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Abstract: Nonlocal nonlinear Schrödinger equations are among the important models of nonlocal
integrable systems. This paper aims to present a general formula for arbitrary-order breather solutions
to multi-component nonlocal nonlinear Schrödinger equations by using the Hirota bilinear method.
In particular, abundant wave solutions of two- and three-component nonlocal nonlinear Schrödinger
equations, including periodic and mixed-wave solutions, are obtained by taking appropriate values
for the involved parameters in the general solution formula. Moreover, diverse wave structures of
the resulting breather and periodic wave solutions with different parameters are discussed in detail.
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1. Introduction

Solving the nonlinear Schrödinger (NLS) equation is a frequent subject in classical
integrable systems [1,2]. Various wave solutions of the NLS equation can be obtained by
using the inverse scattering transformation [3,4], the Darboux transformation [5], and the
Hirota bilinear method [6]. In 2013, Ablowitz [7] and his collaborators derived a nonlocal
nonlinear Schrödinger (NNLS) equation with PT symmetry, which provides a new research
direction for the integrable systems, namely nonlocal integrable systems. It has been shown
in [8] that a nonlocal system can be derived from the nonlocal reduction of the general
AKNS system, and its soliton solution can also be constructed by the inverse scattering
method, which means that the classical methods for the integrable systems can be used
to study the nonlocal systems. Further studies have also proved that different nonlocal
reductions from the general AKNS system lead to many new nonlocal systems with PT
symmetry, such as the nonlocal Klein–Gordon equation, nonlocal modified KdV equation,
and so on [9–12].

The NNLS equation introduced in [7] is

iPt(x, t) +
1
2
Pxx(x, t) + κP2(x, t)P∗(−x, t) = 0, κ = ±1 (1)

where P is a complex valued function of the real variables x and t. ∗ refers to the complex
conjugation. The case with κ = +1 is called focusing, and the case with κ = −1 is called
defocusing. In Equation (1), for a fixed time, the nonlinear term U(x, t) = P(x, t)P∗(−x, t)
satisfies the PT symmetry condition U(x, t) = U∗(−x, t) [11]. Following Ablowitz’s work,
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many achievements in integrable nonlocal systems have emerged in nonlinear mathe-
matical physics. In [13], Equation (1) was investigated by the Darboux transformation,
and, a chain of nonsingular localized wave solutions was obtained. In [14], three types of
rogue waves for Equation (1) corresponding to the focusing case were derived by using
the Darboux transformation. In [15], the integrability of a two-component nonlocal system
with PT symmetry was studied, and the inverse scattering transformation gave its soliton
solutions. In [16] Wen-Xiu Ma introduced a more generalized PT-symmetric NNLS system,
namely, MNNLS equations, investigated their integrability, and presented soliton solutions
employing the Riemann–Hilbert approach. Many other interesting applications and theo-
retical developments about PT symmetry and nonlocal integrable systems have appeared
in [17–23].

In the following, we will consider a nonlocal multi-component system generalized
from Equation (1):

iPj,t(x, t) + Pj,xx(x, t) + 2
( n

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
Pj(x, t) = 0, (j = 1, 2, · · · , n), (2)

where Pj(x, t) is a complex field of the real variables x and t. In the system (2), the nonlinear

term contains a self-induced potential of the form U(x, t) =
n
∑

l=1
Pl(x, t)P∗

l (−x, t), which

satisfies the PT symmetry condition U(x, t) = U∗(−x, t) for a fixed time, i.e., they are
invariant under the parity–time transformation (x → −x, t → t).

The Hirota bilinear method is a powerful mathematical method for solving the classical
integral system. In this paper, we will investigate the solutions of system (2) using the
bilinear method. The current paper is organized as follows. In Section 2, we will apply
the Hirota bilinear method to system (2) and present a formula for Nth-order breather
solutions. In Section 3, we will discuss breather, periodic, and mixed waves of two- and
three-component nonlocal nonlinear Schrödinger equations. Section 4 will give a summary
of this paper.

