individually.
Similarly, categories such as “World”, “low-income countries”, “upper-income countries”,
“European Union”, and the names of continents are also not included. After applying these
filters, 208 countries are left in the sample. Figure 1 exhibits the emissions by type. An
index is generated based on 2010 and shown over time.
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Figure 1. CO2 emissions 2010–2022. Source: Authors’ own elaboration with data from OWD.

As seen in Figure 1, before the pandemic, cement, flaring, and gas were responsible
for the highest levels of CO2 emissions, while oil and coal had the lowest levels. However,
since the health crisis in 2020, all these emissions have risen above their previous records.
Although CO2 flaring has decreased since 2020, there has been an increase in CO2 emissions
from cement and gas. Furthermore, the results of the present study align with previous
research on sectoral composition and CO2 emissions [22].

Figure 2 indicates that emissions had grown annually before the pandemic, with
flaring, gas, and cement having the highest growth rates at 7.5%, 2.5%, and 2.7%, respec-
tively. Interestingly, oil CO2 experienced the most considerable rebound, likely due to
the increased demand for goods and services as the economy reopened after self-isolation
measures were lifted. In contrast, flaring and cement had levels below those during the
pandemic, with decreases of −2.4% and −5.0%, respectively. Based on the literature review,
sectoral energy consumption, particularly in industries such as cement and gas, plays a
significant role in CO2 emissions [23].
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It is important to note that Figure 1 shows a comparison of CO2 emissions per capita
over time using 2010 as the base year to transform the variables into index numbers.
Figure 3 depicts per capita emissions, revealing that cement and gas had the highest
emission levels before and after the pandemic. A decline in emissions is observed for coal,
oil, and gas. The latter reached its lowest level below its record at the start of 2010, which
also applies to general CO2 emissions.
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from OWD.

Figure 4 illustrates the per capita growth rate of CO2 emissions. Before the global
health crisis, gas, cement, and flaring emissions remained relatively steady, fluctuating
within a range of ±2%. However, post-pandemic, there was a significant increase in gas
CO2 emissions per capita in 2021, surpassing 4%. Meanwhile, cement emissions saw the
most substantial rise, reaching nearly 8% in CO2 gas emissions before stabilizing in 2022.
By contrast, flaring emissions experienced the most damaging change after the pandemic,
with a decline of 6%, followed by decreases in gas (−4%) and coal (−1%) by 2022.

Mathematics 2024, 12, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. CO2 emissions per capita 2010–2022. Source: Authors’ own elaboration with data from 
OWD. 

Figure 4 illustrates the per capita growth rate of CO2 emissions. Before the global 
health crisis, gas, cement, and flaring emissions remained relatively steady, fluctuating 
within a range of ±2%. However, post-pandemic, there was a significant increase in gas 
CO2 emissions per capita in 2021, surpassing 4%. Meanwhile, cement emissions saw the 
most substantial rise, reaching nearly 8% in CO2 gas emissions before stabilizing in 2022. 
By contrast, flaring emissions experienced the most damaging change after the pandem-
ic, with a decline of 6%, followed by decreases in gas (−4%) and coal (−1%) by 2022. 

 
Figure 4. Annual growth rates of CO2 emissions per capita 2010–2022. Source: Authors’ own elab-
oration with data from OWD. 

Figure 5 displays a correlation heatmap to help better understand the types of 
emissions. Both maps use the Pearson correlation coefficient. The strongest correlations 
were observed between total CO2 emissions and coal and between CO2 and cement, with 
values reaching 0.95 and 0.90, respectively. This indicates that coal usage and cement 
production significantly impact overall CO2 emissions. Furthermore, there is a relatively 
strong correlation between CO2 and oil, with a coefficient of around 0.85, suggesting that 
burning oil also substantially affects total CO2 emissions. In contrast, flaring exhibits no-
tably lower correlations with other emission variables such as cement, coal, and oil, of 
approximately 0.09, 0.16, and 0.65, respectively. This suggests that gas flaring does not 
necessarily follow the same pattern as CO2 emissions from other combustion sources. 
Recall that Figure 3 reveals that cement and gas consistently have the highest emission 
levels in the analysis of CO2 emissions before and after the pandemic. 

Figure 4. Annual growth rates of CO2 emissions per capita 2010–2022. Source: Authors’ own
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Figure 5 displays a correlation heatmap to help better understand the types of emis-
sions. Both maps use the Pearson correlation coefficient. The strongest correlations were
observed between total CO2 emissions and coal and between CO2 and cement, with values
reaching 0.95 and 0.90, respectively. This indicates that coal usage and cement production
significantly impact overall CO2 emissions. Furthermore, there is a relatively strong corre-
lation between CO2 and oil, with a coefficient of around 0.85, suggesting that burning oil
also substantially affects total CO2 emissions. In contrast, flaring exhibits notably lower
correlations with other emission variables such as cement, coal, and oil, of approximately
0.09, 0.16, and 0.65, respectively. This suggests that gas flaring does not necessarily follow
the same pattern as CO2 emissions from other combustion sources. Recall that Figure 3
reveals that cement and gas consistently have the highest emission levels in the analysis of
CO2 emissions before and after the pandemic.
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4. Methodology

K-means clustering is a widely used unsupervised machine learning algorithm that
groups similar data points into clusters. The algorithm aims to minimize the sum of squared
distances between data points and the center of their assigned cluster.

