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Abstract: In capture–recapture experiments, the presence of overdispersion and heterogeneity
necessitates the use of the negative binomial regression model for inferring population sizes. However,
within this model, existing methods based on likelihood and ratio regression for estimating the
dispersion parameter often face boundary and nonidentifiability issues. These problems can result
in nonsensically large point estimates and unbounded upper limits of confidence intervals for the
population size. We present a penalized empirical likelihood technique for solving these two problems
by imposing a half-normal prior on the population size. Based on the proposed approach, a maximum
penalized empirical likelihood estimator with asymptotic normality and a penalized empirical
likelihood ratio statistic with asymptotic chi-square distribution are derived. To improve numerical
performance, we present an effective expectation-maximization (EM) algorithm. In the M-step,
optimization for the model parameters could be achieved by fitting a standard negative binomial
regression model via the R basic function glm.nb(). This approach ensures the convergence and
reliability of the numerical algorithm. Using simulations, we analyze several synthetic datasets
to illustrate three advantages of our methods in finite-sample cases: complete mitigation of the
boundary problem, more efficient maximum penalized empirical likelihood estimates, and more
precise penalized empirical likelihood ratio interval estimates compared to the estimates obtained
without penalty. These advantages are further demonstrated in a case study estimating the abundance
of black bears (Ursus americanus) at the U.S. Army’s Fort Drum Military Installation in northern
New York.

Keywords: population size; negative binomial regression model; penalized empirical likelihood;
EM algorithm

MSC: 62F10

1. Introduction

The use of capture–recapture data to infer population sizes is widely sought after across
multiple fields, such as ecology and epidemiology. The capture–recapture sampling dates
back to fisheries [1,2] and is used to estimate the abundance of species in the ecosystem [3].
Additionally, the number of populations of drug or alcohol addicts can be inferred by
considering each visit to institutions as one capture [4,5]. Similarly, epidemiologists may
leverage multiple incomplete lists of patients to estimate disease prevalence [6].

In traditional practice, the Poisson regression model is commonly used for modeling
the capture–recapture data. However, the literature has demonstrated that the Poisson
regression model may perform inadequately when the number of captures is subject
to overdispersion, which means that the corresponding expectation is larger than
variance. In capture–recapture experiments, the overdispersion often arises from individual
heterogeneity. For example, animal species may exhibit flocking and spatiotemporal
aggregation behaviors [7]. As argued in ref. [8], the population size may be underestimated
if the model used ignores heterogeneity and overdispersion. Without any adjustments,
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using the Poisson regression model can yield unreliable statistical inferences, leading
to incorrect interpretations. In this situation, ref. [9] argued that the negative binomial
regression model might be more suitable.

Various estimation methods have been investigated for capture–recapture data
within the framework of the negative binomial regression model. Based on conditional
likelihood, ref. [8] introduced a maximum likelihood estimator for the regression parameter.
Additionally, they derived a Horvitz–Thompson type estimator and a corresponding Wald-
type interval estimator for estimating the population size. Building on the recapture
probability ratios, refs. [10–12] investigated issues related to model diagnostics and
population size estimation. Their simulations and empirical investigations revealed that
the negative binomial regression model outperforms the Poisson regression model in the
presence of overdispersion. However, these methods face challenges, and at least two
specific issues arise. First, the likelihood function may suffer from identification and
boundary problems for the dispersion parameter, leading to nonsensically large values
of the Horvitz–Thompson type estimator associated with large standard errors; see, for
example, refs. [10,11,13]. Second, the Newton–Raphson procedure may not be reliable and
even fail to converge for maximizing the conditional likelihood function, as illustrated in
refs. [14,15].

Empirical likelihood offers an alternative approach to mitigating the two issues
mentioned earlier. Using empirical likelihood techniques, ref. [16] investigated the full
semiparametric likelihood inference for population sizes in capture–recapture studies.
Additionally, this method was extended by refs. [17–20] to include the continuous time
case, one inflation and missing covariates. Experience shows that the semiparametric
empirical-likelihood-based method usually outperforms the conditional-likelihood-based
method in numerical experiments.

However, our simulation studies indicate that the point and interval estimators derived
using maximum empirical likelihood estimation are prone to boundary issues, particularly
when a small proportion of individuals are captured and severe overdispersion is present.
For instance, as shown in our simulation studies with β0 = (−0.5, 0.3)⊤, k0 = 0.5, and
N0 = 250, where the capture probability is as low as 40%, nearly 67% of simulated cases
yield unreasonable empirical likelihood ratio interval estimates whose upper limits exceed
the number of captured individuals by over 100 times. This boundary problem is similarly
observed in Section 4 for a case study. A potential cause of this issue may be that in
such scenarios, the empirical log-likelihood ratio function flattens out as the population
size increases.

The following sections are arranged as follows. Section 2 revisits the semiparametric
empirical likelihood method within the negative binomial regression model and introduces
a penalized empirical likelihood estimation approach to addressing the boundary problem.
Furthermore, the EM algorithm is designed to enhance the reliability of the estimation
process. Section 3 presents a number of simulations to illustrate how the proposed methods
perform in the finite-sample settings. These methods are put into practice for analyzing the
black bear data from New York in Section 4. Finally, a discussion is presented in Section 5.

2. Methodology
2.1. Model and Data

Suppose there are N individuals in a population. Each individual is characterized by
the number of captures, denoted by Y, a nonnegative interger-valued variable. A naive
approach to modeling Y is to assume a Poisson distribution, Y ∼ Poisson(θ), where θ > 0
represents the rate or expected number of captures. The Poisson model inherently assumes
that all individuals in the population are homogeneous, meaning they share the same rate
parameter θ. In addition, as noted in the introduction, a key limitation of the Poisson model
is its inability to handle overdispersed data, where the variance exceeds the mean.

To address the heterogeneity and overdispersion, one can assume that individuals
have varying rates. In practice, a common approach is to model the distribution of these
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rates using a gamma distribution as a prior. Specifically, θ ∼ Gamma(r, p/(1 − p)), where
r > 0 is the shape parameter and p/(1 − p) is the scale parameter with p ∈ (0, 1). With this
prior, the marginal probability mass function of Y can be derived in a closed form:

pY(y) =
∫ ∞

0
p(y | θ)p(θ)dθ =

Γ(y + r)
Γ(y + 1)Γ(r)

py(1 − p)r, y = 0, 1, 2, . . . .

which corresponds to the Poisson–Gamma or negative binomial distribution in the
probability textbook. This distribution models the number of successes before the rth failure
occurs in a sequence of independent Bernoulli trials, with p representing the probability of
success in each trial.

As highlighted in ref. [9], a common reparameterization of pY(y) is often used
to interpret the counting processes in ecological and biodiversity studies. This
reparameterization expresses pY(y) in terms of its mean µ and a dispersion or aggregation
parameter k, which controls the variation in counts. By setting p = µ/(k + µ) and k = r,
pY(y) can be reformulated as:

pY(y) =
Γ(y + k)

Γ(y + 1)Γ(k)

(
µ

k + µ

)y( k
k + µ

)k
.

When the individual covariates, denoted by X, are available, it becomes necessary
to account for the heterogeneity induced by these covariates. To do so, a parametric
model is used, specifically µ(x; β) = exp(β⊤x), which relates the mean parameter to the
individual covariates. Thus, given X = x, the conditional probability mass function of Y is
expressed by:

P(Y = y | X = x) =
Γ(y + k)

Γ(y + 1)Γ(k)

{
µ(x; β)

k + µ(x; β)

}y{ k
k + µ(x; β)

}k
=: f (y, x; β, k), (1)

where β represents the unknown regression coefficients and k > 0 represents the dispersion
parameter. This formulation is referred to as the negative binomial regression model. As a
special case, Equation (1) reduces to pY(y) when all coefficients, except the intercept, are
zero. The negative binomial regression model also includes the geometric regression model
when k = 1 and reduces to the Poisson regression model as k → ∞.

Given X = x, the conditional expectation of Y is equal to µ(x; β), while the
conditional variance is expressed as µ(x; β) + {µ(x; β)}2/k, indicating a quadratic
relationship. The parameter k controls the degree of overdispersion: as k decreases,
the variance increases, leading to greater overdispersion. Overdispersion is commonly
observed in capture–recapture studies, where the variance significantly exceeds the mean.
Consequently, the negative binomial regression model is often more appropriate for
modeling capture–recapture data under conditions of severe overdispersion, as compared
to the Poisson model.

Because the event {Y = 0} is unobservable in capture–recapture studies, the zero-
truncated version of model (1) is considered:

P(Y = y | Y > 0, X = x) =
P(Y = y | X = x)
P(Y > 0 | X = x)

=
f (y, x; β, k)

1 − ϕ(x; β, k)
, y = 1, 2, . . . , (2)

where ϕ(x; β, k) = [k/{k + µ(x; β)}]k represents the conditional probability that an
individual with a covariate x is not captured at all.

Consider a study that captured n distinct individuals, with (x1, . . . , xn) and (y1, . . . , yn)
denoting their individual covariates and capture frequencies, respectively. Under
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the model (2), ref. [8] proposed a maximum conditional likelihood estimator (β̃, k̃)
by maximizing:

n

∏
i=1

f (yi, xi; β, k)
1 − ϕ(xi; β, k)

.

According to the principle of inverse probability weighting, the Horvitz–Thompson type
estimator of N is defined as Ñ = ∑n

i=1{1 − ϕ(xi; β̃, k̃)}−1. However, Ñ might be inflated
due to small detection probabilities.

2.2. Semiparametric Empirical Likelihood

The semiparametric empirical likelihood, initially derived from ref. [16], is an
appealing technique for implementing the full likelihood method when capture–recapture
data contain individual covariates. Taking the negative binomial regression model as an
example, we provide a brief introduction to this technique.