2. Hiirota Bilinear Method for Breather Solutions
2.1. Hirota Bilinear Method

We first need the following transformations [2]:

Pj(x, t) = Cj exp(iθt)
Aj(x, t)
B(x, t)

, j = 1, 2, · · · , n, (3)

where Cj and θ are real constants, Aj(x, t), j = 1, 2, · · · , n are complex functions, and B(x, t)
is a real function. In addition, B(x, t) satisfies the following condition:

B∗(−x, t) = B(x, t). (4)

Then, substituting (3) into (2), we obtain

i(Aj,tB −AjBt)B − θAjB2 + (Aj,xxB −AjBxx)B − 2(Aj,xB −AjBx)Bx + 2C2A∗
j A2

j = 0, j = 1, 2, · · · , n. (5)

Through calculation, we obtain the following bilinear form of the system (5):

(iDt + D2
x)Aj · B = 0, (j = 1, 2, · · · , n),

D2
xB · B = 2

n

∑
r=1

C2
r A∗

r (−x, t)Ar(x, t)− θBB,
(6)
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where Hirota’s bilinear operators Dt and Dx are defined by the following [6]:

Dm1
x Dm2

t (A · B) =
( ∂

∂x
− ∂

∂x1

)m1
( ∂

∂t
− ∂

∂t1

)m2
A(x, t)B(x1, t1)

∣∣∣
x1=x,t1=t

=
m1

∑
j=0

m2

∑
r=0

(−1)m1+m2−j−rm1!
j!(m1 − j)!

m2!
r!(m2 − r)!

∂r+jA
∂tr∂xj

∂m1+m2−r−jB
∂tm2−r∂xm1−j .

To construct the Nth-order breather solutions of (2) using the bilinear method, we also
need the following finite perturbation expansions for functions Aj(x, t) and B(x, t):

Aj(x, t) = Aj0(x, t)[1 + ϵAj1(x, t) + ϵ2Aj2(x, t) + ϵ3Aj3(x, t) + · · · ], (j = 1, 2, · · · , n),

B(x, t) = 1 + ϵB1(x, t) + ϵ2B2(x, t) + ϵ3B3(x, t) + · · · ,
(7)

where ϵ is a small perturbation parameter. For the Nth-order breather solutions of (2),
the expansions need to stop at ϵ2n. Functions Ajk and Bk, j = 1, 2, · · · , n, are specified types
of functions with undetermined parameters and Aj0 = exp(−iθt)Pj0(x, t)/Cj.

2.2. Breather Solutions

In the following, we first construct the first- and second-order breather solutions of
the system (2) and then derive its Nth-order breather solutions. The construction of the
first-order breather solutions is similar to that of two soliton solutions. According to the
bilinear method, we truncate (7) to Aj2(x, t) and B2(x, t), which means that the first-order
breather solutions can be obtained by taking

Aj1(x, t) = eβ1(x,t)+2iω1 + eβ2(x,t)+2iω2 ,B1(x, t) = eβ1(x,t) + eβ2(x,t),

Aj2(x, t) = µ12eβ1(x,t)+β2(x,t)+2iω1+2iω2 ,B2(x, t) = µ12eβ1(x,t)+β2(x,t), (j = 1, 2, · · · , n),
(8)

where βℓ(x, t) = iχℓx + φℓt + ϕ0ℓ, (ℓ = 1, 2), and χℓ, φℓ, ϕℓ, ωℓ are real parameters.
Then, substituting (8) into (6), we have

χℓ = 2

(√
n

∑
r=1

C2
r

)
sin ωℓ, φℓ = −2

(
n

∑
r=1

C2
r

)
sin 2ωℓ, θ = 2

n

∑
r=1

C2
r ,

µ12 =

(
sin

ω1 − ω2

2
/ sin

ω1 + ω2

2

)2

, ω2 = −ω1 + π.

