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Abstract: In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to
solve non-conservative hyperbolic partial differential equations (PDEs). In particular, the method here
applies the one-stage ADER (Arbitrary DERivatives in space and time) approach to fulfill the temporal
discretization. In addition, this method uses the differential transformation (DT) procedure rather
than the traditional Cauchy–Kowalewski (CK) procedure to achieve the local temporal evolution.
Compared with the classical ADER methods, the current method is free of solving generalized
Riemann problems at inter-cells. In comparison with the Runge–Kutta DG (RKDG) methods, the
proposed method needs less computer storage, thanks to the absence of intermediate stages. In
brief, this current method is one-step, one-stage, and fully-discrete. Moreover, this method can
easily obtain arbitrary high-order accuracy both in space and in time. Numerical results for one- and
two-dimensional shallow water equations (SWEs) show that the method enjoys high-order accuracy
and keeps good resolution for discontinuous solutions.

Keywords: non-conservative hyperbolic systems; ADER approach; DG method; DT procedure

MSC: 65M06; 65N06

1. Introduction

Many fluid problems from the fields of physics and engineering can be described as
the conservation laws

∂W
∂t

+∇ · F(W) = 0, (1)

in the light of the first principles. Here, W denotes the vector of conservative variables, and
F(W) = (f(W), g(W)) stands for the tensor of physical flux with f(W) and g(W) being
the physical fluxes in the x- and y-directions, respectively. So far, we can deeply under-
stand most physical movements in nature using the conservation principles. However,
in the modeling of compressible multi-phase flow/multi-media flow from aerodynamics,
astrophysics, aerospace, petroleum industry, etc., the non-conservative product term (i.e.,
spatial derivative of unknown solution) appears, thanks to the complex interaction between
different phases (media). Therefore, the relevant mathematical model cannot be expressed
in the conservative form. Nevertheless, the above fluid problems can be characterized by
the quasi-linear non-conservative hyperbolic systems as follows:

∂W
∂t

+A(W) · ∇W = 0, (2)

with A(W) = (A(W), B(W)) being the system matrix. The block-matrix syntax is used

here to give a compact notation of the 4 × 4 matrices A(W) and B(W). We will provide
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detailed introductions to A(W) and B(W) in Section 4.2 for the two-dimensional SWEs.
Herein, this system (2) is assumed to be hyperbolic, namely A(W) and B(W) have m real
eigenvalues and a full set of m linearly independent eigenvectors, respectively. In particular,
the system (2) will reduce to the hyperbolic systems of conservation laws (1), provided that
A(W) and B(W) are Jacobian matrices of f(W) and g(W). This observation implies that
the system (2) is suitable to express both conservation laws and non-conservative systems
at the same time.

However, the major issue of the system (2) consists in the deficiency of the classical
definition of the weak solution in the case of discontinuities. It was not until the appearance
of the theory of Dal Maso, Le Floch, and Murat (DLM theory) [1] that this major problem
made great progress. The DLM theory gives a definition of the weak solutions to the
system (2) by introducing a path Ψ = Ψ(ξ; W−, W+) to connect two states W− and W+ in
phase space. Subsequently, in view of the DLM theory [1], Castro et al. [2] and Pares [3]
developed the path-conservative methods according to the non-conservative hyperbolic
systems (2). Actually, the path-conservative methods [2,3] can also be known as the
extension of the weak formulation of Roe’s method by Toumi [4].

Later, following the original achievements [1,2], many researchers have made many
attempts on the path-conservative methods. Representative research mainly include ADER
schemes [5,6], FORCE schemes [7], HLLC Riemann solver methods [8], Osher Riemann
solver methods [9], central schemes [10], central-upwind schemes [11,12], the ADER-DG
method [13], and so on. For the latest progress and a brief historical review, we refer
to [14,15].

The key purpose of this research is to propose a new path-conservative DG method for
non-conservative hyperbolic systems (2). The resulting method uses the one-stage ADER
approach to realize a high-order temporal discretization, and is called the path-conservative
ADER-DG methodaccordingly. The fundamental idea is to employ the DT procedure [16–18]
instead of the CK procedure to express the spatiotemporal expansion coefficients of the
solution through the low order spatial expansion coefficients. In addition, the DT procedure
can enable us to realize local temporal evolution along with arbitrary high-order accuracy.
As far as we are concerned, this will be the first attempt at applying the DG method along
with the DT procedure for the non-conservative system. Then, we extend the proposal
to deal with the SWEs in a non-conservative form. Specifically, Li et al. [13] proposed an
ADER-DG method for the SWEs in the form of hyperbolic balance laws. Moreover, Li
et al. [19] extended the ADER-DG method to solve the Euler equations in gas dynamics.
Herein, the success of the ADER-DG method for the SWEs in a non-conservative form will
illustrate the universality of the ADER-DG method.

The structure of this article is as follows: Section 2 illustrates the general framework of
the path-conservative ADER-DG method and then applies the resulting method to the 1D
SWEs in a non-conservative form. Section 3 deals with the two-dimensional (2D) SWEs
using the proposed method. Section 4 implements canonical examples to validate the
performance of the proposed method. Finally, Section 5 gives some conclusions.