Considering that n distinct individuals out of a total of N individuals were captured,
n follows a binomial distribution and the corresponding probability is as follows:

P(n) =
(

N
n

)
(1 − α)nαN−n,

where α = P(Y = 0) represents the probability that a generic individual was not captured
at all. For the given n individuals, the conditional probability of their covariates and capture
counts is as follows:

n

∏
i=1

P(Y = yi, X = xi)

P(Y > 0)
=

n

∏
i=1

f (yi, xi; β, k)P(X = xi)

1 − α
.

Multiplying these two expressions yields the full likelihood function:(
N
n

)
αN−n ×

n

∏
i=1

{ f (yi, xi; β, k)P(X = xi)}. (3)

In Equation (3), the marginal probability P(X = xi) is unknown and shall be addressed
by the empirical likelihood method; see refs. [21,22] for more details. Technically, we
assume that P(X = xi) = pi for i = 1, 2, . . . , n, where pi ∈ (0, 1) is subject to the constraint
∑n

i=1 pi = 1. With this substitution, we call the full likelihood the semiparametric empirical
likelihood and refer to its logarithm as the empirical log-likelihood function, namely:

ℓ̃(N, β, k, α, {pi}) = log
(

N
n

)
+ (N − n) log(α) +

n

∑
i=1

log{ f (yi, xi; β, k)}

+
n

∑
i=1

log(pi).

By the definition of α and the iterated expectation theorem, it follows that
α = E{P(Y = 0 | X)}, or equivalently:

n

∑
i=1

{ϕ(xi; β, k)− α}pi = 0.

With the constraints for pi’s, the profile empirical log-likelihood function can be
derived using the Lagrange multiplier method on Equation (3):
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ℓ(N, β, k, α) = log
(

N
n

)
+ (N − n) log(α) +

n

∑
i=1

log
(

yi + k − 1
yi

)
+

n

∑
i=1

[
k log

{
k

k + µ(xi; β)

}
+ yi log

{
µ(xi; β)

k + µ(xi; β)

}]
−

n

∑
i=1

log[1 + ξ{ϕ(xi; β, k)− α}]− n log(n),

where ξ is the Lagrange multiplier, satisfying:

n

∑
i=1

ϕ(xi; β, k)− α

1 + ξ{ϕ(xi; β, k)− α} = 0.

Notice that there are a finite number of unknown parameters in the profile empirical
log-likelihood function. By maximizing this function, we obtain the maximum empirical
likelihood estimator, expressed as (N̂, β̂, k̂, α̂) = arg max{ℓ(N, β, k, α)}.

2.3. Penalized Empirical Likelihood Inference

When the number of captures exhibits severe overdispersion, both the estimators Ñ
and N̂, proposed in Sections 2.1 and 2.2, respectively, may exhibit spuriously large values,
potentially leading to misleading conclusions. This issue has been addressed in ref. [13]
(p. 84) for the Horvitz–Thompson type estimator. Our simulation studies further confirm
that the empirical likelihood estimators may also suffer from the boundary problem. This
issue may arise due to the limited information available about the population size, causing
the profile empirical log-likelihood to fail in distinguishing between different values of
large N.

To mitigate this problem, we intuitively incorporate prior information on the
population size to reduce the probability of large values. We achieve this by augmenting
the likelihood functions with an appropriate penalty term. Correspondingly, the penalized
empirical log-likelihood function and its profile version are defined as:

ℓ̃p(N, β, k, α, {pi}) = ℓ̃(N, β, k, α, {pi}) + fp(N),

ℓp(N, β, k, α) = ℓ(N, β, k, α) + fp(N).
(4)

where the penalty term fp(N) takes the form of −C(N − ν)2 I(N > ν), where ν is a lower
bound of N, C ≥ 0 is a tuning parameter, and I(·) is the indicator function. For specific
values of ν and C, a maximum penalized empirical likelihood estimator is proposed, namely,
(N̂p, β̂p, k̂p, α̂p) = arg max{ℓp(N, β, k, α)}.

From a Bayesian perspective, adding the penalty term fp(N) into the log-likelihood
is equivalent to imposing a prior for N that has a mixture of the half-normal distribution
N(ν, (2C)−1) for N > ν and a uniform distribution U(n, ν) for n ≤ N ≤ ν. In other words,
this penalty has no effect on the likelihood when n ≤ N ≤ ν and gradually decreases the
likelihood when N > ν. The larger the population size, the more pronounced the decrease.
Consequently, the penalized method encourages large values of N̂ to shrink towards ν.
In practice, we recommend using the Chao estimator as the lower bound ν; see ref. [23]
for details about this estimator. Alternatively, the generalized Chao estimator proposed in
ref. [24] can also be considered.

To derive the large-sample properties of the estimator (N̂p, β̂p, k̂p, α̂p), we define
some notation when the parameter vector (N, β, k, α) takes its true value, namely,
(N0, β0, k0, α0). Define ψ(x; β0, k0) = − log{1 + µ(x; β0)/k0} + {1 + k0/µ(x; β0)}−1,
φ = E{1 − ϕ(X; β0, k0)}−1, and:

S2(y + k0 − 1, y) =

{
−∑

y+k0−1
k=k0

1
k2 , y = 1, 2, . . .

0, y = 0
.
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Let:

W =


−V11 0⊤

s×1 0 −V14
0s×1 −V22 + V25V−1

55 V52 −V23 + V25V−1
55 V53 −V24 + V25V−1

55 V54
0 −V32 + V35V−1

55 V52 −V33 + V35V−1
55 V53 −V34 + V35V−1

55 V54
−V41 −V42 + V45V−1

55 V52 −V43 + V45V−1
55 V53 −V44 + V45V−1

55 V54

, (5)

where V11 = 1 − α−1
0 , V41 = V14 = α−1

0 , V44 = φ − α−1
0 , V45 = V54 = (1 − α0)

2 φ,
V55 = (1 − α0)

4 φ − (1 − α0)
3, and:

V22 = E
[{

k0ϕ(X; β0, k0)µ(X; β0)

1 − ϕ(X; β0, k0)
− k0 − µ(X; β0, k0)

}
k0µ(X; β0)X⊗2

{k0 + µ(X; β0)}2

]
,

V23 = V⊤
32 = −E

[
k0ϕ(X; β0, k0)ψ(X; β0, k0)µ(X; β0)X
{1 − ϕ(X; β0, k0)}{k0 + µ(X; β0)}

]
,

V33 = E
[

ϕ(X; β0, k0)ψ
2(X; β0, k0)

1 − ϕ(X; β0, k0)
+

k0µ(X; β0) + µ2(X; β0)

k0{k0 + µ(X; β0)}2

]
+E{S2(Y + k0 − 1, Y)},

V24 = E
[

ϕ(X; β0, k0)

1 − ϕ(X; β0, k0)
· k0µ(X; β0)X

k0 + µ(X; β0)

]
, V25 = V⊤

52 = (1 − α0)
2V24,

V34 = V43 = −E
{

ϕ(X; β0, k0)ψ(X; β0, k0)

1 − ϕ(X; β0, k0)

}
, V35 = V53 = (1 − α0)

2V34.

The following theorem presents the large-sample properties of the maximum penalized
empirical likelihood estimator (N̂p, β̂p, k̂p, α̂p) associated with the penalized empirical
likelihood ratio statistic of N.

Theorem 1. Suppose that k0 > 0, 0 < α0 < 1, and the tuning parameter satisfies C = O(N−2).
If W is nonsingular and φ < ∞, as N0 → ∞:

(a)
√

N0{log(N̂p)− log(N0), (β̂p − β0)
⊤, k̂p − k0, α̂p − α0}⊤ d−→ N(0, W−1);

(b)
√

N0(N̂p/N0 − 1) d−→ N(0, σ2), where

σ2 = φ − 1 −
[
V42 V43

][V22 V23
V32 V33

]−1[V24
V34

]
;

(c) 2{ℓp(N̂p, β̂p, k̂p, α̂p) − max(β,k,α) ℓp(N, β, k, α)} d−→ χ2
1, where χ2

1 denotes the standard
chi-square distribution.

Proof. As the proposed semiparametric empirical likelihood approach can be seen as an
extension of the EL method of ref. [16] to the negative binomial regression model, the proof
of Theorem 1 is very similar to those of Theorem 1 and Corollary 1 in ref. [16]. Here, we
only highlight the difference and the formulae of V and Σ in our framework.

We first argue that ξ0 = −(1 − α0)
−1 is the limit of ξ̂, where ξ̂ is the solution to:

n

∑
i=1

ϕ(xi; β̂p, k̂p)− α̂p

1 + ξ{ϕ(xi; β̂p, k̂p)− α̂p}
= 0.

For this purpose, we define a function:
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h̄(N, β, k, α, ξ) = log
(

N
n

)
+ (N − n) log(α)−

n

∑
i=1

log[1 + ξ{ϕ(xi; β, k)− α}]

+
n

∑
i=1

[
log
(

yi + k − 1
yi

)
+ k log

{
k

k + µ(xi; β)

}
+ yi log

{
µ(xi; β)

k + µ(xi; β)

}]
−n log(n) + fp(N).

It can be seen that ℓp(N, β, k, α) = h̄(N, β, k, α, ξ∗), where ξ∗ is the solution to ∂h̄/∂ξ = 0.
The first partial derivatives of h̄(N, β, k, α, ξ) with respect to α and ξ are:

∂h̄
∂α

=
N − n

α
+ ξ

n

∑
i=1

1
1 + ξ{ϕ(xi; β, k)− α} ,

∂h̄
∂ξ

= −
n

∑
i=1

ϕ(xi; β, k)− α

1 + ξ{ϕ(xi; β, k)− α} .