Accordingly, the first-order breather solutions of (2) are given by

Pj,1(x, t) = Cj exp

(
2i

n

∑
r=1

C2
r t

)
1 + eβ1(x,t)+2iω1 + eβ2(x,t)+2iω2 + µ12eβ1(x,t)+β2(x,t)+2iω1+2iω2

1 + eβ1(x,t) + eβ2(x,t) + µ12eβ1(x,t)+β2(x,t)
, (j = 1, 2, · · · , n). (9)

where B = 1 + eβ1(x,t) + eβ2(x,t) + µ12eβ1(x,t)+β2(x,t) satisfies Equation (4) and ϵ = 1 in (7).
To construct the second-order breather solutions of (2), we truncate the expressions in

(7) to Aj4(x, t) and B4(x, t), and take

Aj1(x, t) =eβ1(x,t)+2iω1 + eβ2(x,t)+2iω2 + eβ3(x,t)+2iω3 + eβ4(x,t)+2iω4 ,

B1(x, t) =eβ1(x,t) + eβ2(x,t) + eβ3(x,t) + eβ4(x,t),
(10)

where βℓ(x, t) = iχℓx + φℓt + ϕ0ℓ, (ℓ = 1, 2, 3, 4), and χℓ, φℓ, ϕℓ, ωℓ are real constants.
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Substituting (10) into (6), we obtian

χℓ = 2

(√
n

∑
r=1

C2
r

)
sin ωℓ, φℓ = −2

(
n

∑
r=1

C2
r

)
sin 2ωℓ, θ = 2

n

∑
r=1

C2
r ,

µℓσ =

(
sin

ωℓ − ωσ

2
/ sin

ωℓ + ωσ

2

)2

(σ = 1, 2, 3, 4, ℓ ̸= σ, αℓ = 0, 1),

ω2 = −ω1 + π, ω4 = −ω3 + π.

Accordingly, we obtain the second-order breather solutions of the system (2):

Pj,2(x, t) = Cj exp
(

2i
n

∑
r=1

C2
r t
) ∑

α=0,1
exp

(
4
∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
4
∑

1≤ℓ<σ
αℓαστℓσ

)

∑
α=0,1

exp
(

4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

) , (j = 1, 2, · · · , n), (11)

where B = ∑
α=0,1

exp

(
4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

)
satisfies Equation (4).

It is important to note that the above processes for constructing breather solutions
can be continued in the same way, i.e., one can construct third- and fourth-order breather
solutions, etc. This suggests that a general formula for the Nth-order breather solutions of
system (2) can be expressed. Therefore, when ϵ = 1, we take

Aj(x, t) = ∑
α=0,1

exp
( 2N

∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
2N

∑
1≤ℓ<σ

αℓαστℓσ, B(x, t) = ∑
α=0,1

exp
( 2N

∑
ℓ=1

αℓβℓ +
2N

∑
1≤ℓ<σ

αℓαστℓσ

)
, (12)

where

µℓσ = eτℓσ =

(
sin

ωℓ − ωσ

2
/ sin

ωℓ + ωσ

2

)2

,

βℓ = βℓ(x, t) = iχℓx + φℓt + ϕ0ℓ, (ℓ = 1, 2, 3, · · · , 2N),

χℓ = 2

(√
n

∑
r=1

C2
r

)
sin ωℓ, φℓ = −2

( n

∑
r=1

C2
r

)
sin 2ωℓ,

and ℓ, σ = 1, 2, · · · , 2N − 1, 2N, but ℓ ̸= σ, αℓ = 0, 1(ℓ = 1, 2, · · · , 2N − 1, 2N) should take
all possible combinations of α.

