
Citation: Xie, H.; Xia, Q.; Wang, K.; Li,

Y.; Yang, L. Quantum Automated

Tools for Finding Impossible

Differentials. Mathematics 2024, 12,

2598. https://doi.org/10.3390/

math12162598

Academic Editor: Cheng-Chi Lee

Received: 14 July 2024

Revised: 19 August 2024

Accepted: 21 August 2024

Published: 22 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Quantum Automated Tools for Finding Impossible Differentials
Huiqin Xie 1,2,* , Qiqing Xia 3,4,5 , Ke Wang 1 , Yanjun Li 6 and Li Yang 3,5

1 Department of Cryptography Science and Technology, Beijing Electronic Science and Technology Institute,
Beijing 100070, China

2 Key Laboratory of Cryptography of Zhejiang Province, Hangzhou Normal University,
Hangzhou 311121, China

3 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China
4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
5 Key Laboratory of Cyberspace Security Defense, Beijing 100085, China
6 Information Industry Information Security Evaluation Center, The 15th Research Institute of China Electronics

Technology Group Corporation, Beijing 100083, China
* Correspondence: xiehuiqindky@163.com

Abstract: Due to the superiority of quantum computing, traditional cryptography is facing a severe
threat. This makes the security evaluation of cryptographic systems in quantum attack models both
significant and urgent. For symmetric ciphers, the security analysis heavily relies on cryptanalysis
tools. Thus, exploring the use of quantum algorithms in traditional cryptanalysis tools has garnered
considerable attention. In this study, we utilize quantum algorithms to improve impossible differ-
ential attacks and design two quantum automated tools to search for impossible differentials. The
proposed quantum algorithms exploit the idea of miss-in-the-middle and the properties of truncated
differentials. We rigorously prove their validity and calculate the quantum resources required for their
implementation. Compared to the existing classical automated cryptanalysis, the proposed quan-
tum tools have the advantage of accurately characterizing S-boxes while only requiring polynomial
complexity, and can take into consideration the impact of the key schedules in a single-key model.

Keywords: quantum cryptanalysis; symmetric cryptography; impossible differential attack;
automated analysis

MSC: 94A60

1. Introduction

The development of quantum computers has progressed steadily. As soon as quantum
computers are successfully built, traditional cryptography will be severely threatened. By
utilizing Shor’s algorithm [1], adversaries possessing quantum computers can break public
key cryptosystems built on the integer factorization problem, such as the RSA scheme
widely used in secure communication. Apart from public key cryptography, studies on the
cryptanalysis of symmetric cryptography against quantum adversaries have also achieved
many outstanding results. By utilizing Grover’s algorithm, one can achieve a quadratic
speed-up when searching unordered databases [2]. Therefore, to restore the same ideal
security as that in a classical setting, the key lengths of symmetric ciphers must be doubled
in the quantum setting.

The exhaustive attack can only evaluate the ideal security margin of cryptographic
schemes. To accurately grasp the quantum security of currently used symmetric schemes,
we also need to investigate other possible quantum attacks. In this direction, Simon’s
algorithm [3] is frequently used. Kuwakado and Morri first applied Simon’s algorithm to
attack the Feistel structure and proposed a three-round quantum distinguisher [4]. Then
they also attacked the Even–Mansour cipher using a similar idea and successfully recovered
the key [5]. The authors of [6] forged messages of the CBC-MAC scheme using the method

Mathematics 2024, 12, 2598. https://doi.org/10.3390/math12162598 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162598
https://doi.org/10.3390/math12162598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1466-3705
https://orcid.org/0009-0008-3689-9157
https://orcid.org/0000-0003-1435-7118
https://orcid.org/0000-0002-7219-0005
https://orcid.org/0000-0003-2091-0506
https://doi.org/10.3390/math12162598
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162598?type=check_update&version=1

Mathematics 2024, 12, 2598 2 of 26

presented in [4]. Kaplan et al. also further developed the results in [4] and attacked
several symmetric systems, including GCM, PMAC, and CLOC [7]. Both [6,7] proved the
correctness of the quantum distinguisher even if the Feistel structure has round functions
that are not permutations.

Leander and Alexander embedded Simon’s algorithm into Grover’s algorithm in order
to identify the correct key of the FX structure [8]. Following this attack strategy, Dong and
Wang broke Feistel schemes and obtained the key using the quantum distinguisher shown
in [4]. Afterward, they applied the same strategy to extract the key of the generalized
Feistel cipher [9,10]. The above attacks were all implemented under the quantum version of
the chosen plaintext model, also known as the Q2 model [11–13]. In this attack model, the
cryptographic oracle can be queried with superposition states. The authors of [14] studied
quantum-related-key notions in which quantum adversaries can use superposition states
of related keys to query oracles. Hosoyamada et al. then further investigated quantum-
related-key notion and recovered the key of the two-round Even–Mansour algorithm [15].
Jaques et al. analyzed the complexity of Grover’s algorithm when attacking AES [16].

Apart from specific quantum attacks, studying quantum versions of cryptanalysis
tools (such as integral, differential, and linear analyses) is also essential. Zhou et al.
utilized Grover’s algorithm for differential attacks [17]. Kaplan et al. subsequently used
Grover’s algorithm to enhance some variants of differential attacks and linear attacks [18].
Xie et al. made use of the Bernstein–Vazirani algorithm to search for high-probability
differentials [17]. The authors of [19] implemented quantum collision attacks on Whirlpool
and AES-MMO schemes via differential characteristics. Dong et al. enhanced truncated
differential analysis through quantum algorithms and broke the Gr/ostl-512 scheme and the
AES-MMO cipher [20].

Our contributions. In this paper, we study the applications of Simon’s algorithm to
cryptanalysis tools for symmetric ciphers. We bring the superiority of quantum computing
into traditional impossible differential analysis, and design quantum automated tools to
search for impossible differentials. First, we propose a basic quantum algorithm that can
find impossible differentials by imitating the classical impossible differential technique.
Subsequently, by allowing the differentials to be truncated, we present another improved
quantum algorithm. We provide the correctness proofs for the proposed algorithms and
evaluate their quantum complexities. The proposed quantum tools offer several advantages,
as follows:

• The quantum algorithms can be implemented in the Q1 attack model, without any
query to the quantum encryption or decryption oracle. In contrast, many other quan-
tum attacks [4–7,9,10] require adversaries to perform quantum queries with superpo-
sition states. Our quantum tools are much easier to realize and, thus, more practical.

• Classical automated impossible differential cryptanalysis tools include the UID tool [21],
U-tool [22], WW-tool [23], MILP tool [24], and SAT tool [25]. When faced with large-
scale S-boxes, these classical automated tools either do not describe the construction
of S-boxes and simply treat them as bijections or only describe the reduced differential
distribution table of S-boxes. So far, there is no classical automated tool that can fully
characterize large-scale S-boxes. Even in the case where S-boxes are only partially
described, the searching space usually expands rapidly as the number of rounds
increases, making it impossible to search many rounds. Our quantum automated
tools fully leverage the parallel advantages of quantum computing, allowing for the
complete characterization of S-boxes while maintaining complexity within polynomial
time. They can fully characterize any nonlinear functions, and the complexity increases
linearly with respect to the number of rounds.

• Most classical automated impossible differential cryptanalysis tools cannot take the
key schedule into account in a single-key model. However, our tools include the
key schedule when implementing the quantum circuit of encryption, allowing the
impact of the key schedule on differential propagation types to be fully considered.
Specifically, in a related-key model [26], the attacker can introduce a key differential so

Mathematics 2024, 12, 2598 3 of 26

that the propagation of this differential in both the key schedule and encryption process
is accounted for when searching for impossible differentials. This approach provides
a more accurate characterization of differential propagation and helps identify more
or longer impossible differentials. However, the single-key model is more practical
and more commonly used since the related key model requires too much power
from the attacker. In a single-key model, the master key is not allowed to introduce
a differential to the key. Therefore, most classical automated tools for searching
distinguishers ignore the impact of the key schedule and simply treat the subkeys of
different rounds as independent constants. The process of searching for distinguishers
lacks the analysis of key schedules. In contrast, although our quantum tools are also
in a single-key model, they treat the entire encryption algorithm, including the key
schedule, as a black box, and the state of the master key is a part of the input. The
encryption of the input superposition state includes the calculation of the key schedule.
All subkeys are obtained by running the key schedule on the master key. Thus, the
connection between different subkeys is fully considered, which helps to accurately
characterize the differential propagation.

Comparison with related works. A periodic function constructed based on a block
cipher will yield a quantum distinguisher when combined with Simon’s algorithm [4–7].
Owing to this, Xiang et al. proposed a classical algorithm for constructing periodic functions
using existing probability-1 truncated differentials and applied this method to two block
ciphers [27]. The algorithm they designed to identify periodic functions is a classical
algorithm. Their method does not involve searching for truncated differentials, but only
uses truncated differentials that already exist to construct periodic functions. In contrast,
we study how to utilize quantum algorithms to identify impossible differentials. To
achieve this goal, we construct a quantum algorithm for probability-1 truncated differentials
based on Simon’s algorithm. Our work has different goals from those of [27]. One is to
identify impossible differentials, whereas the other is to construct periodic functions. The
methods used are also different. One uses classical algorithms, whereas the other uses
quantum algorithms.

2. Preliminaries

We present a simple overview of the necessary concepts and their related results.

2.1. Quantum Attack Models

n, m are two arbitrary positive integers. F : Fn
2 → Fm

2 is a Boolean function. If the
unitary operation

UF : ∑
x,y
|x⟩|y⟩ →∑

x,y
|x⟩|y⊕ F(x)⟩, (1)

is realized by a quantum circuit, we say that this circuit evaluates F quantumly. Any
vectorial Boolean function can be evaluated by a quantum circuit constructed with gates in
a finite but universal set of unitary gates. Such a set is referred to as a universal gate set [28].
For example, the phase gate S, Hadamard gate H, non-Clifford gate T, and controlled-NOT
quantum gate CNOT form a universal gate set. Each gate in this set is calculated as a single
operation. For any vectorial Boolean function F, let the notation |UF| denote the number of
quantum universal gates required to implement UF.