2. General Formulation of Path-Conservative ADER-DG Method

Herein, we give a general framework for the ADER-DG methods according to the
non-conservative system (2). Actually, we first multiply the system (2) by a test function
ϕ(x⃗) from a given approximation space, then integrate on a space-time cell Cj × [tn, tn+1),
and obtain

tn+1∫
tn

∫
Cj

∂W
∂t

ϕ dVdt +
tn+1∫
tn

∫
Cj

(
A(W) · ∇W

)
ϕ dVdt = 0,

with Cj as the spatial cell. Afterward, we approximate W(x⃗, t) with Wτ(x⃗, t) as a spa-
tiotemporal polynomial. Since Wτ usually shows jumps at inter-cells, we present a path-
conservative method to deal with the jumps. In the following, we obtain the DG method for
PDE (2): for any test function ϕ, the numerical solution Wτ satisfies the following equality:
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∫
Cj

Wτ

(
x⃗, tn+1

)
ϕ dV −

∫
Cj

Wτ(x⃗, tn)ϕ dV +

tn+1∫
tn

∫
Cj\∂Cj

(
A(Wτ) · ∇Wτ

)
ϕ dVdt

+

tn+1∫
tn

∫
∂Cj

D−(W−
τ , W+

τ , n⃗
)
ϕ dSdt = 0,

(3)

with n⃗ being the unit outward normal vector at the boundary of the cell Cj.
The DG method (3) uses the ADER approach to realize the temporal discretization.

Hence, the DG method (3) is one-step, one-stage, and fully-discrete, accordingly. Therefore,
we call the proposed method (3) the ADER-DG method. In addition, to achieve the time
integration, we need to realize the local time evolution in the space-time cell Cj × [tn, tn+1)
from Wτ(x⃗, tn) using the DT procedure. The DT procedure will be described at length in
Section 2.1.3. Here, W−

τ is obtained from inside the cell Cj, and W+
τ is obtained from the

outside the cell Cj, respectively. Moreover, the notation D−(W−
τ , W+

τ ) stands for the jump
terms at inter-cells and satisfies the below requirements [2,3,5]:

• For every Wτ and n⃗,
D−(Wτ , Wτ) = 0.

• For every W−
τ , W+

τ , and n⃗,

D−(W−
τ , W+

τ , n⃗
)
+D−(W+

τ , W−
τ ,−n⃗

)
=

∫ 1

0

(
A
(
Ψ
(
ξ; W−

τ , W+
τ

))
· n⃗

)
∂Ψ

∂ξ
dξ.

In addition, Ψ = Ψ(ξ; W−
τ , W+

τ ) denotes a sufficiently smooth path connecting the
states W−

τ and W+
τ . A method satisfying the above conditions is called the path-conservative

method.
Moreover, according to [13,19], the conservative equivalent of the proposed ADER-DG

method (3) to solve the hyperbolic system of conservation laws (1) is as follows:

∫
Cj

Wτ

(
x⃗, tn+1

)
ϕ dV −

∫
Cj

Wτ(x⃗, tn)ϕ dV +

tn+1∫
tn

∫
Cj\∂Cj

F(Wτ) · ∇ϕ dVdt

+

tn+1∫
tn

∫
∂Cj

Fj+ 1
2
ϕ dSdt = 0,

(4)

with Fj+ 1
2

:= Fj+ 1
2
(W−

τ , W+
τ , n⃗) as the numerical flux to approximate the physical flux

F at inter-cells. For example, people often apply the following simple and efficient Lax–

Friedrichs numerical flux Fj+ 1
2

:= 1
2

[
F(W−

τ ) · n⃗ + F(W+
τ ) · n⃗ − α(W+

τ − W−
τ )

]
, where α

is an estimate of the maximum wave propagation speed. Actually, the above path-
conservative ADER-DG method (3) in the non-conservative form reduces to the conser-
vative ADER-DG method (4) in this situation where the non-conservative system (2) is a
conservation law (1), i.e., A and B are the Jacobian matrices of f and g, respectively. For
this equivalence, Dumbser et al. present a detailed proof under the framework of finite
volume schemes [5].

2.1. Applications to 1D SWEs

Based on the general framework of the path-conservative ADER-DG method, we then
take 1D SWEs

ht + (hu)x = 0,

(hu)t +

(
hu2 +

1
2

gh2
)

x
= −ghbx

(5)
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as an example to illustrate the concrete construction steps of the method (3). Herein, h(x, t),
u(x, t) denote the water depth and the fluid velocity, respectively. The notation b(x) represents
the bottom topography, and the letter “g” stands for the gravitational acceleration.

Following the strategy in [2], we incorporated the geometrical source term in (5) into

the term A(W)
∂W
∂x

and obtain the following non-conservative form

∂W
∂t

+ A(W)
∂W
∂x

= 0, (6)

where

W =

 h
hu
b

, A(W) =

 0 1 0
c2 − u2 2u c2

0 0 0

,

with c =
√

gh being the sound velocity. This kind of operation makes it easy to achieve a
well-balanced (WB) method for the system (6).

From a mathematical point of view, the non-conservative system (6) preserves the
steady state solutions, which meet

A(W)
∂W
∂x

= 0.

In particular, the lake at rest steady state solutions enjoy the below forms

h + b = Constant and u = 0.

The traditional methods fail to preserve this steady state exactly and result in non-
physical oscillations. Well-balanced (WB) methods [20,21] can preserve the steady state up
to the machine accuracy at the discrete level and resolve small perturbations of the steady
state even on a relatively coarse mesh [22], then increase the computational efficiency
correspondingly.

2.1.1. Notations and Solution Space

Firstly, the spatial domain [a, b] is discreted into N spatial cells with Ij =
[

xj− 1
2
, xj+ 1

2

]
for j = 1, 2, · · · , N. Herein, we take xj =

1
2

(
xj− 1

2
+ xj+ 1

2

)
and τj = xj+ 1

2
− xj− 1

2
as the mesh

center and size of the cell Ij. Moreover, the maximal mesh size is defined as τ = max
1≤j≤N

τj.

Here, we apply Ωj = Ij ×
[
tn, tn+1) as the space-time cell and set

Vk
τ =

{
ϕ(x, t) : ϕ(x, t)

∣∣
Ωj

∈ Pk(Ωj)
}

(7)

as the approximation space, where Pk(Ωj) denotes a set of space-time polynomials on the
space-time cell Ωj with a degree up to k.

