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Abstract: We model the financial markets as a game and make predictions using Markov chain estimators.
We extract the possible patterns displayed by the financial markets, define a game where one of the
players is the speculator, whose strategies depend on his/her risk-to-reward preferences, and the market
is the other player, whose strategies are the previously observed patterns. Then, we estimate the market’s
mixed probabilities by defining Markov chains and utilizing its transition matrices. Afterwards, we
use these probabilities to determine which is the optimal strategy for the speculator. Finally, we apply
these models to real-time market data to determine its feasibility. From this, we obtained a model for the
financial markets that has a good performance in terms of accuracy and profitability.
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1. Introduction

Due to the rise in automated systems that perform prediction tasks and posterior
execution, we thought it would be beneficial to create a theoretical framework for an
automated system that outputs the probabilities of different market states where traders
can define clear trading rules based on these probabilities and their risk tolerance, which
can help execute trades swiftly based on the model’s output. The presented methods can
be utilized as indicators for the purchase of certain financial assets, but would be optimal if
they were utilized as an automated system to purchase barrier options.

Thus, in this article, we will present and apply methods specifically designed to model
the financial market, but, before starting to discuss the models, we need to make a brief
introduction to the data that we will be working with.

Our data consists of financial asset prices from several stock exchanges, with special
attention to the New York Stock Exchange, the London Stock Exchange and the Lisbon
Stock Exchange. Also, we focus on stock and forex (foreign exchange market) prices,
because these present higher volatility and volume (i.e., more trades), and the data related
to these assets is easier to obtain. Here, volatility is a statistical measure of the dispersion of
returns for a given financial asset. It is often measured as either the standard deviation or
variance between returns from that same asset.

Moving further we will often use the terms “stock exchange” and “financial market”
interchangeably, but they differ slightly. The term “financial market” broadly refers to
any marketplace where the trading of securities occurs, including the stock market, bond
market, forex market and derivatives market, among others, whilst the “stock exchange”
is a facility where stockbrokers and traders can buy and sell securities, such as shares of
stock, bonds and other financial instruments. However, whenever we refer to the financial
market we will be referring to the stock exchange.
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The data were retrieved from Yahoo Finance [1] and AlphaVantage [2], but they can
be found in the dataset related to article [3].

We will study daily closing prices, that is, the price of the asset at the end of the
day, and also intraday closing prices, i.e., the prices of the asset at the end of each
minute. Also, we will look into several assets within multiple stock exchanges. Specifically,
we will analyze the following:

• Three theoretical datasets with 1000 observations;
• One hundred datasets with 1000 observations of stocks’ daily closing prices from

several stock exchanges;
• One hundred datasets with 1000 observations of stocks’ intraday closing prices from

several stock exchanges.

Hence, we will obtain all kinds of data, with different characteristics and statistical
properties. Moreover, since we cannot access the assets’ future prices, we will split the
datasets into training and test sets. All the analyzed datasets have 1000 observations and
20% of these will be part of the test sets. This is performed so that we can apply our models
to the training set and “compare” their predictions with the test set’s values.

To exemplify, consider the following datasets from the New York Stock Exchange
(Figures 1 and 2) and from the Lisbon Stock Exchange (Figures 3 and 4):
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Figure 1. AAPL daily closing price from 22 January 2016 to 10 January 2020.
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Figure 2. AAPL intraday closing price from 3 February 2020 09:31 to 7 February 2020 16:00.
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Figure 3. GALP daily closing price from 17 March 2016 to 13 February 2020.
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Figure 4. GALP intraday closing price from 11 February 2020 04:00 to 17 February 2020 11:29.

Measuring past price changes to determine their dispersion should yield a probabilistic
result. Additionally, price changes, in stock prices (or in any other financial instruments),
usually pattern themselves in a normal distribution (for further details see [4–6] and/or [7]),
which is the familiar bell-shaped curve (for further details see, for example, [8]). There are
numerous different ways to determine the probability function for a financial instrument.
Also, price changes can be measured and quantified empirically, either by the percentage
change in the instrument’s value over specified time intervals or by the change in the
logarithm of the price over the time intervals.

Oftentimes when you are thinking in terms of compounding percentage changes,
the mathematically cleaner concept is to think in terms of log differences. When you are
repeatedly multiplying terms together, usually, it is more convenient to work in logs and
add terms together. So, let us say our wealth at time T is given by the following:

WT =
T

∏
t=1

(1 + Rt) ⇐⇒ logWT =
T

∑
t=1

rt,
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where Rt is the (overall) return at time t and rt = log(1 + Rt) = logWt − logWt−1.
An idea from calculus is that you can approximate a smooth function with a line (for

further details see, for example, [9]). The linear approximation is simply the first two terms
of a Taylor Series. The first-order Taylor Expansion of log(x) around x = 1 is given by
the following:

log(x) ≈ log(1) +
d

dx
log(x)|x=1(x − 1).

The right hand side simplifies to 0 + 1
1 (x − 1); hence,

log(x) ≈ x − 1.

So, for x in the neighborhood of 1, we can approximate log(x) with the line y = x − 1.
Now, consider two variables x1 and x2 such that x2

x1
≈ 1. Then, the log difference is

approximately the percentage change x2
x1

− 1 = x2−x1
x1

:

logx2 − logx1 = log
(

x2

x1

)
≈ x2

x1
− 1.

Note that, for big percentage changes, the log difference is not the same thing as the
percentage change because approximating the curve y = log(x) with the line y = x − 1
becomes worse and worse the further away you get from x = 1.

Thus, we have the following:

• The logarithmic method is well documented. The Black–Scholes formula for option
pricing assumes a lognormal dispersion of prices, and there is a theoretical lognormal
distribution than can be inferred from the Black–Scholes formula. However, the dis-
cussion of the lognormal derivation of price changes is not necessary for this paper
(but, for further details, see [10] and/or [11]).

• Measuring percentage price changes yields a nearly equivalent result to the lognormal
method, especially for price changes less than ≈ 15% (for further details see [7]). Also,
this method affords a fair approximation of the real world, while being fairly simple
to calculate.

However, if we simply analyzed the price change (between consecutive intervals) of a
large sample from some financial instrument, the analysis would be skewed by the change
in the price level, hence the need for measuring percentage changes in prices. Thus, any
statistical method used to analyze price changes has to be able to account for the increase
in the price level of the instrument. This can be taken care of by looking at the prices’
percentage changes, rather than the actual price changes. Also, there is the added property
that percentage price changes should (theoretically) follow a normal distribution.

We have to note that the literature commonly uses the logarithmic returns for its
statistical properties, but we intend to use this model in a business setting, so the simple
returns are more intuitive and still hold the necessary statistical properties for our model
(for further details see [12] and/or [13]).

Nonetheless, most real-world measurements vary from the standard normal distribu-
tion. The theoretical lognormal distribution for stock prices has a slight skew to the positive
side, because there is an inherent upward bias in stock prices (for further details see [14]).
This is because, since the turn of the century, stocks have appreciated at approximately
a 5–10% annual rate; this is partly due to inflation (or even to investor overconfidence),
but it is also due to increases in productivity, or the economic surplus society generates (for
further details see [15] and/or [16]). Thus, the skewing in the positive side of the theoretic
lognormal is understandable. Also, note that factors that have a bearing on assets’ prices,
such as wars, depression, peace, prosperity, oil shortages, foreign competition, market
crashes, pandemics and so forth, are all contained in its data. So, henceforth, we will
consider that all the data used is transformed using the percentage change transformation,
i.e., we will apply the Percentage Returns transformation Ut =

Xt−Xt−1
Xt−1

, so each entry on
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the obtained datasets represents the percentage return from the previous iteration to the
present one. Thus, we will apply all of our models to this transformed data. For example,
the transformation applied to the previous datasets yields the following Figures 5–8:
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Figure 5. Transformed AAPL daily closing price from 25 January 2016 to 10 January 2020.

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Transformed AAPL Intraday

Date

C
lo

si
ng

 P
ric

e

2020−02−03 09:32:00 2020−02−04 13:51:00 2020−02−06 11:40:00 2020−02−07 16:00:00

Figure 6. Transformed AAPL intraday closing price from 3 February 2020 09:32 to 7 February 2020 16:00.

Note that we can apply this transformation because all of our values represent asset
prices in a stock exchange; thus, they are always strictly positive. Also, due to this transfor-
mation, we will “lose” one observation, but gain several important properties, which were
previously described.
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Figure 7. Transformed GALP daily closing price from 18 March 2016 to 13 February 2020.
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Figure 8. Transformed GALP intraday closing price from 11 February 2020 04:01 to 17 February
2020 11:29.

2. Models

In this section, we will make use of game theory (presented in [17–31]) to develop the
game theoretical model and Markov chains (presented in [32–43]) to estimate the game’s
probabilities in order to design suitable models for financial data (specifically, for the data
that were described in the previous section); then, we will describe how we applied our
models using R 4.0.4 software.

We will also compare our results against classical time series theory (presented
in [12,13,44–50]); thus, we need to explain how we will apply these models and compare
their outcomes.
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2.1. The Game Theoretical Model

Since the focus of this article is to apply game theory to the financial markets, we will
start by presenting the game proposed in [31] and the subsequent decision model that
we developed from it. But, before constructing a game model for the market, we need to
understand how the market works, how we can model it and what our goals are. Thus, we
will start by identifying what kind of player in the market we will be, because there are
two kinds of participants in the financial markets:

• Investors: these participants are interested in making a predictable rate of return from
their investments, through interest payments, dividends and so on.

• Speculators: these are interested in trying to profit from changes in the price of an asset.

Thus, since our goal is to predict prices and then act according to our predictions,
henceforth, we will take the part of a speculator. Also, to be a participant in the market,
we must accept some level of risk (high- or low-risk acceptance level) and we also must
have a clear profit objective in mind. Formally, the speculator needs to set quantities for
“Less Risk”, “More Risk” and “profit objective”, always assuming that the asset will be held
until the price reaches one of these targets. So, these targets must represent an individual’s
actual risk and reward appetites, because, if they are set randomly, then it is possible that
neither are reached or that they are reached sooner than expected. Thus, these must have
some basis in reality and the asset should stand a chance of hitting one of them.

Once the decision has been made to take a position in the market (by buying or
selling a particular asset), the interaction between the asset’s price fluctuation and the
speculator’s risk acceptance level and profit objective will determine whether or not a profit
will be made.

Remark 1. Note that this is consistent with game theory, where the outcome is determined by the
choices made by both players, not just one.

Thus, speculators take positions in markets and market prices fluctuate. As such,
the speculators’ strategies involve determining how much risk to accept; then, the market
will fluctuate the prices. It is the interaction between the speculator’s and the market’s
actions that determine whether a trade is profitable or not. Hence, after setting the profit
objective and risk acceptance levels, we have the following scenarios:

• Zero Adversity: when there is no price fluctuation against the speculator’s position
severe enough to cause the trade to hit either risk acceptance levels. In this case, it does
not matter how much risk is accepted, because the market movement is completely
favorable. We will term this pattern of price movement Zero Adversity.

• Minor (or Moderate) Adversity: when the market moves somewhat against the spec-
ulator’s position, which will cause the speculator to lose money if Less Risk were
accepted but would have resulted in a profit if More Risk were accepted. So, any
pattern of price movement that will cause a loss if Less Risk is accepted, yet still
yield a profit if More Risk is accepted falls into this category, which we will term
Minor Adversity.

• Major Adversity: when the market moves completely against both risk acceptance
positions, so the Less Risk acceptance position results in a small loss and the large risk
acceptance position results in a large loss. Also, the profit objective was never reached.
We will term this pattern of price movement Major Adversity.

Note that many different price movement patterns yield the same result and that
it is possible to classify all market price movements into these three categories. These
classifications are as follows:

• The speculator accepts Less Risk and then the prices move favorably, resulting in a
profit for the speculator;

• The speculator accepts More Risk and then the prices move favorably, resulting in a
profit for the speculator;
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• The speculator accepts Less Risk and the prices move moderately against the position,
resulting in a small loss to the speculator;

• The speculator accepts More Risk and the prices move moderately against the position,
resulting in a profit for the speculator;

• The speculator accepts Less Risk and the prices move severely against the position,
resulting in a small loss to the speculator;

• The speculator accepts More Risk and the prices move severely against the position,
resulting in a large loss to the speculator.

Thus, if we quantify our risk acceptance levels and profit objective, the pattern of
price fluctuation that subsequently occurs will result in one of the six outcomes previously
described. Also, there is no price line that can be drawn that will not yield one of the above
six results, which are shown on the following Figure 9:

Figure 9. Visual representation of possible outcomes considering the speculator’s risk levels and the
market’s price movements.

However, even though there are six categories, there are only three possible outcomes
that can result from any trade, because the speculator must decide between accepting More
Risk or Less Risk on any particular trade, and there are three outcomes associated with
either of these actions. In other words, the speculator must decide on how much risk to
take, and either take More Risk or take Less Risk; then, the market decides on how to
fluctuate the prices, either fluctuate them so as to cause the speculator Zero Adversity,
Minor Adversity or Major Adversity. So, after the speculator’s decision, one of three
possible states of nature will prevail.

The previous discussion also holds true for short sales. A short sale is where the
individual sells a particular asset first, then buys it back at a later date. Typically, the shorted
asset is “borrowed” from the brokerage firm, and the broker will require a high margin
against the short. Intuitively, a short sale is the inverse of a long position (i.e., the buy–sell
position that we have been discussing so far), so short sellers make a profit when the
value of an asset declines and lose money when the prices rise. Thus, the risk acceptance
levels are set at prices higher than the price that initiated the trade. However, there is no
significant difference in the concepts of risk acceptance levels and profit objectives between
being either long or short in the market. But, because of the added costs of being a short
seller, profit objectives generally have to be higher in order to recoup margin costs. Thus,
henceforth, we will only concentrate on long positions, and their risk acceptance levels and
profit objectives.
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2.1.1. The Financial Game

To create the game that mimics the financial markets, we need to meet game theory’s
requirement to have at least two players and that their identities are known; in our case, the
players are the speculator and the market. However, the market is an abstract entity; thus,
we enter the subclass of games (developed in [19,20,27,30]) called games against nature,
where one of the players is an abstract entity.

In spite of this being a standard game against nature, we must make some important
observations and assumptions:

• The market does not come up with prices in a vacuum, rather the prices are the net re-
sult of the buying and selling decisions of all the individual participants in the market.

• Generally, an individual has no influence on nature; yet, in the financial markets, a
participant may have an effect on the price movements due to his/her own actions.
Of course, this depends on the individual and on the market. For instance, if the
market is small and thinly traded, a large order will tend to move the prices either
up or down, or if a person making the order is known (to other participants) to be
astute, then his/her actions may also influence the prices. However, since the majority
of individuals cannot affect “large” markets (such as in the USA, EU and UK markets),
we will assume that we are working on a large market and that the effect of any
individual is negligible.

• Since the payoffs of each individual are unrelated, we will assume that the mar-
ket plays the same game against all participants. This also guarantees that all the
individuals are playing against the market separately.

