EdgePose: An Edge Attention Network for 6D Pose Estimation
Abstract
:1. Introduction
2. Related Works
2.1. RGB-Based Methods
2.1.1. Template-Based Methods
2.1.2. Correspondence-Based Methods
2.1.3. Voting-Based Methods
2.2. RGBD-Based Methods
2.2.1. Template-Based Methods
2.2.2. Correspondence-Based Methods
2.2.3. Voting-Based Methods
2.3. Datasets
3. Proposed Approach
3.1. Edge Attention
3.2. Feature Extraction Network
3.3. Dataset
3.4. Loss Function
3.5. Evaluation Matrics
3.6. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Chen, H.; Feng, R.; Wu, S.; Ji, S.; Yang, B.; Wang, X. Deep dual consecutive network for human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 525–534. [Google Scholar]
- Peng, Q.; Zheng, C.; Chen, C. A Dual-Augmentor Framework for Domain Generalization in 3D Human Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 16–21 June 2024; pp. 2240–2249. [Google Scholar]
- Chen, X.; Wang, G.; Guo, H.; Zhang, C. Pose guided structured region ensemble network for cascaded hand pose estimation. Neurocomputing 2020, 395, 138–149. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, P.; Zhang, Z. A deep learning approach using attention mechanism and transfer learning for electromyographic hand gesture estimation. Expert Syst. Appl. 2023, 234, 121055. [Google Scholar] [CrossRef]
- Wang, H.; Sridhar, S.; Huang, J.; Valentin, J.; Song, S.; Guibas, L.J. Normalized object coordinate space for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2642–2651. [Google Scholar]
- Park, K.; Patten, T.; Vincze, M. Pix2pose: Pixel-wise coordinate regression of objects for 6d pose estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7668–7677. [Google Scholar]
- Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv 2017, arXiv:1711.00199. [Google Scholar]
- Wang, G.; Manhardt, F.; Tombari, F.; Ji, X. Gdr-net: Geometry-guided direct regression network for monocular 6d object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 16611–16621. [Google Scholar]
- Kaskman, R.; Shugurov, I.; Zakharov, S.; Ilic, S. 6 dof pose estimation of textureless objects from multiple rgb frames. In Proceedings of the Computer Vision–ECCV 2020 Workshops, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 612–630. [Google Scholar]
- Zakharov, S.; Shugurov, I.; Ilic, S. Dpod: 6d pose object detector and refiner. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1941–1950. [Google Scholar]
- Su, Y.; Saleh, M.; Fetzer, T.; Rambach, J.; Navab, N.; Busam, B.; Stricker, D.; Tombari, F. Zebrapose: Coarse to fine surface encoding for 6dof object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6738–6748. [Google Scholar]
- Shugurov, I.; Zakharov, S.; Ilic, S. Dpodv2: Dense correspondence-based 6 dof pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7417–7435. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Z.; Zhang, S.; He, X.; Zhao, H.; Zhang, G.; Zhou, X. Onepose: One-shot object pose estimation without cad models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6825–6834. [Google Scholar]
- Li, F.; Yu, H.; Shugurov, I.; Busam, B.; Yang, S.; Ilic, S. NeRF-Pose: A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation. arXiv 2022, arXiv:2203.04802. [Google Scholar]
- Lipson, L.; Teed, Z.; Goyal, A.; Deng, J. Coupled iterative refinement for 6d multi-object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6728–6737. [Google Scholar]
- Chen, H.; Wang, P.; Wang, F.; Tian, W.; Xiong, L.; Li, H. Epro-pnp: Generalized end-to-end probabilistic perspective-n-points for monocular object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 2781–2790. [Google Scholar]