To determine the optimal number of clusters, the elbow method is employed. This
approach involves plotting the within-cluster sum of squares (WCSS) against the number
of clusters and looking for an “elbow” point where the rate of decrease in WCSS begins to
stabilize; see Appendix A. Figure 6 shows the elbow method plots.
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Next, the Calinski–Harabasz [24] variance ratio score is employed to validate the
visual outcomes of the elbow test. It quantifies the spread between clusters in contrast to
the spread within clusters, so a higher score indicates that the clusters are more clearly
defined and distinct. Likewise, the Davies–Bouldin [25] similarity index assesses how well
separated the clusters are. Here, lower values indicate better separation of clusters. Table 2
describes these metrics.

Table 3 shows that for emissions, the Calinski–Harabasz scores increase as the number
of clusters (K) grows from 2 to 6, indicating improved clustering with more clusters. On the
other hand, the Davies–Bouldin score, which measures cluster overlap, reaches its lowest
value at K = 5, suggesting optimal separation.
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Table 2. Variance vs. similarity scores.

Calinski–Harabasz Score Davies–Bouldin Score

CH =

[
∑K

k=1 nk∥ck−c∥2

K−1

]
[

∑K
k=1 ∑

nk
i=1∥di−ck∥2

N−K

] DB =
1
k

k
∑

i=1
maxi ̸=j

Wi + W j

d
(

ci, cj

)


CH: Calinski–Harabasz Score
K: Number of clusters
nk: Number of points in cluster k
ck: Centroid of cluster k
c: Global centroid of all points
∥ck − c∥2: Squared distance between
the centroid of cluster k and the global centroid
di : Point i within cluster k
∥di − ck∥2: Squared distance between point I
and the centroid of its cluster ck
N: Total number of points

DB: Davies–Bouldin Score
k: Number of clusters
Wi : Measure of dispersion within cluster
ci, cj : Centroids of clusters and i and j

d
(

ci, cj

)
: Distance between the centroids of

clusters i and j

Table 3. Calinski–Harabasz and Davies–Bouldin scores. Source: Authors’ own elaboration with data
from OWD.

Emissions Emissions per Capita

K Calinski–Harabasz
Score

Davies–Bouldin
Score K Calinski–Harabasz

Score
Davies–Bouldin

Score

2 292.2055 0.6177 2 85.4835 1.3363
3 426.8634 0.4007 3 83.1685 1.1873
4 539.2618 0.4615 4 78.5524 1.0480
5 722.2275 0.3873 5 81.9564 1.0041
6 885.5292 0.4742 6 85.6478 1.0135

For per capita emissions, the Calinski–Harabasz scores peak at K = 6, while the Davies–
Bouldin score is lowest at K = 5. Integrating these results, 6 clusters were selected. This
decision was based on the minimal change in the Davies–Bouldin score (0.94%) versus the
more substantial improvement in the Calinski–Harabasz score (4.5%) when moving from 5
to 6 clusters, indicating the potential for better clustering.

Once the optimal number of clusters is determined, PCA and t-SNE methodologies
are applied. These specific methods were chosen for their complementary strengths in
dimensionality reduction and data visualization [24,25]. PCA is selected for its ability to
efficiently reduce the dimensionality of the dataset while preserving as much variance as
possible. This method is particularly useful as it helps address issues of multicollinearity
among emissions, and allows the most important features contributing to CO2 emissions to
be identified. Likewise, PCA provides a linear transformation that can be easily interpreted
in terms of the original variables. The PCA transformation is defined by:

Y = XW (1)

where Y is the matrix of transformed data (principal components), X represents the mean-
centered data, and W is the matrix of eigenvectors (principal component coefficients). On
the other hand, t-SNE is chosen for its ability to capture non-linear relationships in the data
and its effectiveness in visualizing high-dimensional data in a low-dimensional space. This
method is used because it can reveal complex patterns that might not be apparent in linear
methods like PCA. It is particularly good at preserving local structure, which is crucial
for identifying clusters and patterns in the CO2 emissions data, as well as providing an
alternative perspective to PCA to cross-validate the findings and ensure robustness.
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The t-SNE methodology primarily aims to minimize the difference between two
probability distributions, P and Q, measured through the Kullback–Leibler (KL) divergence
or cross entropy. This divergence quantifies the difference between the two probability
distributions. Subsequently, t-SNE uses an iterative algorithm to adjust the positions
of points within a lower-dimensional space. The algorithm aims to closely match the
distribution Q with the distribution P by minimizing the KL divergence, thereby ensuring
an accurate representation of the high-dimensional data in the lower-dimensional space.