• We will also assume that the goal of the speculator is to make a profit and that the goal
of the market is to try to make the speculator lose money.

Note that, with the previous assumptions, we have a game against nature where we
assume Wald’s (max–min) Criterion (for more details check [19,20,27] and/or [30]). That
is, we apply Wald’s (max–min) Criterion to model the interaction between the speculator
and the market within a game against nature framework, where we assume the market
acts adversarially, aiming to minimize the speculator’s gains while the speculator aims to
maximize their profit under the worst-case scenario of market behavior. This approach
helps determine a strategy that guarantees the best possible outcome for the speculator,
even in the face of unpredictable market fluctuations.

Here, the market “tries” to make the speculator lose money by attempting to fluctuate
the prices in such a manner as to make it impossible to find a good combination of risk
acceptance levels and profit objectives. Also, because we are using a theory that will enable
an individual to find a way to beat the market, assuming that the market is also trying to
beat the individual is the most conservative approach. So, ascribing a motive to the market
allows us to analyze the market’s strategies as if it is a rational player in the game.

In order to have a game theoretic construction, we need to be able to draw a game
matrix outlining the strategies of each player as well as the payoffs. Also, this should be
carried out from the perspective of the individual speculator, because the point of this
analysis is to find a set of strategies that will enable an individual to beat the market.
Thus, the possible strategies for the speculator are accepting More Risk or relatively Less
Risk. And the market’s strategies are price movements relative to the speculator’s position,
i.e., the market can “choose” between three price movements: Zero Adversity, Minor
Adversity or Major Adversity.

With this, we have that there are two possible strategies that the speculator can play
and three possible strategies the market can play, resulting in six possible outcomes from
the interaction between price movements and risk acceptance levels, the combination of
which results in the following game Table 1:
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Table 1. The game table for the financial market game.

Speculator

Market

\ More Risk (R+) Less Risk (R−)

Zero Adversity (0A) Profit Profit

Minor Adversity (mA) Profit Small Loss

Major Adversity (MA) Large Loss Small Loss

Remark 2. Note that, in the game table, we added between parentheses some notation so that we
can refer to those strategies in a simpler manner.

Looking at the game table suggests that we should play the strategy of Less Risk,
because this column has a minimum of a small loss, which is larger than the minimum in
the More Risk column, which is a large loss. Similarly the market will “look” at the payoff
table and “decide” to play a strategy that leaves us with the smallest minimum, i.e., the
market will choose to play the Major Adversity strategy, because this row’s maximum is a
small loss, which is the smallest maximum available. Hence, the most likely outcome is
that the speculator will lose money, which makes this game rather unattractive. However,
in the real world, a lot of people play the markets and some of them make money (at least
some of the time).

Note that the solution Major Adversity, Less Risk is based on the concept of pure
strategies. So this solution requires that the speculator always plays the strategy of Less
Risk and the market always plays the strategy of Major Adversity. Thus, this renders the
game entirely pointless from the speculator’s point of view. But there are some caveats:
the market is simultaneously playing against a myriad of players and, as such, it does not
know all of the risk acceptance levels, the profit objectives and how many are short sellers
or long traders. So, the market has to make its decision on which strategy to play under
conditions of both risk and uncertainty.

Given the multitude of players and their strategies, the market will try to fluctuate
prices in such a manner that as many people as possible lose money. Also, from the point
of view of any individual speculator, these fluctuations will make it look as if the market is
varying its strategy each different time the game is played. All of this (and considering the
theory so far) implies that playing each different strategy with some probability is called
playing mixed strategies (for further details see [18,21,22,26,29] and/or [28]).

The speculator may also play mixed strategies, if they vary their risk and reward
amounts each time they play the game. Also, they do not know how advantageous it
is to play either strategy with any regularity, due to the market’s continually changing
mixed strategies. But, in the financial markets, the players do not usually change their
strategies, i.e., they pick the risk acceptance levels and then wait for the assets’ prices to hit
the corresponding thresholds. So, with this in mind, we will only consider pure strategies
for the speculator to play in the financial game.

Now, we need to be able to calculate the payoffs to the speculator for any set of
strategies he/she plays against any set of mixed strategies that the market may play,
in order to determine the merits of playing any one strategy at any particular point in time.
Furthermore, this has to be performed in the general case, because, to have a coherent
theory, the solutions must hold true for each and every individual speculator, no matter
what strategy they play.

The market will play one of three strategies: fluctuate the prices in a way that causes
major adversity to the speculator, fluctuate the prices in a manner that causes minor
adversity to the speculator, or fluctuate the prices in a manner favorable to the speculator.
Also, the market will choose one of the strategies in an unknown manner to the speculator,
so each strategy will have a certain probability of being played. Thus, we will use the
following notation:
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• p1 := the probability the market plays Minor Adversity;
• p2 := the probability the market plays Major Adversity;
• p0 := the probability the market plays Zero Adversity.

This notation is in terms of the probability that either event will occur and, because the
market is playing mixed strategies, the sum of the probabilities of playing all of the
strategies must equal 1. Therefore, if the market plays Minor Adversity with a probability
of p1 and Major Adversity with probability p2, then it follows that Zero Adversity occurs
with a probability of p0 = 1 − p1 − p2.

Regarding the speculator, theoretically, he/she may play two different strategies:
More Risk or Less Risk. Analogously to the market, the speculator may play the More Risk
strategy with some probability and the Less Risk strategy with some probability. Thus,
the speculator is playing mixed strategies, just as the market is. With this, we can define
the probabilities of playing the two strategies as follows:

• q = the probability the speculator plays More Risk;
• 1 − q = the probability the speculator plays Less Risk.

Once again, the sum of the probabilities of playing both strategies must equal one.
Next, we need to make a representation of the payoffs. Recall that there are three

different results for this game: a speculator may make a profit, lose money equal to the Less
Risk amount or lose money equal to the More Risk amount. We will denote this as follows:

• w := profit to the speculator (this corresponds to a “win” for the speculator);
• −x := loss equal to the “Less Risk” amount (this corresponds to a “small loss” to

the speculator);
• −y := loss equal to the “More Risk” amount (this corresponds to a “large loss” to

the speculator).

Here, w, x, y ∈ R+ and w ≥ y > x. So, with this notation, we do not need to specify
monetary amounts associated with a profit, a small loss, or a large loss, because we have
the relative magnitude of these variables. Thus, putting together the above ideas into a
game table, we obtain the results in Table 2.

Note that Table 2 is the game’s decision matrix (also known as payoff matrix); how-
ever, it only presents the payoffs for the speculator since the market’s payoffs cannot
be quantifiable.

Table 2. The “updated” game table for the financial market game.

Speculator
q 1 − q

R+ R−

Market
p0 0A w w

p1 mA w −x

p2 MA −y −x

Now, to determine when it is advantageous to play one strategy or the other, we need
to start by isolating the pure strategies in terms of their expected profitability, and each of
the speculator’s strategies must be compared with each of the market’s strategies; also, all
the results must be quantified.

Remark 3. Even though we presented the probabilities associated with the speculator’s strategies,
we will not consider them for our model.

We know that there are three outcomes that can take place after the speculator takes
a position in the market: a profit (equal to the profit objective), a small loss (equal to the
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Less Risk amount) or a large loss (equal to the More Risk amount). And each of these three
outcomes takes place with some unknown probability. Also, these events are mutually
exclusive, i.e., only one of them can happen at any one point in time (or trade). This is
because, if the speculator gets stopped out of the market, he/she made a profit or suffered a
loss (large or relatively small), and the highest probability that any event can occur is 100%.
Given this, it is possible (although unlikely) that one of the three outcomes takes place with
100% probability but, since we want to develop our model in terms of the speculator getting
stopped out for either a large loss or a small loss, we will construct a diagram (specifically,
a probability triangle) which will reflect these two possibilities.

Remark 4. The diagram that we will be constructing goes along with the algebraic exposition,
in order to make the model much easier to interpret.

2.1.2. The Probability Triangle

For the diagram, consider the market’s probability of playing Major Adversity on the
vertical axis and the market’s probability of playing Minor Adversity on the horizontal axis.
Also, since the highest value either axis can have is 100% (because neither condition can
prevail more than 100% of the time), this implies that all combinations of Major Adversity
and Minor Adversity can never sum to more than 100%. This being the case, a diagonal
line must be drawn between the 100% mark on both axes, which will contain all possible
combinations of the market’s strategies of Major Adversity and Minor Adversity. Thus,
with all of this, we obtain the following probability triangle Figure 10:

11

00
11

Probability of Minor AdversityProbability of Minor Adversity

Probability

of Minor

Adversity

Probability

of Major

Adversity

Figure 10. The probability triangle showing the likelihood of loss.

We will divide this probability triangle into several regions, which will reflect when it
is more advantageous to accept More or Less Risk, or even when it is advantageous not to
play the game at all. Furthermore, since game theory gives us methods to determine when
a player is guaranteed a certain payoff, we can solve for when it is optimal to accept either
More or Less Risk.

So far, we have concentrated on the speculator’s strategies which involve taking a
position in the market. However, in reality, if we know when to take a position (i.e., when
to play the game), we also know when not to take a position in the market (i.e., when
not to play the game). So we will develop this model in order to determine when it is
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advantageous to take a position, along with when it is disadvantageous to do so. Thus,
conditions where it is disadvantageous to take a position will correspond to the “Do Not
Play” region of the probability triangle.

Now, we can determine, with the aid of Table 2, the expected payoffs from playing
each of the speculator’s strategies:

• The expected payoff from playing Less Risk (R−):

ES(R−) = (1 − p1 − p2)w + p1(−x) + p2(−x) = w − (p1 + p2)(w + x) (1)

• The expected payoff from playing More Risk (R+):

ES(R+) = (1 − p1 − p2)w + p1w + p2(−y) = w − p2(w + y) (2)

Equation (1) represents the expected payoff from playing the pure strategy Less Risk
(R−) and is written with several variables: the amount that can be won (w), the amount
that can be lost due to a small stop (x), and the probability that the market will either
give us minor adversity (p1) or major adversity (p2). Note that the speculator determines
the values of w and x by his/her risk-to-reward appetite, but the market determines the
probabilities p1 and p2.

If Equation (1) is greater than zero, the speculator expects a profit but, if it is less than
zero, the speculator expects to lose money. Also, because the speculator is only in control
of the variables x and w, we need to express the equation as a strict inequality, and solve it
in terms of p1 and p2. In other words, we need to find out for which market conditions it is
always advantageous to accept Less Risk by finding out when the expected payoff from
playing Less Risk is greater than zero. Thus, we obtain the following:

ES(R−) > 0 ⇐⇒ w − (p1 + p2)(w + x) > 0 ⇐⇒ p1 + p2 <
w

w + x
(3)

Note that we are considering a strict inequality because if ES(R−) = 0 it is not
profitable to play the Less Risk strategy, because its expected payoff is zero.

With all of this, we can incorporate Equation (3) into the probability triangle yielding
the following Figure 11:

Figure 11. The probability triangle divided into two regions: “Play Less Risk” and “Do not Play”.
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Remark 5. Note that, by the definitions of w and x,

w < w + x ⇐⇒ w
w + x

< 1 (4)

The “Play Less Risk” area contains the points where it is profitable to play the strat-
egy of Less Risk, and the “Do Not Play” region contains money-losing strategies. Also,
because Equation (3) was developed as a strict inequality, the line diving the two regions
is not included in the “Play Less Risk” area, so the points on the line (ES(R−) = 0) are
included in the area of loss.

Again, the line dividing these areas is determined exclusively by the parameters set by
the speculator, so this line will vary from individual to individual, always based on each
individual’s risk-to-reward appetites; also, the value yielded by w/(w + x) is not a constant
that holds true for all players in the market. But, since we are developing a model in the
general case, it must hold true for each and every person, no matter what their individual
circumstances are.

Moving forward, we can now focus on determining when it is advantageous to accept
More Risk; however, it is not as straightforward as it was for Less Risk, because it is only
advantageous to accept More Risk when the market is playing Minor Adversity. And,
under this condition, a strategy of Less Risk will cause a small loss, but a strategy of More
Risk results in a profit.

Looking back at Table 2,

• Under market conditions of Zero Adversity, both strategies yield a profit, so the
speculator is indifferent between the strategies;

• Under market conditions of Minor Adversity, a strategy of More Risk generates a
profit, and the strategy of Less Risk causes a loss, so it is advantageous to utilize the
More Risk strategy;

• If the market conditions correspond to Major Adversity, both the speculator’s strategies
are unprofitable, but the Less Risk strategy causes a smaller loss than does the More
Risk strategy, so it is less advantageous to play More Risk.

We know that, from Equations (1) and (3), if the expected payoff from the Less Risk
strategy is positive, then we are “guaranteed” a positive payoff when Less Risk is played.
So, to find out when the strategy of More Risk yields a positive payoff when the strategy of
Less Risk does not, we need to analyze Equation (2) while (1) is negative.

So, we need to to find out for which market conditions it is always advantageous to
accept More Risk by finding out when the Expected Payoff from playing More Risk (R+) is
greater than zero, assuming that ES(R−) < 0. Thus, we obtain the following:

ES(R+) > 0 ⇐⇒ w − p2(w + y) > 0 ⇐⇒ p2 <
w

w + y
(5)

Note that we are considering a strict inequality because if ES(R+) = 0 it is not
profitable to play the More Risk strategy, since its expected payoff is zero. Also, observe
that Equation (5) is only in terms of Major Adversity (p2) and it implies that if the probability
of Major Adversity is greater than w/(w + y) then the trade will lose money; otherwise,
the trade will make money. In terms of game theory, if the probability of Major Adversity
is greater than w/(w + y), then we will not play the game and, if the probability of Major
Adversity is less than w/(w+ y), then we play the pure strategy of More Risk. Additionally,
if the probability of Major Adversity is equal to w/(w + y), then the trade will result in a
profit of zero; thus, we will also not play the game.

With all of this, we can incorporate Equation (5) into the probability triangle yielding
the following Figure 12:
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Figure 12. The probability triangle divided into two regions: “Play More Risk” and “Do not Play”.

Remark 6. Regarding the previous probability triangle, note the following:

• By the definitions of w and y, w < w + y ⇐⇒ w
w+y < 1;

•

{
p2 = w

w+y

p1 + p2 = 1
⇐⇒

{
p2 = w

w+y

p1 = 1 − w
w+y

.

Here, the lower region contains the conditions where it is advantageous to play the
pure strategy of More Risk, and the upper region is where it is disadvantageous to play
More Risk. Also, once again, the points in the separating line (ES(R+) = 0) are included in
the Do Not Play area.

The same reasoning used to understand the implications of playing the pure strategy
of Less Risk hold true for the strategy of More Risk, i.e., points within the “Play More Risk”
area represent profitable trades and points within the “Do Not Play” area represent losses.
Also, once again, the solutions must be interpreted in a probabilistic sense.