- Fan, Z.; Pan, P.; Wang, P.; Jiang, Y.; Xu, D.; Wang, Z. POPE: 6-DoF Promptable Pose Estimation of Any Object in Any Scene with One Reference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 16–21 June 2024; pp. 7771–7781. [Google Scholar]
- Liu, Y.; Wen, Y.; Peng, S.; Lin, C.; Long, X.; Komura, T.; Wang, W. Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 298–315. [Google Scholar]
- Castro, P.; Kim, T.K. Crt-6d: Fast 6d object pose estimation with cascaded refinement transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 5746–5755. [Google Scholar]
- Do, T.T.; Cai, M.; Pham, T.; Reid, I. Deep-6dpose: Recovering 6d object pose from a single rgb image. arXiv 2018, arXiv:1802.10367. [Google Scholar]
- Yang, Z.; Yu, X.; Yang, Y. Dsc-posenet: Learning 6dof object pose estimation via dual-scale consistency. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 3907–3916. [Google Scholar]
- Shao, J.; Jiang, Y.; Wang, G.; Li, Z.; Ji, X. PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020; pp. 11454–11463. [Google Scholar]
- Shugurov, I.; Li, F.; Busam, B.; Ilic, S. Osop: A multi-stage one shot object pose estimation framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6835–6844. [Google Scholar]
- Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In Proceedings of the Asian Conference on Computer Vision, Daejeon, Republic of Korea, 5–9 November 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 548–562. [Google Scholar]
- Sundermeyer, M.; Marton, Z.C.; Durner, M.; Brucker, M.; Triebel, R. Implicit 3d orientation learning for 6d object detection from rgb images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 699–715. [Google Scholar]
- Aing, L.; Lie, W.N.; Chiang, J.C.; Lin, G.S. Instancepose: Fast 6dof pose estimation for multiple objects from a single rgb image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 2621–2630. [Google Scholar]
- Hu, Y.; Hugonot, J.; Fua, P.; Salzmann, M. Segmentation-driven 6d object pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3385–3394. [Google Scholar]
- Chen, W.; Jia, X.; Chang, H.J.; Duan, J.; Leonardis, A. G2l-net: Global to local network for real-time 6d pose estimation with embedding vector features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020; pp. 4233–4242. [Google Scholar]
- He, Y.; Huang, H.; Fan, H.; Chen, Q.; Sun, J. Ffb6d: A full flow bidirectional fusion network for 6d pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 3003–3013. [Google Scholar]
- He, X.; Sun, J.; Wang, Y.; Huang, D.; Bao, H.; Zhou, X. Onepose++: Keypoint-free one-shot object pose estimation without CAD models. Adv. Neural Inf. Process. Syst. 2022, 35, 35103–35115. [Google Scholar]
- Zhang, R.; Di, Y.; Lou, Z.; Manhardt, F.; Tombari, F.; Ji, X. Rbp-pose: Residual bounding box projection for category-level pose estimation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 655–672. [Google Scholar]
- Peng, W.; Yan, J.; Wen, H.; Sun, Y. Self-supervised category-level 6D object pose estimation with deep implicit shape representation. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 22 February–1 March 2022; Volume 36, pp. 2082–2090. [Google Scholar]
- He, Y.; Wang, Y.; Fan, H.; Sun, J.; Chen, Q. FS6D: Few-Shot 6D Pose Estimation of Novel Objects. arXiv 2022, arXiv:2203.14628. [Google Scholar]
- Jiang, X.; Li, D.; Chen, H.; Zheng, Y.; Zhao, R.; Wu, L. Uni6d: A unified cnn framework without projection breakdown for 6d pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; Volume 1, p. 5. [Google Scholar]