C = KL(P||Q) = ∑
i

∑
j

pj|iln

(
pj|i
qj|i

)
(2)

The process of computing the gradient acts as a guide for adjusting both the direction
and magnitude required to effectively minimize C. Subsequently, the coordinates yi are
updated using the gradient descent technique. Additionally, the learning rate determines
the step size for each iteration of the update process. The iterative process continues until a
satisfactory convergence criterion is reached when no substantial further reduction in the
value of C occurs.

By using both PCA and t-SNE, it is possible to leverage the strengths of both linear
and non-linear dimensionality reduction techniques, providing a more comprehensive
analysis of the complex relationships in CO2 emissions data due to the heterogeneity of
the countries.

5. Empirical Results and Discussion
5.1. Clustering for Total CO2 Emissions

Based on the optimal clusters obtained through K-means, the results for PCA and
t-SNE in CO2 clustering emissions are shown in Figure 7. The PCA visualization represents
the data in a new two-dimensional space created by the first two principal components.
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The first principal component explains about 69.95% of the total varianceshowing that
this single dimension captures over two-thirds of the variability in CO2 emission data. This
suggests a dominant pattern or factor affecting CO2 emissions across countries, reflecting
a combination of related variables like economic development, industrialization level,
or energy consumption patterns. The second principal component accounts for around
25.66% of the variance, representing other significant factors influencing emissions, such as
differences in energy sources, policy approaches, and geographical factors among countries.
These two components explain approximately 95.61% of the total variance, allowing PCA
to reduce the multidimensional dataset to just two dimensions while retaining over 95% of
the original information. This reduction reveals solid and consistent patterns in global CO2
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emissions, which can be identified and potentially addressed through targeted policies.
Therefore, a simple two-dimensional plot can reveal complex global CO2 emission patterns
while capturing most data variability.

In practical terms, this means that the PCA visualization provides a highly informative
representation of the original dataset with very little loss of information. It allows us to
understand and communicate the complex patterns of global CO2 emissions using a simple
two-dimensional plot, while still capturing the vast majority of the variability in the data.

The data are clustered for PCA as follows: cluster 1 is the most prominent one, and
includes a diverse group of countries, ranging from small island nations to developed
European countries. The common characteristic is that these countries have relatively low
or average emission profiles. This diversity suggests that absolute emission levels are not
the only factor in this clustering; emission intensity or per capita emissions might also play
a role. See Appendix B for countries that are grouped in CO2 emissions.

Cluster 2 contains only China, indicating its unique emission profile. This isolation
reflects China’s status as the world’s largest CO2 emitter, with a scale of emissions that
sets it apart from other nations. At the same time, cluster 3 contains only the USA, another
major emitter with a unique profile. The separation of China and the USA into individual
clusters accentuates their enormous and differentiated impact on global emissions.

Cluster 4 includes major economies and significant emitters like India, Japan, Germany,
and Brazil. These countries share characteristics of substantial total emissions due to their
large economies or populations but with varying emission intensities. Cluster 5 includes
only Russia, suggesting its distinct emission profile, possibly due to its large landmass,
cold climate, and energy-intensive economy.

For t-SNE, cluster 1 primarily consists of small island nations and microstates. These
countries likely have very low total emissions due to small populations and limited indus-
trial activity. Cluster 2 includes a mix of developed and developing nations, many with
significant industrial or energy sectors (e.g., Belgium, Kuwait, Norway). This cluster might
represent countries with moderate to high emissions but varying efficiency levels.

Cluster 3 comprises many developing countries and some Eastern European nations.
These countries share characteristics of growing economies with increasing but still rela-
tively low emissions. However, cluster 4 holds the world’s largest economies and emitters,
including China, USA, India, and Russia. This cluster represents countries with high total
emissions, though the reasons (population size, industrial base, or energy mix) may vary.

Finally, cluster 5 encloses a diverse group of smaller countries, many of which are
developing nations or small island states. This cluster might represent countries with
unique emission profiles that do not fit neatly into the other categories, possibly due to
specific economic or geographical factors.

In summary, the t-SNE visualization provides a more nuanced clustering, capturing
non-linear relationships that the PCA might miss. For example, it groups significant
emitters like China and USA (cluster 4), while PCA separates them. This suggests that
t-SNE identifies similarities in emission patterns beyond the emissions scale.

The differences between PCA and t-SNE clustering highlight the complexity of global
emission patterns. While PCA focuses on the most significant linear relationships, t-SNE
captures more subtle, non-linear similarities between countries’ emission profiles. This
multifaceted analysis provides a richer understanding of the factors influencing CO2
emissions across different nations. The results obtained in both techniques are shown in
Table 4.