Now that we know when it is advantageous to play More Risk (assuming that the
result of playing Less Risk is negative), we need to determine when it is advantageous
to play More Risk despite the result of playing Less Risk, because there is a region of the
probability triangle where the two strategies overlap. So, we still need to determine when
it is advantageous to play More Risk, irrespective of the merit of playing Less Risk. Thus,
we need to solve the following equations:

ES(R+) > 0 ⇐⇒ w − p2(w + y) > 0 ⇐⇒ p2 <
w

w + y
; (6)

ES(R−) < ES(R+) ⇐⇒ w − (p1 + p2)(w + x) < w − p2(w + y) ⇐⇒ p1 > p2
y − x
w + x

. (7)

Consider that Equation (7) was developed as an equality; then, if the probability of
Minor Adversity is equal to zero (i.e., p1 = 0), then the probability of Major Adversity
has to equal to zero as well (i.e., p2 = 0). However, in the inequality, if p1 were zero, then
p2 would have to be less than zero, but this is in conflict with the variables’ definitions,
because probabilities can only take values between zero and one; thus, they cannot be
negative. Also, the probability of Major Adversity occurring in the real world is not less
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than zero, because, if this were true, all the players in the market would always win.
Moreover, since the formula that expresses the slope of the line ((y − x)/(w + x)) is always
a positive number (as the variables x, y and w are all positive numbers), whenever p1 is
zero, then p2 has to be zero, and vice versa. Also, the line itself represents the boundary
where it is equally advantageous to play the pure risk strategies of either Less Risk or More
Risk, and the area above the line defines where it is advantageous to play Less Risk.

All of these results are combined in the following probability triangle Figure 13:

11

00 11

Probability of Minor AdversityProbability of Minor Adversity

Probability

of Minor

Adversity

Probability

of Major

Adversity

PLAY MORE RISK

PLAY LESS RISK

Figure 13. The probability triangle with all the analyses conducted so far, which is divided into three
regions: “Play Less Risk”, “Play More Risk” and “Do Not Play”.

Remark 7. Regarding the previous probability triangle, note the following:

• w
w+x > 1 − w

w+y ⇐⇒ w(w+y)+w(w+x)
(w+x)(w+y) > 1 ⇐⇒ 2w2+wx+wy

w2+wy+wx+xy > 1 ⇐⇒ 2w2 + wx +

wy > w2 + wy + wx + xy ⇐⇒ w2 > xy, which is true because, by definition, w ≥ y > x;
• 1 − w

w+y > w(y−x)
(w+x)(w+y) ⇐⇒ 1 > w

w+x ⇐⇒ x > 0, which is true by definition of x;

•

{
p1 = p2

y−x
w+x

p2 = w
w+y

⇐⇒

p1 = w(y−x)
(w+x)(w+y)

p2 = w
w+y

;

•

{
p1 = p2

y−x
w+x

p1 + p2 = w
w+x

⇐⇒

p1 = w(y−x)
(w+x)(w+y)

p2 = w
w+y

;

•

{
p1 + p2 = w

w+x
p2 = w

w+y
⇐⇒

p1 = w(y−x)
(w+x)(w+y)

p2 = w
w+y

.

In the previous probability triangle, there are three regions: the Do Not Play region,
the Less Risk region and the More Risk region. Also, the dotted lines show the location
of the original regions, as well some relevant intersection points. Note that all of the
interior lines intersect at one point (p1 = (w(y − x))/((w + x)(w + y)), p2 = w/(w + y)),
and that we included the separation line between the Less Risk and More Risk regions (i.e.,



Mathematics 2024, 12, 2676 17 of 49

p1 = p2
y−x
w+x ) in the Less Risk region, but the intersection point between all the interior lines

is considered a part of the Do Not Play region.
Finally, observe that, in all of the obtained probability triangles, a “Do Not Play” region

has appeared which is not related to any possible strategy (in the presented financial game)
that the speculator can choose from. However, the “Do Not Play” strategy is implicit in
Tables 1 and 2. To see this, consider Table 2 and that the speculator has an additional “Do
Not Play” strategy. So, if the speculator chooses this strategy, then he/she will not enter the
trade, and thus will not lose or win with the trade. Hence, the payoffs from this strategy
are always zero independently of the market’s strategy. So, Table 2 becomes the following
Table 3.

Table 3. The game table for the financial market game including the “Do Not Play” (D) strategy.

Speculator
q1 q2 1 − q1 − q2

R+ R− D

Market
p0 0A w w 0

p1 mA w −x 0

p2 MA −y −x 0

However, the payoffs from adding this strategy do not change any of the calculations
that we made to determine the several probability triangles; also, these would only be
relevant if we wanted to determine the best mixed strategy for the speculator to play
(specifically, the probabilities q1, q2 and 1 − q1 − q2 would be important). But, since we
only want to determine the best pure strategy that the speculator should play (i.e., one
of the speculator’s probabilities will be equal to one) by taking into account the market’s
probabilities (p0, p1 and p2), the “Do Not Play” strategy being explicit or not in the game
table is not relevant, but this strategy is still important overall, because it complements the
speculator’s other two strategies (Play More Risk and Play Less Risk).

So, the complete model, which incorporates all of the previous calculations and graphic
representations, has the general form shown by the probability triangle in Figure 13. Also,
this probability triangle represents the situation a speculator faces in a financial market,
because it takes into account the speculator accepting either More Risk or Less Risk, and the
market generating conditions of either Zero Adversity, Minor Adversity or Major Adversity
(always with respect to the speculator’s position). Additionally, the probability triangle has
Minor Adversity and Major Adversity as its axes, yet it also shows the condition of Zero
Adversity, which is the complete absence of both Major Adversity and Minor Adversity,
which is represented by the origin point on the probability triangle.

Always have in mind that the model has to be interpreted in terms of “if these certain
probabilities exist, then we should play a specific strategy”. So the model cannot tell us
what the probabilities are, it only tells us that, if certain probabilities exist, then a particular
strategy should be employed. Thus, if we play the financial game repeatedly, under some
predetermined circumstances, the wins will outweigh the losses, and the net result of
our successive plays will be profitable; this is because we need to interpret the model
in the probabilistic sense rather than in an absolute sense. For instance, the model does
not suggest that each and every trade that falls within the parameters of w/(w + x) will
necessarily be profitable, only that over time the amount won will be greater than that lost.

Now that we have the complete model, we need to estimate the probabilities of the
market playing the strategies of Major Adversity and Minor Adversity. Furthermore, we
need to make these estimates as accurate as possible, because, if they are not, the model
will lose its predictive value. And we will accomplish this in the next section, with the aid
of Markov chains.
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2.1.3. Parallel to Barrier Options

As it was mentioned before, the presented methods would be optimal if they were
utilized as an automated system to purchase barrier options. Thus, we will briefly present
barrier options and their parallelism to our financial game.

Barrier options are a type of exotic financial derivative where the payoff depends
on whether the underlying asset reaches or exceeds a predetermined price, known as the
barrier. They are more complex than standard options and are considered path-dependent
because their value changes based on the underlying asset’s price movements during the
option’s term.

There are two main types of barrier options:

• Knock-in Options: These options only become active if the underlying asset’s price
reaches a specified barrier. They can be further classified into the following:

– Up-and-In Call: Activated when the asset’s price rises above the barrier.
– Down-and-In Put: Activated when the asset’s price falls below the barrier.

• Knock-out Options: These options become void if the underlying asset’s price reaches
a specified barrier. They can be further classified into the following:

– Up-and-Out Call: Ceases to exist when the asset’s price rises above the barrier.
– Down-and-Out Put: Ceases to exist when the asset’s price falls below the barrier.

Barrier options are often used for hedging or speculative purposes and typically have
lower premiums compared to standard options due to the added complexity and conditions
(for further details on barrier options see [51]).

In Section 2.1.1, for the financial game, we defined the speculator’s possible strategies
and with each strategy will be associated a threshold related to the speculator possi-
ble profits or losses (Less Risk, More Risk and profit thresholds); in the next sections
(Sections 2.2 and 2.4) we will specifically define these thresholds for each strategy.

Each threshold will be link to the asset’s own value, which will result in a profit/loss
to the speculator when it is achieved by the asset’s price. So, these thresholds can be directly
linked to the barriers on the barrier options, that is,

• When the model predicts Zero Adversity or Minor Adversity, the speculator can
purchase an Up-and-In Call Option with the a barrier of More Risk, which will yield a
profit associated with the More Risk threshold.

• When the model predicts Major Adversity, the speculator can purchase a Down-and-In
Put Option with the barrier of More Risk, which will yield a profit associated with the
More Risk threshold.

These are the straightforward strategies using barrier options than can be considered
using the predicted strategies.

2.2. The Markov Chain Model

As we have seen in the previous section, playing the markets is an iterated game, so
the next important task that we have to address is the (probabilistic) method that we will
use to estimate the probabilities of the market playing Zero Adversity, Minor Adversity
and Major Adversity (p0, p1 and p2, respectively).

Remark 8. Here, we need to note that Bayes’ Theorem [52] will not be the primary method used
because we will use Markov chains to model market behavior. Markov chains excel at capturing
sequences of events where the probability of the next event depends solely on the current state, not
the entire history, which does not allow us to directly apply Bayes’ theorem. Instead, we focus
on estimating transition probabilities within the Markov chain. These probabilities represent the
likelihood of the market shifting from one strategy (e.g., “Minor Adversity”) to another (e.g., “Major
Adversity”) in a single time step.
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The financial assets’ prices fluctuate in a variety of ranges (but are always strictly
positive). Thus, we need to split the data into classes in order for us to make some kind of
probabilistic analysis. For this, consider the standard deviation (α) of a dataset transformed
with the percentage change transformation, and define the strategies’ thresholds as follows:

• The Less Risk threshold corresponds to minus two times the standard deviation of the
data (−2α);

• The More Risk threshold corresponds to minus three times the standard deviation of
the data (−3α);

• The profit threshold corresponds to three times the standard deviation of the data (3α).

Since different assets from the stock market have different price ranges and levels of
volatility, by defining the thresholds in this manner, we will maintain a certain coherence
across all the datasets. Also, note that the Less and More Risk thresholds have to be
negative, because they correspond to possible losses. Additionally, since the datasets’ unit
of measure is the percentage change, the standard deviation’s unit of measure is also the
percentage change.

After defining the thresholds, we can formally say what the relationship is between the
market’s chosen strategies and an asset’s price. Thus, to accomplish this, we will assume
the following:

• The asset’s price drops further than the Less Risk threshold if and only if the market
chooses to play the Minor Adversity strategy;

• The asset’s price drops further than the More Risk threshold if and only if the market
chooses to play the Major Adversity strategy;

• The asset’s price increases further than the profit threshold if and only if the market
chooses to play the Zero Adversity strategy.

Now, consider that we observed the asset’s percentage price change for N successive
and mutually independent financial market games, and that we want to determine the
mentioned probabilities for the next (N + 1) game. Also, the percentage price change of
game i is denoted by Xi, i = 1, . . . , N + 1. Additionally, assume that, if the thresholds of
Major Adversity or Zero Adversity are reached in a game—suppose that it was in game
k ∈ {1, . . . , N}—then the speculator will not play in the following games, k + 1, . . . , N;
otherwise, the speculator will continue to play. We need to assume this because, if the
speculator loses or wins in a game, then we will not continue playing, due to the trade
being closed, and if the price does not reach one of the thresholds, the speculator will not
win or lose the game, so he/she needs to keep playing, because the trade is still open.

Remark 9. Note that, if the market chooses to play Minor Adversity, the speculator only has to
stop playing if he/she played the Less Risk strategy.

With all of this, we can start estimating the desired probabilities for the (N + 1)th

game, knowing that the probability of the market playing a certain strategy at game N + 1
is related to the probabilities of the market’s choices on the N previous games, i.e., we want
to determine

p0 = P(XN+1 ≥ 3 · α|X1, . . . , XN),

p2 = P(XN+1 ≤ −3 · α|X1, . . . , XN),

p1 = 1 − p0 − p2.

Remark 10. Note that we will not directly estimate p1, because it is simpler to estimate p0 and p2,
due to the way we defined these probabilities. Also, we can do this because p0 + p1 + p2 = 1. So,
moving forward, we will not reference the estimator of p1 unless we see fit to do so.
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Firstly, suppose that we only consider one game to determine our probabilities, i.e., we
will start by considering N = 1, so we have the following:

p2 = P(X2 ≤ −3 · α|X1) = P(X1 ≤ −3 · α); (8)

p0 = P(X2 ≥ 3 · α|X1) = P(X1 ≥ 3 · α). (9)

We can interpret Equation (8) for the probability of the market playing Major Adversity
as follows: if the percentage price change reaches the More Risk threshold in game 1, then
the speculator stops playing. So, the probability of the price change reaching the More
Risk threshold is obtained by simply calculating the probability of the percentage change
reaching the More Risk threshold in the previous game, i.e., P(X1 ≤ −3 · α).

Similarly, the probability of the market playing the Zero Adversity strategy is ob-
tained by calculating the probability of the percentage change reaching the profit objective
threshold in the previous game, i.e., P(X1 ≥ 3 · α).

However, since we have access to more historical data of the asset’s price, we can
determine these probabilities more accurately by taking into account more games. Now,
consider that we will use the results of two past games to determine our probabilities,
i.e., we will consider N = 2; thus, we obtain the following:

p2 = P(X3 ≤ −3 · α | X2, X1)

= P(X1 ≤ −3 · α) + P(−3 · α < X1 ≤ 3 · α ∧ X2 ≤ −3 · α); (10)

p0 = P(X3 ≥ 3 · α | X2, X1)

= P(X1 ≥ 3 · α) + P(X1 < 3 · α ∧ X2 ≥ 3 · α). (11)

Thus, we can can interpret the new Equation (10) for the probability of the market
playing Major Adversity as follows: the speculator stops playing if the percentage price
change reaches the More Risk threshold in game 1 or if the threshold is only reached in
game 2 (implying that, in game 1, no threshold was reached). So, the probability of the
price change reaching the More Risk threshold is obtained by adding the probability of the
percentage change reaching the More Risk threshold in game 1 to the probability of the
percentage change reaching the More Risk threshold in game 2 without reaching it in game
1. And a similar interpretation can be given of Equation (11).

Finally, we can obtain even more accurate probabilities if we consider the results of all
the played games (i.e., by considering all the historical price data). Thus, considering the
results of N games, the equations for the desired probabilities are as follows:

p2 = P(XN+1 ≤ −3 · α|XN , . . . , X1)

= P(X1 ≤ −3 · α) + P(−3 · α < X1 < 3 · α ∧ X2 ≤ −3 · α)

+ P(−3 · α < X1 < 3 · α ∧−3 · α < X2 < 3 · α ∧ X3 ≤ −3 · α) + . . .

+ P(−3 · α < X1 < 3 · α ∧−3 · α < X2 < 3 · α ∧−3 · α < X3 < 3 · α

∧ · · · ∧ −3 · XN ≤ −3 · α).

(12)

p0 = P(XN+1 ≥ 3 · α|XN , . . . , X1) = P(X1 ≥ 3 · α) + P(X1 < 3 · α ∧ X2 ≥ 3 · α)

+ P(X1 < 3 · α ∧ X2 < 3 · α ∧ X3 ≥ 3 · α) + . . .