Two common attack models for adversaries are considered when analyzing the quan-
tum security of cryptographic primitives [12]. One is the Q1 attack model, where adver-
saries can utilize quantum computers to perform offline computations but can only make
classical online queries. The other is the Q2 attack model, where adversaries can also exe-
cute quantum queries. Specifically, a Q2 adversary can also make queries to cryptographic
primitives with inputs in superposition states and obtain the quantum states of their out-
puts. The Q2 attack model is stricter in terms of the adversaries’ ability because querying
the quantum oracles of cryptographic systems is usually not easy to realize in practice.

Mathematics 2024, 12, 2598 4 of 26

2.2. Simon’s Algorithm

Given F : Fn
2 → Fm

2 and a private vector s ∈ Fn
2 satisfying

[F(x1) = F(x2)]⇔ [x1 ⊕ x2 ∈ {0n, s}], ∀x1, x2 ∈ Fn
2 ,

Simon’s algorithm [3] was originally used to solve the period s. If a function has such a
period, we say that it meets Simon’s promise. Finding s requires at least O(2n/2) classical
queries when using classical algorithms, whereas Simon’s algorithm only requires O(n)
quantum queries. With the quantum circuit of F, Simon’s algorithm requires repeating the
steps below:

1. Prepare an (n + m)-qubit quantum state |0n⟩|0m⟩. We apply the Hadamard transform
H⊗n to the left register, obtaining the following:

1√
2n ∑

x∈Fn
2

|x⟩|0m⟩.

2. We implement the unitary operator UF of F and obtain the following state:

1√
2n ∑

x∈Fn
2

|x⟩|F(x)⟩.

3. We measure the last register to obtain a vector F(z); subsequently, the remaining
registers will be as follows:

1√
2
(|z⟩+ |z⊕ s⟩).

4. We perform Hadamard operators H⊗n on the above state, obtaining the following:

1√
2n+1 ∑

γ∈Fn
2

(−1)γ·z[1 + (−1)γ·s]|γ⟩.

5. We measure this state. If a vector γ satisfies γ · s = 1, its amplitude must be 0. The
measurement result γ always satisfies γ · s = 0.

The process of Simon’s algorithm involves repeating the above subroutine O(n) times,
yielding n− 1 vectors that are perpendicular to s and are linearly independent. Using linear
algebraic knowledge, we can easily compute s.

A quantum circuit illustration of Simon’s subroutine (steps 1–5) is shown in Figure 1.
Running steps 1–5 requires 2n Hadamard operators and 1 execution of the unitary operator
UF. Therefore, there are m+ n qubits and O(2n2 + n|UF|) gates in total in Simon’s algorithm
when run on F.

Figure 1. Circuit illustration of Simon’s algorithm.

In the cryptanalysis scenario, it is not always easy to construct a Boolean function that
satisfies Simon’s promise. Even if a periodic function is constructed, unwanted collisions
not caused by this period may occur. Kaplan et al. relaxed Simon’s promise and proved the
following theorem [7].

Mathematics 2024, 12, 2598 5 of 26

Theorem 1 ([7]). If F : Fn
2 → Fn

2 satisfies ϵ(F, s) ≤ e0 < 1 for a period s ∈ Fn
2 and some constant

e0, where we have the following:

ϵ(F, s) = max
t∈Fn

2\{0n ,s}
Pr
x
[F(x⊕ t) = F(x)],

then by repeating the subroutine cn times, the probability that Simon’s algorithm returns s is not
less than 1− (2(1+e0

2)c)n.

2.3. Linear Structure

We will transform the problem of seeking impossible differentials into a problem of
seeking linear structures.

Definition 1 ([29]). Given a function F : Fn
2 → Fm

2 , a ∈ Fn
2 is named a linear structure if we have

the following:

F(x⊕ a)⊕ F(x) = b, ∀x ∈ Fn
2 (2)

for some vector b ∈ Fm
2 . In other words, F(x⊕ a)⊕ F(x) is constant.

For any a ∈ Fn
2 , b ∈ Fm

2 satisfying Equation (2), we refer to the pair (a, b) as F’s linear
structure duad. If b is a zero vector 0m, then a is called F’s period. If (a1, b1), (a2, b2) are
two linear structure duads of F, then we have the following:

F(x⊕ a1 ⊕ a2)⊕ F(x) = F(x⊕ a1)⊕ b2 ⊕ F(x) = b1 ⊕ b2.

Thus, (a1, b1)⊕ (a2, b2) remains as one of F’s linear structure duad. All of F’s linear structure
duads form a subspace within the vector space Fn+m

2 . This subspace is referred to as the
linear structure space and is denoted by LF.

For any vectors v ∈ Fm
2 , u ∈ Fn

2 , if there is x ∈ Fn
2 satisfying F(x)⊕ F(u⊕ x) = v, then

(u, v) is said to make a “match” of F at x. Being a linear structure duad is equivalent to
causing matches of F at all points x ∈ Fn

2 .

3. A Basic Quantum Tool for Finding Impossible Differentials

We present a universal quantum algorithm that finds impossible differentials of an
arbitrary block cipher. The main idea is to use probability-1 differentials to construct
impossible differentials. Since probability-1 differentials of an encryption function are also
its linear structure duads, we can find them by constructing a quantum algorithm that finds
linear structure duads. We first show a quantum algorithm that finds linear structure duads;
based on this algorithm, we propose a basic quantum tool for impossible differentials.

3.1. Finding Linear Structure Duads via Simon’s Algorithm

LF is the linear structure space of function F : Fn
2 → Fm

2 as defined in Section 2.3.
Namely,

LF = {(a, b) ∈ Fn
2 × Fm

2 |F(x)⊕ F(x⊕ a) = b, ∀x ∈ Fn
2}.

We aim to obtain LF. The value of m does not need to be equal to n. We define a new
function as follows:

G : Fn
2 × Fm

2 → Fm
2

(x, y) → F(x)⊕ y. (3)

For any duad (a, b) ∈ Fn
2 ×Fm

2 , if (a, b) is G’s period, it will also be F’s linear structure duad.
Therefore, F’s linear structure duads can be found using Simon’s algorithm. Based on this
analysis, we propose Algorithm 1, referred to as FindStruct, which is used to identify linear
structure duads, as follows:

Mathematics 2024, 12, 2598 6 of 26

Algorithm 1 Algorithm FindStruct
Input : a parameter c and the access to the quantum unitary operator UF of a function

F : Fn
2 → Fm

2 .
Output: the linear structure space LF.

1: for i = 1 to c(n + m) do
2: Prepare an (n + 2m)-qubit state |0n⟩|0m⟩|0m⟩ and implement the Hadamard gate

H⊗(n+m), obtaining

|Ψ1⟩ =
1√

2n+m ∑
x∈Fn

2 ,y∈Fm
2

|x⟩|y⟩|0m⟩.

3: Use the unitary operator UF to obtain the state

|Ψ2⟩ =
1√

2n+m ∑
x∈Fn

2 ,y∈Fm
2

|x⟩|y⟩|F(x)⟩.

4: Apply CNOT operators to the last two registers to obtain the state

|Ψ3⟩ =
1√

2n+m ∑
x∈Fn

2 ,y∈Fm
2

|x⟩|y⟩|F(x)⊕ y⟩.

5: Measure the rightmost register to obtain a value z ∈ Fm
2 , then there exist vectors

x0 ∈ Fn
2 , y0 ∈ Fm

2 such that F(x0)⊕ y0 = z. Thus, the two leftmost registers are
collapsed into the following:

1√
|Sz|

∑
(x,y)∈Sz

|x⟩|y⟩, (4)

where Sz = {(x, y) ∈ Fn+m
2 |F(x)⊕ y = z}.

6: Implement the Hadamard gate H⊗(n+m) on the above state to obtain

1√
|Sz|2n+m ∑

γ1∈Fn
2

γ2∈Fm
2

∑
(x,y)∈Sz

(−1)x·γ1⊕y·γ2 |γ1⟩|γ2⟩,

then measure this state to obtain a vector γ(i) ∈ Fn+m
2 .

7: end for
8: After obtaining the vectors γ(1), γ(2), · · · , γ(c(m+n)) ∈ Fn+m

2 by steps 1–7, solve the
following linear equation 

γ(1) · (x, y) = 0
γ(2) · (x, y) = 0
...
γ(c(m+n)) · (x, y) = 0,

(5)

where (x, y) ∈ Fn
2 × Fm

2 are unknowns, and output its solution space.

The quantum computing part of the FindStruct algorithm involves repeating steps 2–6
independently for c(m + n) times. We refer to steps 2–6 as the FindStruct subroutine. Its
quantum circuit is shown in Figure 2. Steps 1–7 involve executing Simon’s subroutine c(m+ n)
times on G(x, y) = F(x)⊕ y to independently obtain c(m + n) vectors γ(1), · · · , γ(c(m+n)).

Mathematics 2024, 12, 2598 7 of 26

We expect that, as with the original Simon’s algorithm, the periods of G are orthogonal to
γ(1), · · · , γ(c(m+n)); thus, we can obtain the periods of G by solving Equation (5), which are
also linear structure duads of F. Theorem 1 provides the conditions for Simon’s algorithm
to output the periods. Therefore, for the FindStruct algorithm to successfully output LF,
the G function must satisfy this condition. However, G may have more than one period
since function F may have more than one linear structure duad, or the length of G’s output
may not be equal to that of the input. Therefore, simply applying Theorem 1 is insufficient
to justify the soundness of the FindStruct algorithm. To address this, we define a new
parameter, θ(·). Function F : Fn

2 → Fm
2 is defined as follows:

θ(F) = max
a∈Fn

2 b∈Fm
2

(a,b)/∈LF

Prx
[
F(x)⊕ F(x⊕ a) = b

]
= max

a∈Fn
2 b∈Fm

2
(a,b)/∈LF

1
2n

∣∣∣{x ∈ Fn
2 |F(x)⊕ F(x⊕ a) = b

}∣∣∣. (6)

It is obvious that 0 ≤ θ(F) < 1. If (a, b) is in LF; that is, if it is F’s linear structure duad,
then it will cause a match of F at each point x ∈ Fn

2 . If (a, b) /∈ LF, then the number of
matches caused by (a, b) will be less than 2n. The closer the value of θ(F) is to zero, the
fewer matches that the vector (a, b) not in LF can cause. Theorem 2 shows the validity of
Algorithm 1 (FindStruct).