Thus, when ω2N = −ω2N−1 + π, the Nth-order breather solutions of (2) can be
written as

Pj,N(x, t) = Cj exp
(

2i
n

∑
r=1

C2
r t
) ∑

α=0,1

(
2n
∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
2n
∑

1≤ℓ<σ
αℓαστℓσ

)
∑

α=0,1
exp (

2n
∑
ℓ=1

αℓβℓ +
2n
∑

1≤ℓ<σ
αℓαστℓσ

) , (j = 1, 2, · · · , n). (13)

Generally, for the breather wave solutions, their shapes are mainly related to n param-
eters ωn. For a given n, the components Pj, (j = 1, .., n) are distinguished by the coefficients
Cj. Under this condition, the components can be proportional; otherwise, they cannot.
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3. Examples
3.1. Breather Solutions of the Two-Component NNLS Equations

When n = 2 in (2), we obtain the following two-component system:

iP1,t(x, t) + P1,xx(x, t) + 2
( 2

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
P1(x, t) = 0,

iP2,t(x, t) + P22,xx(x, t) + 2
( 2

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
P2(x, t) = 0.

(14)

The Hirota bilinear forms of (14) are given by

(iDt + D2
x)A1 · B = 0, (iDt + D2

x)A2 · B = 0,

D2
xB · B = 2

2

∑
r=1

C2
r A∗

r (−x, t)Ar(x, t)− θBB.
(15)

3.1.1. The First-Order Breather Solutions

According to (9), the first-order breather solutions of (14) can be written as

P1,1(x, t) = C1 exp
(

2i
2

∑
r=1

C2
r t
)

1 + eβ1(x,t)+2iω1 + eβ2(x,t)+2iω2 + µ12eβ1(x,t)+β2(x,t)+2iω1+2iω2

1 + eβ1(x,t) + eβ2(x,t) + µ12eβ1(x,t)+β2(x,t)
,

P2,1(x, t) = C2 exp
(

2i
2

∑
r=1

C2
r t
)

1 + eβ1(x,t)+2iω1 + eβ2(x,t)+2iω2 + µ12eβ1(x,t)+β2(x,t)+2iω1+2iω2

1 + eβ1(x,t) + eβ2(x,t) + µ12eβ1(x,t)+β2(x,t)
.

(16)

Obviously, the denominator B = 1 + eβ1(x,t) + eβ2(x,t) + µ12eβ1(x,t)+β2(x,t) of (16) sat-
isfies (4). The corresponding graphs of the first-order breather solutions Pi,1 are shown
in Figure 1 with ϕ01 = ϕ02 = 0.1. Figure 1a,c show the number of the peaks determined
by Ci at a fixed ωi, i = 1, 2. Figure 1a,b show the number of peaks determined by ωi at a
fixed Ci, i = 1, 2. In particular, P1,1 is the periodic wave solution at ω1 = π

2 . We find that
the values of ϕ01 and ϕ02 have little effect on the changes in peak number and amplitude
within a certain range, and this is also true for high-order breather wave solutions.

(a) (b) (c)

(d)

Figure 1. (a) First-order breather solution P1,1 with ω1 = π
10 , C1 = 0.5, and C2 = 1; (b) first-order

breather solution P2,1 with ω1 = π
3 , C1 = 0.5, and C2 = 1; (c) first-order breather solution P1,1 with

ω1 = π
10 , C1 = 0.5, and C2 = 2; (d) periodic wave solution P1,1 with ω1 = π

2 , C1 = 0.5, and C2 = 1.
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3.1.2. The Second-Order Breather Solution

According to (11), the second-order breather solutions of (14) can be expressed as

Pj,2(x, t) = Cj exp
(

2i
2

∑
r=1

C2
r t
) ∑

α=0,1
exp

(
4
∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
4
∑

1≤ℓ<σ
αℓαστℓσ

)
∑

α=0,1
exp

(
4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

) , (j = 1, 2). (17)

It is clear that the denominator B = ∑
α=0,1

exp
(

4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

)
of (17) satis-

fies (4). The corresponding graphs of the second-order breather solutions Pi,2 are shown
in Figure 2 with ϕ0i = 0.1, i = 1, . . . 4. Taking ω1 = ω3 = π

10 and C1 = C2 = 1, the general
breather solution P1,2 is plotted in Figure 2a. Taking ω1 = π

