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Abstract: In this work, we aim to explore the superconvergence of a modified nonconforming cut finite
element method with rectangular meshes for elliptic problems. Boundary conditions are imposed
via the Nitsche’s method. The superclose property is proven for rectangular meshes. Moreover, a
postprocessing interpolation operator is introduced, and it is proven that the postprocessed discrete
solution converges to the exact solution, with a superconvergence rate O(h3/2). Finally, numerical
examples are provided to support the theoretical analysis.
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1. Introduction

Boundaries/interfaces with time or involving complex geometries arise in many
engineering applications and physical phenomena problems. Cut finite element methods
(CutFEM) have been developed to solve PDEs whose solutions involve jumps, kinks,
singularities and other locally non-smooth features within elements. This method not only
retains the accuracy and robustness of a standard finite element method, but also relaxes
the mesh, which is independent of the geometric description. Over the past few decades,
cut finite element methods have been applied to many problems [1–6]. We also refer to the
overview article [7] and the references therein.

Note that superconvergence of the finite element method is quite popular in prac-
tice, and several types have been studied in the past few decades. There are two main
techniques within the framework of superconvergence. One technique is the interpolation
approximation, which has two ingredients: the supercloseness between the numerical
solution and the finite element canonical interpolant, and the global superconvergence
between the exact solution and a postprocessed solution. This technique has been studied
for conforming finite elements [8–11] and nonconforming finite elements [12,13]. The other
one uses some equivalences, and involves translating the superconvergence of the original
problems into the superconvergence of some mixed problems—for example, the equiv-
alence between the Crouzeix–Raviart method and the lower order Raviart–Thomas (RT)
method for the Poisson equation [14], and the equivalence between the the nonconforming
Rannacher–Turek (NCRT) element and RT element for elliptic equations [15].

For the NCRT element, based on the interpolation approximation technique, it has been
shown in [12] that the supercloseness between the numerical solution and the finite element
interpolation holds only under square meshes. To overcome this barrier, many modified
NCRT elements [12,13,16] have been proposed. In this work, we study the cut finite
element method, based on the five-node nonconforming element developed in [12,13]. The
main contribution is that a postprocessing operator is designed, and the superconvergence
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order O(h3/2) is proven for elliptic problems based on the nonconforming CutFEM under
rectangular meshes.

The remainder of this paper is organized as follows. In Section 2, we formulate
the modified nonconforming CutFEM. The supercloseness is presented in Section 3. A
postprocessing operator and the global superconvergence are analyzed in Section 4. Some
numerical results are shown in Section 5 to verify the theoretical results. The conclusions
are given in the last section. Throughout this paper, C is used to denote generic positive
constants, which are independent of h, the location of the boundary to the mesh. Moreover,
A ≲ B stands for A ≤ CB.

2. The Model Problem and the Finite Element Formulation

Consider the following elliptic problem with a bounded and simply connected domain
Ω ⊂ R2 under a smooth boundary Γ = ∂Ω:{

− ∆u = f in Ω,

u = g on ∂Ω,
(1)

where f is a smooth function, and g ∈ H
1
2 (Γ) is the Dirichlet boundary function prescribed

on Γ.

Remark 1. For f ∈ L2(Ω) and g ∈ H
1
2 (Γ), it is well known that the variational formulation of

(1) has a unique solution u ∈ H1(Ω). In the following analysis of superconvergence, we assume
that g ∈ H

5
2 (Γ) for the solution u ∈ H3(Ω) ∩ W2,∞(Ω).

For domain Ω, we first define a fictitious domain Ω̃, such that Ω ⊂ Ω̃. Let {Th} be a
family of non-overlapping rectangles that cover the domain Ω̃. For any K ∈ Th, we define
hK as diam(K), and denote h := maxK∈Th hK. Note that any element K ∈ Th is considered
closed. Define the set of cut elements by GΓ

h := {K ∈ Th : K ∩ Γ ̸= ∅}. In particular,
for K ∈ GΓ

h , we denote ΓK = K ∩ Γ, T Ω
h := {K ∈ Th : K ∩ Ω ̸= ∅} and Ωh := ∪K∈T Ω

h
K.