2.1.2. Construction of 1D Path-Conservative ADER-DG Method

For the 1D system (6), the ADER-DG method (3) is as follows: for ∀ ϕ(x) ∈ Vk
τ , the

solution Wτ(x, t) meets the below equality:

∫
Ij

Wτ

(
x, tn+1

)
ϕ(x) dx −

∫
Ij

Wτ(x, tn)ϕ(x) dx +

tn+1∫
tn

∫
j\∂j

(
A(Wτ)

∂Wτ

∂x

)
ϕ(x)dxdt

+

tn+1∫
tn

∫
∂j

D−(W−
τ , W+

τ , n⃗
)
ϕ(x)dSdt = 0, for j = 1, 2, · · · , N.

(8)



Mathematics 2024, 12, 2601 5 of 20

Further, Equation (8) also enjoys the below equivalent form

∫
Ij

Wτ

(
x, tn+1

)
ϕ(x) dx −

∫
Ij

Wτ(x, tn)ϕ(x) dx +

tn+1∫
tn

∫
j\∂j

(
A(Wτ)

∂Wτ

∂x

)
ϕ(x)dxdt

+

tn+1∫
tn

D−
(

W−
j+ 1

2
, W+

j+ 1
2

)
ϕ(x)dt −

tn+1∫
tn

D−
(

W−
j− 1

2
, W+

j− 1
2

)
ϕ(x)dt = 0, for j = 1, · · · , N.

(9)

With regard to the jump term D−(·, ·) at inter-cells, there are different choices, such as

• The Osher jump term:

D−(W−
τ , W+

τ

)
=

1
2

∫ 1

0

(
A(Ψ(ξ; W−

τ , W+
τ ))−

∣∣A(Ψ(ξ; W−
τ , W+

τ ))
∣∣)∂Ψ

∂ξ
dξ. (10)

• The Roe jump term:

D−(W−
τ , W+

τ

)
=

(
ÃΨ

(
W−

τ , W+
τ

))−
·
(
W+

τ − W−
τ

)
, (11)

where ÃΨ(W−
τ , W+

τ ) denotes the Roe linearization matrix of A(Wτ) in some sense
defined from [4] by Toumi, i.e., a function ÃΨ meets the below properties:

– For each W−
τ , W+

τ , the matrix ÃΨ(W−
τ , W+

τ ) owns m different real eigenvalues

λ1 < λ2 < · · · < λm.

– The compatibility property

ÃΨ(Wτ , Wτ) = A(Wτ), for each Wø.

– For arbitrary W−
τ , W+

τ , the matrix ÃΨ satisfies the below requirement

ÃΨ

(
W−

τ , W+
τ

)
·
(
W+

τ − W−
τ

)
=

∫ 1

0
A(Ψ(ξ; W−

τ , W+
τ ))

∂Ψ

∂ξ
dξ,

in the light of the generalized Roe property.

In addition, with respect to the absolute value operator of the matrix in (10) and (11),
we usually use the following notations:

Λ = diag
(

λ1, λ2, · · · , λm

)
,

|Λ| = diag
(
|λ1|, |λ2|, · · · , |λm|

)
,

Λ− =
1
2
(Λ − |Λ|),

A− = RΛ−R−1,

where R is the matrix of right eigenvectors of the matrix A, and R−1 stands for its inverse.
Up to now, the current method (9) can be considered as the function of a given path

Ψ(ξ) in the below form:

Ψ(ξ) = Ψ
(
ξ; W−

τ , W+
τ

)
, 0 ≤ ξ ≤ 1.
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Moreover, the function Ψ(ξ) = Ψ(ξ; W−
τ , W+

τ ) is Lipschitz continuous and meets certain
regularity as well as the compatibility condition

Ψ
(
0; W−

τ , W+
)
= W−

τ ,

Ψ
(
1; W−

τ , W+
)
= W+

τ ,

Ψ(ξ; Wτ , Wτ) = Wτ .

In this article, we apply the simple segment path

Ψ(ξ) = Ψ
(
ξ; W−

τ , W+
τ

)
= W−

τ + ξ
(
W+

τ − W−
τ

)
, 0 ≤ ξ ≤ 1, (12)

as in [2,3,5].
Despite its simplicity, this choice of path is useful since it guarantees that the proposed

method is WB for SWEs [2,3,5]. In addition, on account of this simple path (12), the Osher
jump term (10) reduces to the following form:

D−(W−
τ , W+

τ

)
=

1
2

∫ 1

0

(
A(Ψ(ξ; W−

τ , W+
τ ))−

∣∣∣∣A(Ψ(ξ; W−
τ , W+

τ ))

∣∣∣∣)dξ ·
(
W+

τ − W−
τ

)
. (13)

Meanwhile, the Roe jump term (11) is reducible to the below form:

D−(W−
τ , W+

τ

)
=

1
2

(∫ 1

0
A(Ψ(ξ; W−

τ , W+
τ ))dξ −

∣∣∣∣ ∫ 1

0
A(Ψ(ξ; W−

τ , W+
τ ))dξ

∣∣∣∣) · (W+
τ − W−

τ ). (14)

For the computation of path integrals in (13) and (14), we apply Gaussian quadrature
rules with suitably high-order accuracy.

