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Abstract: Multiobjective programming refers to a mathematical problem that requires the simul-
taneous optimization of multiple independent yet interrelated objective functions when solving
a problem. It is widely used in various fields, such as engineering design, financial investment,
environmental planning, and transportation planning. Research on the theory and application of
convex functions and their generalized convexity in multiobjective programming helps us understand
the essence of optimization problems, and promotes the development of optimization algorithms
and theories. In this paper, we firstly introduces new classes of generalized (F, α, ρ, d)− I functions
for semi-preinvariant convex multiobjective programming. Secondly, based on these generalized
functions, we derive several sufficient optimality conditions for a feasible solution to be an efficient
or weakly efficient solution. Finally, we prove weak duality theorems for mixed-type duality.

Keywords: semi-preinvariant convexity; multiobjective programming; efficient solution; generalized
convexity; mixed-type duality
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1. Introduction

Multi-objective programming is a mathematical model for solving decision-making
problems with multiple conflicting objective functions [1,2], which has wide applications
in various practical fields, including production scheduling [3], resource allocation [4],
and portfolio management [5]. This field originated in the 1950s, and was founded by
Morgenstern and von Neumann’s work. They introduced the concept of cooperative game
theory to handle multi-objective decision-making problems [6]. The objective functions in
multi-objective programming usually cannot be minimized or maximized simultaneously;
therefore, a set of feasible solutions must be found that achieves some balance among all of
the objectives [7].

Convexity is an important concept in optimization theory, providing powerful tools
for solving various practical problems [8,9]. As an important type of convexity in opti-
mization theory, semi-preinvexity possesses crucial mathematical properties in the field
of multi-objective programming, which are particularly useful for handling partially con-
vex or locally convex problems [10]. Research on multi-objective programming and its
semi-preinvexity theory can offer theoretical support for understanding and solving com-
plex optimization problems, playing an essential role in modeling and solving practical
problems [11–16].

In the past few decades, significant progress has been made in the study of invariant
convex multi-objective programming, including advancements in mathematical models,
optimization strategies, and new algorithms to effectively address conflicts among multiple
objectives [17–20]. These efforts not only provided theoretical proofs, but also validated the
effectiveness of the algorithms through examples. Among them, the optimality and duality
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of multi-objective programming with generalized (F, α, ρ, d)−convexity have been further
studied [21–24]. The optimality conditions and duality theory under differentiable and
non-differentiable conditions are obtained, including weak and strong duality relations,
as well as inverse duality relations and mixed duality results. Scholars subsequently
expanded their studies to include second-order cases in multi-objective programming
problems [25–28], and obtained the corresponding optimality conditions and dual results.

With the increasing complexity of the modern social environment and the diverse
range of challenges faced, the effectiveness of the traditional second-order convex multi-
objective programming model has decreased. To better address the intricate and evolving
needs and challenges of modern society, scholars have expanded their research on higher-
order cases related to (F, α, ρ, d) convex multi-objective programming [29–34]. This expan-
sion includes various forms of higher-order (F, α, ρ, d)−convexity, and has produced high-
order symmetric dual results that incorporate these convexities, as well as non-differentiable
multi-objective mixed symmetric dual results. These studies provide more efficient decision
support and optimization solutions for dealing with increasingly complex and diverse
real-world problems.

Despite significant advancements in the study of generalized (F, α, ρ, d) convexity in
multi-objective programming, there has been limited exploration into extending this con-
cept to semi-preinvariant invex functions. Therefore, it is crucial to investigate optimality
and duality for semi-preinvariant convex multi-objective programming that involves gen-
eralized (F, α, ρ, d)− I invex functions as a means to enhance efficiency and interpretability
when solving multi-objective programming problems. Furthermore, this research will con-
tribute to the development of multi-objective programming theory, and provide solutions
for complex problems encountered in practical applications.