Table 4 divides countries into different clusters based on their emissions. Cluster 1
includes most countries in the world with relatively low emissions in all categories. These
countries have a lower carbon footprint, which could indicate smaller economies, less
industrialization, or more sustainable energy and environmental policies. Cluster 2 contains
only China, which has significantly high emissions in all categories, reflecting China’s status
as an industrial superpower with high manufacturing output and energy consumption.
Cluster 3 only contains the USA, which has high CO2, gas, and oil emissions, consistent
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with the large size of the USA economy, its dependence on oil and gas for energy, and its
high-consumption lifestyle. Cluster 4 includes large and diverse economies with significant
industrial sectors but stricter emissions policies. Finally, Group 5 only contains Russia,
which has moderate levels of emissions in all categories, reflecting its position as a natural
resource-rich country with a significant oil and gas export economy.

Table 4. PCA and t-SNE for CO2 clustering of emissions. Source: Authors’ own elaboration with data
from OWD.

Cluster PCA CO2 Cement Coal Flaring Gas Oil

1 35.7394 1.6005 10.9583 0.4139 9.5240 13.0532
2 10,173.2746 761.5619 7424.0688 3.9222 469.4575 1353.8085
3 5297.2622 38.2838 1402.0755 61.3207 1507.0304 2260.4330
4 535.0613 18.2968 172.0646 10.0039 123.5781 208.3561
5 1665.7432 22.8961 401.1005 49.4200 795.1316 380.9303

Cluster t-SNE CO2 cement coal flaring gas oil

1 0.2682 0.0034 0.0006 0.0000 0.0014 0.2628
2 42.2721 1.5699 8.8626 0.5327 11.4048 19.6092
3 10.6192 0.8461 3.4490 0.0139 0.6759 5.6263
4 749.3502 32.1408 331.0221 8.6567 151.0933 219.8762
5 2.3122 0.0679 0.5565 0.0120 0.0216 1.6541

In contrast, in t-SNE, Cluster 1 includes small island nations and low-population
countries with lower industrial capacity, smaller economies, and dependence on energy
imports. Their contributions to global emissions are likely minimal, which explains their
clustering. Cluster 2 includes a mix of developing and developed countries; several have
developing or transition economies and may have evolving environmental and energy
policies. This group reflects the complexity of emissions profiles, with some countries
having intensive industries and others on the path to energy modernization. Cluster 3 is
diverse, including developing countries and some with recent economic advances. Several
nations face development challenges that could influence their emission profiles, such as
economic growth and sustainable energy strategies. Countries like Costa Rica, known for
their environmental policies, suggest a mix of emission strategies within the cluster.

Cluster 4 comprises the world’s largest and most industrialized economies, including
many OECD countries and large emitters such as China, the US, and Russia. As mentioned
before, these countries have a combination of high industrial capacity, high levels of energy
consumption, and varying environmental policies. They contribute significantly to global
emissions. Finally, Cluster 5 contains a variety of countries, many of which are developing
nations. The presence of countries like Bhutan, which strongly focus on sustainability,
suggests that per capita emissions may be low to moderate but with different development
contexts and energy policies. The t-SNE analysis provides insights into how countries with
similar emission profiles or development contexts cluster in the data space.

5.2. Clustering for CO2 per Capita Emissions

The results obtained for per capita emissions are also interesting. In PCA, the first
principal component explains 46.22% of the total variability in the data, while the second
principal component adds 17.686% to the variance explanation, bringing the total variability
captured by both components up to approximately 63.92%. On the other hand, the t-SNE
visualization shows a more precise separation and dispersion of the clusters, as can be seen
in Figure 8.
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Table 5 shows the key results for clustering of CO2 per capita emissions. Six distinct
clusters are considered based on their Calinski–Harabasz and Davies–Bouldin scores; see
Appendix C for countries that are grouped in CO2 per capita emissions. Low general
emissions characterize cluster 1, consisting of a diverse range of developing and emerging
countries from Africa, Asia, and Latin America, such as Nigeria, India, and Brazil. The
average CO2 of this cluster is 1.41, and it uses little cement and coal and has moderate
oil and gas emissions. Cluster 2, on the other hand, exhibits high gas and oil emissions,
including oil-rich Middle Eastern countries like Saudi Arabia and the United Arab Emirates.
This cluster has very high gas (1.48) and oil (6.64) emissions, in addition to significant carbon
emissions. This cluster is distinguished for its high dependency on fossil energy resources.

Table 5. PCA and t-SNE for CO2 per capita clustering of emissions. Source: Authors’ own elaboration
with data from OWD.