Denote the set of all interior edges of T Ω
h by εh. Denote uncut and cut edges by εnc

h and εcut
h ,

respectively, which are defined as εnc
h := {e ∈ εh : e = ∂Kl ∩ ∂Kr, Kl , Kr ∈ Th, and e ⊂ Ω},

and εcut
h := {ẽ = e ∩ Ω : e = ∂Kl ∩ ∂Kr, Kl , Kr ∈ GΓ

h}. Further, the set of extended edges is
denoted by

εΓ
h := {e = ∂Kl ∩ ∂Kr : Kl , Kr ∈ Th, Kl or Kr ∈ GΓ

h}.

Define ∥·∥2
h,Ωh

:= ∑K∈T Ω
h
∥∇·∥2

L2(K).
We define a weak space:

V := {v ∈ L2(Ωh) : v ∈ H2(K), ∀K ∈ T Ω
h }.

Let K̂ = [−1, 1] × [−1, 1] denote the reference element with four vertices
â1 = (−1,−1), â2 = (1,−1), â3 = (1, 1) and â4 = (−1, 1). Denote the bilinear function FK
as an isomorphism from K̂ to K by

x =
4

∑
i

xi Ni(ξ, η), y =
4

∑
i

yi Ni(ξ, η), (ξ, η) ∈ K̂,

where (xi, yi), i = 1, 2, 3, 4 are four vertices of element K, and Ni(ξ, η), i = 1, 2, 3, 4 are the
basis functions of the standard conforming bilinear finite element space, which can be
written as

N1(ξ, η) =
1
4
(1 − ξ)(1 − η), N2(ξ, η) =

1
4
(1 + ξ)(1 − η),

N3(ξ, η) =
1
4
(1 + ξ)(1 + η), N2(ξ, η) =

1
4
(1 − ξ)(1 + η).
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Denote the finite element space of modified nonconforming elements with support in
Ωh by

Vh :=
{

v ∈ L2(Ωh) : v|K ∈ Q̃NCRT(K),
∫

e
[v]ds = 0, ∀e ∈ εh

}
,

where Q̃NCRT(K) := {q = q̂ ◦ F−1
K |q̂ ∈ span < 1, ξ, η, ξ2, η2 >}, [v]|e = v|Kl − v|Kr if

e = ∂Kl ∩ ∂Kr.
We now give the finite element formulation based on the weak formulation of Prob-

lem (1). Firstly, the average {v} on the cut edges ẽ is defined by

{v} =
1
2

vl |ẽ +
1
2

vr|ẽ,

with vj = v|Kj , j = l, r, Kl , Kr ∈ GΓ
h .

The modified nonconforming cut finite element method is to find uh ∈ Vh such that

Ah(uh, vh) = Lh(vh), ∀ vh ∈ Vh, (2)

where Ah(·, ·) is the bilinear form on (V + Vh)× (V + Vh) and Lh(·) is the linear function
on V + Vh, defined by

Ah(u, v) = ∑
K∈T Ω

h

∫
K∩Ω

∇u · ∇v − ∑
K∈GΓ

h

∫
ΓK
(∇u · nv +∇v · nu)

+ ∑
K∈GΓ

h

γ0

h

∫
ΓK

uv − ∑
ẽ∈εcut

h

∫
ẽ
({∇u · nẽ}[v] + {∇v · nẽ}[u])

+ ∑
ẽ∈εcut

h

γ1

h

∫
ẽ
[u][v] + ∑

e∈εΓ
h

h
∫

e
[∇u][∇v],

(3)

and
Lh(v) =

∫
Ω

f v + ∑
K∈GΓ

h

∫
ΓK

g
(
∇v · n +

γ0

h
v
)

, (4)

where n is the unit outward normal vector on the boundary Γ, and γi (i = 0, 1) are
positive numbers.