Figure 2. Quantum circuit of the FindStruct subroutine.

Theorem 2. Let L be the solution set output by the FindStruct algorithm run on F : Fn
2 → Fm

2
with a parameter, c, then LF ⊆ L. Moreover, if there is a constant, e0, such that θ(F) ≤ e0 < 1,
then the probability of LF being equal to L is no less than 1−

(
2(1+e0

2)c)n+m.

The idea of proving Theorem 2 is almost the same as that of Theorem 1 in [7], with the
exception of cases where the function has multiple periods or linear structures, as well as
cases where the lengths of the output and input are unequal, need to be considered. The
proof is presented in Appendix A.

According to Theorem 2, setting c greater than 3/(1− e0) ensures that the probability
of the FindStruct algorithm outputting vectors not in LF decreases exponentially with n.
The condition θ(F) ≤ e0 < 1 implies that the vectors that are not linear structure duads of
F should not cause too many matches, or in other words, vectors that are not periods of G
defined in Equation (3) should not cause too many collisions.

3.2. Quantum Tool for Impossible Differentials

The method of finding impossible differentials involves finding probability-1 differen-
tial characteristics that propagate, respectively, from the input end and the output end of
the cipher but cannot match when they meet [30].

E(r) is an arbitrary block cipher that has r rounds. E denotes the round function.
The block size is n and the key space is K = Fm

2 . For each k ∈ K, the output of E(r) on

Mathematics 2024, 12, 2598 8 of 26

plaintext x is E(r)
k (x). Our goal is to obtain impossible differentials of E(r). Namely, we find

(α, β) ∈ Fn
2 × Fn

2 , such that we have the following:

E(r)
k (x)⊕ E(r)

k (α⊕ x) ̸= β, ∀x ∈ Fn
2 , ∀k ∈ Fm

2 .

We divide E(r) into two functions, E(r) = E(r2) ◦ E(r1). Here, 1 ≤ r1, r2 ≤ r − 1 and
r1 + r2 = r. Let E(r2)

−1
be the inverse function of E(r2). As shown in Figure 3, if (∆x1, ∆y1)

is a differential of E(r1), (∆x2, ∆y2) is a differential of E(r2)
−1

, satisfying the following:

E(r1)
k (x⊕ ∆x1)⊕ E(r1)

k (x) = ∆y1, ∀x ∈ Fn
2 , ∀k ∈ Fm

2

E(r2)
k

−1
(x⊕ ∆x2)⊕ E(r2)

k

−1
(x) = ∆y2, ∀x ∈ Fn

2 , ∀k ∈ Fm
2 ,

and ∆y1 ̸= ∆y2, then (∆x1, ∆x2) will be an impossible differential of E(r). Therefore, to
identify impossible differentials of E(r), we only need to obtain differentials of E(r1) and

E(r2)
−1

with a probability of 1.

Figure 3. Construction idea of impossible differentials.

For any t-round block cipher E(t) that has a key length of m and block size n, we treat
both the plaintext and key as inputs of E(t), then the function, i.e.,

E(t) : Fm
2 × Fn

2 → Fn
2

(k, x)→ E(t)
k (x)

is public and completely determined. The Q1 adversaries can construct the unitary operator

UE(t) : ∑
(k,x)∈Fm+n

y∈Fn
2

|k, x⟩|y⟩ −→ ∑
(k,x)∈Fm+n

y∈Fn
2

|k, x⟩|y⊕ E(t)
k (x)⟩

themselves. As

E(t)(k⊕ 0m, x⊕ ∆x)⊕ E(t)(k, x) = ∆y, ∀(k, x) ∈ Fm+n
2

⇐⇒ E(t)
k (x⊕ ∆x)⊕ E(t)

k (x) = ∆y, ∀k ∈ Fm
2 , ∀x ∈ Fn

2 ,

if ((0m, ∆x), ∆y) is E(t)’s linear structure duad, then (∆x, ∆y) will be identified as E(t)’s
differential of probability-1. Thus, we can use the FindStruct algorithm to obtain E(t)’s
differentials of probability-1, with the additional requirement that the first m bits of the
linear structures be 0. This can be achieved by adding additional equations to Equation (5)
when Algorithm 1 (FindStruct) is run on E(t).

The following Algorithm 2 is designed to search impossible differentials.

Mathematics 2024, 12, 2598 9 of 26

Algorithm 2 FindImpoDiff algorithm

Input : a parameter c and a cipher E(r) : K× Fn
2 → Fn

2 . (K = Fm
2 is the key space.)

Output: Impossible differentials of E(r).
1: for r1 = 1 to r− 1 do
2: Let r2 = r− r1, divide E(r) into two functions E(r) = E(r2) ◦ E(r1).
3: Run steps 1–7 of Algorithm 1 (FindStruct) on E(r1) : Fm

2 × Fn
2 → Fn

2 with parameter
c obtaining c(m + 2n) vectors γ(1), γ(2), · · · , γc(m+2n) ∈ Fm+2n

2 .
4: Solve the following equation:

γ(1) · (k, x, y) = 0
γ(2) · (k, x, y) = 0
...
γ(c(m+2n)) · (k, x, y) = 0
k = 0m,

(7)

where (k, x, y) ∈ Fm+n+n
2 are unknowns, to obtain the solution set Ar1 .

5: Run steps 1–7 of Algorithm 1 (FindStruct) on E(r2)
−1

: Fm
2 × Fn

2 → Fn
2 with parame-

ter c obtaining c(m + 2n) vectors γ̃(1), γ̃(2), · · · , γ̃c(m+2n) ∈ Fm+2n
2 .

6: Solve the following equation:

γ̃(1) · (k, x, y) = 0
γ̃(2) · (k, x, y) = 0
...
γ̃(c(m+2n)) · (k, x, y) = 0
k = 0m,

(8)

where (k, x, y) ∈ Fm+n+n
2 are unknowns, to obtain the solution set Br2 .

7: for (0m, ∆x1, ∆y1) ∈ Ar1 do
8: for (0m, ∆x2, ∆y2) ∈ Br2 do
9: if ∆x1 ̸= 0n ∧ ∆x2 ̸= 0n ∧ ∆y1 ̸= ∆y2 then

10: Output (∆x1, ∆x2).
11: end if
12: end for
13: end for
14: end for

Figure 4 shows the flowchart of Algorithm 2 (FindImpoDiff). Steps 3–4 are used to

identify the differentials of E(r1). Steps 5–6 are used to identify the differentials of E(r2)
−1

.

Since E(r1) and E(r2)
−1

are public and determinate functions, the adversary can execute the
unitary operators UE(r1) and U

E(r2)
−1 when invoking the FindStruct subroutine.

Given a block cipher E(r), we define

Θ(E(r)) = max{θ(E(t))|1 ≤ t ≤ r− 1},

where E(t) is a t-round reduced version of E(r) and θ(E(t)) is defined by Equation (6);
as follows:

θ(E(t)) = max
(a1,a2)∈Fm

2 ×F
n
2

b∈Fn
2

((a1,a2),b)/∈L
E(t)

1
2m+n

∣∣∣{(k, x) ∈ Fm
2 × Fn

2 |E(t)(k, x)⊕ E(t)(k⊕ a1, x⊕ a2) = b
}∣∣∣,

Mathematics 2024, 12, 2598 10 of 26

where LE(t) denotes the linear structure space of E(t). θ(E(t)) denotes the maximum number
of matches that vectors not in the linear structure duads of E(t) can cause. Therefore, the
smaller the parameter Θ(E(r)) is, the fewer matches the vectors not in the linear structure
duads of the reduced version of E(r) can cause. According to Theorem 2, the following
theorem holds:

Theorem 3. Block cipher E(r) satisfies Θ(E(r)) ≤ e0 < 1 for a constant e0. If executing the
FindImpoDiff algorithm on E(r) with parameter c outputs (∆x1, ∆x2), the probability of (∆x1, ∆x2)

being E(r)’s impossible differential is no less than 1− 2
(
2(1+e0

2)c)2n+m, where m is the key length
and n is the block size.

Figure 4. Flowchart of Algorithm 2 (FindImpoDiff).

According to Theorem 3, setting c greater than 3/(1− e0) guarantees that the probabil-
ity of the FindImpoDiff algorithm outputting vectors that are not impossible differentials
decreases exponentially with n.

Notably, according to Theorem 2, any linear structure duad of E(r1) whose first m bits
are zero must belong to the solution set Ar1 . On the other hand, ((0m, ∆x1), ∆y1) being a
linear structure duad of E(r1) is equivalent to (∆x1, ∆y1) being a probability-1 differential

Mathematics 2024, 12, 2598 11 of 26

of E(r1). Thus, all probability-1 differentials of E(r1) must be in the set Ar1 . Similarly,

all probability-1 differentials of E(r2)
−1

must be in the set Br2 . Therefore, all impossible
differentials linked by two differentials of probability-1 as in Figure 3 must be output by the
FindImpoDiff algorithm. This holds even if the condition Θ(E(r)) ≤ e0 < 1 is not satisfied.
The condition Θ(E(r)) ≤ e0 < 1 is used only to ensure that the probability of incorrectly
outputting a vector that is not an impossible differential is exponentially small.