2.1.3. The DT Procedure

To build the method (9), we need to realize the local temporal evolution in the space-
time cell starting from tn in advance. The reason for this operation is that we need to
obtain the numerical solution in the form of spatiotemporal polynomials in each space-time
cell. Then, we can calculate the time integration as well as the space-time integration with
high-order accuracy in (9). Actually, to realize this goal, the ADER methods [23–29] use the
CK procedure to repeatedly differentiate the governing PDE and to obtain the temporal
derivatives using the spatial ones. To obtain high-order time accuracy, we need high-order
temporal derivatives. At this time, the CK procedure will become very cumbersome due to
the usage of the chain rules. Dumbser and Munz [29] proposed an efficient algorithm on
account of the Leibnize rule. More recently, Dumbser et al. [5,6] and Tang et al. [30] apply
the local DG predictor approach [31] to take the place of the CK procedure. More recently,
Li et al. developed an ADER-DG method for SWEs using the DT procedure [13].

In this study, we apply the DT procedure rather than the CK procedure. In fact,
the DT procedure was originally developed with regard to the nonlinear initial value
problems [32,33]. Afterward, Ayaz generalized the DT procedure to the 2D cases [16] as
well as the system cases [17]. Kurnaza et al. [18] implemented the generalization to more
general n-dimensional cases. In addition, Norman and Finkel [34] applied this procedure
to build multi-moment finite volume schemes for the 1D SWEs.

In the following, we give a specific definition of the DT procedure as in [16–18].
Assume that a function q(x, t) in the cell Ij at tn is known, the DT is defined as follows:

q̃(kx, kt) =
1

kx!kt!
∂kx+kt u(x, t)

∂xkx ∂tkt

∣∣∣∣
x=xj ,t=tn

, with q(x, t) =
k

∑
kt=0

k−kt

∑
kx=0

q̃(kx, kt)(x − xj)
kx (t − tn)kt . (15)

Here, q̃(kx, kt) denotes the transformed function according to the original function q(x, t).
Actually, q̃(kx, kt) represents the expansion coefficients with respect to q(x, t) in a form of
truncated Taylor series. Table 1 shows some transformed functions used here.
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Table 1. Transformed functions of some functions.

Original Function Transformed Function

q(x, t) = c · u(x, t) q̃(kx, kt) = c · ũ(kx, kt)

q(x, t) = ∂xu(x, t) q̃(kx, kt) = (kx + 1) · ũ(kx + 1, kt)

q(x, t) = ∂tu(x, t) q̃(kx, kt) = (kt + 1) · ũ(kx, kt + 1)

q(x, t) = u(x, t) · v(x, t) q̃(kx, kt) =
kx

∑
r=0

kt

∑
s=0

ũ(r, s) · ṽ(kx − r, kt − s)

q(x, t) = 1/u(x, t) q̃(0, 0) = 1/ũ(0, 0)

q̃(kx, kt) = − 1
ũ(0, 0)

kx

∑
r=0

kt

∑
s=0

s+r>0

ũ(r, s) · q̃(kx − r, kt − s)

Then, we specifically illustrate the implementation steps of the DT procedure. Initially,
we obtain

bτ(x) =
k

∑
kx=0

b̃(kx)(x − xj)
kx ,

hτ(x, 0) =
k

∑
kx=0

h̃(kx, 0)(x − xj)
kx ,

(hu)τ(x, 0) =
k

∑
kx=0

(̃hu)(kx, 0)(x − xj)
kx ,

using the L2 projection to approximate b(x), h(x, 0) as well as hu(x, 0) in cell Ij.
Subsequently, we exert the DT procedure on both ends of (5) and obtain the following

recurrence formulae:

h̃(kx, kt + 1) = − kx + 1
kt + 1

· (h̃u)(kx + 1, kt),

(h̃u)(kx, kt + 1) = − kx + 1
kt + 1

·
(

G̃1(kx + 1, kt) + G̃2(kx + 1, kt)
)
+

1
kt + 1

· G̃3(kx, kt).
(16)

Herein, we use the following auxiliary variables:

G̃1(kx, kt) =
kt

∑
s=0

kx

∑
r=0

G̃1,a(r, s)G̃1,b(kx − r, kt − s),

G̃2(kx, kt) =
g
2

kt

∑
s=0

kx

∑
r=0

h̃(r, s)h̃(kxr, kt − s),

G̃3(kx, kt) = −
kx

∑
r=0

h̃(r, kt)G̃3,a(kx − r),

G̃1,a(kx, kt) =
kt

∑
s=0

kx

∑
r=0

(h̃u)(r, s)(h̃u)(kx − r, kt − s),

G̃1,b(kx, kt) = − 1

h̃(0, 0)

kt

∑
s=0

kx

∑
r=0

G̃1,b(kx − r, kt − s)h̃(r, s),

G̃3,a(kx) = g(kx + 1)b̃(kx + 1).

Afterward, putting h̃(kx, 0), (h̃u)(kx, 0) and b̃(kx), kx = 0, 1, · · · , k into (16), we can
recursively acquire

h̃(kx, kt), (h̃u)(kx, kt), for kt = 0, 1, · · · , k; kx = 0, 1, · · · , k − kt,
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which result in

Wτ(x, t) := (hτ(x, t), (hu)τ(x, t), bτ(x))⊤ =
k

∑
kt=0

k−kt

∑
kx=0

W̃(kx, kt)(x − xi)
kx (t − tn)kt ∈ Vk

τ

with W̃(kx, kt) :=
(

h̃, (h̃u), b̃
)⊤

(kx, kt) in each space-time cell Ωj. In addition, we present
the detailed algorithm of the DT procedure in Algorithm A1 for a better understanding of
this procedure.

Remark 1. In a word, the key function of the DT procedure is to supply a high-order temporal
evolution locally for every space-time cell according to the existing solution Wτ(x, tn).

Remark 2. The CK procedure directly uses the symbolic expansions of the governing PDE and,
at a cost, requires the recomputation of many terms. So, the CK procedure leads to exponential
growth according to the complexity. Nevertheless, the DT procedure is relatively simple, along with
a predictable complexity.

Remark 3. In practice, there is no need to apply the DT procedure according to the bottom
topography b, because the bottom b only depends on the spatial variable x.