We introduce the energy norm on the space V + Vh as

∥|v|∥2
h := ∑

K∈T Ω
h

∥∇v∥2
L2(K∩Ω) + ∥v∥2

h,Γ + ∥v∥2
cut + ∑

e∈εΓ
h

h∥[∇v]∥2
L2(e), (5)

with
∥v∥2

h,Γ :=
1
h ∑

K∈GΓ
h

∥v∥2
L2(ΓK)

and ∥v∥2
cut := ∑

ẽ∈εcut
h

1
h
∥[v]∥2

L2(ẽ).

From the proof of Lemma 6 in [2], the following inequality can be directly obtained.

Lemma 1. Suppose that h is sufficiently small. For any vh ∈ Vh, we have

∥vh∥2
h,Ωh

≲ ∥vh∥2
h,Ω + ∑

e∈εΓ
h

h∥∇v∥2
L2(e),

where ∥vh∥2
h,Ω = ∑K∈T Ω

h
∥∇v∥2

L2(K∩Ω).
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To analyze the convergence and superconvergence, we need an extension result (see
Chapter VI, Section 2 of [17], or Chapter 6 of [18]). We continuously extend the solution
u ∈ H3(Ω) ∩ W2,∞(Ω) of (1) to R2 to obtain a function ũ ∈ H3(R2) ∩ W2,∞(R2), such that

ũ|Ω = u, ∥ũ∥H j(R2) ≲ ∥u∥H j(Ω), j = 0, 1, 2, 3, (6)

and
∥ũ∥W2,∞(R2) ≲ ∥u∥W2,∞(Ω). (7)

It is easy to obtain the following inconsistency equation:

Ah(u − uh, vh) = ∑
e∈εnc

h

∫
e
∇u · ne[vh]. (8)

Assume that γ0 and γ1 are large enough; it is easy to find that the coercivity of Ah(·, ·)
holds, which can be proven similarly to Theorems 4.1 and 4.2 of [19]. Then, the a priori
error estimate for the modified nonconforming CutFEM holds:

∥u − uh∥L2(Ω) + h∥|u − uh|∥h ≲ h2∥u∥H2(Ω). (9)

Estimate (9) implies that (2) is a first order in energy norm ∥|·|∥h. Therefore, an
improved 1 + s, s > 0 order for the recovery-type error estimate indicates superconver-
gence. Moreover, if the ∥|·|∥h−distance between two functions is O(h1+s), we say that they
are superclose.

3. Supercloseness Analysis

In this section, we will show the supercloseness result between the gradient of the
finite element solution and the gradient of the interpolation of the exact solution. Firstly, for
any element K, define a local interpolation operator by

∫
e ΠKv =

∫
e v and

∫
K ΠKv =

∫
K v,

where e ⊂ ∂K. Denote by Πh the interpolation operator over Vh by Πhv := (Πhṽ)|Ω and
Πhv|K = ΠKv. From the interpolation theory in [20] and the above extension properties,
the following approximation estimate holds:

∑
K∈Th

|u − Πhu|2W l,p(K) ≲ h2−l |ũ|W2,p(R2) ≲ h2−l |u|W2,p(Ω), (10)

where l = 0, 1 and 1 ≤ p ≤ ∞.
For element K ∈ Th \ GΓ

h and vh ∈ Vh, ∇ · (∇)vh and (∇vh · nK)|∂K are constants, and
then

∫
K(u − Πhu)∇ · (∇vh) = 0 and

∫
∂K(u − Πhu)∇vh · nK = 0, through the definition of

Πh. Similarly to the proof of Theorem 3.1 of [21], we have the following Lemma.