3.3. Complexity of Algorithm 2 (FindImpoDiff)

Since quantum computers have not yet been built, we cannot obtain actual execution
results of the proposed quantum tools on specific block ciphers. The corresponding simu-
lation would require, at a minimum, a polynomial quantum execution of a block cipher,
which is currently too large for simulation. For quantum attacks, as actual running or
simulation of the attacks is not yet possible, validation is often demonstrated by rigor-
ously deriving the success probability and complexity [2,3,7,8]. Theorem 2 establishes the
lower bound of the success probability for the FindImpoDiff algorithm. The process of
Algorithm 2 (FindImpoDiff) does not involve quantum queries and, thus, can be executed
by Q1 adversaries. We evaluate the complexity by calculating the number of qubits and
quantum gates needed.

In Algorithm 2 (FindImpoDiff), finding probability-1 differentials of E(r1) requires
executing the FindStruct subroutine on E(r1) for c(m + 2n) times. Each execution in-
cludes 2m + 4n Hadamard gates, n CNOT gates, and one unitary operator UE(r1) . Finding

probability-1 differentials of E(r2)
−1

requires executing the FindStruct subroutine on E(r2)
−1

for c(m + 2n) times. Each execution includes 2m + 4n Hadamard gates, n CNOT gates,
and one unitary operator U

E(r2)
−1 . Thus, the number of Hadamard gates in Algorithm 2

(FindImpoDiff) is as follows:

∑
r1=1,··· ,r−1

r2=r−r1

[c(m + 2n)(2m + 4n) + c(2n + m)(4n + 2m)]

=
r−1

∑
r1=1

(4m + 8n)c(2n + m)

= 4c(r− 1)(m2 + 4n2 + 4nm) ∈ O(n2).

The number of CNOT gates in Algorithm 2 (FindImpoDiff) is as follows:

∑
r1=1,··· ,r−1

r2=r−r1

[(2n + m)cn + (2n + m)cn]

=
r−1

∑
r1=1

(4cn2 + 2cmn)

= 2(r− 1)c(2n2 + mn) ∈ O(n2).

Algorithm 2 (FindImpoDiff) also requires executing the unitary operators UE(r1) and U
E(r2)

−1

c(m + 2n) times for each 1 ≤ r1 ≤ r− 1, r2 = r− r1. As explained in Section 2.1, |UE(r1) |
and |U

E(r2)
−1 | denote the numbers of universal gates required to implement UE(r1) and

U
E(r2)

−1 , respectively. We have the following:

Mathematics 2024, 12, 2598 12 of 26

∑
r1=1,··· ,r−1

r2=r−r1

c(m + 2n)|UE(r1) |+ c(m + 2n)|U
E(r2)

−1 |

= c(m + 2n) ∑
r1=1,··· ,r−1

r2=r−r1

(|UE(r1) |+ |UE(r2) |)

= c(m + 2n)
r−1

∑
r1=1
|UE(r) |

= (r− 1)c(m + 2n)|UE(r) | ∈ O(poly(n)),

Algorithm 2 (FindImpoDiff) additionally requires executing the quantum circuit of E(r) for
(r− 1)c(m + 2n) times. The quantum resources used to implement Algorithm 2 (FindIm-
poDiff) are listed in Table 1.

Table 1. The quantum resources of Algorithm 2 (FindImpoDiff) and Algorithm 3 (FindImpoDiff2) 1.

Algorithm #CNOT #Hadamard UE(r)

Algorithm 2 FindImpoDiff 2τ(2n2 + nm) 4τ(m2 + 4n2 + 4mn) τ(m + 2n)
Algorithm 3 FindImpoDiff2 2τ(n2 + nm + n) 4τn(n + m + 1)2 τ(1 + n + m)

1 Here, n, m, and r are the block size, length of the key, and the number of rounds, respectively. c is the parameter
chosen by the attacker, τ = c · (r− 1).

We then calculate the number of qubits needed for Algorithm 2 (FindImpoDiff).
Running the FindStruct subroutine on E(r1) requires (m + n) + n + n = m + 3n qubits.

Running the FindStruct subroutine on E(r2)
−1

also requires m + 3n qubits. Due to the
reusability of qubits, m + 3n qubits are sufficient to execute the FindImpoDiff algorithm.

In addition to the quantum computing part, Algorithm 2 (FindImpoDiff) also involves
solving linear equations. Solving Equation (7) is equivalent to solving the following equation:

(γ
(1)
m+1, γ

(1)
m+2, · · · , γ

(1)
m+2n) · (x, y) = 0

(γ
(2)
m+1, γ

(2)
m+2, · · · , γ

(2)
m+2n) · (x, y) = 0

...
(γ

(c(m+2n))
m+1 , γ

(c(m+2n))
m+2 , · · · , γ

(c(m+2n))
m+2n) · (x, y) = 0.

Here, γ
(j)
i denotes the i-th bit of γ(j) (1 ≤ j ≤ c(m + 2n)). This linear system contains 2n

unknowns and c(m + 2n) equations. The complexity of solving this linear system using
Gaussian elimination is O(cn2(m + 2n)). Similarly, the complexity of solving Equation
(8) is also O(cn2(m + 2n)). Thus, by omitting a constant coefficient, the complexity of the
classical computing part of Algorithm 2 (FindImpoDiff) is as follows:

∑
r1=1,··· ,r−1

r2=r−r1

[cn2(m + 2n) + cn2(m + 2n)]

=2c(r− 1)n2(m + 2n) ∈ O(n3).

Therefore, the classical computing part has a complexity of O(n3).

Mathematics 2024, 12, 2598 13 of 26

Algorithm 3 Algorithm 2 (FindImpoDiff)

Input : a parameter c and a block cipher E(r) : K× Fn
2 → Fn

2 where K = Fm
2 .

Output: Impossible differentials of E(r).
1: for r1 = 1 to r− 1 do
2: Let r2 = r− r1, divide E(r) into two parts E(r) = E(r2) ◦ E(r1).
3: for i = 1 to n do
4: Run steps 1–7 of the FindStruct algorithm on E(r1)[i] : Fm

2 × Fn
2 → F2 with

parameter c, obtaining c(1 + n + m) vectors γ(1), γ(2), · · · , γ(c(1+n+m)) ∈ Fm
2 ×

Fn
2 × F1

2 .
5: Solve the following equation:

γ(1) · (k, x, y) = 0
γ(2) · (k, x, y) = 0
...
γ(c(1+n+m)) · (k, x, y) = 0
k = 0m,

(9)

where (k, x, y) ∈ Fm+n+1
2 are unknowns, to obtain the solution set Ai

r1
.

6: Run steps 1–7 of the FindStruct algorithm on E(r2)
−1

[i] : Fm
2 ×Fn

2 → F2 with pa-
rameter c, obtaining c(1+ n+m) vectors γ̃(1), γ̃(2), · · · , γ̃(c(1+n+m)) ∈ Fm+n+1

2 .
7: Solve the following equation:

γ̃(1) · (k, x, y) = 0
γ̃(2) · (k, x, y) = 0
...
γ̃(c(1+n+m)) · (k, x, y) = 0
k = 0m,

(10)

where (k, x, y) ∈ Fm+n+1
2 are unknowns, to obtain the solution set Bi

r2
.

8: for (0m, ∆x1, ∆y1) ∈ Ai
r1

do
9: for (0m, ∆x2, ∆y2) ∈ Bi

r2
do

10: if ∆x1 ̸= 0n ∧ ∆x2 ̸= 0n ∧ ∆y1 ̸= ∆y2 then
11: Output (∆x1, ∆x2).
12: end if
13: end for
14: end for
15: end for
16: end for

4. Quantum Attacks Based on Truncated Differentials

For some block ciphers, it is almost impossible to identify a differential of which the
probability is strictly 1. Thus, many attacks that have been proposed consider the truncated
probability-1 differentials. For truncated differentials [31], only partial bits instead of the full
differentials are certain. For many block ciphers, such as SAFERK64 [32] and Camellia [33],
truncated differential analysis can attack more rounds than traditional differential analysis,
or the attack complexity is greatly reduced when attacking the same number of rounds. In
this section, we improve the FindImpoDiff algorithm by allowing the differentials with a
probability of 1 to be truncated differentials.

4.1. Improved Algorithm for Impossible Differentials

To improve Algorithm 2 (FindImpoDiff), we allow the unmatched probability-1 differ-
entials to be truncated differentials when applying the miss-in-the-middle method. That is,
only partial bits of the probability-1 differentials are predicted.

Mathematics 2024, 12, 2598 14 of 26

Let (α, β) denote a truncated differential of E(r) : K×Fn
2 → Fn

2 , where α, β ∈ {0, 1, ∗}n.
Suppose β = (β1, β2, · · · , βn), α = (α1, α2, · · · , αn), then βi, αi,∈ {0, 1, ∗} for i = 1, · · · , n.
The notation “∗” indicates that the corresponding bits of the input or output differences are
undetermined. If αi/βi ∈ {0, 1}, then we refer to the i-th bit (the determined bit of α/β),
otherwise, we refer to it as the undetermined bit of α/β. A truncated difference can actually
be regarded as a set of full differences. Let

Ωα =
{

∆x = (∆x1, ∆x2, · · · , ∆xn) ∈ Fn
2
∣∣∆xi = αi if αi ̸= ∗, i = 1, 2, · · · , n

}
,

Ωβ =
{

∆y = (∆y1, ∆y2, · · · , ∆yn) ∈ Fn
2

∣∣∣∆yi = βi if βi ̸= ∗, i = 1, 2, · · · , n
}

.

The truncated input difference α is equivalent to the set Ωα, and the truncated output
difference β is equivalent to the set Ωβ. If a full input difference ∆x = (∆x1, · · · , ∆xn) ∈ Fn

2
is included in the set Ωα; that is, ∆xi = αi for all i ∈ {1, · · · , n} where αi ̸= ∗, then ∆x is
said to coincide with the truncated input difference α, and denoted as ∆x ∼ α. Similarly, if
a full output difference ∆y is in the set Ωβ, then ∆y coincides with the truncated output
difference β, and is denoted as ∆y ∼ β. Two truncated differentials, α, α′ ∈ {0, 1, ∗}n, are
said to contradict each other if there exists an i ∈ {1, . . . , n} satisfying αi ̸= ∗, α′i ̸= ∗ and
αi ̸= α′i.