+ P(X1 < 3 · α ∧ X2 < 3 · α ∧ X3 < 3 · α ∧ · · · ∧ XN ≥ 3 · α);

(13)

The intuition behind the obtained Equations (12) and (13) is similar to the one that we
used to obtain Equations (8) and (9). Also, because the N games are mutually independent,
from basic probability theory, we have that Equations (12) and (13) are equivalent to
the following:
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p2 = P(XN+1 ≤ −3 · α|XN , . . . , X1)

= P(X1 ≤ −3 · α) + P(−3 · α < X1 < 3 · α)P(X2 ≤ −3 · α)

+ P(−3 · α < X1 < 3 · α)P(−3 · α < X2 < 3 · α)P(X3 ≤ −3 · α) + . . .

+ P(−3 · α < X1 < 3 · α)P(−3 · α < X2 < 3 · α)P(−3 · α < X3 < 3 · α)

· · · P(−3 · XN ≤ −3 · α)

(14)

p0 = P(XN+1 ≥ 3 · α|XN , . . . , X1) = P(X1 ≥ 3 · α) + P(X1 < 3 · α)P(X2 ≥ 3 · α)

+ P(X1 < 3 · α)P(X2 < 3 · α)P(X3 ≥ 3 · α) + . . .

+ P(X1 < 3 · α)P(X2 < 3 · α)P(X3 < 3 · α) · · · P(XN ≥ 3 · α);

(15)

From these equations we can see that, for example, to estimate p0 (and p2), we would
have to estimate (N(N + 1))/2 probabilities, which would be computationally inefficient
and the error from the final estimate would increase due to the large number of individual
estimates. So, to overcome these problems, we will use Markov chains to estimate the
probabilities p0, p1 and p2.

Thus, using the same assumptions and notations as before,

• The asset’s percentage price change for N successive financial market games is known;
• The percentage price change in game i is denoted by Xi, i = 1, . . . , N + 1;
• We want to determine the mentioned probabilities for the (N + 1)th game;
• If any of thresholds is reached in a game—suppose that it was in game k ∈ {1, . . . , N}—

then the speculator will not play in the following games, k + 1, . . . , N; otherwise, the
speculator will continue to play.

Now, because we will use Markov chains, we need to assume that the probabilities
associated with each game are related through the Markov property (for further details
see [33]):

Definition 1 (Markov Property). A stochastic process {xt, t = 0, 1, 2, . . . } with a discrete and
finite (or countable) state space S is said to be a Markov chain if for all states i0, i1, . . . , it−1, i, j and
(steps) t ≥ 0 the following applies:

P(xt+1 = j|x0 = i0, . . . , xt−1 = it−1, xt = i) = P(xt+1 = j|xt = i) = pt,t+1
ij .

So, we obtain the following estimators for p0 and p2:

p0 = P(XN+1 ≥ 3 · α|XN , . . . , X1) = P(XN+1 ≥ 3 · α|XN); (16)

p2 = P(XN+1 ≤ −3 · α|XN , . . . , X1) = P(XN+1 ≤ −3 · α|XN). (17)

In order for us to be able to use the percentage price change (of a given asset) in game
i (i.e., to use Xi) as the underlying stochastic process of the Markov chain, we need to split
the data into classes (or states). Also, by defining the Markov chain, we will obtain its
probability matrix, which will allow us to estimate p0 and p2.

Before moving further, we need to note that, for instance, if the price is (at a certain
time) in a lower price class (relative to the initial price), then it will have a higher probability
of transitioning to a higher price class, due to the nature of the data that we are utilizing,
and a similar argument can be made if the price is in a higher class (as we have seen in
Section 1). However, this is represented by the Markov property, because the probability
of the Markov chain being in a certain state at time t only depends on which state the
chain was in at time t − 1, so this probability may change according to which states the
chain encounters itself in time t − 1. And this fact will also affect how we will define the
chain’s classes.

To define the classes, we can utilize the standard deviation (which we previously
denoted by α) of the dataset, and since we defined (and used) the strategies’ thresholds, we
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will split the data “around” these thresholds’ values; also, the classes’ ranges and distance
between them will be α.

Additionally, due to the mentioned volatility and wide range of the assets’ prices, they
may reach one of the thresholds in the first game (or iteration), or they may not reach them
at all. So, for these reasons, we will define some intermediate classes between the classes
associated with the thresholds (or market strategies). Thus, with all of this, we obtain that
the classes (or states) are as follows:

The Major Adversity class is sM = {Xt : Xt ≤ −2.5 · α}; (18)

The Minor Adversity class is sm = {Xt : −2.5 · α < Xt ≤ −1.5 · α}; (19)

The intermediate classes between the Minor Adversity and Zero Adversity classes are
as follows:

s1 = {Xt : −1.5 · α < Xt ≤ −0.5 · α}; (20)

s2 = {Xt : −0.5 · α < Xt ≤ 0.5 · α}; (21)

s3 = {Xt : 0.5 · α < Xt ≤ 1.5 · α}; (22)

s4 = {Xt : 1.5 · α < Xt ≤ 2.5 · α}. (23)

The Zero Adversity (or profit) class is sZ = {Xt : Xt > 2.5 · α}. (24)

Remark 11. Note that, instead of using the previously defined threshold to limit the classes, we
chose to define the classes around these thresholds, in order to include them. However, if all the
classes maintain a certain coherence according to the thresholds and have the same range (excluding
the sM and sZ classes), then we will obtain similar results after applying our models.

As an example, consider the dataset

{45.00, 44.49, 43.44, 40.17, 41.05, 41.53, 41.36, 40.68, 40.46, 38.42} (25)

to be the prices of some financial asset for ten consecutive days, then its percentage change
transformed dataset (rounded to two decimal cases) is as follows:

{−1.13,−2.36,−7.53, 2.19, 1.17,−0.41,−1.64,−0.54,−5.04}, (26)

which was obtained by applying the percentage change transformation. So, the standard
deviation of this transformed dataset is 3.00 (which also is a percentage), i.e., α = 3.00.
Hence, the classes, for this example, are as follows:

• sM = {Xt : Xt ≤ −2.5 · α} = {Xt : Xt ≤ −7.5};
• sm = {Xt : −2.5 · α < Xt ≤ −1.5 · α} = {Xt : −7.5 < Xt ≤ −4.5};
• s1 = {Xt : −1.5 · α < Xt ≤ −0.5 · α} = {Xt : −4.5 < Xt ≤ −1.5};
• s2 = {Xt : −0.5 · α < Xt ≤ 0.5 · α} = {Xt : −1.5 < Xt ≤ 1.5};
• s3 = {Xt : 0.5 · α < Xt ≤ 1.5 · α} = {Xt : 1.5 < Xt ≤ 4.5};
• s4 = {Xt : 1.5 · α < Xt ≤ 2.5 · α} = {Xt : 4.5 < Xt ≤ 7.5};
• sZ = {Xt : Xt > 2.5 · α} = {Xt : Xt > 7.5}.

2.2.1. Defining the Markov Chains

Before formally defining the necessary Markov chains, we need to make some obser-
vations about the described classes. According to our assumptions, if the market chooses
to play Major Adversity or Zero Adversity, the speculator will have to stop playing (which
will result in a major a loss or in a profit, respectively) independently of the speculator’s
chosen strategy, but if the market chooses to play Minor Adversity, the speculator only has
to stop playing if he/she chose the Less Risk strategy.
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Also, with the aid of Table 2 (from Section 2.1), we can see that the results of the market
playing the Major Adversity strategy are only noticeable if the speculator chooses to play
the More Risk strategy, because if the speculator chooses the Less Risk strategy he/she will
stop playing the game immediately after the Less Risk threshold is reached, thus he/she
will not know if the price further increased or decreased.

Thus, assuming that the speculator chose the More Risk strategy, we can determine
the probability of the market playing the Major Adversity strategy. Also, if we assume that
the speculator chose to play the Less Risk strategy, then we can determine the probability of
the market playing the Zero Adversity strategy; this is because, in this case, the speculator
only has a profit if the market chooses this strategy.

So, for these reasons, we will define two Markov chains, one where we consider
that the speculator chose the Less Risk strategy and another where he/she chose to play
the More Risk strategy. However, we will always use the same assumptions, strategies’
thresholds and data for both the Markov chains, so that we can utilize the probability
matrices from each to estimate the probabilities p0, p1 and p2. Also, we will assume
that s2 = {Xt : 0.5 · α < Xt ≤ 0.5 · α} is the initial state for both the Markov chains,
because, when the speculator enters for trade of a certain asset, then the asset’s initial
percentage price change will be 0% which is an element of the s2 class.

Regarding the Markov chain where we assume that the speculator chose to play the
More Risk strategy, we have the following observations about its states (or classes):

• The classes sM, sm, s1, . . . , s4, sZ will retain the same definitions as before.
• To represent the fact that the speculator only stops playing if the price enters the Major

Adversity class (sM) or the Zero Adversity class (sZ) in the Markov chain, we must
simply define these classes as absorbing states, i.e., if the price enters one of these
classes, then it will never exit them (for more details see [32,33] and/or [36]).

• Since the speculator does not stop playing if the price is in one of the remaining classes,
the price may go to any class (including staying in the same class). And, to represent
this in terms of Markov chains, we simply define these classes as transient (for more
details see [32,33,36] and/or [37]). Also, these states (sm, s1, . . . , s4) communicate
between themselves; thus, they form a communicating class in the Markov chain.

In terms of Markov chains, for this Markov chain, we are considering the stochas-
tic process {Xt, t = 1, 2, . . . , N}, where Xt is the percentage price change at game t,
with a discrete and finite state space S = {sM, sm, s1, . . . , s4, sZ}, where for all states
S0, S1, . . . , St−1, Si, Sj ∈ S and steps (or games) t ∈ {1, . . . , N} the following applies:

P(Xt+1 = Sj|X1 = S0, . . . , Xt−1 = St−1, Xt = Si) = P(Xt+1 = Sj|Xt = Si) =: pt,t+1
ij .

Here, the steps of the Markov chain represent each successive game from 1 up until N,
and Si represents a state from the state space S = {sM, sm, sZ, s1, . . . , s4}, which is composed
of the classes that we previously defined; thus, they have the mentioned properties. Also,
the 7 × 7 transition matrix PM associated with this chain will be defined as follows:

PM =



sM sm s1 ··· s4 sZ

sM p11 p12 p13 · · · p16 p17
sm p21 p22 p23 · · · p26 p27
s1 p31 p32 p33 · · · p36 p37
...

...
...

...
. . .

...
...

s4 p61 p62 p63 · · · p66 p67
sZ p71 p72 p73 · · · p76 p77


(27)

To visualize this Markov chain, we can use the following diagram Figure 14:
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Figure 14. The Markov chain where we assume that the speculator chose to play the More
Risk strategy.

Note that we could have simplified the previous diagram by joining the states sm, s1, . . . , s4
in the same communicating class. However, it is useful for us to present the Markov chain
in this manner, because it allows us to make more conclusions on how the chain develops
as we move forward in time.

So, assuming that the initial state is s2 (i.e., assuming that π = (0, 0, 0, 1, 0, 0, 0)T) and
that the transition matrix PM related to the Markov chain is well defined, the probability of
the market playing the Major Adversity strategy (p2) at time (or game) t is given by the
first element of πPt

M.
Now, regarding the Markov chain where we assume that the speculator chose

to play the Less Risk strategy, we can make similar observations to before, but with
some modifications:

• The Major Adversity class is not necessary for this Markov chain, because the specula-
tor will stop playing if the price reaches the Minor Adversity class. So, the sM class
will be “included” in the sm class; thus, sm is altered to sm = {Xt : Xt ≤ −1.5 · α}
(considering Example (25), this class becomes sm = {Xt : Xt ≤ −4.5}).

• The classes sZ, s1, . . . , s4 are defined as before.
• To represent the fact that the speculator stops playing if the price enters the Minor

Adversity class (sm) or the Zero Adversity class (sZ) in the Markov chain, we must
simply define these classes as absorbing states, i.e., if the price enters one of these
classes, then it will never exit them (for more details see [32,33] and/or [36]).

• Since the speculator does not stop playing if the price is in one of the remaining classes,
the price may go to any class (including staying in the same class). And, to represent
this in terms of Markov chains, we simply define these classes as transient (for more
details see [32,33,36] and/or [37]).

As before, in terms of Markov chains, we are considering the same stochastic process
{Xt, t = 1, 2, . . . , N}, where Xt is the percentage price change in game t, with a discrete and
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finite state space S = {sm, sZ, s1, . . . , s4}, where for all states S0, S1, . . . , St−1, Si, Sj ∈ S and
steps (or games) t ∈ {1, . . . , N} the following applies:

P(Xt+1 = Sj|X1 = S0, . . . , Xt−1 = St−1, Xt = Si) = P(Xt+1 = Sj|Xt = Si) =: pt,t+1
ij .

Here, the steps of the Markov chain represent each successive game from 1 up until N,
and Si represents a state from the state space S = {sm, sZ, s1, . . . , s4}, which is composed
of the classes that we previously defined; thus, they have the mentioned properties. Also,
the 6 × 6 transition matrix PL associated with this chain will be defined as follows:

PL =



sm s1 ··· s4 sZ

sm p11 p12 p13 · · · p16 p16
s1 p21 p22 p23 · · · p26 p26
...

...
...

...
. . .

...
...

s4 p51 p52 p53 · · · p56 p56
sZ p61 p62 p63 · · · p66 p66

 (28)

To visualize this Markov chain, we can use the following diagram Figure 15:

Figure 15. The Markov chain where we assume that the speculator chose to play the Less
Risk strategy.

Regarding this diagram, note that it is similar to the previous one (Figure 14); however,
in this one, the state sM is included in the state sm. Additionally, we could have simplified
the diagram by joining the states s1, . . . , s4 in the same communicating class. But again, it is
useful for us to present the Markov chain in this manner, for the same reasons as before.

So, assuming that the initial state is s2 (i.e., assuming that π = (0, 0, 1, 0, 0, 0)T) and
that the transition matrix PL related to the Markov chain is well defined, the probability
of the market playing the Zero Adversity strategy (p0) at time/game t is given by the last
element of πPt

L.
With all of this, we have the necessary methods to estimate the probabilities of the

market playing Zero Adversity, Minor Adversity and Major Adversity; thus, we also have
a method for how to choose the best strategy for a certain dataset. However, the estimation
method for the market’s probabilities is not complete, because we still have to estimate the
transition probability matrix for each of the defined Markov chains. So, this is what we will
focus on until the end of this section. But, before moving further, note the following:
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• We will always use the same (percentage change transformed) dataset for all of
the estimations;

• Since the sZ state is absorbing in both of the chains, we do not need to estimate its
transition probabilities, i.e., the last row of both the transition matrices ((27) and (28))
is of the form (0, . . . , 0, 1);

• The state sM in the Markov chain related to the More Risk strategy, like the sZ state, is
absorbing; thus, the first row of transition matrix (27) is of the form (1, 0, . . . , 0);

• The state sm in the Markov chain related to the Less Risk strategy, like the sZ state, is
absorbing; thus, the first row of transition matrix (28) is of the form (1, 0, . . . , 0).