Setting the above equations to zero gives ξ̂ = −(N̂p − n)/(nα̂p). Since α0 is the
probability of never being captured, n follows a Binomial distribution Bi(N0, 1 − α0). When
(N̂p, α̂p) is consistent, it follows from the strong law of large numbers that as N0 → ∞:

ξ̂ = − N̂/N0 − n/N0

(n/N0)α̂p

p−→ −1 − (1 − α0)

(1 − α0)α0
= − 1

1 − α0
= ξ0,

where
p−→ denotes convergence in probability.

Below, we derive the formulae of V and Σ. Let γ = (γ1, γ⊤
2 , γ3, γ4, γ5)

⊤, with
γ1 =

√
N0(N/N0 − 1), γ2 =

√
N0(β − β0), γ3 =

√
N0(k − k0), γ4 =

√
N0(α − α0),

γ5 =
√

N0(ξ − ξ0). Define

H(γ) = h̄(N0 + N1/2
0 γ1, β0 + N−1/2

0 γ2, k0 + N−1/2
0 γ3, α0 + N−1/2

0 γ4, ξ0 + N−1/2
0 γ5).

According to Lemma 2 in the Supplementary Material of [16], deriving the formula of
V is equivalent to calculating the first two partial derivatives of H(γ) with respect to γ at 0.
It follows from the law of large numbers and the central limit theorem that:

∂H(0)
∂γ1

= N1/2
0 {S1(N0, n) + log(α0) + f ′p(N0)} = N1/2

0

(
n/N0 − 1

α0
+ 1
)
+ Op(N−1/2

0 ),

∂H(0)
∂γ2

= N−1/2
0

n

∑
i=1

[{
− µ(xi; β0)

1 − ϕ(xi; β0, k0)
+ yi

}
k0xi

k0 + µ(xi; β0)

]
,

∂H(0)
∂γ3

= N−1/2
0

n

∑
i=1

{
ψ(x; β0, k0)

1 − ϕ(xi; β0, k0)
− yi

k0 + µ(xi; β0)
+ S1(yi + k0 − 1, yi)

}
,

∂H(0)
∂γ4

= N−1/2
0

{
N0 − n

α0
−

n

∑
i=1

1
1 − ϕ(xi; β0, k0)

}
,

∂H(0)
∂γ5

= −N−1/2
0 (1 − α0)

n

∑
i=1

ϕ(xi; β0, k0)− α0

1 − ϕ(xi; β0, k0)
,

where the first equation uses the result (a) of Lemma A1 and Equation (A1) of Lemma A2
in the Appendix A. Using the result (b) of Lemma A1 and Equation (A2) of Lemma A2,
we have:

∂2H(0)
∂γ2

1
= N0S2(N0, n) + N0 f ′′p (N0) = 1 − α−1

0 + Op(N−1/2
0 ).
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Similarly, it can be verified that ∂2H(0)/(∂γ4∂γ1) = ∂2H(0)/(∂γ1∂γ4) = α−1
0 +

Op(N−1/2
0 ) and:

∂2H(0)
∂γ2∂γ⊤

2
= N−1

0

n

∑
i=1

([
k0ϕ(xi; β0, k0)µ(xi; β0)

{1 − ϕ(xi; β0, k0)}2 − k0

1 − ϕ(xi; β0, k0)
− yi

]
k0µ(xi; β0)x⊗2

i
{k0 + µ(xi; β0)}2

)
,

∂2H(0)
∂γ2∂γ3

=

{
∂2H(0)
∂γ3∂γ⊤

2

}⊤

= N−1
0

n

∑
i=1

[
− k0ϕ(xi; β0, k0)ψ(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 +
yi

k0 + µ(xi; β0)

− 1
1 − ϕ(xi; β0, k0)

· µ(xi; β0)

k0 + µ(xi; β0)

]
µ(xi; β0)xi

k0 + µ(xi; β0)
,

∂2H(0)
∂γ2∂γ4

=

{
∂2H(0)
∂γ4∂γ⊤

2

}⊤

= N−1
0

n

∑
i=1

ϕ(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 · k0µ(xi; β0)xi
k0 + µ(xi; β0)

,

∂2H(0)
∂γ2∂γ5

=

{
∂2H(0)
∂γ5∂γ⊤

2

}⊤

= (1 − α0)
2N−1

0

n

∑
i=1

ϕ(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 · k0µ(xi; β0)xi
k0 + µ(xi; β0)

,

∂2H(0)
∂γ2

3
= N−1

0

n

∑
i=1

[
ϕ(xi; β0, k0)ψ

2(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 +
1

1 − ϕ(xi; β0, k0)
· µ2(xi; β0)

k0{k0 + µ(xi; β0, k0)}2

+
yi

{k0 + µ(xi; β0, k0)}2 + S2(yi + k0 − 1, yi)

]
,

∂2H(0)
∂γ3∂γ4

=
∂2H(0)
∂γ4∂γ3

= −N−1
0

n

∑
i=1

ϕ(xi; β0, k0)ψ(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 ,

∂2H(0)
∂γ3∂γ5

=
∂2H(0)
∂γ5∂γ3

= −(1 − α0)
2N−1

0

n

∑
i=1

ϕ(xi; β0, k0)ψ(xi; β0, k0)

{1 − ϕ(xi; β0, k0)}2 ,

∂2H(0)
∂γ2

4
= N−1

0

n

∑
i=1

1
{1 − ϕ(xi; β0, k0)}2 − 1 − n/N0

α2
0

,

∂2H(0)
∂γ4∂γ5

=
∂2H(0)
∂γ5∂γ4

= (1 − α0)
2N−1

0

n

∑
i=1

1
{1 − ϕ(xi; β0, k0)}2 ,

∂2H(0)
∂γ2

5
= (1 − α0)

4N−1
0

n

∑
i=1

1
{1 − ϕ(xi; β0, k0)}2 − (1 − α0)

3.

With the arguments of Lemma A3 in the Appendix A, we have that the leading term
of ∂2H(0)/(∂γ∂γ⊤) is as follows:

∂2H(0)
∂γ∂γ⊤ = V + Op(N−1/2

0 ), V =


V11 0⊤ 0 V14 0

0 V22 V23 V24 V25
0 V32 V33 V34 V35

V41 V42 V43 V44 V45
0 V52 V53 V54 V55

,

where Vijs are the same as those defined in Equation (5).
Next, we derive the formula of Σ. Define un = (un1, u⊤

n2, un3, un4, un5)
⊤, where:

un1 = N1/2
0

(
n/N0 − 1

α0
+ 1
)

, un2 =
∂H(0)

∂γ2
, un3 =

∂H(0)
∂γ3

, un4 =
∂H(0)

∂γ4
, un5 =

∂H(0)
∂γ5

.
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It can be verified that ∂H(0)/∂γ = un + Op(N−1/2
0 ) and E(un) = 0. Here, we only

verify that E(un2) = 0 and E(un3) = 0. In fact, it follows Lemma A3 that:

E(un2) = N1/2
0 E

{
− k0Xµ(X; β0)

k0 + µ(X; β0)
+

k0XE(Y | X)

k0 + µ(X; β0)

}
= 0,

E(un3) = N1/2
0 E

[
ψ(X; β0, k0)−

E(Y | X)

k0 + µ(X; β0)
+E{S1(Y + k0 − 1, Y) | X}

]
= N1/2

0 E
[

ψ(X; β0, k0)−
µ(X; β0)

k0 + µ(X; β0)
− log

{
k0

k0 + µ(X; β0)

}]
= 0,

where the last second equation uses Equation (A3) of Lemma A4 in the Appendix A.
For the covariance matrix of un, it follows Lemma A4 that:

Var(un1) = α−1
0 − 1, Cov(un4, un1) = −α−1

0 ,

Cov(un2, un1) = Cov(un2, un4) = Cov(un2, un5) = 0,

Cov(un3, un1) = Cov(un3, un4) = Cov(un3, un5) = Cov(un5, un1) = 0,

Var(un2) = E
[

1
N0

N0

∑
i=1

{
− µ(Xi; β0)

1 − ϕ(Xi; β0, k0)
+ Yi

}
k0Xi I(Yi > 0)
k0 + µ(Xi; β0)

]⊗2

= E
[{

− µ(X; β0)

1 − ϕ(X; β0, k0)
+ Y

}2 k2
0 I(Y > 0)X⊗2

{k0 + µ(X; β0)}2

]

= E
[{

µ2(X; β0)

{1 − ϕ(X; β0, k0)}2 + Y2 − 2Yµ(X; β0)

1 − ϕ(X; β0, k0)

}
k2

0 I(Y > 0)X⊗2

{k0 + µ(X; β0)}2

]

= E
[{

− k0µ(X; β0)ϕ(X; β0, k0)

1 − ϕ(X; β0, k0)
+ k0 + µ(X; β0)

}
k0µ(X; β0)X⊗2

{k0 + µ(X; β0)}2

]
= −V22,

Cov(un2, un3) = E
[{

− µ(X; β0)

1 − ϕ(X; β0, k0)
+ Y

}{
ψ(x; β0, k0)

1 − ϕ(X; β0, k0)
− Y

k0 + µ(X; β0)

+S1(Y + k0 − 1, Y)
}
· k0X I(Y > 0)

k0 + µ(X; β0)

]

= E
[{

ϕ(X; β0, k0)ψ(x; β0, k0)

1 − ϕ(x; β0, k0)
− 1

k0
+

E[YS1(Y + k0 − 1, Y) | X]

µ(X; β0)

+ log
k0

k0 + µ(X; β0)

}
k0µ(X; β0)X
k0 + µ(X; β0)

]
= −V23,

Var(un3) = E
[{

ψ(X; β0, k0)

1 − ϕ(X; β0, k0)
− Y

k0 + µ(X; β0)
+ S1(Y + k0 − 1, Y)

}2

I(Y > 0)

]