The probability of the truncated differential (α, β) is the conditional probability, ex-
pressed as follows:

Pr
k←K

x←Fn
2

[α
E(r)
→ β] = Pr

k←K
x←Fn

2

[E(r)
k (x⊕ ∆x)⊕ E(r)

k (x) ∼ β|∆x ∼ α]

= Pr
k←K

x←Fn
2

[E(r)
k (x⊕ ∆x)⊕ E(r)

k (x) ∈ Ωβ|∆x ∈ Ωα].

If this differential probability is equal to one, we refer to (α, β) as a probability-1 truncated
differential of E(r).

We still divide E(r) = E(r2) ◦ E(r1), where r1 + r2 = r. Let E(r1)[i] be the i-th component
function of E(r1), as follows:

E(r1)
k (x) = (E(r1)

k [1](x), E(r1)
k [2](x), · · · , E(r1)

k [n](x)).

Similarly, E(r2)
−1

[i] denotes the i-th component function of E(r2)
−1

. If the truncated differ-

ential (α, β) of E(r1) has probability-1, the truncated differential (α′, β′) of E(r2)
−1

also has
probability-1, and β contradicts with β′, then (α, α′) will be E(r)’s impossible differential.
These conditions imply that there exists i ∈ {1, · · · , n} such that (α, βi) and (α′, β′i) are

probability-1 differentials of E(r1)[i] and E(r2)
−1

[i], respectively, and βi ̸= β′i (βi, β′i ̸= ∗). In
this case, (α, α′) will be E(r)’s impossible differential, as shown in Figure 5. Thus, we only

need to traverse i to identify the differentials of E(r1)[i] and E(r2)
−1

[i] with probability-1.
This can be performed using the FindStruct algorithm to identify their linear structures.
According to these analyses, we designed an improved algorithm that finds impossible
differentials, which is named Algorithm 3 (FindImpoDiff2).

Figure 6 shows the flowchart of Algorithm 3 (FindImpoDiff2). Algorithm 3 (FindIm-
poDiff2) traverses r1 from 1 to r− 1, dividing E(r) into E(r) = E(r2) ◦ E(r1), and then traverses

i from 1 to n to obtain differentials of E(r1)[i] and E(r2)
−1

[i], which have probability-1 but
lead to a contradiction in the middle. We define the following:

Θ̄(E(r)) = max{θ(E(t)[i])|1 ≤ t ≤ r− 1, 1 ≤ i ≤ n},

where E(t) is the t-round reduced cipher of E(r), E(t)[i] is the i-th component function of
E(t), and θ(E(t)[i]) is defined as Equation (6). That is, we have the following:

Mathematics 2024, 12, 2598 15 of 26

θ(E(t)[i]) = max
(a1,a2)∈Fm

2 ×F
n
2

b=0,1
((a1,a2),b)/∈L

E(t) [i]

1
2m+n

∣∣∣{(k, x) ∈ Fm
2 × Fn

2 |E(t)[i](k, x)⊕

E(t)[i](k⊕ a1, x⊕ a2) = b
}∣∣∣,

where LE(t) [i] is the linear structure space of E(t)[i]. According to Theorem 2, the following
theorem holds.

Figure 5. Illustration of how truncated differentials constitute an impossible differential.

Theorem 4. E(r) is the block cipher whose round number is r, the block size is n, and the key
length is m. Θ̄(E(r)) ≤ e0 < 1 denotes the constant e0. If (∆x1, ∆x2) is output by Algorithm 3
(FindImpoDiff2) when running on E(r), then the probability of (∆x1, ∆x2) being an impossible
differential of E(r) is no less than 1− 2

(
2(1+e0

2)c)m+n+1.

According to Theorem 4, setting c greater than 3/(1− e0) guarantees that Algorithm 3
(FindImpoDiff2) outputs impossible differentials of E(r).

4.2. Complexity of Algorithm 3 (FindImpoDiff2)

The process of the FindImpoDiff algorithm does not involve quantum queries and,
thus, can be executed by Q1 adversaries. We still evaluate the complexity by calculating
the amounts of qubits and quantum gates.

In Algorithm 3 (FindImpoDiff2), finding probability-1 differentials of E(r1)[i] requires
executing steps 1–7 of Algorithm 1 (FindStruct) on E(r1)[i] with parameter c. This requires
2c(1 + n + m)2 Hadamard gates, c(1 + n + m) CNOT gates, and c(1 + n + m) executions of

the unitary operator UE(r1) [i]. Similarly, finding probability-1 differentials of E(r2)
−1

requires

2c(1 + n + m)2 Hadamard gates, c(1 + n + m) CNOT gates, and c(1 + n + m) executions
of the unitary operator U

E(r2)
−1

[i]
. Thus, the number of Hadamard gates in Algorithm 3

(FindImpoDiff2) is as follows:

∑
r1=1,··· ,r−1

r2=r−r1

n

∑
i=1

[2c(1 + n + m)2 + 2c(1 + n + m)2]

=
r−1

∑
r1=1

n

∑
i=1

[4c(1 + n + m)2]

= 4(r− 1)cn(1 + n + m)2 ∈ O(n3).

The number of CNOT gates in Algorithm 3 (FindImpoDiff2) is as follows:

Mathematics 2024, 12, 2598 16 of 26

Figure 6. Flowchart of Algorithm 2 (FindImpoDiff).

∑
r1=1,··· ,r−1

r2=r−r1

n

∑
i=1

[c(1 + n + m) + c(1 + n + m)]

= 2(r− 1)cn(1 + n + m) ∈ O(n2).

Algorithm 3 (FindImpoDiff2) also requires the execution of the unitary operators UE(r1)[i]

and U
E(r2)

−1
[i]

c(m + n + 1) times for each 1 ≤ r1 ≤ r− 1, r2 = r− r1 and 1 ≤ i ≤ n. We

have the following:

Mathematics 2024, 12, 2598 17 of 26

∑
r1=1,··· ,r−1

r2=r−r1

n

∑
i=1

[
c(m + n + 1)|UE(r1) [i]|+ c(1 + n + m)|U

E(r2)
−1

[i]
|
]

= c(1 + n + m) ∑
r1=1,··· ,r−1

r2=r−r1

n

∑
i=1

(
|UE(r1) [i]|+

n

∑
i=1
|U

E(r2)
−1

[i]
|
)

= c(1 + n + m) ∑
r1=1,··· ,r−1

r2=r−r1

(
|UE(r1) |+ |UE(r2) |

)
= (r− 1)c(1 + n + m)|UE(r) | ∈ O(poly(n)),

Algorithm 3 (FindImpoDiff2) additionally requires executing the quantum circuit of E(r)

for (r − 1)c(1 + n + m) times. The quantum resources used to implement Algorithm 2
(FindImpoDiff) are listed in Table 1.

Running the FindStruct subroutine on E(r1)[i] requires (m+n)+1+1 = m+n+2 qubits.

Running the FindStruct subroutine on E(r2)
−1

[i] also requires m + n + 2 qubits. Because of
the reusability of qubits, m + n + 2 qubits are enough for Algorithm 3 (FindImpoDiff2).

We compare classical automated tools to search for impossible differentials with the
proposed quantum tools in Table 2, where the SAT problem is the Boolean satisfiability
problem and MILP is the abbreviation for mixed-integer linear programming. As shown in
Table 2, the UID tool, U-tool, and WW-tool cannot characterize the impact of S-boxes. The
MILP tool can only describe small S-boxes. The SAT tool can describe big S-boxes but the
impact of S-boxes can only be partially characterized. In contrast, the quantum algorithms
we propose can fully characterize nonlinear functions, including S-boxes of any size. The
MILP tool and SAT tool need to solve the MILP problem and SAT problem, respectively,
both of which are NP-complete. In contrast, the proposed quantum algorithms only need
to solve linear equations, which cost polynomial complexity using Gaussian elimination.

It is difficult to directly compare the complexity of classical tools for searching impos-
sible differentials with quantum tools on specific block ciphers. The search for impossible
differentials does not constitute a complete attack in itself. The identified impossible dif-
ferentials are used to eliminate incorrect keys during the subsequent key recovery phase.
The complexity of a classical attack is generally measured by the number of calculations
and the number of chosen plaintexts required in the online key recovery phase, rather
than by the calculations or time needed to identify the distinguishers in the early phase.
In fact, the practicality of classical tools for searching impossible differentials on specific
ciphers is determined by whether the search can be completed within a reasonable time-
frame, rather than by adhering to a strict complexity formula. For example, the authors
of [34] show that searching for impossible differentials of 14-round PRESENT-80 can be
accomplished, but the search for 15 rounds could not be completed even after 20 days,
leading the authors to finally terminate the search for 15 rounds. Classical automated tools
for searching various distinguishers are usually compared using the number of rounds
of specific ciphers that can be searched. However, in quantum attacks, since quantum
computers have not been built yet, we cannot obtain the actual execution results of the
quantum tools. Thus in quantum attacks, the success probability and complexity (the
number of qubits and gates) are rigorously computed to measure the efficiency. Although
the cost of a quantum operation is different from that of a classical operation, it is generally
believed that polynomial-level quantum complexity is far superior to exponential classical
complexity. This is why Shor’s algorithm has attracted widespread attention and even led
to research on post-quantum cryptography.

Block cipher Camellia has 24 rounds [35]. The longest impossible differential of
Camellia found so far has eight rounds [36]. It is found through theoretical derivation and
does not involve any construction of S-boxes. Since the scale of the S-boxes in Camellia is
8-bit, no classical automated tool has yet been able to find longer impossible differentials
by characterizing the S-boxes. AES-128 cipher has 10 rounds [37]. By the partial description
of S-boxes, the SAT tool can accomplish a five-round search for impossible differentials of

Mathematics 2024, 12, 2598 18 of 26

AES-128 [38]. However, the full description of S-boxes or the search for more rounds cannot
be realized in an affordable time. Block cipher Midori-128 has 20 rounds [39]. The S-boxes
applied by Midori-128 have eight bits. But each eight-bit S-box is actually constructed
by two four-bit S-boxes. By the full description of four-bit S-boxes, the MILP tool can
accomplish an eight-round search for impossible differentials of Midori-128 [40]. The
search for more rounds cannot be realized in an affordable time. From the above examples,
it can be seen that classical automated tools have difficulty increasing the number of rounds
since they need to solve problems like MILP or SAT. However, our quantum tools only
require polynomial complexity when applied to all the block ciphers mentioned above,
even if the S-boxes are fully characterized. Moreover, as shown in Table 1, the number of
qubits and gates required increases linearly with the number of rounds. This shows the
superiority of quantum tools.