Motivated by the significance of semi-preinvariant convex multi-objective programming
in mathematics and engineering, our investigation focuses on optimality and duality in this
field. Specifically, we aim to explore these concepts within the context of semi-preinvariant
convex multi-objective programming involving generalized (F, α, ρ, d)− I−type invex func-
tions. The main objective of this study is to define new classes of generalized (F, α, ρ, d)−I
functions for semi-preinvariant convex multi-objective programming, while deriving sev-
eral sufficient optimality conditions that determine whether a feasible solution is efficient or
weakly efficient. Additionally, we establish weak duality theorems for mixed-type duality.

The contribution of this paper is threefold: (1) We introduce novel classes of gener-
alized (F, α, ρ, d)−type I functions that encompass the following: generalized (F, α, ρ, d)−
I − E−semi-preinvariant invex functions, generalized pseudoquasi (F, α, ρ, d)− I − E−semi-
preinvariant invex functions, weakly strictly pseudoquasi (F, α, ρ, d)− I invex functions, strongly
strictly pseudoquasi (F, α, ρ, d)− I invex functions, sub-strictly pseudoquasi (F, α, ρ, d)−type
I invex functions, weak quasistrictly pseudo(F, α, ρ, d)− I invex functions, weak quasisemi-
pseudo(F, α, ρ, d)− I invex functions, and weak strictly pseudo(F, α, ρ, d)− I invex functions.
(2) Based on these generalized (F, α, ρ, d) − I − E−semi-preinvariant invex functions, we
derive several sufficient optimality conditions for a feasible solution to be an efficient or
weakly efficient solution. (3) We investigate the mixed-type duality involving this general-
ized (F, α, ρ, d)− I − E−semi-preinvariant function, and obtain weak duality theorems.

The structure of this paper is outlined as follows: Section 2 provides an overview of the
relevant concepts and notions. Afterwards, we introduce a novel class of generalized convex
functions based on the α− E−semi-invariant convexity, which forms the basis for our study.
In Section 3, we derive several sufficient optimality conditions for α − E−semi-preinvariant
convex multiobjective programming. Additionally, in Section 4, we explore mixed-type
duality involving the generalized (F, α, ρ, d) − I − E−semi-preinvariant function, and
establish weak duality theorems. Lastly, concluding remarks are provided in Section 5.

2. Preliminaries and Definitions

In this section, we mainly review some relevant concepts and notions that will be
needed throughout the paper. By convention, Rn is an n-dimensional vector space, and x



Mathematics 2024, 12, 2599 3 of 13

and y denote vectors within Rn. First, for ease of reading, Table 1 lists some symbols and
their corresponding meanings as follows:

Table 1. Some symbols and meanings.

Symbols Meanings

x = y If and only if xi = yi, ∀i = 1, 2, . . . , n.
x > y If and only if xi > yi, ∀i = 1, 2, . . . , n.
x ≧ y If and only if xi ≧ yi, ∀i = 1, 2, . . . , n.
x ≥ y If and only if xi ≧ yi, x ̸= y, ∀i = 1, 2, . . . , n.
Rn N-dimensional Euclidean space
F Sublinear functional
MOP Multiobjective programming
XMOP Mixed-type dual of MOP

Next, we will recall the definitions of an invariant convex set, an α − E−semi-invariant
convex set, and a sublinear functional, which will be needed later.

Definition 1 ([16]). Let X ⊂ Rn be a non-empty subset, if there exists η: X × X → Rn, such that
for any x, y ∈ X, λ ∈ [0, 1], we have

y + λη(x, y) ∈ X,

then, we say that X is an invariant convex set with respect to η.

Definition 2 ([14,15]). Let X ⊂ Rn be a non-empty subset, if there exists η: X × X × [0, 1] →
Rn \ {0}, α: X × X → R \ {0}, E: X → X, such that, for any x, y ∈ X, λ ∈ [0, 1], we have

E(y) + λα(E(x), E(y))η(E(x), E(y), λ) ∈ X,

then, we say that X is an α − E−semi-invariant convex set with respect to η and α.