= E
[
− {ψ(X; β0, k0)}2

1 − ϕ(X; β0, k0)
+

(k0 + 1){µ(X; β0, k0)}2 + k0µ(X; β0, k0)

k0{k0 + µ(X; β0, k0)}2

+E
[
{S1(Y + k − 1, Y)}2 | X

]
− 2E{YS1(Y + k − 1, Y) | X}

k + µ(X; β0, k0)

]
= −V33,

Var(un4) = N−1
0 E

[
N0

∑
i=1

{
I(Yi = 0)

α0
− I(Yi > 0)

1 − ϕ(Xi; β0, k0)

}]2

= E
{

I(Y = 0)
α0

− I(Y > 0)
1 − ϕ(X; β0, k0)

}2

= α−1
0 +E

{
1

1 − ϕ(X; β0, k0)

}
,
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Cov(un4, un5) = E
[
−1 − α0

N0

N0

∑
i=1

{
I(Yi = 0)

α0
− I(Yi > 0)

1 − ϕ(Xi; β0, k0)

}
· {ϕ(Xi; β0, k0)− α0}I(Yi > 0)

1 − ϕ(Xi; β0, k0)

]
= −(1 − α0) + (1 − α0)

2E
{

1
1 − ϕ(X; β0, k0)

}
,

Var(un5) = N−1
0 (1 − α0)

2E
[

N0

∑
i=1

{ϕ(Xi; β0, k0)− α0}2 I(Yi > 0)
{1 − ϕ(Xi; β0, k0)}2

]

= (1 − α0)
2E
[
{ϕ(X; β0, k0)− α0}2

1 − ϕ(X; β0, k0)

]
= V55.

By the central limit theorem, as N0 → ∞ we have un
d−→ N(0, Σ), where:

Σ =


−V11 0⊤ 0 −V14 0

0 −V22 −V23 0 0
0 −V32 −V33 0 0

−V41 0⊤ 0 2V45(1 − α0)
−2 − V44 V55(1 − α0)

−2

0 0⊤ 0 V55(1 − α0)
−2 V55

.

Since the covariance matrix Σ has the same form as the Σ in Lemma 3 of the
Supplementary Material in ref. [16], so does the matrix W. The rest of the proof is similar
and omitted. This completes the proof of Theorem 1.

When C = 0, there is no penalty term and the likelihood functions with and without
penalty coincide. This implies that the asymptotic results in Theorem 1 hold for the
empirical likelihood estimators without penalty. Utilizing the result (c), a penalized
empirical likelihood ratio interval estimator can be constructed, namely:

Ip =

{
N : 2

{
ℓp(N̂p, β̂p, k̂p, α̂p)− max

(β,k,α)
ℓp(N, β, k, α)

}
≤ χ2

1(1 − a)

}
,

where χ2
1(1 − a) stands for the (1 − a)th quantile of χ2

1. Correspondingly, the empirical
likelihood ratio interval estimator derived without penalty is as follows:

I =

{
N : 2

{
ℓ(N̂, β̂, k̂, α̂)− max

(β,k,α)
ℓ(N, β, k, α)

}
≤ χ2

1(1 − a)

}
.

Despite both interval estimators asymptotically yielding correct coverage probability
(1 − a), our simulation studies indicate that Ip generally outperforms I in terms of interval
width.

Remark 1. One might question whether overdispersion exists, or equivalently, whether the zero-
truncated Poisson regression model adequately fit the data. Various methods have been proposed to
address this question. See, for instances, refs. [8,11,25,26].

2.4. Numerical Implementation

In this section, we aim to develop an EM algorithm to facilitate the proposed estimation
method described in Section 2.3. For better presentation, we begin by considering a special
case when N is fixed. Our primary objective is to maximize the profile penalized empirical
log-likelihood function for a given N, as specified in Equation (4). In other words, we
shall design an EM algorithm to calculate the maximum penalized empirical likelihood
estimator of (β, k, α) when N is fixed.
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In this case, the observed data can be represented as O = {(y1, x1), (y2, x2), . . . , (yn, xn)},
where each yi is positive. Additionally, the observed data include the counts
(yn+1, yn+2, . . . , yN), all of which are zero. For these individuals not captured, their
covariate information is missing and represented as O∗ = (x∗n+1, x∗n+2, . . . , x∗N). According
to the principle of empirical likelihood, the potential values of the x∗i ’s are drawn from
(x1, x2, . . . , xn), where the associated probabilities are (p1, p2, . . . , pn).

The observed and missing data constitute the complete data. The likelihood is
as follows:

n

∏
i=1

{P(X = xi)P(Y = yi | X = xi)} ×
N

∏
i=n+1

{P(X = x∗i )P(Y = 0 | X = x∗i )}.

Correspondingly, the log-likelihood of θ = (β⊤, k, α, {pi})⊤ becomes:

ℓc(θ) =
n

∑
i=1

[log{ f (yi, xi; β, k)}+ log(pi)]

+
N

∑
j=n+1

n

∑
i=1

I(x∗j = xi)[log{ f (0, xi; β, k)}+ log(pi)].

The core of the EM-algorithm is its iterative process, which consists of an expectation
step (E-step) followed by a maximization step (M-step) in each iteration. Before these
two steps, we use θold = (βold, kold, αold, {pold

i }) to denote the current value of parameters.
In the E-step, we need to compute the expectation of ℓc(θ) conditional on O and θold. For
this purpose, we calculate the conditional expectation of the indicator I(x∗j = xi), which is
equal to:

P(X = xi | Y = 0, θ = θold) =
ϕ(xi; βold, kold)pold

i
αold ,

where αold = ∑n
i=1 ϕ(xi; βold, kold)pold

i denotes the current value of α. Correspondingly, the
conditional expectation of the log-likelihood ℓc(θ) is equal to:

Q
(

θ | θold
)

=
n

∑
i=1

[
log{ f (yi, xi; β)}+ uold

i log{ f (0, xi; β, k)}
]

+
n

∑
i=1

(
1 + uold

i

)
log(pi)

=: ℓ1(β, k) + ℓ2({pi}).

where uold
i = (N − n)ϕ(xi; βold, kold)pold

i /αold represents the weight for i = 1, . . . , n.
The M-step consists of maximizing the function Q(θ | θold). The separation of

parameters (β, k) and pi’s makes the maximization procedure much more elegant, which
can be implemented using the following steps.

Step 1. Update (β, k) to (βnew, knew) by maximizing ℓ1(β, k). Given that ℓ1(β, k) can be
interpreted as a weighted log-likelihood function, we propose that maximizing
ℓ1(β, k) is analogous to fitting a negative binomial regression model to the
observed counts (y1, y2, . . . , yn) and the n-dimensional zero vector with covariates
(x1, x2, . . . , xn, x1, x2, . . . , xn) and weights (1, 1, . . . , 1, uold

1 , uold
2 , . . . , uold

n ). This step
can be readily implemented through the glm.nb() function from the MASS package
in R.

Step 2. Update pi values by maximizing ℓ2(p1, . . . , pn) under the positive and sum-to-one
constraints. This step yields a closed form, namely, pnew

i = (uold
i + 1)/ ∑n

i=1(u
old
i + 1)

for i = 1, . . . , n.
Step 3. Update α by calculating αnew = ∑n

i=1 ϕ(xi; βnew, knew)pnew
i .
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The E- and M-steps are repeated until the sequence of (βnew, knew, αnew, {pnew
i }) or

ℓ̃p(N, βnew, knew, αnew, {pnew
i }) converges. The EM algorithm outlined above exhibits

a desirable property under very general circumstances: the penalized empirical
likelihood does not decrease with successive iterations. Given that the penalized
empirical log-likelihood is bounded above by zero, the convergence of the sequence
(βnew, knew, αnew, {pnew

i }) to a local maximum of ℓ̃p(N, β, k, α, {pi}) is always guaranteed.
To compute the maximum penalized empirical likelihood estimator (N̂p, β̂p, k̂p, α̂p),

the aforementioned EM algorithm remains applicable after some modifications. In this
scenario, the current parameter is denoted by θold = (Nold, βold, kold, αold, {pold

i }) and the
weight is ui = (Nold − n)ϕ(xi; βold, kold)pold

i /αold in the E-step. In addition, the M-step
incorporates a maximization step for the population size parameter.

Step 4. Calculate the updated value Nnew, by maximizing the partial log-likelihood function
relavent on N, expressed as log (N

n ) + (N − n) log(αnew) + fp(N). This optimization
can be efficiently performed using the optimize() function available in the R
software (version 4.3.1, https://www.r-project.org/).

The penalized empirical likelihood ratio confidence interval for N is computed by
identifying the two zeros of the modified penalized likelihood ratio function:

ℓm(N) = 2

{
ℓp(N̂p, β̂p, k̂p, α̂p)− max

(β,k,α)
ℓp(N, β, k, α)

}
− χ2

1(1 − a), (6)

where the search for these zeros is conducted within the intervals [n, N̂p] and [N̂p, M],
and M is a sufficiently large user-specified value ensuring that ℓm(M) > 0. This can
be implemented via the uniroot() function available in the R software. In summary,
the pseudocodes outlined in Algorithms A1–A3 (Appendix B) offer the procedures
for calculating both the maximum penalized empirical likelihood estimator and the
corresponding penalized empirical likelihood ratio confidence interval for N.

3. Simulations

To demonstrate the efficiency of penalized empirical likelihood estimators, several
simulations are conducted and multiple synthetic datasets are analyzed. In the simulation
settings, we fix the abundance N0 at 250, 500, and 1000. We consider two different scenarios
for generating the covariate X:

(A) A binary variable, X ∼ Bi(1, 0.3), is used to represent a discrete-valued covariate, as
in the case study presented in Section 4.

(B) Alternatively, a continuous variable, X ∼ U(0, 1), is considered.