2.2.2. Estimation of the Transition Probabilities

To estimate the transition probabilities for each of the Markov chains, let us start by
considering the one where we assume that the speculator chose to play the More Risk
strategy, represented by the following transition matrix (similar to the previously presented
matrix (27)):

PM =



sM sm s1 ··· s4 sZ

sM 1 0 0 · · · 0 0
sm p21 p22 p23 · · · p26 p27
s1 p31 p32 p33 · · · p36 p37
...

...
...

...
. . .

...
...

s4 p61 p62 p63 · · · p66 p67
sZ 0 0 0 · · · 0 1


. (29)

Now, let us consider that we are departing from state s2 = {Xt : 0.5 · α < Xt ≤
0.5 · α} (the assumed initial state of the chain); so, to estimate the transition probabilities
{p41, p42, p43, · · · , p47}, we will simply determine the relative frequency of each of the
states using the dataset, and we will use these frequencies on the corresponding row of the
transition matrix.

Utilizing Example (25), the relative frequencies for the transformed dataset for these
classes are as follows in the Table 4:

Table 4. Relative frequency table considering that the starting state is s2.

sM sm s1 s2 s3 s4 sZ

1
9

1
9

2
9

4
9

1
9

0
9

0
9

And, replacing in the transition matrix (related to Example (25)’s Markov chain),
we obtain the following:

PM =



sM sm s1 s2 s3 s4 sZ

sM 1 0 0 0 0 0 0
sm p21 p22 p23 p24 p25 p26 p27
s1 p31 p32 p33 p34 p35 p36 p37
s2 1/9 1/9 2/9 4/9 1/9 0 0
s3 p51 p52 p53 p54 p55 p56 p57
s4 p61 p62 p63 p64 p65 p66 p67
sZ 0 0 0 0 0 0 1


. (30)

As it was previously observed, the probabilities of transitioning from state s2 (to any
other state) are not the same as if we considered that we started from a different state.
Thus, in order to take this into account and to still use the relative frequency “method” to
estimate the transition probabilities, we need to slightly alter the classes from which we
will determine the relative frequencies.
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For example, consider the classes obtained from Example (25); if the price increases 3%
(of its initial price) at the first iteration of the chain, i.e., the price goes from 100% to 103% of
its (initial) value (which translates to a ((103 − 100)/100)× 100 = 3% percentage change
in price), then the chain moves from state s2 to the state s3. However, if the price is now at
state s3 and it further increases 3% (comparing to the initial price), the chain will not move
from the s3 state to the s4 state, because, in this case, the price goes from 103% to 106% of its
(initial) value, so the percentage change in price is ((106 − 103)/103)× 100 ≈ 2.91%, which
is not a member of the s4 state; thus, the chain will remain in the s3 state. So, the transition
from the s3 state to all of the other states is not the same (in terms of percentage change) as
the transition from s2 to all of the other states. And a similar argument can be made if we
consider that we start from any state different from s2.

With this in mind, if we want to use the relative frequencies of the dataset to estimate
the transitions from any state to any other, then we need to “re-calculate” the classes in order
for the estimation to be coherent with what we assumed and defined. So, to accomplish
this, we need to consider the percentage change in price regarding the previous iteration of
the chain, and not the percentage change regarding the initial price.

Again, for example, to estimate the transition from the s3 state to the s4 state, we
need to assume that the initial state is the s3 state and that we want to transition to the s4
state, i.e., we need to assume the percentage price change (relative to the s2) is at 103% and
that we want to know what the percentage price change is if the percentage price change
transitioned to 106% (relative to the s2), which would be ((106 − 103)/103)× 100 ≈ 2.91%.
Also, because we are dealing with classes, this obtained percentage change between classes
will be used as the “new” α to determine the limits (and ranges) of the classes; this is because
s3 and s4 are consecutive classes in terms of their range of values (as s2 and s3 were in the
base classes). Thus, in this case, the s4 state (or class) becomes s4 = {Xt : 1.46 < Xt ≤ 4.37}.
So, we need to use these “re-calculated” classes to obtain the relative frequency table, which
will be the estimation for the transition probabilities if we consider that we started from
state s3.

To generally define the classes which we will use in the relative frequency table,
we need to consider the direct correspondence f : {sm, s1, s2, s3, s4} → {2, 1, 0,−1,−2}
defined as follows:

f (sm) = 2

f (s1) = 1

f (s2) = 0

f (s3) = −1

f (s4) = −2

So, the “altered” classes (or states) obtained considering that we started from state
s ∈ {sm, s1, s2, s3, s4} are as follows:

sM = {Xt : Xt ≤ (−2.5 + f (s)) · α}; (31)

sm = {Xt : (−2.5 + f (s)) · α < Xt ≤ (−1.5 + f (s)) · α}; (32)

s1 = {Xt : (−1.5 + f (s)) · α < Xt ≤ (−0.5 + f (s)) · α}; (33)

s2 = {Xt : (−0.5 + f (s)) · α < Xt ≤ (0.5 + f (s)) · α}; (34)

s3 = {Xt : (0.5 + f (s)) · α < Xt ≤ (1.5 + f (s)) · α}; (35)

s4 = {Xt : (1.5 + f (s)) · α < Xt ≤ (2.5 + f (s)) · α}; (36)

sZ = {Xt : Xt > (2.5 + f (s)) · α}. (37)
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Note that the value of α used in the equations of the new classes also needs to be re-
calculated, which we will see how to do after determining the “re-calculated” classes for Ex-
ample (25) considering that we started from the s3 state with α = 2.91, which are as follows:

• sM = {Xt : Xt ≤ −10.185};
• sm = {Xt : −10.185 < Xt ≤ −7.275};
• s1 = {Xt : −7.275 < Xt ≤ −4.365};
• s2 = {Xt : −4.365 < Xt ≤ −1.455};
• s3 = {Xt : −1.455 < Xt ≤ 1.455};
• s4 = {Xt : 1.455 < Xt ≤ 4.365};
• sZ = {Xt : Xt > 4.365}.

Utilizing the dataset from Example (25), we have the following relative frequency
Table 5 for these classes:

Table 5. Relative that the first citation of each table appears in numerical order. frequency table
considering that the starting state is s3.

sM sm s1 s2 s3 s4 sZ

0
9

1
9

1
9

2
9

4
9

1
9

0
9

Replacing in the transition matrix (30) (related to Example (25)’s Markov chain),
we obtain the following:

PM =



sM sm s1 s2 s3 s4 sZ

sM 1 0 0 0 0 0 0
sm p21 p22 p23 p24 p25 p26 p27
s1 p31 p32 p33 p34 p35 p36 p37
s2 1/9 1/9 2/9 4/9 1/9 0 0
s3 0 1/9 1/9 2/9 4/9 1/9 0
s4 p61 p62 p63 p64 p65 p66 p67
sZ 0 0 0 0 0 0 1


. (38)

Now, for the general case, consider that we want to determine the relative frequencies
assuming that we are departing from the si ∈ {sm, s1, . . . , s4} state; then, we need to
determine the range of each class, i.e., we need to determine the α that we will use in the
previously presented Formulas (31)–(37). For this, we need to consider si’s consecutive
class, which is the class that contains the values immediately before the lower limit of si
or after the upper limit of si, and we will denote it as sj. Also, it is not relevant which
of the two that we choose. For instance, if si = sm, then its consecutive classes are sM
and s1, so sj can be either sM or sm; likewise, the (only) consecutive class of si = sM is
sj = sm. Thus, after obtaining the consecutive class, consider mi and mj to be the midpoints
of si and sj, respectively. But, if sj is sM or sZ, mj will be mi + (in f (si) − sup(si)) or
mi + (sup(si)− in f (si)), respectively.

So, the α value is obtained by the following:

α =

∣∣∣∣ mj − mi

mi + 100
100

∣∣∣∣. (39)

Remark 12. Note that we did not include sM and sZ into the set of possible states that si can be;
this is because the probabilities of departing from these states are fixed, as we saw when we built
the transition matrix (29). Also, in the calculation of the α, we need to consider the absolute value,
in case sj is related to lower limit of si.

Afterwards, we simply have to determine the classes by replacing the obtained α in all
of Equations (31)–(37), which we will use to calculate the relative frequency table of the
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(same transformed) dataset. Finally, we simply replace the obtained relative frequencies in
the row of the transition matrix related to the si state (or class).

Applying all of this to example (25), we obtain the following transition matrix:

PM =



sM sm s1 s2 s3 s4 sZ

sM 1 0 0 0 0 0 0
sm 4/9 4/9 1/9 0 0 0 0
s1 2/9 2/9 4/9 1/9 0 0 0
s2 1/9 1/9 2/9 4/9 1/9 0 0
s3 0 1/9 1/9 2/9 4/9 1/9 0
s4 0 0 1/9 1/9 2/9 4/9 1/9
sZ 0 0 0 0 0 0 1


. (40)

All the presented estimators and examples are related to the Markov chain where
we assume that the speculator chose to play the More Risk strategy. So, we estimate the
transition probabilities for the Markov chain where we assume that the speculator chose to
play the Less Risk strategy, which is represented by the following transition matrix (similar
to the previously presented matrix (28)):

PL =



sm s1 ··· s4 sZ

sm 1 0 0 · · · 0 0
s1 p21 p22 p23 · · · p25 p26
...

...
...

...
. . .

...
...

s4 p51 p52 p53 · · · p55 p56
sZ 0 0 0 · · · 0 1

. (41)

And, like in the PM case, we will determine the relative frequency tables considering
that the chain started from each of the states s1, . . . , s4. So, again assume that we are
departing from the si ∈ {s1, . . . , s4} state; then, we need to determine the range of each
class, i.e., we need to determine the α that we will use in formulas similar to the previously
presented ones ((31)–(37)). So, as before, consider a consecutive class to si, denoted as sj.
For instance, if si = s1, then its consecutive classes are sm and s2, so sj can be either sm or s2;
likewise, the (only) consecutive class of si = sm is sj = s1. After obtaining the consecutive
class, consider mi and mj to be the midpoints of si and sj, respectively. But, if sj is sm or sZ,
mj will be mi + (in f (si)− sup(si)) or mi + (sup(si)− in f (si)), respectively.

So, the α value is obtained by the following:

α =

∣∣∣∣ mj − mi

mi + 100
100

∣∣∣∣. (42)

Remark 13. Note that the equation to obtain α in the PL case is the same as Equation (39). Also, we
did not include sm and sZ into the set of possible states that si can be; this is because the probabilities
of departing from these states are fixed, as we observed when we built the transition matrix (28).

As in the PM case, the transition probabilities are not the same as if we considered that
the chain started from different states. Thus, in order to take this into account and to still
use the relative frequency “method” to estimate the transition probabilities, we need to
slightly alter the classes from which we will determine the relative frequencies. So, again
consider the direct correspondence f : {s1, . . . , s4} → {2, 1, 0,−1,−2} defined as follows:

f (s1) = 1

f (s2) = 0

f (s3) = −1

f (s4) = −2
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So, the “altered” classes (or states) for the PL matrix considering that we started from
a state s ∈ {s1, . . . , s4} are as follows:

sm = {Xt : Xt ≤ (−1.5 + f (s)) · α}; (43)

s1 = {Xt : (−1.5 + f (s)) · α < Xt ≤ (−0.5 + f (s)) · α}; (44)

s2 = {Xt : (−0.5 + f (s)) · α < Xt ≤ (0.5 + f (s)) · α}; (45)

s3 = {Xt : (0.5 + f (s)) · α < Xt ≤ (1.5 + f (s)) · α}; (46)

s4 = {Xt : (1.5 + f (s)) · α < Xt ≤ (2.5 + f (s)) · α}. (47)

sZ = {Xt : Xt > (2.5 + f (s)) · α}. (48)

Now, we will estimate the PL matrix for the same dataset

{45.00, 44.49, 43.44, 40.17, 41.05, 41.53, 41.36, 40.68, 40.46, 38.42}

from Example (25), which results in the transformed dataset

{−1.13,−2.36,−7.53, 2.19, 1.17,−0.41,−1.64,−0.54,−5.04}.

Considering that we started from the s3 state (with the consecutive state s4), i.e., con-
sidering that

α =

∣∣∣∣ mj − mi

mi + 100
100

∣∣∣∣ = ∣∣∣∣ 6 − 3
3 + 100

100
∣∣∣∣ ≈ 2.91.

We obtain the classes

• sm = {Xt : Xt ≤ −7.275};
• s1 = {Xt : −7.275 < Xt ≤ −4.365};
• s2 = {Xt : −4.365 < Xt ≤ −1.455};
• s3 = {Xt : −1.455 < Xt ≤ 1.455};
• s4 = {Xt : 1.455 < Xt ≤ 4.365};
• sZ = {Xt : Xt > 4.365}.

And, by replacing the relative frequencies, PL is as follows:

PL =



sm s1 s2 s3 s4 sZ

sm 1 0 0 0 0 0
s1 4/9 4/9 1/9 0 0 0
s2 2/9 2/9 4/9 1/9 0 0
s3 1/9 1/9 2/9 4/9 1/9 0
s4 0 1/9 1/9 2/9 4/9 1/9
sZ 0 0 0 0 0 1

. (49)

2.2.3. Estimating the Market’s Probabilities

Now, we have everything that we need to estimate the probabilities of the market play-
ing Zero Adversity (p0), Minor Adversity (p1) and Major Adversity (p2). And, to accomplish
this, we will use two Markov chains to estimate p2 and p0, as it was previously explained.
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To estimate p2 we will make the use of the Markov chain where we assume that the
speculator chose to play the More Risk strategy, which is represented by the following
transition matrix (29):

PM =



sM sm s1 ··· sZ

sM 1 0 0 · · · 0
sm p21 p22 p23 · · · p27
s1 p31 p32 p33 · · · p37
...

...
...

...
. . .

...
s4 p61 p62 p63 · · · p67
sZ 0 0 0 · · · 1


. (50)

Also, as before, we will assume that the initial state of the chain is s2, i.e., the prob-
ability distribution of X0 (the first percentage price change of the chain) is given by
πM

0 = (0, 0, 0, 1, 0, 0, 0)T .
Since we want to predict what will happen to an asset’s price after we buy it, that is,

we want to know if we will have a profit or a loss (according to the financial game that we
established) after we enter a trade, it is sensible to consider what will happen immediately
after we buy the asset and/or what the asset’s price is tending to. So, to this end, we
will consider two separate estimators and analyze the obtained results. Thus, p2 will be
estimated by the following:

• The probability of the chain reaching the sM state after one iteration;
• The long-run probability of the chain being at state sM.