Definition 3 ([14,15]). Let X ⊂ Rn be α − E-semi-invariant convex set, f : X → R, if there
exists η: X × X × [0, 1] → Rn \ {0}, α: X × X → R \ {0}, E: X → X, such that, for any
x, y ∈ X, (E(x) ̸= E(y)), λ ∈ [0, 1], we have

f (E(y) + λα(E(x), E(y))η(E(x), E(y), λ)) ≤ (<)λ f (E(x)) + (1 − λ) f (E(y)),

and lim
λ→0

λη(E(x), E(y), λ) = 0, then we say that X is a (strict) α − E−semi-invariant convex set

with respect to η and α.

Definition 4 ([24]). Suppose F is a sublinear functional, and let X × X ×Rn → R, for ∀x, x ∈ X;
we have

F(x, x; α1 + α2) ≦ F(x, x, α1) + F(x, x, α2), ∀α1, α2 ∈ Rn,

F(x, x; αa) = αF(x, x, a), ∀α ∈ R, α ≧ 0, ∀a ∈ Rn.

In addition, we will introduce a new class of generalized convex functions based
on the α − E−semi-preinvariant functions and the generalized (F, α, ρ, d)− I−type invex
functions to investigate the sufficient optimality conditions and duality theorems for multi-
objective programming.

Let X ∈ Rn be a non-empty α − E−semi-invariant convex set. F is a sublinear functional.
f = ( f1, f2, . . . , fq): X → Rq, fi(i = 1, 2, . . . , q) ∈ X are local Lipschitz functions, I fi repre-
sents the value of fi. G = (G f1 , f2 , . . . , fq ): R → Rq, G fi : I fi → R is a strictly monotonically

increasing differentiable real valued function. ∀ξi ∈ G
′
fi
( fi(E(x)∂ fi(E(x)), and F is a sub-

linear functional. ρ = (ρ1, ρ2), ρ1 = (ρ1, ρ2, . . . , ρp) ∈ Rp, ρ2 = (ρ1+p, ρ2+p, . . . , ρr+p) ∈ Rr,
α = (α1, α2), α1, α2 : X × X → R+ \ {0}, d(·, ·): X × X → R.
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Definition 5 (Generalized (F, α, ρ, d)− I −E−semi-preinvariant invex functions). Let ( f , g)
be generalized (F, α, ρ, d)− I − E−semi-preinvariant invex functions; for ∀x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≧ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)), (1)

− bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≧ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)). (2)

Definition 6 (Generalized pseudoquasi (F, α, ρ, d)− I −E−semi-preinvariant invex func-
tions). Let ( f , h) be generalized (F, α, ρ, d) − I − E−semi-preinvariant invex functions; for
∀x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
< 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) < 0,
(3)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) ≦ 0.
(4)

If the first inequality in Equation (3) is changed to≦0, then ( f , g) would be strictly pseudoquasi
(F, α, ρ, d)− I −E−semi-preinvariant invex functions.

Definition 7. ( f , h) is a weak strictly pseudoquasi (F, α, ρ, d)− I at x, if for all x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≤ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) < 0,
(5)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) ≦ 0.
(6)

Definition 8. ( f , h) is a strong strictly pseudoquasi (F, α, ρ, d)− I at x, if for all x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≤ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) ≤ 0,
(7)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) ≦ 0.
(8)

If the inequality (9) given in Definition 7 is satisfied as follows

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
< 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) ≤ 0,
(9)

then we say that ( f , g) is weak pseudoquasi (F, α, ρ, d)− I at x.