4 , ω3 = π
2 , C1 = 0.5, and

C2 = 1.1, the mixed-wave solution P1,2 of the breather and periodic wave along the x-axis
is plotted in Figure 2b. When ω1 = π

10 , ω3 = π
20 , C1 = 0.1, and C2 = 2, we obtain a complex

mixed-wave solution P2,2, namely, a quadrangular breather wave solution (see Figure 2c).
In particular, P1,2 is the periodic wave solution with ω1 = ω3 = π

2 , C1 = 0.5, and C2 = 1
(see Figure 2d). Therefore, we find that the parameter ωi plays an important role in the
structural change of the solutions.

(a) (b) (c)

(d)

Figure 2. (a) Second-order breather solution P1,2 with ω1 = ω3 = π
10 and C1 = C2 = 1 ; (b) mixed-

wave solution P1,2 with ω1 = π
4 , ω3 = π

2 , C1 = 0.5, and C2 = 1.1; (c) mixed-wave solution P2,2 with
ω1 = π

10 , ω3 = π
20 , C1 = 0.1, and C2 = 2; (d) periodic wave solution P1,2 with ω1 = ω3 = π

2 , C1 = 0.5,
and C2 = 1.

3.1.3. The Third-Order Breather Solutions

According to (13), the third-order breather solutions of (14) can be expressed as

Pj,2(x, t) = Cj exp
(

2i
2

∑
r=1

C2
r t
) ∑

α=0,1
exp

(
6
∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
6
∑

1≤ℓ<σ
αℓαστℓσ

)
∑

α=0,1
exp

(
6
∑
ℓ=1

αℓβℓ +
6
∑

1≤ℓ<σ
αℓαστℓσ

) , (j = 1, 2). (18)

The denominator B = ∑
α=0,1

exp
(

4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

)
of (17) satisfies (4). The cor-

responding graphs of the third-order breather solutions Pj,2 are shown in Figure 3 with
ϕ0i = 0.i = 1, . . . 6. Figure 4a shows the third-order breather solution P2,2 with
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ω1 = ω3 = ω5 = π
3 , C1 = 0.1, and C2 = 2. Figure 4b shows the periodic solution P2,2

with parameters ωi =
π
2 , i = 1, . . . 6, C1 = 0.1, and C2 = 1 along the x-axis. As shown in

Figure 4a,b, the amplitude varies significantly with parameter C2. Taking ω1 = π
2 , ω3 = π

20 ,
ω5 = π

30 , C1 = 0.1, and C2 = 1.1, the mixed-wave solution of the solitary wave and
periodic wave along the x-axis is plotted in Figure 3c. When ω1 = π

10 , ω3 = π
20 , and

ω5 = π
30 , Figure 3d shows the mixed waves of four and six solitary wave packets with

interleaved periods.

(a) (b) (c)

(d)

Figure 3. (a) Third-order breather solution P2,2 with ω1 = ω3 = ω5 = π
3 , C1 = 0.1, and C2 = 2;

(b) periodic wave solution P2,2 with ωi = π
2 , i = 1, . . . 6, C1 = 0.1, and C2 = 1; (c) mixed-wave

solution P2,2 with ω1 = π
2 , ω3 = π

20 , ω5 = π
30 , C1 = 0.5, and C2 = 1.1; (d) mixed-wave solution P2,2

with ω1 = π
10 , ω3 = π

20 , ω5 = π
30 , C1 = 0.1, and C2 = 2.