Given X = (1, X)⊤, we simulate the count response Y from a negative binomial
regression model (1), where the regression coefficient β0 is set at (−0.5, 0.3)⊤ or (0.1, 0.3)⊤

and the dispersion parameter k0 is set at 0.5, 1, or 5.
Under each of the 18 (3 × 2 × 3) parameter combinations, we simulate 2000 random

samples for each scenario. Subsequently, we calculate the maximum empirical likelihood
estimators (N̂ and N̂p) as well as the empirical likelihood ratio interval estimators (I
and Ip), where the estimators with the subscript p are derived via the penalized method.
When the penalty is applied, we recommend an adaptive tuning parameter value of
C = {2n(ν − n)2}−1, which is proven effective in our numerical studies.

3.1. Evaluation of Point Estimators

We evaluate the performance of two point estimators N̂ and N̂p, by assessing their
relative bias in percent (%Rbias) and relative mean squared error (RMSE). For a generic
estimator Ň, the %Rbias and RMSE are as follows:

https://www.r-project.org/
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%Rbias =
1

2000

2000

∑
j=1

Ňj − N0

N0
× 100 and RMSE =

1
2000

2000

∑
j=1

(Ňj − N0)
2

N0
,

respectively, where Ňj represents the estimate derived from the jth random sample. Table 1
reports the simulated %Rbiases and RMSEs of both estimators N̂ and N̂p.

We first examine the simulation results when β0 = (0.1, 0.3)⊤ with the average capture
probability of 56%. From the last two columns of Table 1, we see that the %Rbiases and
RMSEs of both estimators are comparable when k0 = 5, where the variance-to-mean ratio
(VMR) is as low as 1.3. However, the results differ significantly when k0 decreases to 1
and further to 0.5, with VMRs of 2.3 and 3.5, respectively. As the degree of overdispersion
increases, the maximum empirical likelihood estimator N̂ uniformly exhibits larger biases
and RMSEs than the maximum penalized empirical likelihood estimator N̂p. For example,
in Scenario A when k0 = 0.5 and N0 = 250, the relative bias of N̂ is as large as 29.8%, and
the RMSE of N̂ is about 44 times (1768/40) the RMSE of N̂p.

Table 1. Relative biases in percent (%Rbiases) and relative mean squared errors (RMSEs) in simulation
studies. The RMSE values are rounded to the nearest integer.

β0 = (−0.5, 0.3)⊤ β0 = (0.1, 0.3)⊤

k0 = 0.5 k0 = 1 k0 = 5 k0 = 0.5 k0 = 1 k0 = 5

N0 N̂ N̂p N̂ N̂p N̂ N̂p N̂ N̂p N̂ N̂p N̂ N̂p

Scenario A

%Rbias 250 82.6 −2.92 34.9 4.24 16.7 10.1 29.8 0.59 5.64 1.86 0.46 0.44

500 37.8 3.81 14.6 5.53 4.31 4.02 6.65 2.08 1.36 1.14 0.24 0.24

1000 19.8 7.90 3.27 2.73 1.44 1.44 1.97 1.62 0.55 0.53 −0.06 −0.06

RMSE 250 4006 73 1567 73 330 57 1768 40 136 24 5 4

500 2558 130 881 114 51 41 271 53 25 23 4 4

1000 2336 246 123 96 28 28 61 54 17 16 4 4

Scenario B

%Rbias 250 83.14 −1.75 30.38 4.17 15.08 9.02 24.23 1.00 6.07 2.20 0.28 0.25

500 33.18 4.30 11.01 4.66 3.72 3.57 6.48 2.03 1.01 0.86 0.19 0.19

1000 15.12 6.95 3.02 2.56 1.19 1.18 1.55 1.24 0.48 0.47 −0.07 −0.07

RMSE 250 4222 73 1228 68 297 56 1143 38 128 24 4 4

500 2474 121 720 96 34 31 571 48 19 17 4 4

1000 1168 210 115 84 24 24 55 48 15 15 3 3

Next, we examine the results when β0 = (−0.5, 0.3)⊤. In this scenario, the %Rbiases
and RMSEs of both estimators are larger than those when β0 = (0.1, 0.3)⊤. This is expected
because the average capture probability reduces from 56% to 40%, making the sample
provide less information about the model parameters. As in the aforementioned scenario,
similar conclusions can be drawn, with the advantages of N̂p over N̂ being even clear.
All relative biases of N̂p are smaller than 10%. In contrast, N̂ generally overestimates the
population size, with the largest relative bias approaching 83% in Scenario B when k0 = 0.5
and N0 = 250. In this case, its RMSE is about 58 times (4222/73) the RMSE of N̂p.

3.2. Evaluation of Interval Estimators

We evaluate and contrast the performance of two empirical likelihood ratio interval
estimators: Ip (with penalty) and I (without penalty). This comparison focuses on their
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coverage probabilities and interval widths. As discussed in the introduction, the interval
estimators may have unbounded upper limits. In the simulation, the interval estimator’s
upper limit was set to the minimum of the right endpoint and 100 times the sample size.

Table 2 presents the simulation results at the 95% confidence level. Overall, the
coverage accuracy of the two interval estimators is similar, with coverage probabilities
either matching or slightly exceeding the nominal 95% level. However, the widths of Ip
are always shorter than those of I , indicating that the penalized empirical likelihood ratio
interval estimator offers greater precision. Specifically, the width of Ip is 12% (605/5112) of
that of I in Scenario B when N0 = 250, k0 = 0.5, and β0 = (0.1, 0.3)⊤.

Table 2. Simulated coverage probabilities (CPs, unit: %) and average widths (AWs) of interval
estimators I and Ip at the 95% level, along with the proportion of bounded cases (PBC, unit: %)
whose upper limits are less than 100 times the observed sample sizes. The AW and PBC values are
rounded to the nearest integer.

β0 = (−0.5, 0.3)⊤ β0 = (0.1, 0.3)⊤

k0 = 0.5 k0 = 1 k0 = 5 k0 = 0.5 k0 = 1 k0 = 5

N0 I Ip I Ip I Ip I Ip I Ip I Ip

Scenario A

CP 250 94.00 93.90 93.05 93.10 97.75 97.80 93.45 93.60 94.35 94.35 95.60 95.60

500 94.70 94.70 94.00 94.05 97.15 97.15 93.75 93.90 94.55 94.55 95.25 95.25

1000 94.60 94.80 95.25 95.25 95.80 95.80 94.65 94.65 95.20 95.20 96.10 96.10

AW 250 742 290 836 363 647 410 776 317 577 330 185 171

500 1532 745 1294 833 929 745 1104 696 576 498 200 200

1000 2721 1763 2046 1584 971 909 1426 1152 591 582 258 258

PBC 250 33 100 46 100 67 100 58 100 86 100 100 100

500 46 100 66 100 90 100 80 100 98 100 100 100

1000 67 100 89 100 99 100 97 100 100 100 100 100

Scenario B

CP 250 93.85 93.6 93.50 93.55 97.15 97.20 93.95 93.65 93.90 93.95 95.15 95.15

500 94.85 94.8 94.60 94.60 96.65 96.65 94.30 94.40 94.85 94.90 95.10 95.10

1000 94.15 94.2 95.35 95.35 96.10 96.10 94.85 94.85 95.65 95.65 95.75 95.75

AW 250 6002 820 5646 973 3654 947 5112 605 2122 458 174 154

500 9773 1804 6999 1744 2462 1075 4817 1010 887 504 182 181

1000 12250 3343 4981 2157 896 820 2084 1195 545 536 237 237

PBC 250 34 100 48 100 73 100 60 100 88 100 100 100

500 48 100 70 100 93 100 83 100 99 100 100 100

1000 70 100 92 100 100 100 98 100 100 100 100 100

Finally, we explore the possible explanations for the significant differences in the
widths of the confidence intervals. For this purpose, Table 2 also reports the proportion
of bounded cases, in which the upper limits are less than 100 times the observed sample
sizes. In the other cases, the upper limits can be seen unbounded. From Table 2, it is
clear that there are many unbounded cases for I . The smaller N0 or k, the more likely
this boundary problem occurs. In contrast, the upper limits of Ip are always bounded.
This demonstrates that the penalized empirical likelihood method effectively reduces the
occurrence of boundary problems, leading to more precise intervals.
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4. Case Study

Among the various bear species found in North America, the black bear (Ursus
americanus) stands out as the most widely distributed game species. However, their
populations have become fragmented, owing to over-harvesting. Understanding black bear
demography is crucial for informing effective management and conservation strategies [27].

This study aims to make statistical inferences for the abundance of black bears at the
U.S. Army’s Fort Drum Military Installation in northern New York. For this purpose, the
capture–recapture experiment was conducted using an array of 38 baited “hair snares”
during June and July 2006. The study area and the locations of the 38 hair snares are
illustrated in Figure 1.4 in ref. [28]. Each week, for eight consecutive weeks, barbed wire
traps were baited and checked for hair samples. Over the 8-week period, a total of 47 black
bears were captured at least once, with their sex recorded upon capture. The original data
structure also includes the trap locations and whether each bear was captured at each
location. Although capture status was recorded for each bear across all 38 hair snares,
we treat this as a standard capture–recapture dataset. Specifically, a bear was considered
captured if it was caught at least once in any given week. The analyzed data include
the number of weeks that bears were captured and the sex of each bear; see Table 3 for
the frequencies.

Table 3. Description of the black bear data.