Definition 9. ( f , h) is a sub-strictly pseudoquasi (F, α, ρ, d)− I at x, if for all x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≦ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) ≤ 0,
(10)
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−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) ≦ 0.
(11)

Definition 10. ( f , h) is a weak quasi strictly pseudo (F, α, ρ, d)− I at x, if for all x ∈ A, we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≤ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) ≦ 0,
(12)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) ≤ 0.
(13)

Definition 11. ( f , h) is a weak quasi semi-pseudo (F, α, ρ, d)− I at x, if for all x ∈ A we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≤ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) ≦ 0,
(14)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) < 0.
(15)

Definition 12. ( f , h) is a weak strictly pseudo (F, α, ρ, d)− I at x, if for all x ∈ A we have

bi(E(x), E(x))
(

G fi
( fi(E(x)− G fi

( fi(E(x)
)
≤ 0

⇒ F(E(x), E(x); α1ξi) + ρid2(E(x), E(x)) < 0,
(16)

−bj(E(x), E(x))
(

Ggj(gj(E(x)− Ggj(gj(E(x)
)
≦ 0

⇒ F(E(x), E(x); α2ηj) + ρjd2(E(x), E(x)) < 0.
(17)

3. Sufficient Optimality Conditions

In this section, we will discuss the α − E−semi-preinvariant convex multi-objective
programming as follows.

(MOP)
{

min f (E(x)),
s.t.x ∈ A = {x ∈ X|g(E(x)) ≦ 0}.

Let E : X → X, where X ⊂ Rn, be an α − E−semi-preinvariant convex set for η and α,
and we have

f (E(x)) =
(

f1(E(x)), f2(E(x)), . . . , fp(E(x))
)T , fi : X ⊂ R, i = 1, 2, . . . , p,

g(E(x)) =
(

g1(E(x)), g2(E(x)), . . . , gq(E(x))
)T , gj : X ⊂ R, j = 1, 2, . . . , q,

where fi, gj is a local Lipschitz function.
Based on different generalized (F, α, ρ, d)− I − E−semi-preinvariant invex functions

and a multi-objective programming model (MOP), We will derive several sufficient opti-
mality conditions for a feasible solution to be efficient or weakly efficient in the correspond-
ing MOP.
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Theorem 1. Let x be a feasible solution to MOP, u ∈ R, v ∈ Rq, such that

0 ∈
p

∑
i=1

µiG
′
fi
( fi(E(x)∂ f j(E(x)) +

q

∑
j=1

υjG
′
gj
(gj(E(x)∂gj(E(x)), (18)

υjgj(E(x)) = 0, (19)

u > 0, v ≧ 0, (20)

if ( f , g) is a strong pseudoquasi (F, α, ρ, d)−type−E−semi-preinvariant invex at x with

µρ1α1(·, x)−1 + υρ2α2(·, x)−1 ≧ 0,

then x is an efficient solution for (MOP).

Proof. Suppose that x is not an efficient solution for (MOP). Then, there exist x ∈ A,
such that f (E(x)) ≤ f (E(x)), g(E(x)) ≦ g(E(x)). There exists at least one i0, such
that fi0(E(x)) < fi0(E(x)), since ( f , g) is a strong pseudoquasi (F, α, ρ, d)−type−E−semi-
preinvariant invex at x, G fi

is increasing, and Ggj is strictly increasing. Hence, we have

F(E(x), E(x); α1(E(x), E(x))ξi) + ρid2(E(x), E(x)) ≤ 0, (21)

F(E(x), E(x); α2(E(x), E(x))ηj) + ρjd2(E(x), E(x)) ≦ 0. (22)

There must exist at least one strict <; thus, we have

α1(E(x), E(x))F(E(x), E(x); ξi) ≤ −ρid2(E(x), E(x)), (23)

α2(E(x), E(x))F(E(x), E(x); ηj) ≦ −ρjd2(E(x), E(x)). (24)

By multiplying (23) with µiα
1(E(x), E(x))−1, and (24) with υjα

2(E(x), E(x))−1, we obtain

µiF(E(x), E(x); ξi) < −µiρiα
1(E(x), E(x))−1d2(E(x), E(x)), (25)

υjF(E(x), E(x); ηj) ≤ −υjρjα
2(E(x), E(x))−1d2(E(x), E(x)). (26)