Some prior works have also investigated the use of quantum algorithms to enhance
classical analytic tools. We list some representative examples in Table 3 for comparison.
The goals of the second and third quantum tools in Table 3 are not to identify differentials
or linear approximations, but to use Grover’s algorithm to accelerate the search for subkeys
in the key recovery stage of traditional differential analysis and linear analysis.

Table 2. Comparisons with classical automated tools.

Tools Description of Nonlinear
Components Problems Need to Solve Ref.

UID tool No / [21]

U-tool No / [22]

WW-tool No Linear equations system [23]

MILP-tool Full description of small
S-boxes (≤ 6-bit) MILP problem [40,41]

SAT-tool Partial description of big
S-boxes (8-bit) SAT problem [38]

Quantum tools Any nonlinear functions Linear equations system This paper

Table 3. Quantum cryptanalysis tools.

Cryptanalysis Tool to Be
Enhanced

Goal of Quantum
Algorithms

Underlying Quantum
Algorithm Used Ref.

Differential cryptanalysis Find high-probability
differentials

Bernstein–Vazirani
algorithm [42,43]

Differential cryptanalysis Accelerate the key search Grover’s algorithm [18]

Linear cryptanalysis Accelerate the key search Grover’s algorithm [18]

Zero correlation linear
cryptanalysis

Find zero correlation
linear approximations

Bernstein–Vazirani
algorithm [44]

Impossible differential
cryptanalysis

Find impossible
differentials Simon’s algorithm This paper

4.3. Simulation

We use a simple Boolean function as an example to simulate the process of using the
FindStruct algorithm to identify linear structure duads (i.e., probability-1 differentials).
This demonstrates the validity of the FindStruct algorithm. The main process of Algorithm
2 (FindImpoDiff) involves repeating the FindStruct algorithm multiple times. According
to the principle of miss-in-the-middle, as long as the outputs of the FindStruct algorithm
are indeed probability-1 differentials, then the outputs of Algorithm 2 (FindImpoDiff)
must be impossible differentials. Therefore, the validity of Algorithm 2 (FindImpoDiff) is
also justified.

Mathematics 2024, 12, 2598 19 of 26

Specifically, we choose function F : F4
2 → F2 as an example, whose truth table is

shown in Table 4. We use Qiskit to simulate the FindStruct algorithm on F. This requires
repeating the FindStruct subroutine to obtain measurement results γ′is. The corresponding
quantum circuit diagram generated by Qiskit is shown in Figure 7. The middle part of the
circuit realizes the unitary operator of F.

Figure 7. Quantum circuit diagram generated by Qiskit.

Table 4. Truth table of F.

x1 x2 x3 x4 F x1 x2 x3 x4 F

0 0 0 0 0 1 0 0 0 1

0 0 0 1 1 1 0 0 1 0

0 0 1 0 1 1 0 1 0 0

0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 1 0 0 0

0 1 0 1 0 1 1 0 0 0

0 1 1 0 0 1 1 0 0 0

0 1 1 1 1 1 1 0 0 0

Because the number of simulations for quantum algorithms is often set at 1024 or 2048,
we chose to simulate 1024 times. As shown in Figure 8, the measurement results only yield
two values: 00000 or 11111. Computing the following equation, i.e.,{

(00000) · (x, y) = 0
(11111) · (x, y) = 0

yields a fundamental solution system, as follows:
1
0
0
0
1

,


1
0
0
1
0

,


1
0
1
0
0

,


1
1
0
0
0

,

where (x, y) ∈ F4
2 × F2 are the unknowns. Therefore, {(0000,0), (1100,0), (1010,0), (1001,0)

(0110,0), (0011,0), (0101,0), (1111,0), (1000,1), (0100,1), (0010,1), (0001,1) (1110,1), (1011,1),
(1101,1), (0111,1)} should all be probability-1 differentials (linear structure duals) of F. It is
easy to verify that these pairs are indeed probability-1 differentials of F.

Mathematics 2024, 12, 2598 20 of 26

Figure 8. Measurement results simulated by Qiskit.

5. Results and Discussion

In this work, we developed quantum automated cryptanalysis tools to search for
impossible differentials. Our tools combine the impossible differential attack with Simon’s
algorithm. We rigorously prove that, if an impossible differential of the block cipher is
linked by two truncated differentials with probability-1, the proposed quantum algorithms
must be able to output these impossible differentials in polynomial time. To analyze the
complexity, we calculate the number of various quantum operators required in the quantum
algorithms and summarized them in Table 1. Since the round number, r, as shown in each
dataset in Table 1, has a degree of 1, the complexity of the proposed algorithms increases
linearly with the number of rounds.

Our quantum cryptanalysis tools do not require any query to the encryption or decryp-
tion oracle and can be implemented in the Q1 model. Thus, they can be easily realized using
quantum computers. Compared with the classical automated impossible differential crypt-
analysis, our quantum automated tools fully utilize the superiority of quantum computing,
allowing for complete characterization of any nonlinear functions while maintaining com-
plexity within polynomial time. Moreover, the proposed quantum cryptanalysis tools
take the key schedule into account in a single-key model, thereby compensating for the
shortcomings of traditional tools.

A natural direction for further research is to enhance the cryptanalysis tools proposed
in this study to reduce quantum resource consumption, or to enhance other cryptanaly-
sis methods with quantum algorithms, such as integral and linear attacks. Combining
cryptanalysis tools with Grover’s algorithm may also be a direction worth exploring.

Author Contributions: Conceptualization, H.X. and Q.X.; methodology, H.X., Q.X., K.W. and L.Y.;
validation, H.X. and Y.L.; formal analysis, H.X., K.W. and L.Y.; writing—original draft preparation,
H.X. and Q.X.; writing—review and editing, H.X. and Y.L.; visualization, H.X. and K.W.; funding
acquisition, H.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Beijing Natural Science Foundation (no. 4234084) and
the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province (no. ZCL21012).

Data Availability Statement: The original contributions presented in this study are included in the
article; further inquiries can be directed to the corresponding author.

Mathematics 2024, 12, 2598 21 of 26

Conflicts of Interest: Author L.Y. was employed by the company Information Industry Information
Security Evaluation Center, The 15th Research Institute of China Electronics Technology Group
Corporation. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.
The authors declare that this study received funding from Beijing Natural Science Foundation
(no. 4234084). The funder had the following involvement with the study: Conceptualization,
methodology, validation, formal analysis, writing—original draft preparation, writing—review and
editing, visualization.

Appendix A

Theorem A1. Let L be the solution set output by the FindStruct algorithm run on F : Fn
2 → Fm

2
with a parameter, c, then LF ⊆ L. Moreover, if there is a constant, e0, such that θ(F) ≤ e0 < 1,
then the probability of LF being equal to L is no less than 1−

(
2(1+e0

2)c)n+m.

Proof. We first prove that LF ⊆ L. To do this, we only need to prove that each linear
structure (a, b) ∈ LF must be a solution to Equation (5). In step 5 of the FindStruct
algorithm, the state

|Ψ3⟩ =
1√

2n+m ∑
x∈Fn

2 ,y∈Fm
2

|x⟩|y⟩|F(x)⊕ y⟩

is measured and the measurement result is denoted as z. Then there are x0 ∈ Fn
2 , y0 ∈ Fm

2
such that F(x0)⊕ y0 = z. We define the set, i.e.,

Sz =
{
(x, y) ∈ Fn

2 × Fm
2 |F(x)⊕ y = z

}
,

then the first two registers of |Ψ3⟩ are collapsed to the state 1√
|Sz |

∑(x,y)∈Sz |x⟩|y⟩. Obviously,

(x0, y0) ∈ Sz. For any (x, y) ∈ Fn+m
2 , let a = x0 ⊕ x, b = y0 ⊕ y, then y = b⊕ y0, x = a⊕ x0

and

F(x)⊕ y = z

⇔(b⊕ y0)⊕ F(a⊕ x0) = z

⇔F(a⊕ x0)⊕ b⊕ y0 = y0 ⊕ F(x0)

⇔F(x0)⊕ F(x0 ⊕ a) = b

⇔(a, b) causes a match of F at point x0.

Thus,

Sz =
{
(x0 ⊕ a, y0 ⊕ b)

∣∣(a, b) ∈ Fn+m
2 and (a, b) causes a match of F at x0}.

Since the linear structure duads of F cause matches of F at all points x ∈ Fn
2 , for each

(a, b) ∈ LF, (x0 ⊕ a, y0 ⊕ b) is in Sz. Suppose that {(a1, b1), (a2, b2), · · · , (at, bt)} is the basis
of space LF, then for any k1, k2, · · · , kt ∈ {0, 1}, we have the following:

(k1a1 ⊕ k2a2 ⊕ ...⊕ ktat, k1b1 ⊕ k2b2 ⊕ ...⊕ ktbt) ∈ LF.

Therefore,

(x0 ⊕
t⊕

j=1

k jaj, y0 ⊕
t⊕

j=1

k jbj) ∈ Sz.