Number of Captures 1 2 3 4 5 6 7

Male 11 7 5 1 2 1 1

Female 8 4 2 1 0 1 3

We first examine the estimation results of abundance in the framework of the Poisson
regression model. With this model, we find that the maximum empirical likelihood estimate
equals 52. This point estimate is smaller than Chao lower bound estimate of 63, indicating
that the Poisson regression model may be not adequate to fit this dataset. This inadequacy
is further illustrated via the ratio plot (see Figure 1A), indicating a nonconstant relationship
between the ratios of frequencies and the number of captures.
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Figure 1. (A) The ratio plot depicts the relationship between the frequency ( fy) of capture counts (y),
where the dashed line represents the fitted linear model. (B) The log-EL ratio curve shows the profile
empirical log-likelihood ratio functions with penalty (red dashed line) and without penalty (black
solid line) of the abundance.

Now, we examine the estimation results in the framework of the negative binomial
regression model. Applying the maximum empirical likelihood methods with and without
penalty, we find that both approaches yield a point estimate of 72 with a standard error
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of 8.9 for the abundance, significantly higher than the estimate of 52 derived from the
Poisson regression model. This difference can be attributed to overdispersion present
in the negative binomial regression model, as indicated by an overdispersion parameter
estimate of 1.2 with a standard error of 0.2. For completeness, we also calculate the ratio
regression estimate proposed in ref. [12], which is 74 with a standard error of 10.2. Our
point estimate is close to the ratio regression estimate but more efficient, as indicated by
the smaller standard error.

Applying the empirical likelihood method with and without penalty, we obtain
significantly different interval estimates of the abundance. At the 95% confidence level, the
empirical likelihood ratio interval estimate (I) is [52, 1343], whereas the penalized empirical
likelihood ratio interval estimate (Ip) is [52, 201]. Clearly, I exhibits a significantly larger
upper limit in comparison to Ip. In order to understand this discrepancy, we plot the profile
empirical log-likelihood ratio functions with and without penalty of the abundance (see
Figure 1B). The two functions are very close when the abundance N is less than 100 but
diverge when N > 100. The empirical log-likelihood ratio function increases gradually
without penalty, flattening as N increases. In contrast, the penalized log-likelihood ratio
function exhibits a rapid ascent with increasing N, thereby enhancing the precision of the
confidence interval. This demonstrates how the penalized empirical likelihood method
effectively mitigates the boundary problem caused by overdispersion.

As suggested by one peer reviewer, we also applied the classical Lincoln–Petersen
method [1,2] to the black bear data. For performing the Lincoln–Petersen method, the eight
weeks of data were divided into two samples: the initial weeks constituted sample 1, while
the remaining weeks formed sample 2. The Lincoln–Petersen estimator is calculated as
n1n2/n12, where n1, n2, and n12 represent the number of individuals in sample 1, sample 2,
and the overlap between the two samples, respectively. The variance of this estimator is
calculated as:

(n1 + 1)(n2 + 1)(n1 − n12)(n2 − n12)

(n12 + 1)2(n12 + 2)
.

Table 4 presents the Lincoln–Petersen estimates along with their standard errors. It
is clear that all estimates are consistently lower than the maximum penalized empirical
likelihood estimate of 72. This discrepancy is likely due to the assumption of sample
independence inherent in the Lincoln–Petersen method, which may not hold true in
this context. Specifically, bears captured in the first sample may be more likely to be
recaptured due to the lure, leading to a positive correlation between the two samples
and an overestimation of capture probability. Additionally, the standard errors for the
Lincoln–Petersen estimates are uniformly smaller than the standard error of 8.9 obtained
from our proposed method. This difference might arise because the Lincoln–Petersen
estimator assumes equal capture probability across all individuals, failing to account for
heterogeneity, such as sex-based variation. In contrast, our proposed method explicitly
incorporates sex as a factor, addressing this limitation.

Table 4. Lincoln–Petersen estimates and standard errors (SEs).

Sample 1 Sample 2 n1 n2 n12 Estimate SE

week 1 weeks 2–8 9 45 7 58 7.8

weeks 1–2 weeks 3–8 14 43 10 60 7.7

weeks 1–3 weeks 4–8 27 38 18 57 5.2

weeks 1–4 weeks 5–8 33 38 24 52 3.2

weeks 1–5 weeks 6–8 38 31 22 54 3.8

weeks 1–6 weeks 7-8 40 31 22 54 3.8

weeks 1–7 week 8 45 11 9 55 6.0
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Given that the true population size is unknown, we aim to validate the reliability of
our method’s conclusions by assessing whether the negative binomial regression model
accurately fits the observed frequency data. To this end, we have included a goodness-of-fit
test in the revision. Specifically, for the black bear data, we define the χ2 test statistic as:

χ2 =
(e1 − m1)

2

e1
+

(e2 − m2)
2

e2
+

(e3 − m3)
2

e3
+

(e4 − m4)
2

e4
+

(e5 − m5)
2

e5
,

where m1 = 19, m2 = 11, m3 = 7, m4 = 2, and m5 = 8 represent the observed frequencies of
captures occurring once, twice, three times, four times, and at least five times, respectively.
The expected frequencies are computed as:

ek = n
∑n

i=1 p̂i f (k, xi; β̂p, k̂p)

∑n
i=1 p̂i{1 − ϕ(xi; β̂p, k̂p)}

, k = 1, 2, 3, 4,

with e5 = n − ∑4
k=1 ek, where the p̂i’s are those convergence values of the pi’s obtained from

the EM algorithm. The χ2 test statistic, calibrated with a χ2
4 distribution, yields a value of

1.66 with a p-value of 0.8. This result suggests that the negative binomial regression model
fits the black bear data well, thereby supporting the reliability of our estimation results
with this model.

5. Conclusions and Discussion

The use of the negative binomial regression model is prevalent to address
heterogeneity and dispersion related to capture–recapture frequency data. As noted in
refs. [10,11], fitting this model often leads to identification and boundary problems for the
dispersion parameter and then yields unbounded population size estimates. To address
this boundary problem, we proposed imposing a half-normal prior on the population size
or equivalently decreasing the empirical log-likelihood function for large population sizes
by adding a suitable penalty function. This penalized technique could improve robustness
of the maximum penalized empirical likelihood estimator, ensuring the derivation of a
consistently bounded interval estimator. This penalized empirical likelihood approach
constitutes a significant contribution of our paper. Additionally, we introduced an efficient
EM algorithm to maximize the penalized empirical likelihood function. Unlike the classical
Newton-type optimization method, the EM algorithm guarantees local convergence of the
numerical procedure and yields stable estimates of population size. Compared to estimators
without penalty, the proposed maximum penalized empirical likelihood estimator exhibits
a higher efficiency and the penalized empirical likelihood ratio interval estimator is
more precise.

This paper assumes that the capture–recapture experiment is conducted at a single
site. However, in ecological studies, experiments are often conducted at multiple sites or
follow a spatial pattern [29]. For example, the case study in Section 4 belongs to this case.
To accommodate these general application scenarios, the count data can be considered as
copies of (Y(1), Y(2), . . . , Y(J)), where, for j = 1, 2, . . . , J, Y(j) represents the number of times
a generic individual was captured at the jth site. In such cases, the multivariate mixed
negative binomial regression model used in ref. [30] can be adopted to fit the count data.
Specifically, the conditional probability model (1) becomes:

P(Y(1) = y(1), Y(2) = y(2), . . . , Y(J) = y(J) | X = x)

=
∫ ∞

0
· · ·

∫ ∞

0

J

∏
j=1

Γ(y(j) + k j)

Γ(y(j) + 1)Γ(k j)

{
k j

k j + λjµ(x; β)

}kj
{

λjµ(x; β)

k j + λjµ(x; β)

}y(j)

h(λ1, . . . , λJ ; γ)dλ1 . . . dλJ ,

where (λ1, . . . , λJ) describes the sites’ random effects and h(λ1, . . . , λJ ; γ) describes the
spatial variation of capture intensities across sites. Following the approach used in ref. [30],
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one can opt for a gamma distribution as the mixing distribution, with a probability density
function described by:

h(λ1, . . . , λJ ; γ) =
γγ

Γ(γ)
exp(−γλ)λγ−1 I(λ1 = · · · = λJ = λ),

where γ > 0. When spatial auto-correlation arises, indicating that random effects are
partially correlated across different sites, (log(λ1), . . . , log(λJ)) can be modeled by a
Gaussian random field. The covariance matrix of this field can be determined by flexible
spatial covariance functions [31].

Throughout the paper, the conditional mean of the count data are assumed to have a
log-linear relationship with individual covariates, as depicted in model (1). In practice, the
relationship between the conditional mean and covariates may be more complex. To adapt
our approach for practical application scenarios, one can employ the negative binomial
additive model with flexible smoothing functions for each covariate [32]. In addition,
applying the proposed methods to a more generalized Poisson mixture model, where
the Tweedie distribution is used as the mixing distribution [33], is a straightforward yet
challenging task.
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Appendix A. Some Preparation for the Proof of Theorem 1

The following lemmas facilitate the proof of Theorem 1. Specifically, Lemma A1
establishes the magnitude bounds on the first two derivatives of the penalty function.
Lemma A2 identifies the leading terms of the logarithmic derivatives of the gamma
functions. Lemma A3 presents fundamental results regarding the expectations of sample-
based functions. Finally, Lemma A4 provides key results for conditional expectations
within the framework of the negative binomial regression model (1).

Lemma A1. Suppose that fp(N) = −C(N − ν)2 I(N > ν), C = Op(N−2
0 ). Then (a)

f ′p(N0) = Op(N−1
0 ); and (b) f ′′p (N0) = Op(N−3/2

0 ).

Proof. It suffices to show that ν = Op(N0), which holds because ν is the lower bound
of N0.

Lemma A2. Let Γ(x) be the gamma function. Define:

S1(N, n) =
∂ log{Γ(N + 1)/Γ(N − n + 1)}

∂N
,

S2(N, n) =
∂2 log{Γ(N + 1)/Γ(N − n + 1)}

∂N2 .

https://github.com/ecnuliuyang/AbunNB
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We have:

S1(N0, n) = − log(α0) +
(n/N0)− 1 + α0

α0
+ Op(N−1

0 ), (A1)

S2(N0, n) = −1 − α0

N0α0
+ Op(N−3/2

0 ). (A2)

Proof. We refer readers to pages 6 and 9 of the Supplementary Material of ref. [16].