By accumulating and combining with the sublinearity of F, we obtain

p

∑
i=1

µiF(E(x), E(x); ξi) < −
p

∑
i=1

µiρiα
1(E(x), E(x))−1d2(E(x), E(x)), (27)

p

∑
j=1

υjF(E(x), E(x); ηj) ≤ −
p

∑
i=j

υjρjα
2(E(x), E(x))−1d2(E(x), E(x)). (28)

From the sublinearity of F, we achieve

F(E(x), E(x))

(
p

∑
i=1

µiξi +
q

∑
j=1

υjηj

)

< −
(

p

∑
i=1

µiρiα
1(E(x), E(x))−1 +

q

∑
j=1

υjρjα
2(E(x), E(x))−1

)
d2(E(x), E(x)),

Since
p

∑
i=1

µiρiα
1(E(x), E(x))−1 +

q

∑
j=1

υjρjα
2(E(x), E(x))−1 ≧ 0,
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from above inequalities, we give

F(E(x), E(x))

(
p

∑
i=1

µiξi +
q

∑
j=1

υjηj

)
< 0,

and this contradicts (18). Hence, x is an efficient solution for (MOP).

Theorem 2. Let x be a feasible solution to MOP, u ∈ Rp, v ∈ Rq, such that

0 ∈
p

∑
i=1

µiG
′
fi
( fi(E(x)∂ f j(E(x)) +

q

∑
j=1

υjG
′
gj
(gj(E(x)∂gj(E(x)), (29)

υjgj(E(x)) = 0, (30)

u ≥ 0, v ≧ 0, (31)

if ( f , g) is a weak strictly pseudoquasi (F, α, ρ, d)−type−E−semi-preinvariant invex at x with

µρ1α1(·, E(x))−1 + υρ2α2(·, E(x))−1 ≧ 0,

then x is an efficient solution for (MOP).

Proof. Suppose that x is not an efficient solution for (MOP). Then, there exist x ∈ A, such
that f (E(x)) ≤ f (E(x)), since ( f , h) is a weak strictly pseudoquasi (F, α, ρ, d)−type−E−semi-
preinvariant invex at x, G fi , and Ggj is strictly increasing. Hence, we have

F(E(x), E(x); α1(E(x), E(x))ξi) + ρid2(E(x), E(x)) < 0, (32)

F(E(x), E(x); α2(E(x), E(x))ηj) + ρjd2(E(x), E(x)) ≦ 0, (33)

The following proof is similar to that of Theorem 1, which completes the proof.

Theorem 3. Let x be a feasible solution to MOP, u ∈ R, v ∈ Rq, such that

0 ∈
p

∑
i=1

µiG
′
fi

q

∑
j=1

υjG
′
gj
( fi(E(x)∂ f j(E(x)) +

q

∑
j=1

υjG
′
gj
( fi(E(x)∂ f j(E(x)), (34)

υjgj(E(x)) = 0, (35)

u ≧ 0, v > 0, (36)

if ( f , g) is a weak quasi strictly pseudo (F, α, ρ, d)−type−E−semi-preinvariant invex at x with

µρ1α1(·, E(x))−1 + υρ2α2(·, E(x))−1 ≧ 0,

then x is an efficient solution for (MOP).

Proof. Suppose that x is not an efficient solution for (MOP). Then, there exist x ∈ A such
that f (E(x)) ≤ f (E(x)), g(E(x)) ≦ g(E(x)), since ( f , g) is a weak quasi strictly pseudo
(F, α, ρ, d)−type−E−semi-preinvariant invex at x, G fi

, and Ggj , is strictly increasing. Hence,
we have

F(E(x), E(x); α1(E(x), E(x))ξi) + ρid2(E(x), E(x)) ≦ 0, (37)

F(E(x), E(x); α2(E(x), E(x))ηj) + ρjd2(E(x), E(x)) ≤ 0. (38)

The following proof is similar to that of Theorem 1, which completes the proof.
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Remark 1. Note that Theorems 1–3 still hold for weak efficient solutions, so convexity can be
appropriately reduced for weak efficient solutions.