Lemma 2. Let u be the solution of the interface problem, and Πhu be the interpolation of u, defined
as above. If u ∈ W2,∞(Ω), then for all vh ∈ Vh,

Ah(u − Πhu, vh) ≲ h3/2∥u∥2,∞,Ω∥|vh|∥h.

Theorem 1. Let uh be the finite element solution of the discrete problem, and Πhu be the interpola-
tion of u. If u ∈ H3(Ω) ∩ W2,∞(Ω), then

∥|uh − Πhu|∥h ≤ C
(

h2∥u∥3,Ω + h3/2∥u∥2,∞,Ω

)
.

Proof. Using the coercivity of Ah(·, ·), we have

∥|uh − Πhu|∥2
h ≲ Ah(uh − Πhu, uh − Πhu)

= Ah(u − Πhu, uh − Πhu)− Ah(u − uh, uh − Πhu).
(11)
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From Lemma 2, the first term on the right hand can be estimated via

Ah(u − Πhu, uh − Πhu) ≤ Ch3/2∥u∥2,∞,Ω∥|uh − Πhu|∥h. (12)

From Lemma 3.1 of [12], the following consistency error estimate holds:

Ah(u − uh, uh − Πhu) ≤ Ch2∥u∥3,Ω∥|uh − Πhu|∥h. (13)

Combining (12) with (13), we complete the proof.

Remark 2. From the definition of ∥|·|∥h, Lemma 1, and Theorem 1, we obtain

∥uh − Πhu∥h,Ωh
≲ h2∥u∥3,Ω + h3/2∥u∥2,∞,Ω. (14)

4. Postprocessing and Superconvergence

In this section, we will use a postprocessing operator defined in [13], and apply it
to our fictitious domain. The global superconvergence for the modified nonconforming
cut finite element method to elliptic problems will be analyzed. For this purpose, we
assume that Th is obtained from T2h by dividing each element M of T2h into four congruent
rectangles Ki, i = 1, 2, 3, 4. Define an operator I2h on T2h, I2h|M = IM, and define the local
operator IM : L1(M) → P2(M) by∫

ei

(IMu − u) = 0, i = 1, 2, 3, 4;
∫

K1∪K3

(IMu − u) = 0;
∫

K2∪K4

(IMu − u) = 0,

where ei, i = 1, 2, 3, 4 are four edges of M. From Lemma 3.2 of [13], we obtain the following
Lemma, which presents the properties of operator I2h.

Lemma 3. The interpolation operator I2h satisfies

I2hΠhu = I2hu, ∥(u − I2hu)∥2h,Ω̃ ≲ h2∥u∥3,Ω̃, ∥I2hvh∥2h,Ω̃ ≲ ∥vh∥2h,Ω̃.

Now, we give some notations. For partition T2h, we define T Ω
2h := {M ∈ T2h :

M ∩ Ω ̸= ∅} and Ω2h := UM∈T Ω
2h

M. Let GΓ
2h := {M ∈ T2h : M ⊈ Ωh}. Note that there

might exist an element K ∈ Th which is not in T Ω
h for K ⊂ M and M ∈ GΓ

2h (see Figure 1
for an illustration). For each element M ∈ GΓ

2h, in order to obtain superconvergence, we
need expand the value from Ω into M. For K ⊂ M but K ∩ Ω = ∅, there is K′ ⊂ M and
K′ ⊂ Ωh. Let PK : L2(K) → Q̃NCRT(K) be the L2(K) projection. Take

PK′ ,Kv := PK(ṽh|K′) ∈ Q̃NCRT(K)

with

PK′ ,Kv =
5

∑
i=1

v̂K′
K,iϕK,i,

where ṽh is the continuous extension of vh and ϕK,i is the basis function of Q̃NCRT(K).
Further, we define

QKv =
5

∑
i=1

< v̂K,i > ϕK,i,

where the average is the convex combination

< v̂K,i >= ∑
m∈IK

ωKm v̂Km

K,i
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with weights ωKm , such that 0 ≤ ωKm ≤ 1 and ∑m ωKm = 1, and IK = {m : Km ⊂
Ωh for K ∈ M, K ∩ Ω = ∅, Km ∈ M}. For v ∈ Vh, let Qhv|K = QKv. It is easy to find that

QhΠhv = Πhv and ∥Qhvh∥2h,Ω2h
≲ ∥vh∥h,Ωh

.