Regarding the first estimator, we will simply compute the probability of the chain
being at state sM after one iteration of the chain, so we will compute the following:

πM
1 = πM

0 PM =
(
0 0 0 1 0 0 0

)


1 0 0 0 0 0 0
p21 p22 p23 p24 p25 p26 p27
p31 p32 p33 p34 p35 p36 p37
p41 p42 p43 p44 p45 p46 p47
p51 p52 p53 p54 p55 p56 p57
p61 p62 p63 p64 p65 p66 p67
0 0 0 0 0 0 1


=

[ sM sm s1 s2 s3 s4 sZ

p41 p42 p43 p44 p45 p46 p47
]
.

where, after the matrix multiplication, we obtain a 1× 7 vector πM
1 , which is the probability

distribution of the chain after one iteration. Here, note that πM
1 is simply the transition

probabilities starting from the s2 state, which makes sense considering that the initial state
is s2 and we only want to know the probability distribution after one iteration of the chain.
Thus, the first entry of πM

1 is the probability of the chain being in state sM after one iteration
and our estimator for p2 is p2 ≈ p41.

As we can see, this estimator is fairly simple, both in theoretical and in practical terms.
So, to try to understand how the percentage price will evolve, we will also consider an
estimator related to the long-term distribution of the chain. However, we need to note
that this probability distribution may not exist, because our chain is not irreducible. So,
we cannot use Theorem II.C.3 from [33] to guarantee that such a distribution exists. Also,
if such a distribution does exist, we know (from [32,36]) that the chain will tend to its
absorbing states; thus, in our case, the long-run probability distribution would be a 1 × 7
vector π where one of the absorbing states (sM or sZ) has a probability of one. But, we
do not know when this will happen or which state will have a probability of one. Hence,
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to overcome these issues, we will compute the probability distribution of the chain after
n < ∞ iterations:

πM
n = πM

0 Pn
M =

(
0 0 0 1 0 0 0

)


1 0 0 0 0 0 0
p21 p22 p23 p24 p25 p26 p27
p31 p32 p33 p34 p35 p36 p37
p41 p42 p43 p44 p45 p46 p47
p51 p52 p53 p54 p55 p56 p57
p61 p62 p63 p64 p65 p66 p67
0 0 0 0 0 0 1



n

(51)

=
[ sM sm s1 s2 s3 s4 sZ

πn1 πn2 πn3 πn4 πn5 πn6 πn7
]
. (52)

Thus, after the matrix multiplication, we obtain a 1 × 7 vector πM
n , and its first entry is

the probability of the chain being in state sM after n iterations, so our estimator for p2 is
p2 ≈ πn1.

Observe that we cannot apply Theorem II.C.3 from [33] to determine the long-run
probability distribution π of the chain, because it is not irreducible. So, we do need to
compute the n matrix multiplications.

Now, similarly to the estimator of p2, we will estimate p0 using the Markov chain
where we assumed that the speculator chose to play the Less Risk strategy, which is
represented by the following transition matrix (41):

PL =



sm s1 ··· s4 sZ

sm 1 0 0 · · · 0
s1 p21 p22 p23 · · · p27
...

...
...

...
. . .

...
s4 p51 p52 p53 · · · p57
sZ 0 0 0 · · · 1

. (53)

As before, we will assume that the initial state of the chain is s2, i.e., we will assume
that πL

0 = (0, 0, 1, 0, 0, 0)T . So, for the same reasons as before, p0 will be estimated by
the following:

• The probability of the chain reaching the sZ state after one iteration;
• The long-run probability of the chain being at state sZ.

Regarding the first estimator, we will simply compute the probability of the chain
being at state sZ after one iteration of the chain, i.e., we will compute the following:

πL
1 = πL

0 PL =
(
0 0 1 0 0 0

)


1 0 0 0 0 0
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56
0 0 0 0 0 1


=

[ sm s1 s2 s3 s4 sZ

p41 p42 p43 p44 p45 p46
]
.

where, after the matrix multiplication, we obtain a 1 × 6 vector πL
1 . And, again, note that

π1 is simply the transition probabilities starting from the s2 state. Also, the last entry of πL
1

is the probability of the chain being in state sZ after one iteration, so our estimator for p0 is
p0 ≈ p46.
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As before, this estimator is fairly simple and, because this chain is also not irreducible,
we will compute the probability distribution (πL

n ) of the chain again after n < ∞ iterations:

πL
n = πL

0 Pn
L =

(
0 0 1 0 0 0

)


1 0 0 0 0 0
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56
0 0 0 0 0 1



n

=
[ sm s1 s2 s3 s4 sZ

pn1 pn2 pn3 pn4 pn5 pn6
]
,

which, after the matrix multiplication, yields a 1 × 6 vector πn. And its last entry is
the probability of the chain being in state sZ after n iterations, so our estimator for p0 is
p0 ≈ pn6.

Observe that we have the same issues in both estimators, because the chains are
not irreducible; also, we use the same number of iterations n (to determine the long-run
estimator) in both chains, so that we can compare the obtained results from the different
chains. Finally, we need to note that these estimators (for p0 and p2) sum up to a value ≤ 1,
because, from Section 2.2, the theoretical probabilities that we are estimating have this
property, and from the fact that we are under-estimating the market’s probabilities, since
theoretically we should determine the long-run estimator by using infinite iterations (and
not only n).

Remark 14. Even though the notations used for both estimators are similar, the obtained estimated
probabilities result from (n iterations of) different chains, so they represent different probabilities.
Additionally, the estimator for p1 is simply p1 = 1 − p0 − p2, for both cases.

So, with all of this, we can estimate the probabilities of the market playing a certain
strategy and thus choose the speculator’s optimal strategy according to the previously
presented financial game.

To finalize this section, we will simply pick up the dataset from Example (25) (from
the previous section) and compute the estimators for the market’s probabilities. For this,
recall that the obtained transition matrix related to the chain where we assumed the More
Risk strategy is as follows:

PM =



sM sm s1 s2 s3 s4 sZ

sM 1 0 0 0 0 0 0
sm 4/9 4/9 1/9 0 0 0 0
s1 2/9 2/9 4/9 1/9 0 0 0
s2 1/9 1/9 2/9 4/9 1/9 0 0
s3 0 1/9 1/9 2/9 4/9 1/9 0
s4 0 0 1/9 1/9 2/9 4/9 1/9
sZ 0 0 0 0 0 0 1


. (54)

The obtained transition matrix related to the chain where we assumed the Less Risk
strategy is as follows:

PL =



sm s1 s2 s3 s4 sZ

sm 1 0 0 0 0 0
s1 4/9 4/9 1/9 0 0 0
s2 2/9 2/9 4/9 1/9 0 0
s3 1/9 1/9 2/9 4/9 1/9 0
s4 0 1/9 1/9 2/9 4/9 1/9
sZ 0 0 0 0 0 1

. (55)
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So, assuming πM
0 = (0, 0, 0, 1, 0, 0, 0)T , we have the following:

πM
1 = πM

0 PM =
(
0 0 0 1 0 0 0

)


1 0 0 0 0 0 0
4/9 4/9 1/9 0 0 0 0
2/9 2/9 4/9 1/9 0 0 0
1/9 1/9 2/9 4/9 1/9 0 0

0 1/9 1/9 2/9 4/9 1/9 0
0 0 1/9 1/9 2/9 4/9 1/9
0 0 0 0 0 0 1


=

[ sM sm s1 s2 s3 s4 sZ

1/9 1/9 2/9 4/9 1/9 0 0
]
.

And, with πM
0 = (0, 0, 0, 1, 0, 0, 0)T , we have the following:

πL
1 = πL

0 PL =
(
0 0 1 0 0 0

)


1 0 0 0 0 0
4/9 4/9 1/9 0 0 0
2/9 2/9 4/9 1/9 0 0
1/9 1/9 2/9 4/9 1/9 0

0 1/9 1/9 2/9 4/9 1/9
0 0 0 0 0 1


=

[ sm s1 s2 s3 s4 sZ

2/9 2/9 4/9 1/9 0 0
]
.

So, the one-iteration estimators for the market’s probabilities, for this example, are
as follows:

p0 = 0

p1 = 8/9 ≈ 0.89

p2 = 1/9 ≈ 0.11

Regarding the long-run estimator with n = 10 iterations, we have the following:

πM
n = πM

0 Pn
M =

(
0 0 0 1 0 0 0

)


1 0 0 0 0 0 0
4/9 4/9 1/9 0 0 0 0
2/9 2/9 4/9 1/9 0 0 0
1/9 1/9 2/9 4/9 1/9 0 0

0 1/9 1/9 2/9 4/9 1/9 0
0 0 1/9 1/9 2/9 4/9 1/9
0 0 0 0 0 0 1



n

=
[ sM sm s1 s2 s3 s4 sZ

0.9 0.03 0.03 0.02 0.01 0.01
]

πL
n = πL

0 Pn
L =

(
0 0 1 0 0 0

)


1 0 0 0 0 0
4/9 4/9 1/9 0 0 0
2/9 2/9 4/9 1/9 0 0
1/9 1/9 2/9 4/9 1/9 0

0 1/9 1/9 2/9 4/9 1/9
0 0 0 0 0 1



n

=
[ sm s1 s2 s3 s4 sZ

0.95 0.02 0.01 0.01 0.01
]

Remark 15. Note that the presented values are rounded with two decimal cases.
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So, the long-run estimators for the market’s probabilities, for this example, are
as follows:

p0 = 0.01

p1 = 0.09

p2 = 0.9

Note that the estimated probabilities, in this example, change drastically from one
estimator to the other; also, they suggest that the market (as the iterations of the chain
increase) is increasing its probability of choosing the Major Adversity strategy.

To finalize, the previously presented Table 2 related to the financial game, for this
example, becomes the following Table 6:

Table 6. Example (25)’s game table for the financial market game.

Speculator
q 1 − q

R+ R−

Market
p0 0A 9 9

p1 mA 9 −6

p2 MA −9 −6

These payoffs (or strategy thresholds) were obtained by applying the theory in
Section 2.1 and considering the standard deviation of the transformed dataset (i.e., consid-
ering α = 3), where we obtained w = 9, x = 6 and y = 9.

Now, with the one-iteration estimators and considering the probability triangle (also
presented in Section 2.1, but considering these new values), for this case, the speculator
should choose to play the More Risk strategy, because

p2 = 0.11 <
w

w + y
= 0.5 and

p1

p2
≈ 8.09 >

y − x
w + x

= 0.2. (56)

And, considering the long-run estimator and the same probability triangle, the specu-
lator should choose not to play, because

p1 + p2 = 0.99 >=
w

w + y
= 0.5 and p2 = 0.9 >

w
w + y

= 0.5. (57)

Thus, as we can see the two estimators yield different strategies for the speculator to
choose. All of this because the market “changes” its behavior as the iterations increase.

2.3. The SARIMA and GARCH Models

Now that we have discussed the specific game theoretical and Markov chain models
that we will use, it is time to describe how we will use the SARIMA and GARCH models to
predict the market’s behavior, and then compare the accuracy of the three approaches.

However, we need to note that we use Markov chains as an auxiliary model to
determine the probabilities for the game’s strategies, so we will also consider the SARIMA
and GARCH models as auxiliary to the base game model. Moreover, we cannot simply
apply the time series models to the raw dataset and make a prediction for the future value
of the time series, because, in order to make the comparison of the models possible, we
need to apply all the models to the same dataset and try to predict the same objects, which
in our case means predicting the strategies that the market will choose. All of this is because
we cannot directly compare traditional econometrics models, because these models are
deterministic and our model is probabilistic.
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Thus, we will apply the time series models to the same percentage change transformed
datasets that we have been using on the previous sections. So, if we make predictions based
on these models, we obtain percentage change transformed predictions of the asset’s price
(which is useful, but it is not our ultimate goal).

To obtain a prediction of the market’s strategy, firstly, we will estimate the optimal
time series models for the dataset. Then, using these estimated models, we will perform
K simulations each with N observations, thus obtaining K simulations of percentage
change prices for each of the models, each one starting on the last observation of the
transformed dataset.

Remark 16. All of this will be performed with the aid of R software, which we will elaborate on
further in Section 2.4.

Now, as in the previous sections, consider the speculator’s More Risk strategy thresh-
olds in terms of the dataset’s standard deviation α:

• The profit objective threshold: sP ≥ 3 · α;
• The More Risk threshold: sR ≤ −3 · α.

Finally, for each of the K simulations, we need to check which of the thresholds was
reached first, because the speculator will exit the trade (or the game) when one of these
is reached. And, with this, we obtain the absolute frequencies of each of the thresholds,
and also their relative frequencies if we divide by K.

Remark 17. Note that, as we are performing simulations involving a model which includes a
probability distribution, if we ran the same code several times, we would obtain different results
after each run. However, these results will not have major differences between them.

Hence, we will estimate the probability of the market playing the Major Adversity
strategy (p2) with the relative frequency related to the More Risk threshold, and similarly
the probability of the market playing the Zero Adversity strategy (p0) with the relative
frequency related to the Profit Objective threshold. Also, by default, the estimation for the
probability of the market playing the Minor Adversity strategy (p1) is simply 1 − p2 − p0.
Additionally, since we have the market’s probabilities, we can choose the speculator’s
optimal strategy according to the probability triangle presented in Section 2.1.2. But,
before moving on, note that we need to determine these probabilities for both the SARIMA
and the GARCH models, so we need to make an estimation for each of these models (but
always using the same dataset), i.e., we need to perform K simulations for each model
estimation and then determine the probabilities for each set of estimations. So, we will
obtain two optimal strategies, one for each of the models.

Thus, for all the models presented so far (specifically, Markov chain, SARIMA and
GARCH), the speculator will obtain an optimal strategy for each of them, which is per-
formed by estimating the market’s probabilities (which may differ for each model) and
then we will apply the same probability triangle for each set of probabilities.

2.4. Procedures

Now that we have all the necessary models and estimators, it is time to describe how
we will use each model to choose the optimal strategy for a certain dataset. Also, we need
to explain how we will check whether the predictions were accurate and how accurate.

Consider an abstract dataset composed of strictly positive values, which will repre-
sent the price of a certain financial asset for n + 1 consecutive iterations (it can be n + 1
consecutive minutes, days, . . . ). Since we worked with percentage change data in the
game theoretical model, we will apply the percentage change transformation to the dataset,
obtaining a transformed dataset C = {c1, . . . , cn} composed of percentage changes in n + 1
consecutive iterations. So, we will apply all of our models to this dataset C. Also, in order
to check the accuracy of our models, we will split the dataset into training (C1) and test (C2)
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sets, where the training set will be composed of the first 80% of the observations and the
remaining will belong to the test set. Thus, considering the set C = {c1, . . . , cn}, the training
set will be C1 = {c1, . . . , ck} and the test set C2 = {ck+1, . . . , cn}, for k < n.

The general procedure, applied to a (transformed and divided) dataset C, consists of
estimating the market’s probabilities for each of the models (Markov chains, SARIMA and
GARCH), thus obtaining three “pairs” of probabilities; then, we will use them to determine
the speculator’s optimal strategy, also obtaining three optimal strategies. Afterwards, we
will use the test set to check whether the obtained strategies were accurate predictions for
the current training set.