Theorem 4. Let x be a feasible solution to MOP, u ∈ R, v ∈ Rq, such that the triplet (x, u, v) satis-
fies (18)–(20) of Theorem 1. If ( f , g) be weak pseudoquasi (F, α, ρ, d)−type−E−semi-preinvariant
invex at x with

µρ1α1(·, x)−1 + υρ2α2(·, x)−1 ≧ 0,

then x is a weak efficient solution for (MOP).

Proof. Suppose that x is not a weak efficient solution for (MOP). Then, there exist x ∈ A,
such that f (E(x)) < f (E(x)), since ( f , g) is weak pseudoquasi (F, α, ρ, d)−type−E−semi-
preinvariant invex at x, G fi

and Ggj is strictly increasing. Hence, we have

F(E(x), E(x); α1(E(x), E(x))ξi) + ρid2(E(x), E(x)) ≤ 0, (39)

F(E(x), E(x); α2(E(x), E(x))ηj) + ρjd2(E(x), E(x)) ≦ 0, (40)

The following proof is similar to that of Theorem 1, which completes the proof.

Theorem 5. Let x be a feasible solution to MOP, u ∈ Rp, v ∈ Rq, such that the triplet (x, u, v)
satisfies (29)–(31) of Theorem 2. If ( f , g) is a pseudoquasi (F, α, ρ, d)−type−E−semi-preinvariant
invex at x with

µρ1α1(·, E(x))−1 + υρ2α2(·, E(x))−1 ≧ 0,

then x is a weak efficient solution for (MOP).

Proof. Suppose that x is not a weak efficient solution for (MOP). Then, there exist x ∈ A,
such that f (E(x)) < f (E(x)), since ( f , g) is a pseudoquasi (F, α, ρ, d)−type−E−semi-
preinvariant invex at x. Hence, we have

F(E(x), E(x); α1(E(x), E(x))ξi) + ρid2(E(x), E(x)) < 0, (41)

F(E(x), E(x); α2(E(x), E(x))ηj) + ρjd2(E(x), E(x)) ≦ 0. (42)

The following proof is similar to that of Theorem 2, which completes the proof.

4. Mixed-Type Duality

In this section, we will investigate the mixed duality problem of α − E−semi-invariant
convex multiobjective programming and establish the weak duality theorem for the mixed
duality model, based on generalized (F, α, ρ, d)− I − E−semi-preinvariant invex functions,
along with certain sufficient conditions, ensuring that the corresponding feasible solutions
of the programming are efficient or weakly efficient.

Let J1 ⊆ Q, J2 = Q \ {J1}, and let e ∈ Rp, whose components are all ones. We consider
the following mixed-type dual of (MOP):

(XMOP)



max f (E(y)) + υJ1 gJ1(E(y))e,

s.t.0 ∈ ∑
p
i=1 µiG

′
fi
( fi(E(y)∂ fi(E(y)) + ∑

j∈J1

υjG
′
gj
(gj(E(y)∂gj(E(y)), (43)

∑
j∈J2

υjgj(E(y)) ≥ 0, (44)

υ ≧ 0, (45)

µ ≧ 0, µTe = 1, (46)

Remark 2. For J1 = ∅, or J2 = ∅ in (XMOP), we can obtain a corresponding Mond–Weir dual
or a Wolfe dual, respectively.
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Theorem 6 (Weak duality). Assume that for all feasible x and (y, u, v) for (MOP) and (XMOP),
respectively, that the following holds:

(a)µ > 0, µ( f (·) + υJ1 gJ1(·), υJ2 gJ2(·)) is pseudoquasi (F, α, ρ, d)− type − α − E − semi-

preinvariant invex at y with ρ1α1(·, x)−1 + υρ2α2(·, x)−1 ≧ 0,

then, we can obtain
f (E(x)) ≰ f (E(y)) + υJ1 gJ1(E(y))e. (47)