For v ∈ Vh, we define a postprocessing operator J2h by J2hv := I2hQhv. Then, we can
obtain the following main superconvergence result in this work.

h

2h
G

2h

Figure 1. Illustration of definitions of T Ω
h , T Ω

2h , Ωh, Ω2h and GΓ
2h for domain Ω. Partitions T Ω

h
(fine meshes) and T Ω

2h (coarse meshes) of domain Ω. Left: elements in Ωh (magenta area). Middle:
elements in Ω2h (cobalt blue area). Right: elements in GΓ

2h (magenta area).

Theorem 2. Let u and uh be the solutions of (1) and (2), respectively. Assume that u ∈ W2,∞(Ω)∩
H3(Ω), then

∥u −J2huh∥2h,Ω ≲ h2∥u∥3,Ω + h3/2∥u∥2,∞,Ω.

Proof. We decompose u −J2huh as (u −J2hΠhu) + (J2hΠhu −J2huh). Then, the triangle
inequality implies that

∥(u −J2huh)∥2h,Ω ≤ ∥(u −J2hΠhu)∥2h,Ω + ∥(J2hΠhu −J2huh)∥2h,Ω

= ∥(u − I2hu)∥2h,Ω + ∥(I2hQhΠhu − I2hQhuh)∥2h,Ω,
(15)

where the last equality uses the definition of J2h and Lemma 3, and then we obtain
J2hΠhu = I2hQhΠhu = I2hΠhu = I2hu. From Lemma 3 and the extension properties,
we have

∥u − I2hu∥2h,Ω ≤ Ch2∥u∥3,Ω. (16)

Using Lemma 3, we obtain

∥I2hQhΠhu − I2hQhuh∥2h,Ω

≤ C∥QhΠhu − Qhuh∥2h,Ω2h
≤ C∥Πhu − uh∥h,Ωh

,
(17)

and together with (14), the following estimate holds

∥I2hQhΠhu − I2hQhuh∥2h,Ω ≲ h2∥u∥3,Ω + h3/2∥u∥2,∞,Ω. (18)

Finally, the proof is directly obtained from (16)–(18).

5. Numerical Examples

In this section, we will consider several numerical examples to verify the theoretical
results given in the previous section. In these examples, we will test the convergence rate,
supercloseness result and superconvergence rate based on square meshes and different rect-
angular meshes. We summarize our experimental results in tables, displaying the following
errors: De := ∥u − uh∥h,Ω, DΠe := ∥uh − Πhu∥h,Ω and DJ e := ∥u −J2huh∥2h,Ω.
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5.1. Example 1

In this example, we consider the elliptic problem with a circular boundary with center
(0, 0) and radius r = 1/2. Define domain Ω = {(x, y) : x2 + y2 < r2}. Choose the fictitious
domain Ω̃ = [−0.5, 0.5]× [−0.5, 0.5], and let f be chosen such that the exact solution is
u(x, y) = (x2 − x)(y2 − y). The performance for errors of De, DΠe and DJ e with square
and rectangular meshes are shown in Table 1. Firstly, it shows errors of De, DΠe, and
DJ e versus square meshes with hx = hy = 1/8, 1/16, 1/32, 1/64 and γ0 = γ1 = 100,
respectively. It is observed that our formulation converges with the optimal rate O(h) for
De, and with rate O(h3/2) for DΠe and DJ e, which support Theorems 1 and 2. Secondly,
the performance for errors of De, DΠe and DJ e, based on two different rectangular meshes,
are also tested. It is shown that the convergence rate of De is O(h), and the convergence
orders for DΠe and DJ e are O(h3/2), which are also coincide with the theoretical analysis.