Cluster PCA CO2 Cement Coal Flaring Gas Oil

1 1.4088 0.0475 0.1239 0.0158 0.1705 1.0508
2 14.0735 0.2184 5.5503 0.1023 1.4771 6.6421
3 22.5878 0.3836 0.2800 0.4519 14.8261 6.6463
4 39.4083 0.7862 0.0000 0.9169 33.7095 3.9958
5 6.3762 0.1661 1.2870 0.0372 1.0818 3.7599
6 7.4975 0.1525 0.4782 0.6630 3.2760 2.9102

Cluster t-SNE CO2 cement coal flaring gas oil

1 0.4751 0.0095 0.0379 0.0129 0.0244 0.3904
2 12.8029 0.1922 0.4815 0.5721 7.9014 3.6309
3 1.3355 0.0873 0.2785 0.0043 0.1556 0.8098
4 6.3349 0.0012 0.0084 0.0000 0.1815 6.1437
5 4.2287 0.2231 0.5766 0.0338 1.1025 2.2598
6 10.4276 0.2389 4.4099 0.0869 2.0267 3.5913

Cluster 3 comprises developed countries and some advanced economies in Europe,
Asia, and North America, including Germany, UK, and USA. This cluster includes high
gas emissions (14.83) and reliance on natural gas. Cluster 4 has high industrial emissions,
including large industrialized and emerging economies such as China, USA, and Australia,
with high gas emissions (33.71). This cluster reflects the intensive use of energy resources
in heavy industrial sectors. Cluster 5 has diversified moderate CO2 from cement and gas
emissions, and includes diversified economies such as Canada, Russia, and Venezuela.
Finally, cluster 6 consists only of Qatar. This cluster highlights significant flaring emissions,
a byproduct of the oil industry.
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Cluster analysis of the t-SNE results shows that countries can be grouped into six
clusters based on their emissions per capita of CO2 and other gases. Cluster 1 mainly
includes developing countries in Africa and Asia, such as Ethiopia, Nigeria and Uganda.
These countries have low CO2 and other gas emissions due to minimal industrialization
and energy infrastructure. Cluster 2 includes countries rich in natural resources, some
industrialized countries such as Canada and Russia, and Gulf countries like Saudi Arabia.
These countries have high carbon consumption per capita and high CO2 emissions, indi-
cating their high energy demand. Cluster 2 contains developed and emerging economies
in Europe and Latin America, such as Spain, Mexico, and Brazil, with moderate CO2 and
various other gas emissions, reflecting a diversity of energy sources.

In contrast, cluster 3 includes developing and emerging countries from multiple
regions, such as India, Colombia, and the Philippines, with moderate CO2 emissions and
a low profile in most other gases, indicating a mild dependence on fossil energy. Cluster
4 incorporates low-emitting countries such as tourist paradises and small islands like the
Seychelles and Malta, with low per capita and predominant oil consumption, suggesting a
dependence on transportation and tourism-related activities. Finally, cluster 5 comprises
developed and emerging economies in Europe and Latin America, such as Spain, Mexico,
and Brazil, with moderate CO2 and other gas emissions, reflecting a diversity of energy
sources with a significant emphasis on the energy sector. The findings offer considerable
knowledge about global emission trends and energy consumption patterns.

The t-SNE visualization shows a more precise separation and dispersion of clusters
compared to PCA, capturing non-linear relationships and providing a detailed representa-
tion of CO2 emissions patterns. While PCA efficiently groups the most polluting countries
based on linear relationships, t-SNE reveals complex patterns related to population, ur-
banization, industrial capability, and fossil fuel dependence. This comprehensive analysis,
combining K-means clustering with PCA, and t-SNE, highlights significant disparities in
CO2 emissions among countries, both in absolute and per capita terms.

The findings align with the existing literature, confirming China, USA, and Russia
as the highest absolute emitters, and Qatar leading in per capita emissions [10,20]. These
results highlight the importance of region-specific approaches to emission reduction and
emphasize the need for international collaboration and coherent global policies. The
understandings gained from this multifaceted analysis are crucial for policymakers in
designing targeted climate change mitigation strategies, considering the emission profiles
and underlying factors of different countries [9,14].

6. General Discussion

The application of PCA and t-SNE techniques has offered complementary insights.
While PCA effectively identified the most significant contributors to global emissions, t-SNE
revealed more nuanced relationships among countries, capturing non-linear interactions
between factors such as population, urbanization, and industrial capability. These find-
ings emphasize the complexity of the emissions landscape and the need for multifaceted
approaches to emission reduction.

The disparities in emissions between developed and developing nations, as well as
between urban and rural areas within countries, point to the importance of considering
equity and fairness in climate policy. Future international agreements may need to account
for these differences, potentially through mechanisms such as differentiated responsibilities
or support for low-carbon development in emerging economies.

Finally, the empirical findings emphasize the need for tailored, data-driven approaches
to emission reduction. The global nature of climate change requires international coop-
eration, but the heterogeneity in emission profiles demands nuanced, context-specific
strategies. By leveraging advanced analytical techniques such as those employed in this
study, policymakers and researchers can develop more effective and equitable approaches
to the critical challenge of mitigating global CO2 emissions.
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7. Conclusions

The analysis of CO2 emissions among 208 countries using K-means clustering com-
bined with PCA and t-SNE visualization has revealed significant patterns and disparities
in global carbon emissions. These findings carry important implications for climate change
mitigation strategies and international environmental policy. The results obtained indicate
that a small number of countries, notably China, USA, and Russia, are responsible for a
disproportionate share of global CO2 emissions. This concentration of emissions suggests
that targeted interventions in these nations could yield substantial reductions in global
carbon output. However, when emissions are considered on a per capita basis, a different
picture emerges. Countries such as Qatar and other Gulf states show the highest emissions
per capita, highlighting the role of oil industries and high-consumption lifestyles in driving
carbon emissions. The clustering analysis shows that countries can be grouped based
on their emission profiles, reflecting similarities in economic structure, energy sources,
and development stages. This categorization provides a framework for tailoring emission
reduction strategies to specific country groups, potentially increasing the effectiveness of
international climate agreements.