- Mo, N.; Gan, W.; Yokoya, N.; Chen, S. Es6d: A computation efficient and symmetry-aware 6d pose regression framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6718–6727. [Google Scholar]
- Xu, Y.; Lin, K.Y.; Zhang, G.; Wang, X.; Li, H. Rnnpose: Recurrent 6-dof object pose refinement with robust correspondence field estimation and pose optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 14880–14890. [Google Scholar]
- Lin, H.; Liu, Z.; Cheang, C.; Fu, Y.; Guo, G.; Xue, X. Sar-net: Shape alignment and recovery network for category-level 6d object pose and size estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6707–6717. [Google Scholar]
- Cai, D.; Heikkil, J.; Rahtu, E. Ove6d: Object viewpoint encoding for depth-based 6d object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 6803–6813. [Google Scholar]
- Tian, M.; Pan, L.; Ang, M.H.; Lee, G.H. Robust 6d object pose estimation by learning rgb-d features. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020; pp. 6218–6224. [Google Scholar]
- Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Fei-Fei, L.; Savarese, S. Densefusion: 6d object pose estimation by iterative dense fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3343–3352. [Google Scholar]
- Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; Navab, N. Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 205–220. [Google Scholar]
- Wang, C.; Martín-Martín, R.; Xu, D.; Lv, J.; Lu, C.; Fei-Fei, L.; Savarese, S.; Zhu, Y. 6-pack: Category-level 6d pose tracker with anchor-based keypoints. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–4 June 2020; pp. 10059–10066. [Google Scholar]
- He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. Pvn3d: A deep point-wise 3d keypoints voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020; pp. 11632–11641. [Google Scholar]
- Capellen, C.; Schwarz, M.; Behnke, S. ConvPoseCNN: Dense convolutional 6D object pose estimation. arXiv 2019, arXiv:1912.07333. [Google Scholar]
- Di, Y.; Manhardt, F.; Wang, G.; Ji, X.; Navab, N.; Tombari, F. SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 12396–12405. [Google Scholar]
- Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-free local feature matching with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8922–8931. [Google Scholar]
- Park, J.J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 165–174. [Google Scholar]
- Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-wise voting network for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4561–4570. [Google Scholar]
- Hinterstoisser, S.; Holzer, S.; Cagniart, C.; Ilic, S.; Konolige, K.; Navab, N.; Lepetit, V. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 858–865. [Google Scholar]
- Calli, B.; Singh, A.; Walsman, A.; Srinivasa, S.; Abbeel, P.; Dollar, A.M. The ycb object and model set: Towards common benchmarks for manipulation research. In Proceedings of the 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, 27–29 July 2015; pp. 510–517. [Google Scholar]
- Hodan, T.; Haluza, P.; Obdržálek, Š.; Matas, J.; Lourakis, M.; Zabulis, X. T-LESS: An RGB-D dataset for 6D pose estimation of texture-less objects. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 880–888. [Google Scholar]
- Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. Shapenet: An information-rich 3d model repository. arXiv 2015, arXiv:1512.03012. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Li, Y.; Wang, G.; Ji, X.; Xiang, Y.; Fox, D. Deepim: Deep iterative matching for 6d pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 683–698. [Google Scholar]
- Song, C.; Song, J.; Huang, Q. Hybridpose: 6d object pose estimation under hybrid representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020; pp. 431–440. [Google Scholar]