Proof. Suppose f (E(x)) ≤ f (E(y)) + υJ1 gJ1(E(y))e holds. Since x is feasible for (MOP)
and υ ≧ 0, it implies that

f (E(x)) + υJ1 gJ1(E(x))e ≤ f (E(y)) + υJ1 gJ1(E(y))e, (48)

hold. Since triplet (y, µ, υ) is feasible for (XMOP), it follows that,

−υJ2 gJ2(E(y)) ≦ 0. (49)

According to hypothesis (a), bi > 0, bj > 0, both G fi
and Ggj are strictly increasing.

We have

F(E(x), E(y); α1(E(x), E(y))ξ) + ρid2(E(x), E(y)) < 0, (50)

ξ ∈
p

∑
i=1

µiG
′
fi
( fi(E(y)∂ fi(E(y)) + ∑

j∈J1

υjG
′
gj
(gj(E(y)∂gj(E(y)),

F(E(x), E(y); α2(E(x), E(y))η) + ρ2d2(E(x), E(y)) ≦ 0, (51)

η ∈ ∑
j∈J2

G
′
gj
(gj(E(y)∂gj(E(y)),

and from (48) and µ > 0, we obtain

p

∑
i=1

µi fi(E(x)) + ∑
j∈J1

υjgj(E(x)) <
p

∑
i=1

µi fi(y) + ∑
j∈J1

υjgj(E(x)).

Since α1(E(x), E(y)) > 0 and α2(E(x), E(y)) > 0, by combining (50) and (51), we obtain

F(E(x), E(y); ξ) < −α1(E(x), E(y))−1ρ1d2(E(x), E(y)), (52)

F(E(x), E(y); η) ≦ −α2(E(x), E(y))−1ρ2d2(E(x), E(y)). (53)

By exploiting the sublinearity property of F, we obtain

F(E(x), E(y); ξ + η) < −
(

ρ1α1(E(x), E(y))−1 + ρ2α2(E(x), E(y))−1
)

d2(E(x), E(y)).

Since ρ1α1(·, E(x))−1 + ρ2α2(·, E(x))−1 ≧ 0, we have

F(E(x), E(y); ξ + η) < 0,

which contradicts the duality constraint (43). Hence, we have

f (E(x)) ≰ f (E(y)) + υJ1 gJ1(E(y))e. (54)
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Theorem 7 (Weak duality). Assume that, for all feasible x and (y, u, v) for (MOP) and (XMOP),
respectively, Hypothesis (a) in Theorem 6 and the following point holds:

µ( f (·) + υJ1 gJ1(·), υJ2 gJ2(·))is strictly pseudoquasi(F, α, ρ, d)− type − α − E − semi-preinv

-ariant invex at y with bi > 0, bj > 0, and ρ1α1(·, E(x))−1 + ρ2α2(·, E(x))−1 ≧ 0,

then, we can obtain
f (E(x)) ≰ f (E(y)) + υJ1 gJ1(E(y))e. (55)

Proof. Suppose f (E(x)) ≤ f (E(y)) + υJ1 gJ1(E(y))e holds. Since x is feasible for (MOP)
and υ ≧ 0, it implies that

f (E(x)) + υJ1 gJ1(E(x))e ≤ f (E(y)) + υJ1 gJ1(E(y))e, (56)

hold. Since triplet (y, µ, υ) is feasible for (XMOP), it follows that,

−υJ2 gJ2(E(y)) ≧ 0, (57)

by multiplying (56) with µ, we obtain

p

∑
i=1

µi fi(E(x)) + ∑
j∈J1

υjgj(E(x)) ≦
p

∑
i=1

µi fi(E(y)) + ∑
j∈J1

υjgj(E(y)). (58)

By bi > 0, bj > 0, Hypothesis (a), G fi
and Ggj are strictly increasing, and we have

F(E(x), E(y); α1(E(x), E(y)ξ) + ρ1d2(E(x), E(y)) < 0, (59)

ξ ∈
p

∑
i=1

µiG
′
fi
( fi(E(y)∂ fi(E(y)) + ∑

j∈J1

υjG
′
gj
(gj(E(y)∂gj(E(y)),

F(E(x), E(y); α2(E(x), E(y)η) + ρ2d2(E(x), E(y)) ≦ 0, (60)

η ∈ ∑
j∈J2

G
′
gj
(gj(E(y)∂gj(E(y)).