Looking ahead, several avenues for future research can be identified. The following are
examples: (1) longitudinal studies to analyze how countries’ emission profiles change over
time, which could provide insights into the effectiveness of various policy interventions;
(2) inclusion of other economic and social factors, such as economic growth, technological
adoption, and social indicators, to better understand the drivers behind emission patterns;
(3) development of predictive models based on the identified clusters, which could help
forecast future emission trends under various policy scenarios; (4) sub-national analysis,
applying similar clustering techniques to regions or cities within countries, which could
reveal intra-national patterns and identify localized emission reduction strategies; and
(5) assessment of policy effectiveness and evaluation of how countries within the same
cluster respond to similar policy interventions, which could yield valuable information for
climate governance.
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Appendix A

The K-means algorithm aims to group a set of n observations X = {x1, x2, . . . , xn},
each represented as a d-dimensional vector into K(K ≤ n) clusters C = {c1, c2, . . . , cK}. The
goal is to minimize the intra-cluster variance. Each cluster cK is defined by its centroid µK,
which is the average of the points in cK. The objective function, known as the inertia or the
sum of squares within the cluster, is defined by:

W(C) =
K

∑
k=1

∑
x1∈ck

∥xi − µK∥2 (A1)

where the term ∥xi − µK∥2 represents the Euclidean distance between the observation xi
and the cluster centroid µK. In this scenario, K-means clustering is used to explore how
diverse countries’ emissions and per capita emissions can be categorized into groups based
on their emission patterns. The elbow method is utilized to determine the number of
clusters, where the inertia starts decreasing more slowly as K increases. The elbow point
represents a change in the decay rate and indicates that further increases in K do not
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significantly enhance clustering. Therefore, the value of K at the elbow point is considered
the optimal number of clusters. The K value is formally sought that fulfills ∆W(cK) < T
where ∆W(cK) represents the change in inertia when transitioning from K to K + 1 and T
means the change in inertia during this transition.

Appendix B

Table A1. Cluster of countries by CO2 emissions—PCA cluster.

PCA
Cluster Countries

1

Afghanistan, Albania, Andorra, Angola, Anguilla, Antigua and Barbuda, Argentina,
Armenia, Aruba, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados,
Belarus, Belgium, Belize, Benin, Bermuda, Bhutan, Bolivia, Bonaire Sint Eustatius
and Saba, Bosnia and Herzegovina, Botswana, British Virgin Islands, Brunei,
Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Cape Verde, Central African
Republic, Chad, Chile, Colombia, Comoros, Congo, Cook Islands, Costa Rica, Cote
d’Ivoire, Croatia, Cuba, Curacao, Cyprus, Czechia, Democratic Republic of Congo,
Denmark, Djibouti, Dominica, Dominican Republic, East Timor, Ecuador, El
Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland,
French Polynesia, Gabon, Gambia, Georgia, Ghana, Greece, Greenland, Grenada,
Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong, Hungary,
Ireland, Israel, Jamaica, Jordan, Kenya, Kiribati, Kosovo, Kuwait, Kyrgyzstan, Laos,
Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg,
Macao, Madagascar, Malawi, Malaysia, Maldives, Malta, Marshall Islands,
Mauritania, Mauritius, Micronesia (country), Moldova, Mongolia, Montserrat,
Morocco, Mozambique, Myanmar, Namibia, Nauru, Nepal, Netherlands, New
Caledonia, New Zealand, Nicaragua, Niger, Niue, North Korea, Norway, Oman,
Pakistan, Palau, Palestine, Panama, Papua New Guinea, Paraguay, Peru, Philippines,
Poland, Portugal, Qatar, Romania, Rwanda, Saint Helena, Saint Kitts and Nevis,
Saint Lucia, Saint Vincent and the Grenadines, Samoa, Sao Tome and Principe,
Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Sint Maarten (Dutch part),
Slovakia, Slovenia, Solomon Islands, South Africa, South Sudan, Spain, Sri Lanka,
Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan, Tajikistan, Tanzania,
Thailand, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, Turks
and Caicos Islands, Tuvalu, Uganda, Ukraine, United Arab Emirates, Uruguay,
Uzbekistan, Vanuatu, Vietnam, Wallis and Futuna, Yemen, Zambia, Zimbabwe.

2 China.

3 United States

4
Algeria, Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Iran,
Iraq, Italy, Japan, Kazakhstan, Mexico, Nigeria, Oceania, Saudi Arabia, South Korea,
United Kingdom, Venezuela.