Categories | Correspondence-Based | Template-Based | Voting-Based |
---|---|---|---|
RGB-based | [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] | [20,21,22,23,24,25] | [26,27] |
RGBD-based | [28,29,30,31,32,33,34,35,36] | [37,38] | [39,40,41,42,43] |
Dataset | Modality | |||
---|---|---|---|---|
LineMOD [49] | RGBD | - | 13 | 18,273 |
YCB-V [50] | RGBD | - | 21 | 133,936 |
T-less [51] | RGBD | - | 30 | 47,664 |
NOCS [5] | RGBD | 6 | 1085 | 300,000 |
ShapeNet6D [33] | RGBD | 51 | 12,490 | 800,000 |
Objects | PoseCNN [7] | PVN3D [43] | Uni6d [34] | DeepIM [56] | FS6D [33] | FFB6D [29] | Ours |
---|---|---|---|---|---|---|---|
master chef can | 50.9 | 80.5 | 70.2 | 71.2 | 36.8 | 80.6 | 80.7 |
cracker box | 51.7 | 94.8 | 85.2 | 83.6 | 24.5 | 94.6 | 95.3 |
sugar box | 68.6 | 96.3 | 94.5 | 94.1 | 43.9 | 96.6 | 97.9 |
tomato soup can | 66.0 | 88.5 | 85.4 | 86.1 | 54.2 | 89.6 | 88.7 |
mustard bottle | 79.9 | 96.2 | 91.7 | 91.5 | 71.1 | 97.0 | 96.5 |
tuna fish can | 70.4 | 89.3 | 79.0 | 87.7 | 53.9 | 88.9 | 88.9 |
pudding box | 62.9 | 95.7 | 89.8 | 82.7 | 79.6 | 94.6 | 94.5 |
gelatin box | 75.2 | 96.1 | 96.2 | 91.9 | 32.1 | 96.9 | 92.7 |
potted meat can | 59.6 | 88.6 | 89.6 | 76.2 | 54.9 | 88.1 | 87.6 |
banana | 72.3 | 93.7 | 93.0 | 81.2 | 69.1 | 94.9 | 96.1 |
pitcher base | 52.5 | 96.5 | 94.2 | 90.1 | 40.4 | 96.9 | 96.7 |
bleach cleanser | 50.5 | 93.2 | 91.1 | 81.2 | 44.1 | 94.8 | 95.4 |
bowl | 69.6 | 90.2 | 95.5 | 81.4 | 0.9 | 96.3 | 92.0 |
mug | 57.7 | 95.4 | 93.0 | 81.4 | 39.2 | 94.2 | 94.4 |
power drill | 55.1 | 95.1 | 91.1 | 85.5 | 19.8 | 95.9 | 95.5 |
wood block | 31.8 | 90.4 | 94.3 | 81.9 | 27.9 | 92.6 | 92.8 |
scissors | 35.8 | 92.7 | 79.6 | 60.9 | 27.7 | 95.7 | 96.9 |
large marker | 58.0 | 91.8 | 92.8 | 75.6 | 74.2 | 89.1 | 89.4 |
large clamp | 25.0 | 93.6 | 95.9 | 74.3 | 34.7 | 96.8 | 95.9 |
extra large clamp | 15.8 | 88.4 | 95.8 | 73.3 | 10.1 | 96.0 | 97.1 |
foam brick | 40.4 | 96.8 | 96.1 | 81.9 | 45.8 | 97.3 | 97.7 |
Objects | PVNet [48] | PoseCNN [7] | DPOD [10] | Pix2Pose [6] | HybridPose [57] | Robust6D [39] | Ours |
---|---|---|---|---|---|---|---|
ape | 43.6 | 21.6 | 53.3 | 58.1 | 63.1 | 85.0 | 99.7 |
benchvise | 99.9 | 81.8 | 95.3 | 91.0 | 99.9 | 95.5 | 100.0 |
cam | 86.9 | 36.6 | 90.4 | 60.9 | 90.4 | 91.2 | 100.0 |
can | 95.5 | 68.8 | 94.1 | 84.4 | 98.5 | 95.1 | 99.1 |
cat | 79.3 | 41.8 | 60.4 | 65.0 | 89.4 | 93.6 | 100.0 |
driller | 96.4 | 63.5 | 97.7 | 76.3 | 98.5 | 82.6 | 100.0 |
duck | 52.6 | 27.2 | 66.0 | 43.8 | 65.0 | 88.1 | 100.0 |
eggbox | 99.2 | 69.6 | 99.7 | 96.8 | 100.0 | 99.9 | 98.9 |
glue | 95.7 | 80.0 | 93.8 | 79.4 | 98.8 | 99.6 | 99.4 |
holepuncher | 81.9 | 42.6 | 65.8 | 74.8 | 89.7 | 92.6 | 100.0 |
iron | 98.9 | 74.9 | 99.8 | 83.4 | 100.0 | 95.9 | 100.0 |
lamp | 99.3 | 71.1 | 88.1 | 82.0 | 99.5 | 94.4 | 99.8 |
phone | 92.4 | 47.7 | 74.2 | 45.0 | 94.9 | 93.5 | 99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Q.; Nong, J.; Liang, Y. EdgePose: An Edge Attention Network for 6D Pose Estimation. Mathematics 2024, 12, 2607. https://doi.org/10.3390/math12172607
Feng Q, Nong J, Liang Y. EdgePose: An Edge Attention Network for 6D Pose Estimation. Mathematics. 2024; 12(17):2607. https://doi.org/10.3390/math12172607
Chicago/Turabian StyleFeng, Qi, Jian Nong, and Yanyan Liang. 2024. "EdgePose: An Edge Attention Network for 6D Pose Estimation" Mathematics 12, no. 17: 2607. https://doi.org/10.3390/math12172607
APA StyleFeng, Q., Nong, J., & Liang, Y. (2024). EdgePose: An Edge Attention Network for 6D Pose Estimation. Mathematics, 12(17), 2607. https://doi.org/10.3390/math12172607