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Abstract: Graph query languages such as Cypher are widely adopted to match and retrieve data
in a graph representation, due to their ability to retrieve and transform information. Even though
the most natural way to match and transform information is through rewriting rules, those are
scarcely or partially adopted in graph query languages. Their inability to do so has a major impact
on the subsequent way the information is structured, as it might then appear more natural to
provide major constraints over the data representation to fix the way the information should be
represented. On the other hand, recent works are starting to move towards the opposite direction,
as the provision of a truly general semistructured model (GSM) allows to both represent all the
available data formats (Network-Based, Relational, and Semistructured) as well as support a holistic
query language expressing all major queries in such languages. In this paper, we show that the
usage of GSM enables the definition of a general rewriting mechanism which can be expressed
in current graph query languages only at the cost of adhering the query to the specificity of the
underlying data representation. We formalise the proposed query language in terms declarative
graph rewriting mechanisms described as a set of production rules L Ñ R while both providing
restriction to the characterisation of L, and extending it to support structural graph nesting operations,
useful to aggregate similar information around an entry-point of interest. We further achieve our
declarative requirements by determining the order in which the data should be rewritten and multiple
rules should be applied while ensuring the application of such updates on the GSM database is
persisted in subsequent rewriting calls. We discuss how GSM, by fully supporting index-based data
representation, allows for a better physical model implementation leveraging the benefits of columnar
database storage. Preliminary benchmarks show the scalability of this proposed implementation in
comparison with state-of-the-art implementations.

Keywords: direct acyclic graphs; generalised semistructured model; graph grammars; graph query
languages; algorithms; operator algebras

MSC: 68W40; 68P15; 68Q42; 68Q55; 68R10; 68U35

1. Introduction

Query languages [1] fulfill the aim of retrieving and manipulating data after being
adequately processed according to a physical model requiring preliminary data loading and
indexing operations. Good declarative languages for manipulating information, such as
SQL [2], are agnostic from the underlying physical model while expressing the information
need of combining (JOIN), filtering (WHERE) and grouping (e.g., COUNT(*) over GROUP BY-s)
data over its logical representation. This language can also be truly declarative as it does
not require a user to explicitly convey this in terms of operations to be performed over the
data rather than instructing the machine which information should be used and which
types of transformations should be applied. Due to the intrinsic nature of graph data
representation, graph query languages such as Gremlin [3], Cypher [4], or SPARQL [5] are
procedural (i.e., navigational) due to the navigational structure of the data, thus heavily
requiring the user to inform the language how to match and transform the data. These
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considerations extend to how edge and vertex data should be treated, thus adding further
complexity [6,7].

On the other hand, graph grammars [8] provide a high-level declarative way to match
specific sub-graphs of interest from vertex-labelled graphs for then rewriting them into
another subgraph of interest, thus updating the original graph of interest. These consist
in a set of rules tLi Ñ Riu1ďiďN , where each rule Li Ñ Ri consists of two graphs Li and
Ri possibly sharing a common subgraph K: while K Ď L specifies a potential removal of
either vertices or edges, K Ď R specifies their addition. Automating the application of such
rules requires explicitly following a graph navigational order for applying each matched
subgraph to the structure [9] to guarantee the generation of a unique acceptable graph
representation resulting from the querying data. As a by-product of exploiting topological
sorts for scheduling visiting and rewriting operations, we then require to precisely identify
an entry match vertex for each Li from a rule, thus precisely determining from which position
within the graph the rewriting rule should be applied, and in which order.