Since α1(E(x), E(y)) > 0 and α2(E(x), E(y)) > 0, by combining (59) and (60), we obtain

F(E(x), E(y); ξ) < −α1(E(x), E(y))−1ρ1d2(E(x), E(y)), (61)

F(E(x), E(y); η) ≦ −α2(E(x), E(y))−1ρ2d2(E(x), E(y)). (62)

By sublinearity of F, we obtain

F(E(x), E(y); ξ + η) < −
(

ρ1α1(E(x), E(y))−1 + ρ2α2(E(x), E(y))−1
)

d2(E(x), E(y)).

Since ρ1α1(·, x)−1 + ρ2α2(·, x)−1 ≧ 0, we have

F(E(x), E(y); ξ + η) < 0,

which contradicts the duality constraint (43). Hence, we have

f (E(x)) ≰ f (E(y)) + υJ1 gJ1(E(y))e. (63)

5. Discussion

The generalized (F, α, ρ, d)− I − E semi-invariant convex function is a further gen-
eralization of the (F, α, ρ, d)− I invariant convex function. This type of function not only
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describes general invariant convexity, but also handles more complex optimization prob-
lems. Based on the generalized (F, α, ρ, d)− I − E semi-invariant convex function, a series
of optimality conditions can be derived to determine the existence and uniqueness of the
optimal solution, and provide a theoretical basis for solving such problems. Additionally,
the mixed dual results provide a powerful tool for solving multi-objective optimization
problems with constraints. Moreover, using a semi-pre-invariant convex condition in this
paper serves two purposes: firstly, it highlights that the condition used in this chapter is
weaker than that in previous literature; secondly, it ensures that most of the results hold
true when studying convexity. Furthermore, the Clarke-directional derivative and Clarke-
subdifferentiables are utilized in this paper to define new classes of semi-preinvariant
functions. In future studies, the research methodology can be expanded to generalize
Clarke-subdifferentiables to K-subdifferentiables, since K-subdifferentiables are defined by
the K-directional derivative, which includes most existing directional derivatives. If K takes
the Clarke tangent cone, it becomes known as a Clarke-subdifferentiable. Based on these
definitions, a more generalized class of semi-pre-invariant convex functions can be defined,
and various other types of multi-objective programming problems, such as higher-order
(F, α, ρ, d, E)−convexity in fractional programming and interval-valued multiobjective
optimization problems, can be explored.

6. Conclusions

This paper addresses the optimality and duality of semi-preinvariant convex multi-
objective programming involving generalized (F, α, ρ, d)− I invex functions. Firstly, we
propose a new class of generalized (F, α, ρ, d)− I − E semi-preinvariant convex functions
by utilizing the Clarke-directional derivative and Clarke-subdifferentiables. These func-
tions are more general compared to existing results. Furthermore, based on these new
generalized (F, α, ρ, d)− I − E−semi-preinvariant invex functions, we derive a series of
sufficient optimality conditions. Additionally, this study investigates mixed dual problems
involving these generalized convex functions, and obtains corresponding weak dual theo-
rems. These findings can be further extended to nonsmooth semi-infinite programming
and nondifferentiable multiobjective programming problems.

The future research directions will further explore additional properties and challenges
in semi-invariant convex multi-objective programming, such as investigating strong duality
and optimality conditions. Moreover, these theories will be applied to practical problems,
including multimodal problems and stochastic problems.
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