2.1.4. The Slope Limiter

Generally, a slope limiter is indispensable for discontinuous problems. Herein, we
use the total variation bounded (TVB) limiter [35–37] to control nonphysical oscillations.
In fact, we only implement the TVB limiter steps in terms of the numerical solutions
Uτ := (hτ , (hu)τ)

⊤ excluding the bottom topography bτ(x), which is independent of the
time t. Specifically, we need to identify “troubled cells” (i.e., cells involving discontinuities)

on the basis of cell averages Uτ,j
(
tn+1), Uτ,j±1

(
tn+1) and inter-cell values Uτ

(
x±

j+ 1
2
, tn+1

)
from Wτ(x, tn+1) at tn+1.

For illustrative purposes, we first give some notations

Ũj = U−
τ,j+ 1

2

(
tn+1

)
− Uτ,j

(
tn+1

)
,

˜̃Uj = Uτ,j

(
tn+1

)
− U+

τ,j− 1
2

(
tn+1

)
,

∆+Uj = Uτ,j+1(tn+1)− Uτ,j

(
tn+1

)
,

∆−Uj = Uτ,j

(
tn+1

)
− Uτ,j−1

(
tn+1

)
.

(17)

Then, we obtain the below updated values

Ũ(mod)
j = m

(
Ũj, ∆+Uj, ∆−Uj

)
,

˜̃U(mod)

j = m
( ˜̃Uj, ∆+Uj, ∆−Uj

)
,

using the TVB limiter [37] for the variables in (17). Here, m(·, ·, ·) is a minmod function
with

m(a1, a2, a3) =


a1, if |a1| ≤ M∆x2,
s · min

1≤i≤3
|ai|, if |a1| > M∆x2 and s = sign(a1) = sign(a2) = sign(a3),

0, otherwise,
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with M > 0. The cell Ij will be identified as a troubled cell provided that

Ũ(mod)
j ̸= Ũj or ˜̃U(mod)

j ̸= ˜̃Uj.

Subsequently, the limited inter-cell values Uτ

(
x±

j+ 1
2
, tn+1

)
are defined with

U(mod)
τ

(
x−

j+ 1
2
, tn+1

)
= Uj + Ũ(mod)

j ,

U(mod)
τ

(
x+

j− 1
2
, tn+1

)
= Uj − ˜̃U(mod)

j .
(18)

Finally, a polynomial Uτ

(
x, tn+1) is determined in the light of the limited inter-cell val-

ues (18) along with the cell averages.

2.1.5. Implementation Details of 1D Path-Conservative ADER-DG Method

For the 1D system (6) and inside one time interval [tn, tn+1), the specific procedures of
the proposed method are as follows:

1. Initially, obtain Wτ(x, 0) =
k
∑

kx=0
W̃(kx, 0)(x − xj)

kx in Ij, for j = 1, 2, · · · , N from

W(x, 0).
2. Using the recursive steps (16), acquire W̃(kx, kt) according to W̃(kx, 0) from Wτ(x, tn)

at tn and obtain Wτ(x, t) on each Ωj, for j = 1, 2, · · · , N.
3. Construct jump terms D−(W−

τ , W+
τ ) in accordance with (13) and (14).

4. Update to Wτ(x, tn+1) using the one-stage Formula (9).
5. Employ the TVB slope limiter on Wτ(x, tn+1) when needed.
6. Repeat steps (2)–(5).

3. Extension to 2D System

This section generalizes the path-conservative ADER-DG method to handle the below
2D SWEs

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1
2

gh2
)

x
+ (huv)y = −ghbx,

(hv)t + (huv)x +

(
hv2 +

1
2

gh2
)

y
= −ghby,

(19)

with v being the fluid velocity in the y-direction. In addition, the system (19) can be
expressed as the non-conservative form

∂W
∂t

+ A(W)
∂W
∂x

+ B(W)
∂W
∂y

= 0, (20)

with

W =


h

hu
hv
b

, A(W) =


0 1 0 0

c2 − u2 2u 0 c2

−uv v u 0
0 0 0 0

, B(W) =


0 0 1 0

−uv v u 0
c2 − v2 0 2v c2

0 0 0 0

.

Similarly to the form (2), Equation (20) enjoys the below compact form

∂W
∂t

+A(W) · ∇W = 0, (21)



Mathematics 2024, 12, 2601 10 of 20

with A(W) = (A(W), B(W)).
Herein, the Osher jump term is

D−(W−
τ , W+

τ , n⃗
)
=

1
2

∫ 1

0

(
A(Ψ(ξ; W−

τ , W+
τ ))−

∣∣A(Ψ(ξ; W−
τ , W+

τ ))
∣∣)∂Ψ

∂ξ
dξ. (22)

The Roe-type jump term reads as follows:

D−(W−
τ , W+

τ , n⃗
)
=

(
Ã

Ψ

(
W−

τ , W+
τ

)
· n⃗

)−
·
(
W+

τ − W−
τ

)
. (23)

Then, we show the specific implementation steps of the DT procedure for the 2D cases.
Initially, we have

bτ(x, y) =
k

∑
ky=0

k

∑
kx=0

b̃(kx, ky)(x − xi)
kx (y − yj)

ky ,

hτ(x, y, 0) =
k

∑
ky=0

k

∑
kx=0

h̃(kx, ky, 0)(x − xi)
kx (y − yj)

ky ,

(hu)τ(x, y, 0) =
k

∑
ky=0

k

∑
kx=0

(̃hu)(kx, ky, 0)(x − xi)
kx (y − yj)

ky ,

(hv)τ(x, y, 0) =
k

∑
ky=0

k

∑
kx=0

(̃hv)(kx, ky, 0)(x − xi)
kx (y − yj)

ky

to approximate b(x, y), h(x, y, 0), (hu)(x, y, 0), and (hv)(x, y, 0) in each space-time cell Ωi,j.
Suppose that the 2D numerical solutions at tn are known as follows:

Uτ(x, y, tn) := (hτ , (hu)τ , (hv)τ)
⊤(x, y, tn) =

k

∑
kx ,ky=0

Ũ(kx, ky, 0)(x − xi)
kx (y − yj)

ky . (24)

Then, as in the 1D case, the DT idea is again used to build the space-time polynomials in
every cell Ωi,j ×

[
tn, tn+1) and attain the local temporal evolution accordingly.