(a) (b) (c)

(d)

Figure 4. (a) Third-order breather solution P1,3 with ω1 = ω3 = ω5 = π
3 and C1 = C2 = C3 = 2;

(b) periodic wave solution P3,3 with ωi =
π
2 , i = 1, . . . 6, C1 = 0.1, C2 = 0.5, and C3 = 1.6; (c) special

periodic wave solution P3,3 with ω1 = π
2 , i = 1, . . . 6, C1 = C3 = 0.01, and C2 = 1.9; (d) mixed-wave

solution P3,3 with ω1 = π
10 , ω3 = π

10 , ω5 = π
20 , C1 = 0.1, C2 = 0.5, and C3 = 2.
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3.2. Breather Solutions of the Three-Component NNLS Equations

When n = 3 in (2), we obtain the following three-component system:

iP1,t(x, t) + P1,xx(x, t) + 2
( 3

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
P1(x, t) = 0,

iP2,t(x, t) + P2,xx(x, t) + 2
( 3

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
P2(x, t) = 0.

iP3,t(x, t) + P3,xx(x, t) + 2
( 2

∑
l=1

Pl(x, t)P∗
l (−x, t)

)
P3(x, t) = 0.

(19)

According to (13), the third-order breather solutions of (14) can be expressed as

Pj,3(x, t) = Cj exp
(

2i
3

∑
r=1

C2
r t
) ∑

α=0,1
exp

(
6
∑
ℓ=1

αℓ(βℓ + 2iωℓ) +
6
∑

1≤ℓ<σ
αℓαστℓσ

)
∑

α=0,1
exp

(
6
∑
ℓ=1

αℓβℓ +
6
∑

1≤ℓ<σ
αℓαστℓσ

) , (j = 1, 2, 3). (20)

The denominator B = ∑
α=0,1

exp
(

4
∑
ℓ=1

αℓβℓ +
4
∑

1≤ℓ<σ
αℓαστℓσ

)
of (20) satisfies (4). The cor-

responding graphs of the third-order breather solutions Pj,3 are shown in Figure 4 with
ϕ0i = 0, i = 1, . . . 6. We find that the structure of the solution varies depending on
the parameters it contains. Figure 4a shows the third-order breather solution P1,3 with
ω1 = ω3 = ω5 = π

3 and Ci = 2, i = 1, 2, 3. Figure 4b shows the periodic solution P3,3
with parameters ωi =

π
2 , i = 1, . . . 6, C1 = 0.1, C2 = 0.5, and C3 = 1.6 along the x-axis. If

C1 = C3 = 0.01 and C2 = 1.9 in Figure 4b, we obtain a special periodic wave solution P3,3
along the x-axis, as shown in Figure 4c. For appropriate values of C1, C2, and C3, we obtain
Figure 4c, which is not the case for solutions containing two parameters C1 and C2 or only
one parameter C1. When ω1 = π

10 , ω3 = π
10 , and ω5 = π

20 , Figure 4d shows the mixed-wave
solution P3,3 of six solitary wave packets with periods.

4. Conclusions

The nonlinear nonlocal Schrödinger equation and its multicomponent generalizations
are important models of nonlocal integrable systems. In this paper, we have presented the
Nth-order breather solutions of MNNLS equations by using the Hirota bilinear method.
As the first example, the first-order, second-order, and third-order breather solutions, peri-
odic solutions, and mixed-wave solutions of the two-component NNLS equations were
illustrated. As a second example, we also illustrated the third-order breather solutions,
periodic solutions, and mixed-wave solutions of the three-component NNLS equations.
The dynamics of the obtained solutions were analyzed. From the graphical analysis, we
found that the wave structures are mainly affected by the parameters ωi and Ci. In particu-
lar, every Ci is related to the amplitude of the waves and the number of peaks. Moreover,
the small difference in parameters ϕ0i, i = 1, . . . n has little effect on the wave structure.
There are many notable parameters in the general expression of breather solutions of
MNNLS equations. Various combinations of multi-parameters have a significant effect on
the wave structure. We have only analyzed some representative combinations of parame-
ters in general solutions. However, the results obtained in this article are relatively rich and
may have potential implications for research in theoretical physics, applied mathematics,
and related fields.

In our future work, we will focus on discovering new exact solutions for multi-
component nonlocal Schrödinger equations that are not found in local equations [24–27].
We aim to explore and characterize these solutions, potentially revealing new insights and
applications beyond those offered by localized models.
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