Mathematics 2024, 12, 2598 22 of 26

In addition to linear structures, there may be other vectors causing a match at x0. Let (â, b̂)
denote such vectors. Namely, F(x0 ⊕ â) ⊕ (y0 ⊕ b̂) = z but (â, b̂) /∈ LF. Thus, for any
k1, · · · , kt ∈ {0, 1},

F(x0 ⊕ â⊕
t⊕

j=1

k jaj)⊕ (y0 ⊕ b̂⊕
t⊕

j=1

k jbj) = F(x0 ⊕ â)⊕ (y0 ⊕ b̂) = z

So, (x0⊕ â⊕⊕t
j=1 k jaj, y0⊕ b̂⊕⊕t

j=1 k jbj) is also in the set Sz. Suppose (â1, b̂1), (â2, b̂2) are
two of these vectors, i.e., they both cause a match at x0 but are not in LF. Since LF is a linear
space, the following two sets, i.e.,

{
(x0 ⊕ â1 ⊕

t⊕
j=1

k jaj, y0 ⊕ b̂1 ⊕
t⊕

j=1

k jbj)
∣∣k1 · · · , kt ∈{0, 1}

}
{
(x0 ⊕ â2 ⊕

t⊕
j=1

k jaj, y0 ⊕ b̂2 ⊕
t⊕

j=1

k jbj)
∣∣k1, · · · , kt ∈{0, 1}

}
are either equal or have no intersection at all. Therefore, the measurement in step 5 of the
FindStruct algorithm causes the first two registers of |Ψ3⟩ to collapse into a state with the
following form:

1√
2t(l + 1)

(
∑

k1,··· ,kt∈{0,1}
|x0 ⊕

t⊕
j=1

k jaj⟩|y0 ⊕
t⊕

j=1

k jbj⟩

+ ∑
k1,··· ,kt∈{0,1}

|x0 ⊕ â1 ⊕
t⊕

j=1

k jaj⟩|y0 ⊕ b̂1 ⊕
t⊕

j=1

k jbj⟩

+ · · ·

+ ∑
k1,··· ,kt∈{0,1}

|x0 ⊕ âl ⊕
t⊕

j=1

k jaj⟩|y0 ⊕ b̂l ⊕
t⊕

j=1

k jbj⟩
)

,

where (â1, b̂1), · · · , (âl , b̂l) are the vectors that cause matches at x0 but not in LF. Denoting
â0 = 0n, b̂0 = 0m, this state can be written as follows:

1√
2t(l + 1)

∑
i∈{0,1,··· ,l}

k1,··· ,kt∈{0,1}

|x0 ⊕ âi ⊕
t⊕

j=1

k jaj⟩|y0 ⊕ b̂i ⊕
t⊕

j=1

k jbj⟩.

In step 6, after performing a Hadamard gate H⊗(n+m), the first two registers are as follows:

∑
i∈{0,··· ,l}

k1,··· ,kt∈{0,1}
(γ1,γ2)∈F

n+m
2

(−1)γ1·(x0⊕âi⊕
⊕t

j=1 kjaj)+γ2·(y0⊕b̂i⊕
⊕t

j=1 kjbj)|γ1⟩|γ2⟩

=∑
γ1∈F

n
2

γ2∈Fm
2

(l

∑
i=0

(−1)γ1·(x0⊕âi)⊕γ2·(y0⊕b̂i)
)[
(−1)(γ1,γ2)·(a1,b1) + 1

]
×

[
(−1)(γ1,γ2)·(a2,b2) + 1

]
× · · · ×

[
(−1)(γ1,γ2)·(at ,bt) + 1

]
|γ1, γ2⟩,

where we omit the global coefficient 1/
√

2n+m+t(l + 1). For any (γ1, γ2) ∈ Fn+m
2 , if there

exists j ∈ {1, 2, · · · , t} such that (γ1, γ2) · (aj, bj) ̸= 0, then the amplitude of |γ1, γ2⟩ in
the above quantum state is zero. Therefore, the FindStruct algorithm always outputs a

Mathematics 2024, 12, 2598 23 of 26

random value γ ∈ Fn+m
2 such that γ · (aj, bj) = 0 for all j = 1, 2, · · · , t, which means

(a1, b1), · · · , (at, bt) must be in the solution space L of Equation (5). Thus, we have LF ⊆ L.
Then, we prove the probability that LF = L is no less than 1− 2((1+e0

2)c)n+m as long as
θ(F) ≤ e0 < 1. LF ̸= L means that there is a vector (a, b), which is a solution to Equation (5)
but not in LF. Thus, we have the following:

Pr
[
LF ̸= L]

=Pr
[
∃(a, b) /∈ LF, s.t., γ(1) · (a, b) = γ(2) · (a, b) = · · · = γ(c(n+m)) · (a, b) = 0

]
≤ ∑
(a,b)∈Fn+m

2 \LF

Pr
[
γ(1) · (a, b) = · · · = γ(c(n+m)) · (a, b) = 0

]
= ∑

(a,b)∈Fn+m
2 \LF

(
Pr[γ(1) · (a, b) = 0]

)c(n+m)

≤(2n+m − |LF|) max
(a,b)∈Fn+m

2 \LF

(
Pr[γ(1) · (a, b) = 0]

)c(n+m)

≤ max
(a,b)∈Fn+m

2 \LF

(
2Pr[γ(1) · (a, b) = 0]c

)n+m
, (A1)

where γ(1), · · · , γ(c(n+m)) are c(m + n) outputs of the FindStruct subroutine and are in-
dependent and identically distributed random variables. To calculate the probability
Pr[γ(1) · (a, b) = 0], all measurements of the FindStruct subroutine are moved to the end.
According to the principle of deferred measurement, this does not change the outputs.
Therefore, the state without being measured is as follows:

1
2n+m ∑

x∈Fn
2

y∈Fm
2

∑
γ1∈Fn

2
γ2∈Fm

2

(−1)x·γ1⊕y·γ2 |γ1⟩|γ2⟩|F(x)⊕ y⟩

=
1

2n+m ∑
(γ1,γ2)∈F

n+m
2

(γ1,γ2)·(a,b)=0

∑
x∈Fn

2
y∈Fm

2

(−1)x·γ1⊕y·γ2 |γ1⟩|γ2⟩|F(x)⊕ y⟩

+
1

2n+m ∑
(γ1,γ2)∈F

n+m
2

(γ1,γ2)·(a,b)=1

∑
x∈Fn

2
y∈Fm

2

(−1)x·γ1⊕y·γ2 |γ1⟩|γ2⟩|F(x)⊕ y⟩.

The probability of γ(1) satisfying (a, b) · γ(1) = 0 is as follows:

Pr[(a, b) · γ(1) = 0]

=
∥∥ 1

2n+m ∑
(γ1,γ2)∈F

n+m
2

(γ1,γ2)·(a,b)=0

∑
x∈Fn

2
y∈Fm

2

(−1)x·γ1⊕y·γ2 |γ1⟩|γ2⟩|F(x)⊕ y⟩
∥∥2

=
1

22(n+m) ∑
(γ1,γ2)·(a,b)=0

x,x′∈Fn
2

y,y′∈Fm
2

(−1)γ1·(x⊕x′)⊕γ2·(y⊕y′)⟨F(x′)⊕ y′|F(x)⊕ y⟩

= ∑
x,x′∈Fn

2
y,y′∈Fm

2

(⟨y⊕ F(x)|y′ ⊕ F(x′)⟩
22(n+m) ∑

(γ1,γ2)·(a,b)=0
(−1)γ1·(x′⊕x)⊕γ2·(y′⊕y)

)
.

According to Lemma 1 in [7], the following holds:

1
2n+m ∑

(γ1,γ2)∈F
n+m
2

(γ1,γ2)·(a,b)=0

(−1)γ1·x+γ2·y =
1
2
(δ(0n ,0m),(x,y) + δ(a,b),(x,y)).

Mathematics 2024, 12, 2598 24 of 26

Thus,

Pr[(a, b) · γ(1) = 0]

= ∑
(x,y)∈Fn+m

2
(x′ ,y′)∈Fn+m

2

⟨y⊕ F(x)|y′ ⊕ F(x′)⟩
2n+m+1

(
δ(x,y),(x′ ,y′) + δ(x,y),(a⊕x′ ,b⊕y′)

)
.

=
1

2n+m+1 ∑
(x,y)∈Fn+m

2

(
1 + ⟨F(x)⊕ y|F(x⊕ a)⊕ y⊕ b⟩

)
.

=
1
2
(
1 +

1
2n+m |{(x, y)|F(x⊕ a)⊕ F(x) = b}|

)
=

1
2
(
1 + Prx[F(x⊕ a)⊕ F(x) = b]

)
≤1

2

(
1 + θ(F))

)
.

Combining Equation (A1), we have the following:

Pr[LF ̸= L]

≤ max
(a,b)∈Fm+n

2 \LF

(
2Pr[(a, b) · γ(1) = 0]c

)n+n

≤
(

2(
1 + θ(F)

2
)c
)m+n

≤
(

2(
1 + e0

2
)c
)m+n

.

References
1. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.
2. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.
3. Simon, D.R. On the power of quantum computation. SIAM J. Comput. 1997, 10, 1474–1483. [CrossRef]
4. Kuwakado, H.; Morii, M. Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In Proceedings

of the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; pp. 2682–2685.
5. Kuwakado, H.; Morii, M. Security on the quantum-type Even-Mansour cipher. In Proceedings of the Information Theory and Its

Applications, Honolulu, HI, USA, 28–31 October 2012; pp. 312–316.
6. Santoli, T.; Schaffner, C. Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 2017,

17, 65–78. [CrossRef]
7. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M. Breaking symmetric cryptosystems using quantum period find-

ing. In Proceedings of the Advances in Cryptology—CRYPTO 2016, Santa Barbara, CA, USA, 14–18 August 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 207–237.

8. Leander, G.; May, A. Grover Meets Simon–Quantumly Attacking the FX-construction. In Proceedings of the Advances in
Cryptology—ASIACRYPT 2017, Hong Kong, China, 3–7 December 2017; Springer: Cham, Switzerland, 2017; pp. 161–178.

9. Dong, X.; Wang, X. Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 2018, 10, 240–246. [CrossRef]
10. Dong, X.; Wang, X. Quantum cryptanalysis on some generalized Feistel schemes. Sci. China Inf. Sci. 2019, 62, 22501:1–22501:12.