At the time of writing, the aforementioned graph query languages are not able to
express graph grammars natively without resorting to explicitly instructing the query
language how to restructure the underlying graph data representation (Lemma 7); further-
more, the replacement of previously matched vertices with new ones invalidates previous
matches, thus forcing the user to pipeline different queries until convergence is reached.
On the other hand, we would expect any graph query language to directly express the
rewriting mechanism by directly expressing the set of rules, without necessarily instructing
the querying language in which order such operations shall be performed. Furthermore,
when a property-graph model is chosen, and morphisms are expressed through the prop-
erties associated with the vertices and edges rather than their associated IDs as per the
current Cypher and Neo4j v5.20 specifications, this makes the deletion of vertices and their
update through the resulting morphisms quite impractical, as such data model provides
no clear way to refer to both vertices and edges via unique identifiers. As a result of these
considerations, we then derive that, at the time of writing, both the graph query languages
and their underlying representational model are insufficient to adequately express rewrit-
ing rules as general as the ones postulated by graph grammars over graphs containing
property-value associations, independently from their representation of choice [10].

To overcome the aforementioned limitations, we propose a query language, for the
first time directly expressing such rewriting desiderata: we restrict the set of all the possible
matching graphs Li into ego-nets containing one entry-point while incorporating nesting
operations (Section 6.1); as updating graph vertices’ properties breaks the declarative
assumption as the user should specify the order in which the operations are performed,
we relax the language declarativity for the sole rewritings. To better support this query
language, we completely shift the data model of interest to object-oriented databases, where
relationships across objects are expressed through object “containment” relationships,
and where both objects and such containments are uniquely identified. By also requiring
that any object shall never contain itself at any nesting level [6], we obtain cycle-free
containment relationships.

The paper is structured as follows: after providing some preliminary notation used
throughout the paper (Section 2), we introduce the relational and the graph data models
from current literature, while focusing on both their data representation and associated
query languages (Section 3). Their juxtaposition motivates the proposal of our Generalised
Semistructured Model (Section 4), for which we outline both the logical and physical data
model, where the latter leverages state-of-the-art columnar relational database representa-
tions [11]; we also introduce the concept of a view for a generalised semistructured model,
as well as introduce some morphism notation used throughout the paper. After introducing
the designated operator for instantiating the morphisms by joining matched containments
stored in distinct sets of tables (Section 5), we finally propose our query language for
matching and rewriting object-oriented databases expressed in the aforementioned GSM
model (Section 6). We characterise the formal semantics of such novel graph query lan-
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guage in pseudocode notation (Algorithm from Section 6) characterised in terms of both
algorithmic and algebraic notation (Sections 6.3 and 6.4) for the matching part, as well
as in terms of Structured Operational Semantics (SOS) [12] for describing the rewriting
steps (Section 6.5). The remaining sections discuss some of the expressiveness properties
of such query language if compared to Cypher (Section 7), discuss its time complexity
(Section 8), and benchmark it against Cypher running over Neo4j v5.20, showing the ex-
treme inefficiency of property graph computational model (Section 9), which are fairly
restricted due to the impossibility of conveying a novel single query for any possible graph
schema (Lemmas in Section 7). Scalability tests show that our solution outperforms Cypher
and Neo4j v5.20, providing the query language standard nearer to the recently proposed
GQL, by two orders of magnitude (Section 9.1) while providing a computational through-
put being 600 times faster than Neo4j by solving more queries in the same comparable
amount of time (Section 9.1). Last, we draw our final conclusions where we propose some
future works (Section 10). To improve the paper’s readability, we move some definitions
(Appendix A) and the full set of proofs for the Lemmas and Corollaries (Appendix B) to
the Appendix.

These main contributions are then obtained in terms of the following ancillary results:

• Definition of a novel nested relational algebra natural equi-join operator for composing
nested morphisms, also supporting left outer joins by parameter tuning (Section 5).

• Definition of an object-oriented database view for updating the databases on the fly
without the need for heavy restructuring of the loaded and indexed physical model
(Section 4.3).

• As the latter view relies on the definition of a logical model extending GSM (Section 4.1),
we show that the physical model is isomorphic to an indexed set of GSM databases
expressed within the logical model (Lemma 1).

2. Preliminary Notation

We denote sets S “ tx1, . . . , xnu of cardinality |S| “ n as standard. The power set ℘pSq
of any set S is the set of all subsets of S, including the empty setH and S itself. Formally,
℘pSq “ tS1|S1 Ď Su.

