Fixed-Point Theorems Using α-Series in F-Metric Spaces
Abstract
:1. Introduction
- Chatterjee type: where
- Reich type: where with
- Hardy–Rogers type: where with
2. Materials and Methods
- (q1)
- , ;
- (q2)
- , ;
- (q3)
- There exists such that for all , ,
- If the mapping q satisfy (q1) and (q3), then q is called an f-quasimetric. If q satisfy (q1), (q2), and (q3), then q is called an f-metric. If in (q3), we have and with , then the f-quasimetric is called a -quasimetric.
- (F1)
- F is increasing;
- (F2)
- For each sequence , ⇔
- (d1)
- , ⇔;
- (d2)
- , ;
- (d3)
- For all , for every , , and for every with , we haveThen, is called an F-metric space (or F-ms for short).
- i.
- is named F-convergent if there is a such that as
- ii.
- is named an F-Cauchy sequence if as
- iii.
- is named F-complete if each F-Cauchy sequence is F-convergent.
3. Results
4. Application
4.1. An Application Using an Integral Equation
- (i)
- The functions are continuous;
- (ii)
- For all and ,. Then, the integral Equation (10) has a unique solution.
4.2. An Application Using Differential Equations
- (i)
- is a continuous operator defined by
- (ii)
- Then, (11) has a unique solution.
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, B. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1992, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some remarks on fixed points. Bull. Calcutta Math. Soc. 1960, 60, 71–76. [Google Scholar]
- Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Reich, S. Kannan’s fixed point theorem. Bull. Univ. Math. Ital. 1971, 4, 1–11. [Google Scholar]
- Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Choudhury, B.S. Unique fixed point theorems for weakly C-contractive mappings. Kathmandu Univ. J. Sci. Eng. Technol. 2008, 5, 6–13. [Google Scholar] [CrossRef]
- Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 1975, 6, 1455–1458. [Google Scholar]
- Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
- Khan, M.S. A fixed point theorems for metric spaces. Rendiconti Dell’Istituto Matematica Dell’Università Trieste Int. J. Math. 1976, 8, 69–72. [Google Scholar] [CrossRef]
- Nazam, M.; Arshad, S.; Radenovic, S.; Turkoglu, D.; Ozturk, V. Some Fixed Point Results For Dual Contractions of Rational Type. Math. Moravica 2017, 1, 139–151. [Google Scholar] [CrossRef]
- Sihag, V.; Vats, R.K.; Vetro, C. A fixed point theorems in G-metric spaces via alpha-series. Quaest. Math. 2014, 37, 429–434. [Google Scholar] [CrossRef]
- Vats, R.K.; Tas, K.; Sihag, V.; Kumar, A. Triple fixed point theorems via alpha-series in partially ordered metric spaces. J. Inequal. Appl. 2014, 2014, 176. [Google Scholar] [CrossRef]
- Gaba, Y.U. λ-sequences and fixed point theorems G-metric type spaces. J. Niger. Math. Soc. 2016, 35, 303–311. [Google Scholar]
- Gaba, Y.U. Metric type spaces and λ-sequences. Quaest. Math. 2017, 40, 49–55. [Google Scholar] [CrossRef]
- Bonab, S.H.; Parvaneh, V.; Hosseinzadeh, H.; Dinmohammadi, A.; Mohammadi, B. Some common fixed point results via α-series for a family of JS-contraction type mappings. In Fixed Point Theory and Fractional Calculus Recent Advanced and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 93–104. [Google Scholar]
- Zhukovskiy, E.S. The fixed points of contractions of f-quasimetric spaces. Sib. Math. J. 2018, 59, 1063–1072. [Google Scholar] [CrossRef]
- Arutyunov, A.V.; Greshnov, A.V.; Lokutsievskii, L.V.; Storozhuk, K.V. Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics. Topol. Appl. 2017, 221, 178–194. [Google Scholar] [CrossRef]
- Arutyunov, A.V.; Greshnov, A.V. (q1,q2)-quasimetric spaces. Covering mappings and coincidence points. Izv. Ross. Akad. Nauk Ser. Mat. 2018, 8, 245–272. [Google Scholar]