5 Russia.

Table A2. Cluster of countries by CO2 emissions—t-SNE cluster.

t-SNE
Cluster Countries

1

Andorra, Anguilla, Antigua and Barbuda, Belize, Bermuda, Bonaire Sint Eustatius
and Saba, British Virgin Islands, Burundi, Cape Verde, Central African Republic,
Comoros, Cook Islands, Djibouti, Dominica, Eritrea, Gambia, Greenland, Grenada,
Guinea-Bissau, Kiribati, Liechtenstein, Marshall Islands, Micronesia (country),
Montserrat, Nauru, Niue, Palau, Saint Helena, Saint Kitts and Nevis, Saint Lucia,
Saint Vincent and the Grenadines, Samoa, Sao Tome and Principe, Seychelles,
Solomon Islands, Tonga, Turks and Caicos Islands, Tuvalu, Vanuatu, Wallis
and Futuna.
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Table A2. Cont.

t-SNE
Cluster Countries

2

Austria, Azerbaijan, Bahrain, Bangladesh, Belarus, Belgium, Bolivia, Brunei,
Bulgaria, Cameroon, Chad, Chile, Colombia, Congo, Croatia, Cuba, Czechia,
Democratic Republic of Congo, Denmark, Dominican Republic, Ecuador, Equatorial
Guinea, Finland, Gabon, Ghana, Greece, Hong Kong, Hungary, Ireland, Israel,
Jordan, Kuwait, Lebanon, Lithuania, Morocco, Myanmar, New Zealand, Norway,
Peru, Philippines, Portugal, Romania, Serbia, Singapore, Slovakia, Sudan, Sweden,
Switzerland, Syria, Trinidad and Tobago, Tunisia, Yemen.

3

Afghanistan, Albania, Armenia, Benin, Bosnia and Herzegovina, Burkina Faso,
Cambodia, Costa Rica, Cote dIvoire, Curacao, Cyprus, El Salvador, Estonia, Ethiopia,
Georgia, Guatemala, Honduras, Jamaica, Kenya, Kyrgyzstan, Laos, Latvia,
Luxembourg, Moldova, Mongolia, Mozambique, Namibia, Nepal, Nicaragua, North
Korea, Panama, Papua New Guinea, Paraguay, Senegal, Slovenia, Sri Lanka,
Tajikistan, Tanzania, Uganda, Uruguay, Zambia, Zimbabwe.

4

Algeria, Angola, Argentina, Australia, Brazil, Canada, China, Egypt, France,
Germany, India, Indonesia, Iran, Iraq, Italy, Japan, Kazakhstan, Libya, Malaysia,
Mexico, Netherlands, Nigeria, Oceania, Oman, Pakistan, Poland, Qatar, Russia,
Saudi Arabia, South Africa, South Korea, Spain, Taiwan, Thailand, Turkey,
Turkmenistan, Ukraine, United Arab Emirates, United Kingdom, United States,
Uzbekistan, Venezuela, Vietnam.

5

Aruba, Bahamas, Barbados, Bhutan, Botswana, East Timor, Eswatini, Fiji, French
Polynesia, Guinea, Guyana, Haiti, Kosovo, Lesotho, Liberia, Macao, Madagascar,
Malawi, Maldives, Malta, Mauritania, Mauritius, New Caledonia, Niger, Palestine,
Rwanda, Sierra Leone, Sint Maarten (Dutch part), South Sudan, Suriname, Togo.

Appendix C

Table A3. Cluster of countries by CO2 per capita emissions—PCA cluster.

PCA
Cluster Countries

1

Afghanistan, Angola, Argentina, Armenia, Azerbaijan, Bangladesh, Belize, Benin,
Bolivia, Bonaire Sint Eustatius and Saba, Botswana, Brazil, Burkina Faso, Burundi,
Cambodia, Cameroon, Cape Verde, Central African Republic, Chad, Colombia,
Comoros, Congo, Cook Islands, Costa Rica, Cote dIvoire, Cuba, Democratic
Republic of Congo, Djibouti, Dominica, Dominican Republic, East Timor, Ecuador,
Egypt, El Salvador, Eritrea, Eswatini, Ethiopia, Fiji, French Polynesia, Gambia,
Georgia, Ghana, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti,
Honduras, India, Indonesia, Jamaica, Jordan, Kenya, Kiribati, Kyrgyzstan, Laos,
Lesotho, Liberia, Liechtenstein, Macao, Madagascar, Malawi, Maldives, Malta,
Marshall Islands, Mauritania, Mauritius, Micronesia (country), Moldova, Morocco,
Mozambique, Myanmar, Namibia, Nauru, Nepal, Nicaragua, Niger, Nigeria, Niue,
North Korea, Pakistan, Palestine, Panama, Papua New Guinea, Paraguay, Peru,
Philippines, Rwanda, Saint Helena, Saint Kitts and Nevis, Saint Lucia, Saint Vincent
and the Grenadines, Samoa, Sao Tome and Principe, Senegal, Sierra Leone, Solomon
Islands, South Sudan, Sri Lanka, Sudan, Syria, Tajikistan, Tanzania, Togo, Tonga,
Tuvalu, Uganda, Uruguay, Uzbekistan, Vanuatu, Wallis and Futuna, Yemen,
Zambia, Zimbabwe.