We define a finite function f : A á B via its graph rpx1, f px1qq, . . . , pxn, f pxnqqs explicat-
ing the association between a value from the domain of f (txi, . . . , xiu “ domp f q) and a
non-NULL codomain value. Using an abuse of notation, we denote the restriction f |X as the
evaluation of f over a domain XX domp f q, i.e., f |X “ rpx, f pxqq|x P XX domp f qs. We can
also denote f pxq :“ C where C is the definition of the function over x as x ÞÑ C. With an
abuse of notation, we denote | f | as the cardinality of its domain, i.e., | f | “ |domp f q|. We
say that two functions f and f 1 are equivalent, f 9“ f 1, if and only if they both share the same
domain and, for each element of their domain, both functions return the same codomain
value, i.e., f 9“ f 1 ô domp f q “ domp f 1q ^ @x P domp f q. f pxq “ f 1pxq.

A tuple or indexed set t “ xt1, . . . , tny of length |t| “ n is defined as a finite function in
Ná V where ti has i as a natural-valued independent variable representing the index of
the tuple, and the dependent variable corresponds to the element tpiq in the tuple.

A binary relation ℜ on a set A is said to be an equivalence relation if and only if it is
reflexive (@x P A.xℜx), symmetric (@x, y.xℜy ô yℜx), and transitive (@x, y, z.xℜy^ yℜz ñ
xℜz). Given a set A and an equivalence relationship ℜ, an equivalence class rxsℜ Ď A for
x P A is the set of all the elements in A that are equivalent to x, i.e., rxsℜ “ ty P A|xℜyu.
Given a set A and an equivalence relationship ℜ, the quotient set A{ℜ is the set of all
the equivalence classes of A, i.e., A{ℜ “ trxsℜ|x P Au. We denote 9“X as the equivalence
relationship denoting two functions as equivalent if they are equivalent after the same
restriction over X, i.e., f 9“X f 1 ô f |X 9“ f 1|X .

Given a set of all the possible string attributes Σ˚ and a set of all the possible values
V , a record is defined as a finite function f : A á V with A Ď Σ˚ [13]. Given two records
represented as finite functions f and f 1, we denote f ‘ f 1 as the overriding of f by f 1

returning f 1pxq for each x P domp f 1q and f pxq otherwise. Given this, we can also denote
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the graph of a function as ‘xiPdomp f qrpxi, f pxiqqs ” rpxi, f pxiqq|xi P domp f qs. We denote
as NULL a void value not representing a sensible value in V : using the usual notation in
the database area at the cost of committing an abuse of notation, we say that f pxq returns
NULL if and only if f is not defined over x (i.e., x R domp f q). We say that a record ϵ is empty
if no attribute is associated with a value in V (i.e., dompϵq “ H and @x P V .ϵpxq “ NULL).

Higher-Order Functions

Higher-Order Functions (HOFs) are functions that either take one or more functions
as arguments or return a function as a result. We provide the definition of some HOFs used
in this paper:

• The zipping operator maps n tuples (or records) t1, . . . , tn to a record of tuples (or
records) r defined as rpiq “ xt1

i , . . . , tn
i y if and only if all n tuples are defined over i:

ζpt1, . . . , tnq “ rxt1
i , . . . , tn

i y |i ď i ď minp|t1|, . . . , |tn|q,@1 ď j ď n.i P domptjqs

• Given a function f : A Ñ B and a generic collection C, the mapping operator returns
a new collection by applying f to each component of C:

µp f , Cq “

$

’

&

’

%

t f pxq|x P Cu C is a set
r f pCpiqq|i P dompCqs C is a record
x f pC1q, . . . , f pCnqy C is a tuple

• Given a binary predicate p and a collection C, the filter function trims C by restricting
it to its values satisfying p:

𭟋pp, Cq “

$

’

’

’

&

’

’

’