To accomplish this, consider the speculator’s More Risk strategy thresholds (as we did
in the previous section) in terms of the dataset’s standard deviation α:

• The profit objective threshold: sP = 3α;
• The More Risk threshold: sR = −3α.

Then, using the test set, we will check which of the thresholds was reached first. So,
this information, together with the chosen optimal strategies, gives us the accuracy of the
predictions; specifically,

• Considering that the optimal chosen strategy is the More Risk strategy, we will con-
sider that strategy to be accurate if the first threshold to be reached in the test set is the
profit objective threshold; otherwise, the strategy will be considered to be not accurate;

• Considering that the optimal chosen strategy is the Less Risk strategy, we will consider
that strategy to be accurate if the first threshold to be reached in the test set is the profit
objective threshold; otherwise, the strategy will be considered to be not accurate;

• Considering that the optimal chosen strategy is the Do Not Play strategy, we will
consider that strategy to be accurate if the first threshold to be reached in the test set is
the More Risk threshold; otherwise, the strategy will be considered to be not accurate.

Note that the Less Risk threshold is not necessary to determine the accuracy of the
strategies. Also, due the nature of the data, it may be that none of the thresholds is reached;
so, in this case, we will not consider the strategy to be accurate or inaccurate. Hence, in this
situation, we can decrease the thresholds and re-calculate the optimal strategies, or we can
simply consider that the accuracy cannot be determined due to the nature of the data.

Finally, in order to have more samples to analyze, we will increase the training set
by one observation and decrease the test set by one observation, thus obtaining the sets
C1 = {c1, . . . , ck, ck+1} and C2 = {ck+2, . . . , cn}. Then, we will repeat what we described
before, but considering these new sets as the training and test sets, respectively. Thus, we
will obtain new accuracy data for the new optimal strategies.

To summarize, consider the transformed dataset C = {c1, . . . , cn} split between a
training set C1 = {c1, . . . , ck} and a test set C2 = {ck+1, . . . , cn}; then, the procedure to be
applied is as follows:

1. Considering the training set C1,

• Estimate the market’s probabilities using the Markov chain model and determine
the optimal strategy for the speculator using the game theoretical model;

• Estimate the optimal SARIMA model, estimate the market’s probabilities using
the model’s simulations and determine the optimal strategy for the speculator
using the game theoretical model;

• Estimate the optimal GARCH model, estimate the market’s probabilities using
the model’s simulations and determine the optimal strategy for the speculator
using the game theoretical model.

2. Considering the test set C2,

• Check the accuracy of the three obtained optimal strategies, using the previously
described method;

• Store the accuracy results for each of the models.
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3. Increase the training set C1 by one observation and shorten the test set C2 also by one
observation; thus, we will now consider the training set to be C1 = {c1, . . . , ck, ck+1}
and the test set to be C2 = {ck+2, . . . , cn}.

4. Perform all of the previous steps considering the “new” training and test sets, but end
the procedure when the test set only has one observation remaining.

After applying this procedure, we need to analyze the obtained results, which we will
carry out next.

3. Results

Now, we can put what was presented into practice with some real-time data from the
financial markets, compare the models’ accuracy results and thus derive some conclusions
from them.

Firstly, we will make our analysis for some controlled datasets, with the objective
of checking how the models perform in “well-behaved” scenarios, and then move on to
datasets with daily and intraday data. But, before moving further, let us recall that a model
is said to be accurate if the speculator’s obtained optimal strategies were the correct ones
(when compared to the test set) after the procedure described in Section 2.4 (from Section 2)
ended. Likewise, the model is said to be inaccurate if the speculator’s obtained optimal
strategies were incorrect ones (when comparing to the test set) after the same procedure
ended. However, if a model’s accuracy could not be determined (at a certain time) then it is
said to have null accuracy. Additionally, we will also present (and analyze) the following
characteristics obtained from applying the described procedures:

• The percentage of times that the several models obtain the same strategies. This is
performed in order to check how often different approaches will lead to the same
optimal strategies. Also, we will present these results regarding pairs of models;
for instance, we will present the percentage of times that the Markov chains and the
SARIMA models obtained the same strategies.

• The average time (in the same units as the corresponding dataset) that it takes for the
trade to close (in the test set), after a strategy is given. This average time is obtained
by determining the number of necessary iterations for the several test sets to reach
one of the speculator’s thresholds.

• The percentages of the speculator’s obtained strategies that are “Play Less Risk”, “Play
More Risk” and/or “Do Not Play”.

• In order to show the potential of investing, we use the obtained strategies and enter a
fictional market with an initial monetary value of USD 10,000, where we only buy one
item of each financial asset. This is performed in order to see the profit that we would
obtain if we entered a financial market and used the speculator’s obtained strategies
(for each of the models) to enter (and then exit) a trade. We will not consider the
barrier options strategy presented in Section 2.1.3 because our objective is to evaluate
the accuracy of the model in a statistical way by considering the value of a portfolio
with USD 10,000 of simple financial assets.

We will not use different performance metrics to compare the stocks’ predicted values
against the actual values since our objective is to prioritize metrics directly related to
profitability and trading success, rather than general statistical forecasting accuracy. Other
metrics are valuable for evaluating how close predictions are to actual values, but they do
not always translate directly to trading profits.

To facilitate the presentation, we will round all of the results up to two decimal cases,
but, if needed to, we will display some results in scientific notation. Thus, the values that
will be presented are approximations of the actual results.

Remark 18. In order to make the text shorter, we will refer to the Markov chain model considering
the one-iteration estimator as the MC1 model, and to the Markov chain model considering the
long-run estimator as the MCn model.
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Finally, the following sections will be structured in the same manner, that is, a brief ex-
planation of the dataset(s), followed by the presentation of each model’s obtained accuracy
results (and related conclusions), ending with the analysis of some characteristics resultant
from the models’ appliance.

3.1. Controlled Datasets

Since the models tend to behave differently due to extreme events, we created con-
trolled datasets which represent extreme behaviors. Thus, for this section, we will start
by explaining how we constructed each dataset and make an overall analysis of the ob-
tained results.

The first dataset was constructed with the purpose of checking how the models
perform in a “mild” Major Adversity scenario, i.e., the price of the asset will not always
be decreasing but its trend will. And, to obtain such a dataset, we followed the presented
steps until we obtained 1000 observations:

1. Define the first value of the dataset as 1000;
2. The second value of the dataset is simply an increase of 3% of the previous one;
3. The third value of the dataset is a decrease of 9% of the previous one;
4. The even observations are obtained with an increase of 3% of the previous value;
5. The odd observations are obtained with a decrease of 9% of the previous value.

We constructed the dataset in this manner in order to mimic an event of Major Adver-
sity, so, for the models to “perform well” in this dataset, the speculator’s obtained optimal
strategy must always be “Do Not Play”, because the market, ultimately, is choosing to
decrease the asset’s price in the long-run.

The second dataset was constructed with the purpose of checking how the models
perform in an “extreme” Major Adversity scenario, i.e., the price of the asset will always be
decreasing. To obtain such a dataset, we simply defined it as 1000 observations starting
from 1000, always decreasing by 3% of the previous value and adding a random value
from a standard normal distribution. We constructed the dataset in this manner in order
to mimic an extreme event of Major Adversity. So, for the models to “perform well” in
this dataset, the speculator’s obtained optimal strategy must always be “Do Not Play”,
because the market will always choose the Major Adversity strategy.

The third dataset was constructed with the purpose of checking how the models
perform in a “mild” Zero Adversity scenario, i.e., the price of the asset will not always be
increasing but its trend will. And, to obtain such a dataset, we followed the presented steps
until we obtained 1000 observations:

1. Define the first value of the dataset as 1000;
2. The second value of the dataset is simply a decrease of 3% of the previous one;
3. The third value of the dataset is an increase of 9% of the previous one;
4. The even observations are obtained with a decrease of 3% of the previous value;
5. The odd observations are obtained with an increase of 9% of the previous value.

We constructed the dataset in this manner in order to mimic an event of Zero Adversity,
so, for the models to “perform well” in this dataset, the speculator’s obtained optimal
strategy must either be “Play Less Risk” or “Play More Risk”, because the market, ultimately,
is choosing to increase the asset’s price in the long run.

The last dataset was constructed with the purpose of checking how the models perform
in an “extreme” Zero Adversity scenario, i.e., the price of the asset will always be increasing.
To obtain such a dataset, we simply defined it as 1000 observations starting from 1000,
always increasing by 3% of the previous value and adding a random value from a standard
normal distribution. We constructed the dataset in this manner in order to mimic an
extreme event of Zero Adversity. So, for the models to “perform well” in this dataset,
the speculator’s obtained optimal strategy must always be “Play Less Risk” (or even “Play
More Risk”), because the market will always choose the Zero Adversity strategy.
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Now that we have explained how each dataset was constructed, we will make a global
analysis of the obtained results for the controlled datasets (considering that 20% of the data
belongs to the test set), obtaining the following:

• The highest standard deviation of the transformed datasets was α ≈ 3 (obtained in
Datasets 1 and 3) and the lowest was α ≈ 0 (in Dataset 2).

• The MC1 model was 75% more accurate than the other models, i.e., on three datasets
this model had accuracy results higher than (or equal to) all the other models. Also,
the highest accuracy result was 100% (obtained in Datasets 2 and 4), while the lowest
was 0% (on Dataset 1).

• The MCn, SARIMA and GARCH models were 100% more accurate than the other mod-
els. Additionally, the highest accuracy result was 100% (obtained in Datasets 2 and 4),
while the lowest was 98.5% (on Dataset 3).

From these results, we can see that the MCn, SARIMA and GARCH models are the
models with the best accuracy results, which means that, if the speculator used these
models (for these datasets), he/she would obtain more strategies that would result in a
profit (or at least a smaller loss). Consequently, the MC1 model obtained the worst accuracy
results. Also, we need to note that the lowest accuracy results were always obtained in the
same datasets, while the highest was almost always in the same one.

Finally, 50% of the datasets presented no null accuracy results for any of the models,
meaning that the thresholds were always reached in all of the test sets. In Dataset 1, 0.5% of
the models resulted in null accuracy results, which was the same for all the models, while
this percentage was 1.5% for Dataset 3.

Moving to the obtained characteristics (which resulted from the explained procedures),
for these controlled datasets they were as follows:

• The percentages of times that the several models obtained the same strategies were
as follows:

– The MCn model fully coincided in all the datasets with the time series models,
i.e., in all the dataset these models always resulted in the same strategies;

– The MC1 model fully coincided in 50% of the datasets with all the other models
but, on the other hand, it never coincided with any model in the other datasets.

• The average time (in iterations) for all of the datasets was the same across all of the
models. Also, the highest average time was 3.475 iterations (in Dataset 3) and the
lowest was 1 iteration (on Datasets 2 and 4).

• The percentage of the speculator’s obtained strategies for each of the models was
as follows:

– For the MC1 model,

* In 50% of the datasets, it always chose the More Risk strategy;
* In 25% of the datasets, it always chose the Less Risk strategy;
* In 25% of the datasets, it always chose the Do Not Play strategy.

– For the MCn, SARIMA and GARCH models,

* In 50% of the datasets, it always chose the Less Risk strategy;
* In 50% of the datasets, it always chose the Do Not Play strategy.

• The obtained possible profits using each model were as follows:

– For the MC1 model,

* Negative in 25% of the datasets, null in 25% and positive in the remaining ones;
* The lowest profit (or highest loss) was in Dataset 1;
* The highest profit was in Dataset 3.

– For the MCn, SARIMA and GARCH models,

* Null in 50% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in Datasets 1 and 2;
* The highest profit was in Dataset 3.
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As it was said before, the MCn, SARIMA and GARCH models fully coincided between
them, in terms of accuracy results and chosen strategies. But, on the other hand, the MC1
model never coincided with all the other models in 50% of the datasets.

The MC1 model in 50% of the datasets always chose the More Risk strategy, and then
switched between all the strategies in the remaining datasets. Meanwhile, the other models
always chose the Less Risk strategy in 50% of the datasets, and then the Do Not Play
strategy on the other datasets.

In terms of possible profits, the MCn, SARIMA and GARCH models obtained positive
profits in 50% of the datasets and null profits on the other ones, while the MC1 model
obtained negative profits in 25% of the datasets, null profits in 25% and the remaining
were positive.

From all of these results, we can see that the MCn, SARIMA and GARCH models
obtained better accuracy and profits results, because they chose the expected optimal strate-
gies for each of the datasets, while the MC1 model was the worst in all of the same aspects.

Finally, the average time it took the models to reach a threshold always coincided
between models and its range was approximately from one to three iterations. Also,
we need to note that both the highest and lowest profits were always obtained in the
same datasets.

3.2. Daily Datasets

For this section, we will analyze datasets which are only composed of the daily closing
prices of several financial assets; this means that we are going to analyze the assets’ prices
at the end of each day (specifically, at the closing of the financial market).

We applied our models to 100 different datasets, but we will not analyze each of them;
rather, we will make a global analysis of the results. Also, note that, whenever we refer to a
specific dataset, we are actually referring to the price data that we obtained for a certain
financial asset. Additionally, all the datasets have exactly 1000 observations of the closing
price at the end of the day.

Thus, after applying our models to these datasets, considering that 20% of the data
belongs to the test set, we obtained the following:

• The highest standard deviation of the transformed datasets was α ≈ 3.44 (obtained in
the TNXP dataset) and the lowest was α ≈ 0 (in the PSON dataset).

• The MC1 model was 41% more accurate than the other models, i.e., on 41 datasets
this model had accuracy results higher than (or equal to) all the other models. Also,
the highest accuracy result was 66.5% (obtained in the AAPL dataset), while the lowest
was 33.5% (in the TNXP dataset).

• The MCn model was 50% more accurate than the other models. And the highest
accuracy result was 66.5% (obtained in the AAPL and TNXP datasets), while the
lowest was 34.5% (in the NOS dataset).

• The SARIMA model was 42% more accurate than the other models. And the highest
accuracy result was 66.5% (obtained in the AAPL dataset), while the lowest was 35%
(in the GFS dataset).

• The GARCH model was 40% more accurate than the other models. And the highest
accuracy result was 66.5% (obtained in the AAPL dataset), while the lowest was 35.5%
(in the NOS dataset).

From these results we can see that the MCn model is the one with the best accuracy re-
sults, which means that, if the speculator used this model (for these datasets), he/she would
obtain more strategies that would result in a profit (or at least a smaller loss). Additionally,
the MC1, SARIMA and GARCH models obtained very similar accuracy results.

Regarding the time series models, the SARIMA model obtained slightly higher accu-
racy results than the GARCH model, which is the opposite of what was expected, since
the GARCH models were specifically developed for this kind of data, as such it would be
expected for them to perform better in terms of accuracy.
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Finally, the obtained null accuracy results were the same across all the models and
were almost always zero; also, the highest percentage of null models was 6% (obtained in
the TWTR dataset). Additionally, we need to note that the highest accuracy results were
always obtained in the same dataset.