Table 1. Rates of errors for Example 1 based on square and rectangular meshes with penalty
parameters γ0 = γ1 = 100.

hx hy De Rate DΠe Rate DJ e Rate

1/8 1/8 9.3335 × 10−2 8.6752 × 10−2 8.7346 × 10−2

1/16 1/16 4.1432 × 10−2 1.1716 3.4709 × 10−2 1.3215 3.6997 × 10−2 1.2393
1/32 1/32 1.8062 × 10−2 1.1977 1.2783 × 10−2 1.4410 1.4339 × 10−2 1.3674
1/64 1/64 8.1059 × 10−3 1.1559 4.5268 × 10−3 1.4977 5.1910 × 10−3 1.4658

1/4 1/8 1.4864 × 10−1 1.4406 × 10−1 1.5410 × 10−1

1/8 1/16 7.0590 × 10−2 1.0742 6.3422 × 10−2 1.1836 7.0242 × 10−2 1.1335
1/16 1/32 3.0848 × 10−2 1.1942 2.4337 × 10−2 1.3818 2.6597 × 10−2 1.4010
1/32 1/64 1.3424 × 10−2 1.2003 8.5553 × 10−3 1.5082 9.9456 × 10−3 1.4191

1/8 1/6 1.1737 × 10−1 1.1222 × 10−1 1.0300 × 10−1

1/16 1/12 5.1093 × 10−2 1.1998 4.4336 × 10−2 1.3398 4.4650 × 10−2 1.2060
1/32 1/24 2.2139 × 10−2 1.2065 1.6559 × 10−2 1.4208 1.7724 × 10−2 1.3329
1/64 1/48 9.8307 × 10−3 1.1712 5.9211 × 10−3 1.4836 6.5601 × 10−3 1.4339

5.2. Example 2

In this example, we consider an elliptic boundary condition. The boundary curve is

the zero level set of the following function: φ(x, y) = x2

(3/4)2 +
y2

(1/2)2 − 1. Define domain

Ω = {(x, y) : φ(x, y) < 0}, and let the fictitious domain Ω̃ = [−1, 1] × [−0.5, 0.5]. We
choose the exact solution u(x, y) = exy. The numerical results for De, DΠe, and DJ e,
based on square and rectangular meshes with γ0 = γ1 = 100, are presented in Table 2,
which shows the same convergence, supercloseness, and superconvergence rates as the
theoretical analysis.

Table 2. Rates of errors for Example 2 based on square and rectangular meshes with penalty
parameters γ0 = γ1 = 100.

hx hy De Rate DΠe Rate DJ e Rate

1/8 1/8 9.0498 × 10−2 8.0253 × 10−2 8.7898 × 10−2

1/16 1/16 3.8709 × 10−2 1.2252 2.9733 × 10−2 1.4324 3.3166 × 10−2 1.4061
1/32 1/32 1.7297 × 10−2 1.1621 1.0919 × 10−2 1.4452 1.2686 × 10−2 1.3864
1/64 1/64 7.8501 × 10−3 1.1397 3.7896 × 10−3 1.5267 4.3814 × 10−3 1.5337

1/4 1/8 1.4929 × 10−1 1.3847 × 10−1 1.4334 × 10−1

1/8 1/16 6.3781 × 10−2 1.2269 5.2454 × 10−2 1.4004 5.1589 × 10−2 1.4743
1/16 1/32 2.7873 × 10−2 1.1942 1.9036 × 10−2 1.4622 2.0169 × 10−2 1.3548
1/32 1/64 1.2656 × 10−2 1.1390 6.7447 × 10−3 1.4969 7.4012 × 10−3 1.4463
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Table 2. Cont.