Lemma A3. Suppose r(x) is a nonzero function of x and g(y) is a function of y. Then the following
results hold.

(a) If E[r(X){1 − ϕ(X; β0, k0)}] < ∞, we have:

E
{

1
N0

n

∑
i=1

r(xi)

}
= E[r(X){1 − ϕ(X; β0, k0)}].

(b) If E[{r(X)}2{1 − ϕ(X; β0, k0)}] < ∞, we have:

1
N0

n

∑
i=1

r(xi)−E[r(X){1 − ϕ(X; β0, k0)}] = Op(N−1/2
0 ).

(c) If E[r(X)E{g(Y) | X}] < ∞ and g(0) = 0, we have:

E
{

1
N0

n

∑
i=1

g(yi)r(xi)

}
= E[r(X)E{g(Y) | X}].

Specifically, the above equation equals µ(X; β0, k0) if g(y) = y.

Proof. Let {(Xi, Yi) : i = 1, . . . , N0} denote the independent and identically distributed
(i.i.d) copies of (X, Y) for individuals in the population. Note that:

1
N0

n

∑
i=1

r(xi) =
1

N0

N0

∑
i=1

r(Xi)I(Yi > 0),

the right hand side of which is a summation of i.i.d random variables. Hence, Result (a)
follows from the fact that

E{r(Xi)I(Yi > 0)} = E[r(Xi)E{I(Yi > 0)|Xi}] = E[r(Xi){1 − ϕ(X; β0, k0)}].

where the last equality uses that ϕ(x; β0, k0) = pr(Y = 0 | X = x).
For Result (b), we first write:

1
N0

n

∑
i=1

r(xi)−E[r(X){1 − ϕ(X; β0, k0)}]

=
1

N0

N0

∑
i=1

(
r(Xi)I(Di > 0)−E[r(X){1 − ϕ(X; β0, k0)}]

)
.

Because E[{r(X)}2{1 − ϕ(X; β0, k0)}] < ∞ and r(x) is nonzero, by the central limit
theorem we have:

N1/2
0

{
1

N0

n

∑
i=1

r(xi)−E[r(X){1 − ϕ(X; β0, k0)}]
}

d−→ N[0,Var{r(X)I(Y > 0)}],
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where

Var{r(X)I(Y > 0)} = E[{r(X)}2{1 − ϕ(X; β0, k0)}]− (E[r(X){1 − ϕ(X; β0, k0)}])2 < ∞

and d−→ stands for convergence in distribution. Hence, result (b) follows.
For result (c), it follows that:

E
{

1
N0

n

∑
i=1

g(yi)r(xi)

}
= E[r(X)E{g(Y)I(Y > 0) | X}] = E[r(X)E{g(Y) | X}].

Lemma A4. Under the negative binomial regression model (1), we have:

E[S1(Y + k − 1, Y) | X] = − log
{

k
k + µ(X; β)

}
, (A3)

E[YS1(Y + k − 1, Y) | X] =

[
1
k
− log

{
k

k + µ(X; β)

}]
µ(X; β), (A4)

E[S2(Y + k − 1, Y) | X] =

[
log
{

k
k + µ(X; β)

}]2
−E[{S1(Y + k − 1, Y)}2 | X]. (A5)

Proof. Consider the negative binomial distribution:

q(y; µ, k) =
Γ(y + k)

Γ(y + 1)Γ(k)

(
k

k + µ

)k( µ

k + µ

)y
, y = 0, 1, . . . .

We use Eq to denote the expectation of Y with respect to the probability mass function
q(y; µ, k). Under regular conditions that the expectation operation and the first two partial
derivatives of q(y; µ, k) with respect to (µ, k) are exchangeable, we have:

Eq

[
∂ log{q(Y; µ, k)}

∂k

]
= 0, (A6)

Eq

[
∂2 log{q(Y; µ, k)}

∂µ∂k

]
= −Eq

[
∂ log{q(Y; µ, k)}

∂µ

∂ log{q(Y; µ, k)}
∂k

]
, (A7)

Eq

[
∂2 log{q(Y; µ, k)}

∂k2

]
= −Eq

([
∂ log{q(Y; µ, k)}

∂k

]2
)

. (A8)

Since:

∂ log{q(y; µ, k)}
∂k

= log
(

k
k + µ

)
− y − µ

k + µ
+ S1(y + k − 1, y),

it follows from Equation (A6) and Eq(Y) = µ that Eq{S1(Y + k − 1, Y)} = − log{k/(k +
µ)}. and thus, Equation (A3) holds. Since:

Eq

[
∂2 log{q(Y; µ, k)}

∂µ∂k

]
= Eq

{
Y − µ

µ(k + µ)

(
1 − 1

k + µ

)}
= 0,

Eq

[
∂ log{q(Y; µ, k)}

∂µ
· ∂ log{q(Y; µ, k)}

∂k

]
= Eq

[
k(Y − µ)

µ(k + µ)
·
{

log
k

k + µ
− Y − µ

k + µ
+ S1(Y + k − 1, Y)

}]
=

k
µ(k + µ)

[
Eq{YS1(Y + k − 1, Y)} − µ

k
+ µ log

k
k + µ

]
,
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where the last equation uses Eq{(Y − µ)2} = µ(k + µ)/k. It follows from Equation (A7)
that Eq{YS1(Y + k − 1, Y)} = [k−1 − log{k/(k + µ)}]µ, and thus, Equation (A4) holds.

It can be verified that:

Eq

[
∂2 log{q(Y; µ, k)}

∂k2

]
=

1
k
− 1

k + µ
+Eq{S2(Y + k − 1, Y)},

Eq

[{
∂ log{q(Y; µ, k)}

∂k

}2
]

= −
{

log
(

k
k + µ

)}2
+Eq

{(
µ − Y
k + µ

)2
}

+Eq[{S1(Y + k − 1, Y)}2]− 2µ

k(k + µ)

= −
{

log
(

k
k + µ

)}2
− µ

k(k + µ)
+Eq[{S1(Y + k − 1, Y)}2].

Following Equation (A8), we have:

Eq[S2(Y + k − 1, Y)] +Eq[{S1(Y + k − 1, Y)}2] =

{
log
(

k
k + µ

)}2
,

and thus, Equation (A5) holds.

Appendix B. Pseudocodes to Perform the Penalized Empirical Likelihood Method

Pseudocodes are provided for the implementation of the penalized empirical
likelihood method. Algorithm A1 details the steps for maximizing ℓp(N, β, k, α) with
respect to (β, k, α) for a fixed N using the EM algorithm. Algorithm A2 presents the process
for obtaining the maximum penalized empirical likelihood estimator (N̂p, β̂p, k̂p, α̂p).
Finally, Algorithm A3 describes the procedure for constructing the penalized empirical
likelihood ratio confidence interval Ip.

Algorithm A1 Pseudocode to calculate max(β,k,α) ℓp(N, β, k, α) via the EM algorithm

1: Input: Observations {(y1, x1), (y2, x2), . . . , (yn, xn)}, fixed value N, initial parameter
values (βnew, knew, αnew, {pnew

i }), and convergence threshold ϵ = 10−5

2: Output: ℓp(N, βold, kold, αold)
3: do
4: Set (βold, kold, αold, {pold

i }) = (βnew, knew, αnew, {pnew
i })

5: for i = 1, 2, . . . , n do

6: Compute uold
i =

(N−n)ϕ(xi ;βold,kold)pold
i

αold

7: end for
8: Update parameters (βnew, knew) using the R function glm.nb() by fitting a

negative binomial regression model to (y1, y2, . . . , yn, 0, 0, . . . , 0︸ ︷︷ ︸
n

) with covariates

(x1, x2, . . . , xn, x1, x2, . . . , xn) and weights (1, 1, . . . , 1, uold
1 , uold

2 , . . . , uold
n )

9: for i = 1, 2, . . . , n do

10: Update pnew
i =

uold
i +1

∑n
i=1(u

old
i +1)

11: end for
12: Compute αnew = ∑n

i=1 ϕ(xi; βnew, knew)pnew
i

13: Calculate the difference diff = ℓp(N, βnew, knew, αnew)− ℓp(N, βold, kold, αold)
14: while |diff| > ϵ
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Algorithm A2 Pseudocode for estimating (N̂p, β̂p, k̂p, α̂p) using the EM algorithm

1: Input: Observations {(y1, x1), (y2, x2), . . . , (yn, xn)}, initial parameter values
(Nnew, βnew, knew, αnew, {pnew

i }), and threshold ϵ = 10−5

2: Output: Estimate (Nold, βold, kold, αold)
3: do
4: Set (Nold, βold, kold, αold, {pold

i }) = (Nnew, βnew, knew, αnew, {pnew
i })

5: for i = 1, 2, . . . , n do

6: Compute uold
i =

(Nold−n)ϕ(xi ;βold ,kold)pold
i

αold

7: end for
8: Update parameters (βnew, knew) by fitting a negative binomial regression model

to (y1, y2, . . . , yn, 0, 0, . . . , 0︸ ︷︷ ︸
n

) with covariates (x1, x2, . . . , xn, x1, x2, . . . , xn) and weights

(1, 1, . . . , 1, uold
1 , uold

2 , . . . , uold
n ) using the R function glm.nb()

9: for i = 1, 2, . . . , n do

10: Calculate pnew
i =

uold
i +1

∑n
i=1(u

old
i +1)

11: end for
12: Compute αnew = ∑n

i=1 ϕ(xi; βnew, knew)pnew
i

13: Update Nnew by maximizing log (N
n ) + (N − n) log(αnew) + fp(N) with respect to

