Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations
Abstract
:1. Introduction
2. Hiirota Bilinear Method for Breather Solutions
2.1. Hirota Bilinear Method
2.2. Breather Solutions
3. Examples
3.1. Breather Solutions of the Two-Component NNLS Equations
3.1.1. The First-Order Breather Solutions
3.1.2. The Second-Order Breather Solution
3.1.3. The Third-Order Breather Solutions
3.2. Breather Solutions of the Three-Component NNLS Equations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fibich, G. The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Tajiri, M.; Watanabe, Y. Breather solutions to the focusing nonlinear Schrödinger equation. Phys. Rev. E 1998, 57, 3510–3519. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Shabat, A.B. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. J. Exp. Theor. Phys. 1971, 61, 118–134. [Google Scholar]
- Zhang, X.; Chen, Y. Inverse scattering transformation for generalized nonlinear Schrödinger equation. Appl. Math. Lett. 2019, 98, 306–313. [Google Scholar] [CrossRef]
- Gu, C.; Hu, H.; Zhou, X. Darboux Transformations in Integrable Systems; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 2016, 29, 915. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal asymptotic reductions of physically significant nonlinear equations. J. Phys. A Math. Theor. 2019, 52, 15LT02. [Google Scholar] [CrossRef]
- Chen, S.T.; Ma, W.X. Nonlocal reduced integrable mKdV-type equations from a vector integrable hierarchy. Mod. Phys. Lett. B 2023, 37, 2350045. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable nonlocal nonlinear Schrödinger hierarchies of type (−λ*,λ) and soliton solutions. Rep. Math. Phys. 2023, 92, 19–36. [Google Scholar] [CrossRef]
- Gurses, M.; Pekcan, A. Nonlocal modified KdV equations and their soliton solutions by the Hirota method. Commun Nonlinear Sci. Numer. Simulat. 2019, 67, 427–448. [Google Scholar] [CrossRef]
- Li, M.; Xu, T. Dark and anti-dark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 2015, 91, 03320. [Google Scholar] [CrossRef]
- Yang, B.; Yang, J. Rogue waves in the nonlocal -symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 2019, 109, 945–973. [Google Scholar] [CrossRef]
- Sinha, D.; Ghosh, P.K. Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential. Phys. Lett. A 2017, 381, 124–128. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlocal -symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 2021, 4, 100190. [Google Scholar] [CrossRef]
- Grahovski, G.G.; Mustafa, J.I.; Susanto, H. Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on Symmetric Spaces. Theor. Math. Phys. 2018, 197, 1430–1450. [Google Scholar] [CrossRef]
- Denga, X.; Loub, S.; Zhang, D. Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations. Appl. Math. Comput. 2018, 332, 477–483. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, D. Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction. Appl. Math. Lett. 2018, 75, 82–88. [Google Scholar] [CrossRef]
- Bai, Y.S.; Zheng, L.N.; Ma, W.X. Nth-order rogue wave solutions of multicomponent nonlinear Schrödinger equations. Nonlinear Dyn. 2021, 106, 3415–3435. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Tang, X. A general integrable three-component coupled nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 2017, 89, 2729–2738. [Google Scholar] [CrossRef]
- Li, L.; Duan, C.; Yu, F. An improved Hirota bilinear method and a new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys. Lett. A 2019, 383, 1578–1582. [Google Scholar] [CrossRef]
- Smirnov, A.O.; Matveev, V.B. Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy. Ufa Math. J. 2021, 13, 81–98. [Google Scholar] [CrossRef]
- Eilbeck, J.C.; Enolskii, V.Z.; Kostov, N.A. Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations. J. Math. Phys. 2000, 41, 8236. [Google Scholar] [CrossRef]
- Elgin, J.N.; Enolskii, V.Z.; Its, R.A. Effective integration of the nonlinear vector Schrödinger equation. Phys. D 2007, 225, 127–152. [Google Scholar] [CrossRef]
- Woodcock, T.; Warren, O.H.; Elgin, J.N. Genus two finite gap solutions to the vector nonlinear Schrödinger equation. J. Phys. A 2007, 40, F355–F361. [Google Scholar] [CrossRef]
- Its, A.R.; Rybin, A.V.; Sall, M.A. Exact integration of nonlinear Schrödinger equation. Theor. Math. Phys. 1988, 74, 20–32. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.-S.; Zheng, L.-N.; Ma, W.-X.; Yun, Y.-S. Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations. Mathematics 2024, 12, 2594. https://doi.org/10.3390/math12162594
Bai Y-S, Zheng L-N, Ma W-X, Yun Y-S. Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations. Mathematics. 2024; 12(16):2594. https://doi.org/10.3390/math12162594
Chicago/Turabian StyleBai, Yu-Shan, Li-Na Zheng, Wen-Xiu Ma, and Yin-Shan Yun. 2024. "Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations" Mathematics 12, no. 16: 2594. https://doi.org/10.3390/math12162594
APA StyleBai, Y. -S., Zheng, L. -N., Ma, W. -X., & Yun, Y. -S. (2024). Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations. Mathematics, 12(16), 2594. https://doi.org/10.3390/math12162594