Actually, we apply the DT procedure on both ends of (19) and obtain the following
recurrence formulae

h̃(kx, ky, kt + 1) := − kx + 1
kt + 1

(h̃u)(kx + 1, ky, kt)−
ky + 1
kt + 1

(h̃v)(kx, ky + 1, kt),

(h̃u)(kx, ky, kt + 1) := − kx + 1
kt + 1

(
G̃1(kx + 1, ky, kt) + G̃2(kx + 1, ky, kt)

)
−

ky + 1
kt + 1

G̃3(kx, ky + 1, kt) +
1

kt + 1
G̃4(kx, ky, kt),

(h̃v)(kx, ky, kt + 1) := − kx + 1
kt + 1

G̃3(kx + 1, ky, kt)−
ky + 1
kt + 1

(
G̃5(kx + 1, ky, kt) + G̃2(kx + 1, ky, kt)

)
+

1
kt + 1

G̃6(kx, ky, kt),

(25)
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with

G̃1(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

G̃1,a(l, m, n)
1̃
h
(kx − l, ky − m, kt − n),

G̃2(kx, ky, kt) =
g
2

kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

h̃(l, m, n)h̃(kx − l, ky − m, kt − n),

G̃1,a(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

(h̃u)(l, m, n)(h̃u)(kx − l, ky − m, kt − n),

1̃
h
(kx, ky, kt) = − 1

h̃(0, 0, 0)

kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

h̃(l, m, n)G̃1,b(kx − l, ky − m, kt − n),

G̃3(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

G̃3,a(l, m, n)
1̃
h
(kx − l, ky − m, kt − n),

G̃3,a(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

(h̃u)(l, m, n)(h̃v)(kx − l, ky − m, kt − n),

G̃4(kx, ky, kt) = −
kx

∑
l=0

ky

∑
m=0

h̃(l, m, kt)G̃4,a(kx − l, ky − m),

G̃4,a(kx, ky) = g(kx + 1)b̃(kx + 1, ky),

G̃5(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

G̃5,a(l, m, n)
1̃
h
(kx − l, ky − m, kt − n),

G̃5,a(kx, ky, kt) =
kx

∑
l=0

ky

∑
m=0

kt

∑
n=0

(h̃v)(l, m, n)(h̃v)(kx − l, ky − m, kt − n),

G̃6(kx, ky, kt) = −
kx

∑
l=0

ky

∑
m=0

h̃(l, m, kt)G̃6,a(kx − l, ky − m),

G̃6,a(kx, ky) = g(ky + 1)b̃(kx, ky + 1),

as auxiliary variables.

4. Numerical Results

Herein, we confirm the proposed method using several canonical examples. We use
the space-time polynomial of degree up to two (i.e., k = 2) in the approximation space in
all calculations. We take the Courant–Friedrichs–Levy (CFL) number as 0.18 to ensure the
numerical stability. In addition, we set the gravitational constant g = 9.812. To save space,
we only present the numerical results using the method with Roe-type jump terms because
the Roe-type method maintains the WB property.

4.1. 1D System
4.1.1. WB Property Test

Firstly, we apply an example to numerically confirm the WB property as in [38]. The
initial conditions are

u = 0 and h + b = 10, x ∈ [0, 10].

Specifically, we handle two different bottoms:

b(x) = 5 exp
(
−0.4(x − 5)2

)
and b(x) =

{
4 if 4 ≤ x ≤ 8,
0 else.

The first bottom is smooth and the second is discontinuous.
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Tables 2 and 3 present the errors at t = 0.5 according to the two different bottom
topographies. We can clearly observe that the L1, L2, and L∞ errors are all at the level of
round-off errors for different precisions, verifying the WB property accordingly even for
different bottoms. From the numerical perspective, we verify that the current method can
maintain the WB property.

Table 2. Errors according to the example over the first bottom.

Precision
L1 Error L2 Error L∞ Error

h hu h hu h hu

Single 3.0426 × 10−7 4.3787 × 10−7 1.1571 × 10−7 1.5946 × 10−7 3.2549 × 10−7 2.4293 × 10−7

Double 1.0534 × 10−15 4.2634 × 10−15 3.5796 × 10−15 1.6422 × 10−15 3.5396 × 10−15 2.7893 × 10−15

Table 3. Errors according to the example over the second bottom.

Precision
L1 Error L2 Error L∞ Error

h hu h hu h hu

Single 4.2451 × 10−7 9.2060 × 10−7 2.2103 × 10−7 6.1686 × 10−7 5.0883 × 10−7 3.0952 × 10−7

Double 4.6322 × 10−15 6.0178 × 10−15 1.7475 × 10−15 2.3722 × 10−15 2.7528 × 10−15 1.0885 × 10−15

4.1.2. Accuracy Test

Next, we use an example from [38] to confirm the accuracy. The initial data read as

h(x, 0) = 5 + exp(cos(2πx)), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]

over the bottom b(x) = sin2(πx).
Table 4 shows the errors and the orders at t = 0.1 with different mesh resolutions.

From Table 4, we can clearly observe that the third-order convergence is achieved for the
current method.

Table 4. Errors and orders for h and hu.