2 Bahrain, Brunei, Kuwait, Oman, Saudi Arabia, Trinidad and Tobago, United
Arab Emirates.
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Table A3. Cont.

PCA
Cluster Countries

3

Albania, Andorra, Anguilla, Antigua and Barbuda, Aruba, Austria, Bahamas,
Barbados, Belarus, Belgium, Bermuda, Bhutan, Bosnia and Herzegovina, British
Virgin Islands, Bulgaria, Chile, Croatia, Cyprus, Denmark, Finland, France, Germany,
Greece, Greenland, Hong Kong, Hungary, Ireland, Israel, Italy, Japan, Kosovo,
Latvia, Lebanon, Lithuania, Malaysia, Mexico, Montserrat, Netherlands, New
Zealand, Norway, Oceania, Palau, Poland, Portugal, Romania, Serbia, Seychelles,
Singapore, Slovakia, Slovenia, Spain, Suriname, Sweden, Switzerland, Thailand,
Tunisia, Turkey, Turks and Caicos Islands, Ukraine, United Kingdom, Vietnam.

4
Australia, China, Curacao, Czechia, Estonia, Kazakhstan, Luxembourg, Mongolia,
New Caledonia, Sint Maarten (Dutch part), South Africa, South Korea, Taiwan,
United States.

5 Algeria, Canada, Equatorial Guinea, Gabon, Iran, Iraq, Libya, Russia, Turkmenistan,
Venezuela.

6 Qatar.

Table A4. Cluster of countries by CO2 per capita emissions—t-SNE cluster.

t-SNE
Cluster Countries

1

Afghanistan, Angola, Bangladesh, Belize, Benin, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic, Chad, Comoros, Cote dIvoire, Democratic
Republic of Congo, East Timor, Eritrea, Eswatini, Ethiopia, Gambia, Ghana, Guinea,
Guinea-Bissau, Haiti, Kiribati, Lesotho, Liberia, Madagascar, Malawi, Mauritania,
Micronesia (country), Mozambique, Myanmar, Niger, Nigeria, Palestine, Papua New
Guinea, Rwanda, Samoa, Sao Tome and Principe, Sierra Leone, Solomon Islands,
South Sudan, Sudan, Tanzania, Tonga, Tuvalu, Uganda, Vanuatu,
Yemen, Zimbabwe.

2
Algeria, Bahrain, Brunei, Canada, Congo, Equatorial Guinea, Gabon, Iran, Iraq,
Kuwait, Libya, Netherlands, New Zealand, Norway, Oman, Qatar, Russia, Trinidad
and Tobago, Turkmenistan, Venezuela.

3

Armenia, Bolivia, Botswana, Cambodia, Colombia, Costa Rica, Cuba, Djibouti, El
Salvador, Fiji, Guatemala, Honduras, India, Indonesia, Kenya, Kyrgyzstan,
Mauritius, Moldova, Morocco, Namibia, Nepal, Nicaragua, North Korea, Pakistan,
Paraguay, Peru, Philippines, Senegal, Sri Lanka, Syria, Tajikistan, Togo,
Uruguay, Zambia.

4

Andorra, Anguilla, Antigua and Barbuda, Aruba, Bahamas, Bermuda, Bonaire Sint
Eustatius and Saba, British Virgin Islands, Cook Islands, Curacao, Dominica, French
Polynesia, Greenland, Grenada, Liechtenstein, Macao, Maldives, Malta, Marshall
Islands, Montserrat, Nauru, Niue, Palau, Saint Helena, Saint Kitts and Nevis, Saint
Lucia, Saint Vincent and the Grenadines, Seychelles, Singapore, Sint Maarten (Dutch
part), Suriname, Turks and Caicos Islands, Wallis and Futuna.

5

Albania, Argentina, Austria, Azerbaijan, Barbados, Belarus, Belgium, Bhutan, Brazil,
Chile, Croatia, Cyprus, Denmark, Dominican Republic, Ecuador, Egypt, France,
Georgia, Guyana, Hungary, Ireland, Italy, Jamaica, Jordan, Laos, Latvia, Lebanon,
Lithuania, Mexico, Panama, Portugal, Romania, Spain, Sweden, Switzerland,
Thailand, Tunisia, Turkey, United Kingdom, Uzbekistan, Vietnam.

6

Australia, Bosnia and Herzegovina, Bulgaria, China, Czechia, Estonia, Finland,
Germany, Greece, Hong Kong, Israel, Japan, Kazakhstan, Kosovo, Luxembourg,
Malaysia, Mongolia, New Caledonia, Oceania, Poland, Saudi Arabia, Serbia,
Slovakia, Slovenia, South Africa, South Korea, Taiwan, Ukraine, United Arab
Emirates, United States.
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