The obtained characteristics (which resulted from the explained procedures) for these
datasets were as follows:

• The percentages of times that the several models obtained the same strategies were
as follows:

– The Markov chain models fully coincided between them in 81% of the datasets,
i.e., in 81 datasets these two models always resulted in the same strategies. Also,
they never coincided in 5% of the datasets and, in the other datasets, the percent-
age of coinciding models ranged from 2% to 99%.

– The MC1 model never coincided (in all the datasets) with the time series models.
– The MCn model never coincided in 81% of the datasets with the SARIMA model

and, in the other datasets, the percentage of coinciding models ranged from 1%
to 98%.

– The MCn model never coincided in 82% of the datasets with the GARCH model
and, in the other datasets, the percentage of coinciding models ranged from 0.5%
to 98.5%.

– The SARIMA model fully coincided with the GARCH model in 6% of the datasets
and, in the other datasets, the percentage of coinciding models ranged from 51.5%
to 99.5%.

• The average time (in days) for all the datasets was the same across all the models.
Also, the highest average time was 9.35 days (in the GFS dataset) and the lowest was
1.015 days (in the PSON dataset).

• The percentage of the speculator’s obtained strategies for each of the models was
as follows:

– The MC1 model always chose to play the More Risk strategy on all of the datasets.
– For the MCn model,

* In 81% of the datasets, it always chose the More Risk strategy;
* In 1% of the datasets, it always chose the Less Risk strategy;
* In 4% of the datasets, it always chose the Do Not Play strategy;
* In 1% of the datasets, it chose between the More Risk and Less Risk strategies;
* In 13% of the datasets, it only chose between the More Risk and Do Not

Play strategies.

– For the SARIMA model,

* In 5% of the datasets, it always chose the Less Risk strategy;
* In none of the datasets, it always chose the More Risk and Do Not Play strategies;
* In the remaining datasets, it only chose between the Less Risk and Do Not

Play strategies. Also, the percentage of times the Less Risk strategy was
chosen (instead of the Do Not Play strategy) was less than 50% in only 3% of
all the datasets.

– For the GARCH model,

* In 26% of the datasets, it always chose the Less Risk strategy;
* In none of the datasets, it always chose the More Risk and Do Not Play strategies;
* In the remaining datasets it only chose between the Less Risk and Do Not

Play strategies. Also, the percentage of times the Less Risk strategy was
chosen (instead of the Do Not Play strategy) was less than 50% in only 1% of
all the datasets.

• The obtained possible profits using each model were as follows:

– For the MC1 model,
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* Negative in 18% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the CCL dataset;
* The highest profit was in the AZN dataset.

– For the MCn model,

* Negative in 16% of the datasets, null in 4% of the datasets and positive in the
remaining datasets;

* The lowest profit (or highest loss) was in the CCL dataset;
* The highest profit was in the AZN dataset.

– For the SARIMA model,

* Negative in 25% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the CCL dataset;
* The highest profit was in the AVV dataset.

– For the GARCH model,

* Negative in 19% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the CCL dataset;
* The highest profit was in the AZN dataset.

From the first item, we can see that no model fully coincided in terms of chosen
strategies with another one, but, on the other hand, the MC1 model never coincided with
the time series models (SARIMA and GARCH); similarly, the MCn model almost never
coincided with the time series models. Also, the Markov chain models almost always
coincided between them. Regarding the time series models, they almost always coincided
between them, even though they only fully coincided in 6% of the datasets.

The MC1 model always chose the More Risk strategy across all of the datasets, while
this only happened in 81% of the datasets for the MCn model. But, unlike the Markov chain
models, the time series models never chose the More Risk strategy.

From all of these results, we can see that the MCn model performed better both in terms
of accuracy results and of possible profits. Meanwhile, the MC1 model performed similarly
to the time series models, both in terms of accuracy results and of possible profits. Also,
regarding the time series models, the SARIMA model had slightly higher accuracy results
than the GARCH model; however, it had the highest percentage of unprofitable datasets.

Finally, the average time it took the models to reach a threshold always coincided
between models and its range was from approximately a day to two weeks (each week
in the financial markets is composed of five days). Also, we need to note that the lowest
profit was always obtained in the same dataset, while the highest one was almost always
obtained in the same one.

3.3. Intraday Datasets

For this section, we will analyze datasets which are only composed of 1000 observa-
tions of the intraday closing prices of several financial assets; this means that we are going
to analyze the assets’ prices at the end of each minute for several days. Also, we applied our
models to 100 different datasets, but we will not analyze each of them; rather, we will make
a global analysis of the results. Also, note that, whenever we refer to a specific dataset, we
are actually referring to the price data that we obtained for a certain financial asset.

Thus, after applying our models to these datasets, considering that 20% of the data
belongs to the test set, we obtained the following:

• The highest standard deviation of the transformed datasets was α ≈ 2.13 (obtained
in the TNXP dataset); also, this value was the only value for the standard deviation
greater than 1. Furthermore, all the other values for the standard deviation were
smaller than 0.4, where the lowest was α ≈ 0 (in the Z dataset).

• The MC1 was 27% more accurate than the other models, i.e., in 27 datasets this model
had accuracy results higher than (or equal to) all the other models. Also, the highest
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accuracy result was 68.5% (obtained in the NOS dataset), while the lowest was 0.5%
(in the TWTR dataset).

• The MCn model was 43% more accurate than the other models. And the highest
accuracy result was 78.5% (obtained in the FCX dataset), while the lowest was 0.5%
(in the TWTR dataset).

• The SARIMA model was 43% more accurate than the other models. And the highest
accuracy result was 74% (obtained in the BCP dataset), while the lowest was 2.5% (in
the TWTR dataset).

• The GARCH model was 33% more accurate than the other models. And the highest
accuracy result was 67.5% (obtained in the O dataset), while the lowest was 14% (in
the TWTR dataset).

From these results we can see that the MCn and SARIMA models were the ones with
the best accuracy results, which means that, if the speculator used one of these models (for
these datasets), he/she would obtain more strategies that would result in a profit (or at least
a smaller loss). Meanwhile, the MC1 model was the one with the lowest accuracy results.

Regarding the time series models, the SARIMA model obtained higher accuracy results
than the GARCH model, which is the opposite of what was expected, since the GARCH
models were specifically developed for this kind of data.

Finally, the obtained null accuracy results were the same across all the models and
were almost always zero, where the highest percentage of null models was 12.5% (obtained
in the TWTR dataset). Also, we need to note that the smallest accuracy results were always
obtained in the same dataset.

The obtained characteristics (which resulted from the explained procedures) for these
controlled datasets were as follows:

• The percentages of times that the several models obtained the same strategies were
as follows:

– The Markov chain models fully coincided between them in 61% of the datasets,
i.e., in 61 datasets these two models always resulted in the same strategies. Also,
they never coincided in 17% of the datasets and, in the other datasets, the percent-
age of coinciding models ranged from 1% to 98.5%.

– The MC1 model never coincided in any of the datasets with the time series models.
– The MCn model fully coincided with the SARIMA model in 1% of the datasets,

never coincided in 67% of the datasets and, in the other datasets, the percentage
of coinciding models ranged from 1% to 87.5%.

– The MCn model never coincided with the GARCH model in 76% of the datasets
and, in the other datasets, the percentage of coinciding models ranged from 0.5%
to 95.5%.

– The SARIMA model fully coincided with the GARCH model in 4% of the datasets
and, in the other datasets, the percentage of coinciding models ranged from 12.5%
to 99.5%.

• The average time (in minutes) for all the datasets was the same across all the models.
And the highest average time was 52.56 minutes (in the TWTR dataset), while the
lowest was 1.035 minutes (in the Z dataset).

• The percentages of the speculator’s obtained strategies for each of the models were
as follows:

– The MC1 model always chose to play the More Risk strategy on all of the datasets.
– For the MCn model,

* In 61% of the datasets, it always chose the More Risk strategy;
* In 1% of the datasets, it always chose the Less Risk strategy;
* In 16% of the datasets, it always chose the Do Not Play strategy;
* In 22% of the datasets, it only chose between the More Risk and Do Not

Play strategies.

– For the SARIMA model,
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* In 5% of the datasets, it always chose the Less Risk strategy;
* In none of the datasets, it always chose the More Risk and Do Not Play strategies;
* In the remaining datasets, it only chose between the Less Risk and Do Not

Play strategies. Also, the percentage of times the Less Risk strategy was
chosen (instead of the Do Not Play strategy) was less than 50% in only 7% of
all the datasets.

– For the GARCH model,

* In 27% of the datasets, it always chose the Less Risk strategy;
* In none of the datasets, it always chose the More Risk strategy;
* In the remaining datasets, it only chose between the Less Risk and Do Not

Play strategies. Also, the percentage of times the Less Risk strategy was
chosen (instead of the Do Not Play strategy) was less than 50% in only 3% of
all the datasets.

• The obtained profits using each model were as follows:

– For the MC1 model,

* Negative in 41% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the RB dataset;
* The highest profit was in the AZN dataset.

– For the MCn model,

* Negative in 37% of the datasets, null in 16% and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the RB dataset;
* The highest profit was in the AHT dataset.

– For the SARIMA model,

* Negative in 40% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the RB dataset;
* The highest profit was in the AZN dataset.

– For the GARCH model,

* Negative in 43% of the datasets and positive in the remaining datasets;
* The lowest profit (or highest loss) was in the RB dataset;
* The highest profit was in the AZN dataset.

From the first item, we can see that no model fully coincided in terms of chosen
strategies with another one, but the MC1 model never coincided with the time series
models (SARIMA and GARCH), and the MCn model almost never coincided with the time
series models. Also, the Markov chain models almost always coincided between them.
Similarly, the time series models almost always coincided between them, even though they
only fully coincided in 4% of the datasets.

The MC1 model always chose the More Risk strategy across all the datasets, while this
only happened in 61% of the datasets for the MCn model. But, unlike the Markov chain
models, the time series models never chose the More Risk strategy.

The average time it took the models to reach a threshold always coincided between
models and its range was from approximately 1 to 53 minutes. Also, the lowest profit was
always obtained in the same dataset, while the highest was almost always obtained in the
same one.

Finally, from all of these results, we can see that the MCn and SARIMA models
were the ones with the best accuracy results; however, the MCn model had the lowest
percentage of unprofitable datasets and was a model which resulted in all kinds of strategies.
Additionally, regarding the time series models, the SARIMA model had better accuracy
and profit results than the GARCH model.
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4. Conclusions

Now that we have all the results for all the datasets, we can make a summary of what
we obtained and then draw some conclusions from it.

Firstly, from all the obtained results, we can note that the lowest standard deviation of
the transformed datasets was α ≈ 0, while the highest was α ≈ 3. Also, we need to note
that, in the intraday datasets, 99% of the transformed datasets had a standard deviation
lower than 0.4.

Regarding the obtained accuracy results for the models, we can see that the MCn
model obtained the best accuracy results for each type of dataset (controlled, daily and
intraday), but on the controlled datasets it tied with the time series models, while this
happened with the SARIMA model in the intraday datasets. About the maximum and
minimum accuracy results, we obtained the following:

• For the controlled datasets, the lowest accuracy result was almost always obtained in
the same dataset, while the highest was always obtained in the same one;

• For the daily datasets, only the highest accuracy result was always obtained in the
same dataset;

• For the intraday datasets, only the lowest accuracy result was always obtained in the
same dataset.

Additionally, in all of the datasets, both the null accuracy results and the average
closing times were the same across the models. However, we need to note that, in terms of
maximum results, the intraday datasets resulted in higher null results and higher average
closing times.

For the percentage of equal strategies across the models, we obtained the following:

• For the controlled datasets, the MCn model always coincided with the time series
models. Meanwhile, the MC1 model fully coincided with the other models in 50% of
the datasets, whilst it never coincided in the other datasets.

• For both the daily and intraday datasets, the Markov chain models almost always
coincided between them. But the MC1 model never coincided with the time series
models and, consequently, the MCn model almost never coincided with the time
series models. Regarding the time series models, they almost always had a high per-
centage of coinciding strategies between them, but they almost never fully coincided
between them.

Now, regarding the percentage of chosen strategies for each of the models we obtained
the following:

• For the controlled datasets, the MC1 model almost always chose the More Risk strategy
(sometimes switching to the other strategies), while the other models chose between
the Less Risk and Do Not Play strategies.

• For both the daily and intraday datasets, the MC1 model always chose the More Risk
strategy; the MCn model almost always chose the More Risk strategy, but it also chose
between the other strategies; the time series models chose between the Less Risk and
Do Not Play strategies.

Regarding the obtained possible profits resulting from applying the different models,
we can see that the MCn model obtained the least percentage of unprofitable datasets for
each type of dataset, but on the controlled datasets it tied with the time series models;
on the other hand, the MC1 model obtained the highest percentage of strictly positive
profits in the daily datasets, while the same happened for the intraday datasets with the
SARIMA model. About the maximum and minimum obtained possible profits, we have
the following:

• For the controlled datasets, the lowest and highest possible profits were always
obtained in the same datasets;
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• For both the daily and intraday datasets, the lowest possible profit was always ob-
tained in the same dataset (CCL and RB, respectively) and the highest was almost
always obtained in the same one (AZN for both types).

Thus, gathering all these results, we can see that the Markov chain model (considering
the long-run estimator) behaved better, both in terms of accuracy and possible profits,
than the other models; additionally, this model resulted in all kinds of strategies, unlike all
the other models. So, with the Markov chain model (considering the long-run estimator),
we obtained better results than all the other presented models.

Finally, the game theoretical model that we used as the decision model to make
predictions (and to buy and sell financial assets) is a useful and accurate tool (both for the
Markov chain models and the time series models), because it gives us an optimal strategy
chosen in terms of these market probabilities; also, these strategies are the same as the
ones commonly used by the markets’ investors (and speculators). So, instead of directly
predicting a financial asset’s price (and then acting upon this prediction), we can obtain a
probabilistic model that lets us see how the financial markets behaved and where they may
be going in terms of the assets’ prices.

Future Work

From the presented theory and subsequently results, a number of possible extensions
can be made, such as the following:

• Create a new decision model that incorporates both the Markov chains and time
series models;

• Add more classes to the Markov chain model, add more strategies to the game theo-
retical model and/or alter the existing classes/strategies;

• Study how these models can be adapted to all kinds of data;
• Incorporate data regarding news sentiment, social media trends and economic indica-

tors to improve the model’s accuracy, since this would allow for a more dynamic and
responsive approach to stock market prediction;

• Develop a model for extreme events when the time series changes directions, such as
the Great Recession or the 2008 financial crisis;

• Consider bigger forecasting horizons in order to make long-term predictions;
• Consider other models instead of the Markov chains to predict the game’s probabilities,

such as VAR, ECM, Kalman Filter or Decision Trees based models, or Neural Networks.

Also, we can study the possible relationships between the volatility, type and/or
length of the datasets and the following:

• The obtained optimal model (both in terms of accuracy and possible profit results);
• The obtained values for the accuracy and possible profit results;
• The standard deviations, the average closing time and the percentage of null models.

All of this should be studied in order to create a better model that predicts the financial
markets so as to increase the potential profits, and then to extend it to all kinds of data.
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