Cells
h hu

L1 Error Order L1 Error Order

25 7.4757 × 10−5 1.2847 × 10−5

50 1.4868 × 10−6 2.33 2.3839 × 10−6 2.43

100 2.7975 × 10−6 2.41 4.1852 × 10−7 2.51

200 4.7439 × 10−7 2.56 6.6218 × 10−8 2.66

400 7.3005 × 10−8 2.70 1.0190 × 10−8 2.70

800 1.0267 × 10−8 2.83 1.4036 × 10−9 2.86

1600 1.3472 × 10−9 2.93 1.8804 × 10−10 2.90

3200 1.6723 × 10−10 3.01 2.3670 × 10−11 2.99

4.1.3. Perturbations of a Steady State Water Flow

We apply an example from [39] to test the proposed method for the capability to catch
small perturbations. The initial data are

h(x, 0) =
{

1 − b(x) + ϵ if 1.1 ≤ x ≤ 1.2,
1 − b(x) else,

and u(x, 0) = 0,
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with ϵ > 0 as a parameter over a bump

b(x) =
{

0.25(cos(10π(x − 1.5)) + 1) if 1.4 ≤ x ≤ 1.6,
0 else,

x ∈ [0, 2].

With time evolution, the initial perturbation breaks down into two pulses, which move
in two different directions, as shown in Figure 1. A good agreement is achieved as in [38–40].
Obviously, the two types of pulses are all well resolved. In addition, the downstream-
traveling water pulse has already passed the bump. In the figures, we can clearly see
that there are no spurious numerical oscillations, verifying the essentially non-oscillatory
property of the resulting method.
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Figure 1. Surface level (left) and water discharge (right) at t = 0.2.

4.1.4. The Dam Break Problem over a Rectangular Bottom

Next, we handle a dam break problem [40–42] and use the below initial data

u(x, 0) = 0 and h(x, 0) =
{

20 − b(x) if x ≤ 750,
15 − b(x) else,

over a rectangular-like bottom

b(x) =
{

8 if
∣∣x − 750

∣∣ ≤ 1500/8,
0 else,

x ∈ [0, 1500].

Figure 2 presents the surface level at t = 15 as well as t = 60. Our method works well
for this example, producing well-resolved, non-oscillatory solutions using 500 cells which
agree with the converged results using 5000 cells. In addition, the numerical results here
can be compared with those from [40–42].



Mathematics 2024, 12, 2601 14 of 20

x

s
u

r
fa

c
e

 l
e

v
e

l

0 500 1000 1500
14

15

16

17

18

19

20

21

nx=5000

nx=500

x

s
u

r
fa

c
e

 l
e

v
e

l

0 500 1000 1500
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

nx=5000

nx=500

Figure 2. Surface level at t = 15 (left) and t = 60 (right).

4.1.5. Steady Flow over a Hump

Further, we validate this method using a widely-used example [43]. Actually, this
example models transcritical and subcritical flows based on the initial conditions

u(x, 0) = 0 and h(x, 0) = 0.33, x ∈ [0, 25]

over a hump

b(x) =
{ (

0.2 − 0.05(x − 10)2) if 8 ≤ x ≤ 12,
0 else.

Subsequently, we exert different boundary conditions at the ends of the spatial interval.

• Case A: the transcritical flow without a shock
hu = 1.53 at the upstream boundary; h = 0.66 on the downstream one.

• Case B: the transcritical flow with a shock
hu = 0.18 on the upstream boundary; h = 0.33 on the downstream one.

• Case C: the subcritical flow
hu = 4.42 on the upstream boundary; h = 2 on the downstream one.

Figure 3 shows the results of the above three cases. In addition, we also show the
analytical solutions [44] to supply a better comparison. Regarding these three different
examples, we can clearly see that the numerical results are all in good agreement with the
analytical solutions, as shown in Figure 3.
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Figure 3. Surface level at t = 200.

4.1.6. The Dam Break Problem over a Step

Here, we consider a dam break example over different steps.

• Case A



Mathematics 2024, 12, 2601 15 of 20

Further, we implement an example from [45] with the below initial data

(h, u)(x, 0) =
{

(4, 0) if x ≤ 0,
(1, 0) else,

x ∈ [−10, 10]

and over a step-like bottom

b(x) =
{

0 if x ≤ 0,
1 else.

Over time, this example produces a rarefaction moving to the left and a shock moving
to the right.

• Case B
The initial conditions are

(h, u)(x, 0) =
{

(4, 5) if x ≤ 0,
(1,−0.9) else,

x ∈ [−10, 10]

over the same bottom (above). Over time, this example develops two shocks moving
in different directions.

• Case C
This example is from [9] and the initial data are

(h, u)(x, 0) =
{

(0.75,−9.49365) if x ≤ 0,
(1.10594,−4.94074) else,

x ∈ [−15, 5]

over a step bottom

b(x) =
{

0 if x ≤ 0,
0.2 else.

• Case D
The initial data are

(h, u)(x, 0) =
{

(0.75,−1.35624) if x ≤ 0,
(1.10594,−4.94074) else,

x ∈ [−10, 4]

over the same bottom of Case C.

Figure 4 presents the numerical results at t = 1 on the same mesh with 200 cells against
the exact ones, and good agreement is clearly achieved. Moreover, all numerical results are
free of spurious numerical ossications and maintain steep discontinuous transitions at the
same time.
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Figure 4. Surface level at t = 1.

4.2. 2D System

In the following, we deal with the 2D examples.

4.2.1. WB Property Test

Firstly, we borrow a numerical example from [38] to confirm the WB property and use
the below initial data

h(x, y, 0) = 1 − b(x, y), u(x, y, 0) = v(x, y, 0) = 0, (x, y) ∈ [0, 1]× [0, 1],

with b(x, y) = 4
5 exp

(
−50

(
(x − 0.5)2 + (y − 0.5)2)) as the bottom.