- Arutyunov, A.V.; Greshnov, A.V. The theory of (q1,q2)-quasimetric spaces and coincidence points. Dokl. Math. 2016, 94, 434–437. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef]
- Bera, A.; Garaia, H.; Damjanovic, B.; Chanda, A. Some interesting results on F-metric spaces. Filomat 2019, 33, 3257–3268. [Google Scholar] [CrossRef]
- Hussain, A.; Kanwal, T. Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. A Razmadze Math. Inst. 2018, 172, 481–490. [Google Scholar] [CrossRef]
- Mitrovic, Z.D.; Aydi, H.; Hussain, N.; Mukheimer, A. Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application. Mathematics 2019, 7, 387. [Google Scholar] [CrossRef]
- Jahangir, F.; Haghmaram, P.; Nourouzi, K. A note on F-metric spaces. J. Fixed Point Theory Appl. 2021, 23, 1–14. [Google Scholar]
- Lateefa, D. Best proximity point in F-metric spaces with applications. Demonstr. Math. 2023, 56, 20220191. [Google Scholar] [CrossRef]
- Zhou, M.; Saleem, N.; Ali, B.; Misha, M.M.; Hierro, A.F.R.L. Common best proximity points and completeness of F-metric spaces. Mathematics 2023, 11, 81. [Google Scholar] [CrossRef]
- Lateefa, D.; Ahmad, J. Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 2019, 12, 405–411. [Google Scholar] [CrossRef]
- Alansari, M.; Shagari, S.; Azam, M.A. Fuzzy fixed point results in F-metric spaces with applications. J. Funct. Spaces 2020, 2020, 5142815. [Google Scholar] [CrossRef]
- Mezel, S.A.; Ahmad, J.; Marino, G. Fixed point theorems for generalized (alpha-beta-psi)-contractions in F-metric spaces with applications. Mathematics 2020, 8, 584. [Google Scholar] [CrossRef]
- Faraji, H.; Mirkov, N.; Mitrović, Z.D.; Ramaswamy, R.; Abdelnaby, O.A.A.; Radenović, S. Some new results for (alpha,beta)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry 2022, 14, 2429. [Google Scholar] [CrossRef]
- Mudhesh, M.; Mlaiki, N.; Arshad, M.; Hussain, A.; Ameer, E.; George, R.; Shatanawi, W. Novel results of α-ψ-contraction multivalued mappings in F-metric spaces with an application. J. Ineq. Appl. 2022, 2022, 113. [Google Scholar] [CrossRef]
- Ozturk, V. Some Results for Ciric–Presic Type Contractions in F-Metric Spaces. Symmetry 2023, 15, 1521. [Google Scholar] [CrossRef]
- Kanwal, T.; Hussain, A.; Baghani, H.; De la Sen, M. New fixed point theorems in orthogonal F-metric spaces with application to fractional differential equation. Symmetry 2020, 12, 832. [Google Scholar] [CrossRef]
- Acar, C.; Ozturk, V. Fixed point theorems for almost alpha admissible mappings in F-metric spaces. Fundam. J. Math. Appl. 2024, accepted. [Google Scholar]
- Altun, I.; Erduran, A. Two fixed point results on F-metric spaces. Topol. Algebra Appl. 2022, 10, 61–67. [Google Scholar] [CrossRef]
- Asif, A.; Nazam, M.; Arshad, M.; Kim, S.O. F-Metric, F-contraction and common fixed point theorems with applications. Mathematics 2019, 7, 586. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, V.; Turkoglu, D. Fixed-Point Theorems Using α-Series in F-Metric Spaces. Mathematics 2024, 12, 2596. https://doi.org/10.3390/math12162596
Ozturk V, Turkoglu D. Fixed-Point Theorems Using α-Series in F-Metric Spaces. Mathematics. 2024; 12(16):2596. https://doi.org/10.3390/math12162596
Chicago/Turabian StyleOzturk, Vildan, and Duran Turkoglu. 2024. "Fixed-Point Theorems Using α-Series in F-Metric Spaces" Mathematics 12, no. 16: 2596. https://doi.org/10.3390/math12162596
APA StyleOzturk, V., & Turkoglu, D. (2024). Fixed-Point Theorems Using α-Series in F-Metric Spaces. Mathematics, 12(16), 2596. https://doi.org/10.3390/math12162596