[CrossRef]
11. Damgård, I.; Funder, J.; Nielsen, J.B.; Salvail, L. Superposition attacks on cryptographic protocols. In Proceedings of the

International Conference on Information Theoretic Security, Cham, Switzerland, 28–30 November 2013; pp. 142–161.
12. Boneh, D.; Zhandry, M. Secure signatures and chosen ciphertext security in a quantum computing world. In Proceedings of the

Advances in Cryptology—CRYPTO 2013, Santa Barbara, CA, USA, 18–22 August 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 361–379.

13. Gagliardoni, T.; Hlsing, A.; Schaffner, C. Semantic security and indistinguishability in the quantum world. In Proceedings of the
Advances in Cryptology—CRYPTO 2016, Santa Barbara, CA, USA, 14–18 August 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 60–89.

14. Roetteler, M.; Steinwandt, R. A note on quantum related-key attacks. Inf. Process. Lett. 2015, 115, 40–44. [CrossRef]

http://doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.26421/QIC17.1-2-4
http://dx.doi.org/10.1007/s11432-017-9468-y
http://dx.doi.org/10.1007/s11432-017-9436-7
http://dx.doi.org/10.1016/j.ipl.2014.08.009

Mathematics 2024, 12, 2598 25 of 26

15. Hosoyamada, A.; Aoki, K. On quantum related-key attacks on iterated Even-Mansour ciphers. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 2019, 102, 27–34. [CrossRef]

16. Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover Oracles for Quantum Key Search on AES and LowMC. In
Proceedings of the Advances in Cryptology—EUROCRYPT 2020, Zagreb, Croatia, 10–14 May 2020; Springer: Cham, Switzerland,
2020; pp. 280–310.

17. Zhou, Q.; Lu, S.; Zhang, Z.; Sun, J. Quantum differential cryptanalysis. Quantum Inf. Process. 2015, 14, 2101–2109. [CrossRef]
18. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M. Quantum differential and linear cryptanalysis. IACR Trans. Symmetric

Cryptol. 2016, 2016, 71–94. [CrossRef]
19. Hosoyamada, A.; Sasaki, Y. Finding Hash Collisions with Quantum Computers by Using Differential Trails with Smaller

Probability than Birthday Bound. In Proceedings of the Advances in Cryptology—EUROCRYPT 2020, Zagreb, Croatia, 10–14
May 2020; Springer: Cham, Switzerland, 2020; pp. 249–279.

20. Dong, X.; Sun, S.; Shi, D.; Gao, F.; Wang, X.; Hu, L. Quantum Collision Attacks on AES-Like Hashing with Low Quantum
Random Access Memories. In Proceedings of the Advances in Cryptology—ASIACRYPT 2020, Daejeon, Republic of Korea, 7–11
November 2020; Springer: Cham, Switzerland, 2020; pp. 727–757.

21. Luo, Y.; Lai, X.; Wu, Z.; Gong, G. A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 2014,
263, 211–220. [CrossRef]

22. Kim, J.; Hong, S.; Sung, J.; Lee, S.; Lim, J.; Sung, S. Impossible differential cryptanalysis for block cipher structures. In Proceedings
of the 4th International Conference on Cryptology, New Delhi, India, 8–10 December 2003.

23. Wu, S.; Wang, M. Automatic search of truncated impossible differentials for word oriented block ciphers. In Proceedings of the
Progress in Cryptology—INDOCRYPT 2012, Kolkata, India, 9–12 December 2012; Springer: Berlin/Heidelberg, Germany, 2012;
pp. 283–302.

24. Liu, Y.; Xiang, Z.; Chen, S.; Zhang, S.; Zeng, X. A Novel Automatic Technique Based on MILP to Search for Impossible Differentials.
In Proceedings of the Applied Cryptography and Network Security (ACNS 2023), Kyoto, Japan, 19–22 June 2023; Springer: Cham,
Switzerland, 2023; pp. 119–148.

25. Sun, L.; Wang, M. SoK: Modeling for large s-boxes oriented to differential probabilities and linear correlations. IACR Trans.
Symmetric Cryptol. 2023, 2023, 111–151. [CrossRef]

26. Winternitz, R.; Hellman, M. Chosen-key attacks on a block cipher. Cryptologia 1987 11, 16–20. [CrossRef]
27. Xiang, Z.; Wang, X.; Yu, B.; Sun, B.; Zhang, S.; Zeng, X.; Shen, X.; Li, N. Links between Quantum Distinguishers Based on Simon’s

Algorithm and Truncated Differentials. IACR Trans. Symmetric Cryptol. 2024, 2024, 296–321. [CrossRef]
28. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information, 1st ed.; Cambridge University Press: Cambridge, MA,

USA, 2000.
29. Li, H.; Yang, L. A quantum algorithm to approximate the linear structures of Boolean functions. Math. Struct. Comput. Sci. 2016,

28 1–13. [CrossRef]
30. Biham, E.; Biryukov, A.; Shamir, A. Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In Proceedings

of the International Conference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May
1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 12–23.

31. Knudsen, L.R. Truncated and higher order differentials. In Proceedings of the Fast Software Encryption: Second International
Workshop, Leuven, Belgium, 1–16 December 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 196–211.

32. Wu, H.; Bao, F.; Deng, R.H.; Ye, Q. Improved truncated differential attacks on SAFER. In Proceedings of the International
Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, 18–22 October 1998; Springer:
Berlin/Heidelberg, Germany, 1998; pp. 133–147.

33. Kanda, M.; Matsumoto, T. Security of Camellia against truncated differential cryptanalysis. In Proceedings of the Fast Software
Encryption: 8th International Workshop, Yokohama, Japan, 2–4 April 2001; Springer: Berlin/Heidelberg, Germany, 2001;
pp. 286–299.

34. Sun, S.; Hu, L.; Wang, P.; Qiao, K.; Ma, X.; Song, L. Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES (L) and other bit-oriented block ciphers. In Proceedings of the 20th
International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, 7–11
December 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 158–178.

35. Aoki, K.; Ichikawa, T.; Kanda, M.; Matsui, M.; Moriai, S.; Nakajim, J.; Tokita, T. Camellia: A 128-bit block cipher suitable for
multiple platforms—Design and analysis. In Proceedings of the 7th SAC, Selected Areas in Cryptography (SAC 2000), Waterloo,
ON, Canada, 14–15 August 2000; Springer: Berlin/Heidelberg, Germany, 2012; pp. 39–56.

36. Jia, K.; Wang, N. Impossible differential cryptanalysis of 14-round camellia-192. In Proceedings of the 21st Australasian Conference
on Information Security and Privacy, Melbourne, VIC, Australia, 4–6 July 2016; Springer: Cham, Switzerland, 2016; pp. 363–378.

37. Sanchez-Avila, C.; Sanchez-Reillol, R. The Rijndael block cipher (AES proposal): A comparison with DES. In Proceedings of the
IEEE 35th Annual International Carnahan Conference on Security Technology, London, UK, 16–19 October 2001; pp. 229–234.

38. Hu, X.; Li, Y.; Jiao, L.; Tian, S.; Wang, M. Mind the propagation of states: New automatic search tool for impossible differentials
and impossible polytopic transitions. In Proceedings of the 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, Republic of Korea, 7–11 December 2020; Springer: Cham, Switzerland, 2020;
pp. 415–445.

http://dx.doi.org/10.1587/transfun.E102.A.27
http://dx.doi.org/10.1007/s11128-015-0983-3
http://dx.doi.org/10.46586/tosc.v2016.i1.71-94
http://dx.doi.org/10.1016/j.ins.2013.08.051
http://dx.doi.org/10.46586/tosc.v2023.i1.111-151
http://dx.doi.org/10.1080/0161-118791861749
http://dx.doi.org/10.46586/tosc.v2024.i2.296-321
http://dx.doi.org/10.1017/S0960129516000013

Mathematics 2024, 12, 2598 26 of 26

39. Banik, S.; Bogdanov, A.; Isobe, T.; Shibutani, K.; Hiwatari, H.; Akishita, T.; Regazzoni, F. Midori: A block cipher for low energy.
In Proceedings of the 21st International Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, 29 November–3 December 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 411–436.

40. Sasaki, Y.; Todo, Y. New impossible differential search tool from design and cryptanalysis aspects: Revealing structural properties
of several ciphers. In Proceedings of the 36th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, 30 April–4 May 2017; Springer: Cham, Switzerland, 2017; pp. 185–215.

41. Cui, T.; Chen, S.; Jia, K.; Fu, K.; Wang, M. New Automatic Search Tool for Impossible Differentials and Zero-Correlation Linear
Approximations. Cryptology ePrint Archive, 2016. Available online: https://eprint.iacr.org/2016/689 (accessed on 1 May 2022).

42. Li, H.; Yang, L. Quantum differential cryptanalysis to the block ciphers. In Proceedings of the 6th International Conference on
Applications and Techniques in Information Security, Beijing, China, 4–6 November 2015; Springer: Berlin/Heidelberg, Germany,
2015; pp. 44–51.

43. Xie, H.; Yang, L. Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Cryptogr. 2019, 87, 1161–1182. [CrossRef]
44. Zhang, K.; Shang, T.; Tang, Y.; Liu, J. Zero-correlation linear analysis for block ciphers based on the Bernstein-Vazirani and Grover

algorithms. Quantum. Inf. Process 2024, 23, 289. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://eprint.iacr.org/2016/689
http://dx.doi.org/10.1007/s10623-018-0510-5
http://dx.doi.org/10.1007/s11128-024-04491-x

	Introduction
	Preliminaries
	Quantum Attack Models
	Simon's Algorithm
	Linear Structure

	A Basic Quantum Tool for Finding Impossible Differentials
	Finding Linear Structure Duads via Simon's Algorithm
	Quantum Tool for Impossible Differentials
	Complexity of Algorithm 2 (FindImpoDiff)

	Quantum Attacks Based on Truncated Differentials
	Improved Algorithm for Impossible Differentials
	Complexity of Algorithm 3 (FindImpoDiff2)
	Simulation

	Results and Discussion
	Appendix A
	References