N using the R function optimize()
14: Calculate the difference diff = ℓp(Nnew, βnew, knew, αnew)− ℓp(Nold, βold, kold, αold)
15: while |diff| > ϵ

Algorithm A3 Pseudocode for calculating Ip at the (1 − a) confidence level

1: Input: Observations {(y1, x1), (y2, x2), . . . , (yn, xn)} and significance level a
2: Output: Confidence interval [N̂pl , N̂pu]
3: Apply Algorithm A2 to compute the maximum penalized empirical likelihood estimate

(N̂p, β̂p, k̂p, α̂p)

4: Use the R function uniroot() to find the lower bound N̂pl by searching the root of
ℓm(N) in the interval [n, N̂p], where ℓm(N) is defined in Equation (6)

5: for k = 1, 2, . . . do
6: Set M = 2k N̂p.
7: if ℓm(M) > 0 then
8: Break
9: end if

10: end for
11: Use the R function uniroot() to determine the upper bound N̂pu by searching the root

of ℓm(N) within [N̂p, M], where ℓm(N) is defined in Equation (6)

References
1. Lincoln, F.C. Calculating Waterfowl Abundance on the Basis of Banding Returns; Number 118; U.S. Department of Agriculture:

Washington, DC, USA, 1930.
2. Petersen, C.G.J. The yearly immigration of young plaice in the Limfjord from the German sea. Rep. Dan. Biol. Stn. 1896, 6, 1–77.
3. McCrea, R.S.; Morgan, B.J.T. Analysis of Capture–Recapture Data; Chapman & Hall/CRC: London, UK, 2014.
4. Corrao, G.; Bagnardi, V.; Vittadini, G.; Favilli, S. Capture-recapture methods to size alcohol related problems in a population.

J. Epidemiol. Community Health 2000, 54, 603–610. [CrossRef] [PubMed]
5. Frischer, M.; Bloor, M.; Finlay, A.; Goldberg, D.; Green, S.; Haw, S.; McKeganey, N.; Platt, S. A new method of estimating

prevalence of injecting drug use in an urban population: Results from a Scottish city. Int. J. Epidemiol. 1991, 20, 997–1000.
[CrossRef] [PubMed]

6. Gallay, A.; Vaillant, V.; Bouvet, P.; Grimont, P.; Desenclos, J.C. How many foodborne outbreaks of Salmonella infection occurred
in France in 1995? Application of the capture-recapture method to three surveillance systems. Am. J. Epidemiol. 2000, 152, 171–177.
[CrossRef]

7. Lindén, A.; Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology
2011, 92, 1414–1421. [CrossRef]

http://doi.org/10.1136/jech.54.8.603
http://www.ncbi.nlm.nih.gov/pubmed/10890872
http://dx.doi.org/10.1093/ije/20.4.997
http://www.ncbi.nlm.nih.gov/pubmed/1800442
http://dx.doi.org/10.1093/aje/152.2.171
http://dx.doi.org/10.1890/10-1831.1


Mathematics 2024, 12, 2674 23 of 23

8. Cruyff, M.J.L.F.; van Der Heijden, P.G.M. Point and interval estimation of the population size using a zero-truncated negative
binomial regression model. Biom. J. 2008, 50, 1035–1050. [CrossRef]

9. Stoklosa, J.; Blakey, R.V.; Hui, F.K. An overview of modern applications of negative binomial modelling in ecology and biodiversity.
Diversity 2022, 14, 320. [CrossRef]

10. Anan, O. Capture-Recapture Modelling for Zero-Truncated Count Data Allowing for Heterogeneity. Ph.D. Thesis, University of
Southampton, Southampton, UK, 2016.

11. Böhning, D. Power series mixtures and the ratio plot with applications to zero-truncated count distribution modelling. Metron
2015, 73, 201–216. [CrossRef]

12. Rocchetti, I.; Bunge, J.; Böhning, D. Population size estimation based upon ratios of recapture probabilities. Ann. Appl. Stat. 2011,
5, 1512–1533. [CrossRef]

13. Godwin, R.T. One-inflation and unobserved heterogeneity in population size estimation. Biom. J. 2017, 59, 79–93. [CrossRef]
14. van Der Heijden, P.G.M.; Bustami, R.; Cruyff, M.J.L.F.; Engbersen, G.; van Houwelingen, H.C. Point and interval estimation of

the population size using the truncated Poisson regression model. Stat. Model. 2003, 3, 305–322. [CrossRef]
15. van Der Heijden, P.G.M.; Cruyff, M.J.L.F.; van Houwelingen, H.C. Estimating the size of a criminal population from police

records using the truncated Poisson regression model. Stat. Neerl. 2003, 57, 289–304. [CrossRef]
16. Liu, Y.; Li, P.; Qin, J. Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data.

Biometrika 2017, 104, 527–543.
17. Liu, Y.; Li, P.; Liu, Y.; Zhang, R. Semiparametric empirical likelihood inference for abundance from one-inflated capture–recapture

data. Biom. J. 2022, 64, 1040–1055. [CrossRef] [PubMed]
18. Liu, Y.; Liu, Y.; Li, P.; Qin, J. Full likelihood inference for abundance from continuous time capture–recapture data. J. R. Stat. Soc.

Ser. B (Stat. Methodol.) 2018, 80, 995–1014. [CrossRef]
19. Liu, Y.; Liu, Y.; Li, P.; Zhang, R. Two-step semiparametric empirical likelihood inference from capture–recapture data with missing

covariates. Test 2024, in press.
20. Liu, Y.; Liu, Y.; Li, P.; Zhu, L. Maximum likelihood abundance estimation from capture-recapture data when covariates are

missing at random. Biometrics 2021, 77, 1050–1060. [CrossRef]
21. Owen, A.B. Empirical likelihood ratio confidence intervals for a single functional. Biometrika 1988, 75, 237–249. [CrossRef]
22. Owen, A.B. Empirical likelihood ratio confidence regions. Ann. Stat. 1990, 18, 90–120. [CrossRef]
23. Chao, A. Estimating the population size for capture–recapture data with unequal catchability. Biometrics 1987, 43, 783–791.

[CrossRef]
24. Böhning, D.; Vidal-Diez, A.; Lerdsuwansri, R.; Viwatwongkasem, C.; Arnold, M. A generalization of Chao’s estimator for

covariate information. Biometrics 2013, 69, 1033–1042. [CrossRef]
25. Gurmu, S. Tests for detecting overdispersion in the positive Poisson regression model. J. Bus. Econ. Stat. 1991, 9, 215–222.

[CrossRef]
26. Yehia, E.G. Power of Overdispersion Tests in Zero-Truncated Negative Binomial Regression Model. Am. J. Theor. Appl. Stat. 2021,

10, 152–157. [CrossRef]
27. Beston, J.A. Variation in life history and demography of the American black bear. J. Wildl. Manag. 2011, 75, 1588–1596. [CrossRef]
28. Royle, J.A.; Chandler, R.B.; Sollmann, R.; Gardner, B. Spatial Capture-Recapture; Academic Press: Cambridge, MA, USA, 2013.
29. Tourani, M. A review of spatial capture–recapture: Ecological insights, limitations, and prospects. Ecol. Evol. 2022, 12, e8468.

[CrossRef] [PubMed]
30. Tzougas, G.; di Cerchiara, A.P. The multivariate mixed negative binomial regression model with an application to insurance a

posteriori ratemaking. Insur. Math. Econ. 2021, 101, 602–625. [CrossRef]
31. Schmidt, A.M.; Guttorp, P. Flexible spatial covariance functions. Spat. Stat. 2020, 37, 100416. [CrossRef]
32. Thurston, S.W.; Wand, M.; Wiencke, J.K. Negative binomial additive models. Biometrics 2000, 56, 139–144. [CrossRef]
33. Bonat, W.H.; Jørgensen, B.; Kokonendji, C.C.; Hinde, J.; Demétrio, C.G. Extended Poisson–Tweedie: Properties and regression

models for count data. Stat. Model. 2018, 18, 24–49. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/bimj.200810455
http://dx.doi.org/10.3390/d14050320
http://dx.doi.org/10.1007/s40300-015-0071-6
http://dx.doi.org/10.1214/10-AOAS436
http://dx.doi.org/10.1002/bimj.201600063
http://dx.doi.org/10.1191/1471082X03st057oa
http://dx.doi.org/10.1111/1467-9574.00232
http://dx.doi.org/10.1002/bimj.202100231
http://www.ncbi.nlm.nih.gov/pubmed/35429047
http://dx.doi.org/10.1111/rssb.12281
http://dx.doi.org/10.1111/biom.13334
http://dx.doi.org/10.1093/biomet/75.2.237
http://dx.doi.org/10.1214/aos/1176347494
http://dx.doi.org/10.2307/2531532
http://dx.doi.org/10.1111/biom.12082
http://dx.doi.org/10.1080/07350015.1991.10509847
http://dx.doi.org/10.11648/j.ajtas.20211003.13
http://dx.doi.org/10.1002/jwmg.195
http://dx.doi.org/10.1002/ece3.8468
http://www.ncbi.nlm.nih.gov/pubmed/35127014
http://dx.doi.org/10.1016/j.insmatheco.2021.10.001
http://dx.doi.org/10.1016/j.spasta.2020.100416
http://dx.doi.org/10.1111/j.0006-341X.2000.00139.x
http://dx.doi.org/10.1177/1471082X17715718

	Introduction
	Methodology
	Model and Data
	Semiparametric Empirical Likelihood
	Penalized Empirical Likelihood Inference
	Numerical Implementation

	Simulations
	Evaluation of Point Estimators
	Evaluation of Interval Estimators

	Case Study
	Conclusions and Discussion
	Appendix A
	Appendix B
	References