Table 5 shows the errors on a mesh with 100× 100 cells at t = 0.1. Clearly, all the errors
are the same as the machine accuracy; this implies the successful achievement of the WB
property accordingly, even for the 2D system.

Table 5. Errors with different precisions.

Precision
L1 Error

h hu hv

Single 4.38 × 10−7 4.71 × 10−7 7.49 × 10−7

Double 7.43 × 10−15 5.32 × 10−15 5.95 × 10−15

4.2.2. A Small Perturbation of a 2D Steady State Flow

In the end, we deal with an example from [39]. This example has been widely used;
see [38,40,42,46,47]. The initial data are

h(x, y, 0) =
{

1 − b(x, y) + 0.01 if 0.05 ≤ x ≤ 0.15,
1 − b(x, y) else,

u(x, y, 0) = v(x, y, 0) = 0

over an elliptical-like bottom b(x, y) = 4
5 exp

(
−5(x − 0.9)2 − 50(y − 0.5)2) on [0, 2]× [0, 1].

So, the surface level is almost flat, except for 0.05 ≤ x ≤ 0.15, where h is perturbed upward
by 0.01. Actually, the initial data can be considered to be a small perturbation to a steady
state.

Figure 5 presents thirty contours of the surface level h + b at different ending times
and displays the right-going disturbance as it propagates past the hump on 600 × 300 cells.
It can be observed that small complex features are all obviously resolved by the current
method and the results are comparable with those in [38,40,42,46,47].
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Figure 5. The contours of surface level on a mesh with 600 × 300 cells. Top left: at time t = 0.24 from
0.994836 to 1.01604; Top right: at time t = 0.36 from 0.988582 to 1.0117; Bottom left: at time t = 0.48
from 0.990344 to 1.00497; Bottom right: at time t = 0.6 from 0.995065 to 1.0056.

5. Conclusions

In this study, we propose a new DG method according to non-conservative hyperbolic
systems. The proposed method uses the one-stage ADER approach to realize the temporal
discretization. To realize the high-order local time evolution, we use the DT procedure
instead of the CK procedure to recursively obtain the spatiotemporal expansion coefficients
using the spatial expansion coefficients. Compared with the CK procedure, the DT proce-
dure is more concise, and the programming is more convenient. Moreover, the proposed
method needs less computer storage due to the absence of intermediate stages, and is free
of solving the generalized Riemann problems at inter-cells. The resulting method is an
ideal candidate for parallel computing on supercomputers, thanks to the explicit one-step
nature as well as the compact stencil. We can easily proceed to arbitrary high-order accu-
racy both in space and time without much coding effort based on the DT procedure. In
conclusion, the proposed method is one-step, one-stage, and fully-discrete. In addition, we
apply the proposed method to solve the one- and two-dimensional SWEs over non-flat
bottom topographies. Extensive numerical results illustrate the high-order accuracy, the
WB property, and the good resolutions for discontinuous solutions. In the future, we will
extend this method to solve the two-layer SWEs and two-phase flow problems.
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Appendix A

Algorithm A1 The algorithm of the DT procedure for 1D SWEs

Input: Ũ(kx, 0, 1 : 2) and b̃(kx)

Output: Ũ(kx, kt, 1 : 2), F̃(kx, kt, 1 : 2) and S̃(kx, kt),

% Ũ(kx, kt, 1)
△
= h̃(kx, kt), Ũ(kx, kt, 2)

△
= (̃hu)(kx, kt)

% F̃(kx, kt, 1)
△
= h̃u(kx, kt), F̃(kx, kt, 2)

△
= (̃hu2)(kx, kt) +

1
2 g(̃h2)(kx, kt)

while cell Ij, j = 1, · · · , N do
while kx = 0, · · · , k do

b̃x(kx) = (kx + 1)b(kx + 1) % bx
end while
while kt = 0, · · · , k do

while kx = 0, · · · , k − kt do
tot_hu2 = 0 % (hu)2

tot_h_inv = 0 % 1
h

while rt = 0, · · · , kt do
while rx = 0, · · · , kx do

tot_hu2 = tot_hu2 + Ũ(rx, rt, 2) ∗ Ũ(kx − rx, kt − rt, 2)
end while

end while
hu2(kx, kt) = tot_hu2
if kx + kt > 0 then

h_inv(kx, kt) = −tot_h_inv/Ũ(0, 0, 1)
end if
tot_ f 2_a = 0 % hu2

tot_h2 = 0 % h2

while rt = 0, kt do
while rx = 0, kx do

tot_ f 2_a = tot_ f 2_a + hu2(rx, rt) ∗ h_inv(kx − rx, kt − rt)

tot_h2 = tot_h2 + Ũ(rx, rt, 1) ∗ Ũ(kx − rx, kt − rt, 1)
end while

end while
F̃(kx, kt, 1) = Ũ(kx, kt, 2) % hu
F̃(kx, kt, 2) = tot_ f 2_a + 1

2 ∗ g ∗ tot_h2 % hu2 + 1
2 gh2

end while
if kt < k then

while kx = 0, · · · , k − (kt + 1) do
tot_S = 0
while rx = 0, · · · , kx do

tot_S = tot_S − g ∗ Ũ(rx, rt, 1) ∗ b̃x(kx − rx)
end while
S̃(kx, kt) = tot_S % the source term: −ghbx

Ũ(kx, kt + 1, 1) = − kx + 1
kt + 1 ∗ F̃(kx + 1, kt, 1)

Ũ(kx, kt + 1, 2) = − kx + 1
kt + 1 ∗ F̃(kx + 1, kt, 2) + 1

kt + 1 ∗ S̃(kx, kt)

end while
end if

end while
end while
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