hx hy De Rate DΠe Rate DJ e Rate

1/8 1/4 1.5692 × 10−1 1.4741 × 10−1 1.7173 × 10−1

1/16 1/8 7.0478 × 10−2 1.1547 6.0883 × 10−2 1.2757 7.0293 × 10−2 1.2887
1/32 1/16 2.9559 × 10−2 1.2535 2.1598 × 10−2 1.4951 2.6111 × 10−2 1.4287
1/64 1/32 1.3058 × 10−2 1.1786 7.5276 × 10−3 1.5206 9.2699 × 10−3 1.4940

5.3. Example 3

In this example, we choose a more complicated boundary. The boundary curve is the
zero level set of the following function: φ(x, y) = (3(x2 + y2)2 − x)2 − x2 − y2 + 0.02. Let
domain Ω = {(x, y) : φ(x, y) < 0}, and the fictitious domain Ω̃ = [−0.25, 0.75]× [−0.5, 0.5].
The exact solution is set to be u(x, y) = sin(πx)sin(πy). Table 3 displays the convergence
rates of De, DΠe, and DJ e for our formulation based on square and rectangular meshes
with γ0 = γ1 = 100. We also observe the same convergence, supercloseness, and supercon-
vergence phenomena for three meshes as predicted in our theoretical analysis.

Table 3. Rates of errors for Example 3 based on square and rectangular meshes with penalty
parameters γ0 = γ1 = 100.

hy De Rate DΠe Rate DJ e Rate

1/8 1/8 3.4465 × 10−1 3.1674 × 10−1 3.1945 × 10−1

1/16 1/16 1.3095 × 10−1 1.3961 1.1489 × 10−1 1.4629 1.1297 × 10−1 1.4996
1/32 1/32 5.3084 × 10−2 1.3026 4.0167 × 10−2 1.5162 3.8787 × 10−2 1.5423
1/64 1/64 2.3179 × 10−2 1.1954 1.4131 × 10−2 1.5070 1.4416 × 10−2 1.4279

1/8 1/16 2.1853 × 10−1 1.9994 × 10−1 1.9957 × 10−1

1/16 1/32 9.1487 × 10−2 1.2561 7.4441 × 10−2 1.4254 7.2634 × 10−2 1.4582
1/32 1/64 3.9748 × 10−2 1.2026 2.8217 × 10−2 1.3995 2.9227 × 10−2 1.3133
1/64 1/128 1.7577 × 10−2 1.1771 9.6124 × 10−3 1.5536 1.0655 × 10−2 1.4557

1/12 1/8 2.5133 × 10−1 2.2064 × 10−1 2.7792 × 10−1

1/24 1/16 9.8588 × 10−2 1.3500 8.0975 × 10−2 1.4461 8.5858 × 10−2 1.6946
1/48 1/32 4.2002 × 10−2 1.2309 2.9083 × 10−2 1.4772 3.2786 × 10−2 1.3888
1/96 1/64 1.9020 × 10−2 1.1429 1.0599 × 10−2 1.4561 1.1400 × 10−2 1.5239

In the three examples, the performance of errors De, DΠe and D Je on both the square
meshes and rectangular meshes is tested. The numerical results show that the nonconform-
ing cut finite element method converge with optimal rate O(h) for De and with O(h3/2)
order of convergence for DΠe and D Je, which is accordant with our theoretical results.

6. Conclusions

In this work, we have studied the superconvergence of the modified nonconforming
cut finite element method to solve elliptic problems on rectangular meshes. We have proven
that the supercloseness rate between the gradient of the numerical solution and the gradient
of exact solution’s interpolation is O(h3/2). Through a constructed postprocessing operator,
we have proven that the error between the exact gradient and the postprocessed gradient
with rate O(h3/2). Numerical examples with squares and rectangular meshes have been
provided to illustrate the theoretical results.
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