%

tx P C|ppxqu C is a set
rpx, Cpxqq|x P dompCq, ppCpxqqs C is a record
x ÞÑ arg min|C|ěiěx

s.t.ppCiq

Ci C is a tuple

• Given a binary function f : Aˆ V Ñ A, an initial value α P A (accumulator), and a
tuple C, the (left) fold operator is a tail-recursive function returning either α for an
empty tuple, or f p. . . f pα, t1q, tnq for a tuple t “ xt1, . . . , tny:

Λp f , α, Cq “

#

α |C| “ 0
Λp f , f pα, Cpmqq, C|dompCqztmuq |C| ‰ 0^m :“ min dompCq

• Given a collection of strings C and a separator s, collapse (also referred to as join in
programming languages such as Javascript or Python ) returns a single string where all
the strings in C are separated by s. Given “^” the usual string concatenation operator,
this can be expressed in terms of Λ as follows:

λpC, sq :“ Λp^, s, Cq

When s is a space “␣”, then we can use λpCq as a shorthand.
• Given a function f : A á B and two values a P A and b P B, the update of f so that

it will return b for a and will return any other previous value for f pxq otherwise is
defined as follows:

PUT f pa, bq :“ f ‘ rpa, bqs (1)

• Given a (finite) function f and an input value y, the HOF optionally obtaining the
value of f pyq if y P domp f q and returning z otherwise is defined as:

OPTGET f py, zq :“

#

f pyq y P domp f q
z oth.
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Please observe that we can use this function in combination with PUT to set multiple
nested functions:

PUT2
f pxi, jy , vq :“ PUT f pi, PUTOPTGET f pi,Hqpj, vqq (2)

3. Related Works

This section outlines different logical models and query languages for both graph data
(Sections 3.1.1 and 3.1.2) and the nested relational model (Sections 3.2.1 and 3.2.2), while
starting from their mathematical foundations. We then discuss an efficient physical model
used for the relational model (Section 3.2.3).

3.1. Graph Data
3.1.1. Logical Model
Direct Acyclic Graphs (DAGs) and Topological Sort

A digraph γ “ pV, Eq consists of vertices V and edges E being a subset of V2. We
say that such a graph is weighted if its definition is extended as pV, E, ωqwhere ω : E á R
is a weight function associating each edge in the graph to a real value. A closed trail is a
sequence of distinct edges ps1, d1q, . . . , psn, dnq P E which edge psi, diq is such that si “ di´1
and di “ si`1 if any, and where s1 “ dn. We say that a digraph is acyclic if it contains no
closed trails consisting of at least one edge, and we refer to it as a Direct Acyclic Graph
(DAG).

If we assume that edges in a graph reflect dependency relationships across their
vertices, a natural way to determine the visiting order of the vertices is first to sort its vertices
topologically [14], thus inducing an operational scheduling order [11]. This requires the
underlying graph to be a DAG. Notwithstanding this, any DAG might come with multiple
possible valid topological sorts; among these, the scheduling of tasks operations usually
prefers visiting the operations bottom-up in a layered way, thus ensuring the operations are
always applied starting from the sub-graphs having less structural-refactoring requirements
that the higher ones [11].

We say that a topological sort of a DAG pV, Eq is a linear ordering of its vertices in a
tuple t with |t| “ |V| so that for any edge pu, vq P E we have i and j ą 0 such that u “ ti
and v “ ti`j. Given this linear ordering of the vertices, we can always define a layering
algorithm [15] where vertices sharing no mutual interdependencies are placed in the same
layer, and where all the vertices appearing in the shallowest layer will be connected by
transitive closure to all the vertices in the deeper layers, while the vertices in the deepest
layer will share no interconnection with the other vertices in the graph. To do so, we can
use Algorithm 1: we use timestamps for determining the layer ID: we associate all vertices
with no outgoing edge to the deepest layer 0 (Line 5) and, for all the remaining vertices, we set
the vertex to the layer immediately below to the one of the deepest outgoing vertex (Line 9).

Algorithm 1 Layering DAGs from a vertex topological order in t

1: function LAYERFROMTOPOLOGICALSORT(G“ pV, Eq, t)
2: time :“ x´1, . . . ,´1y Ź |time| “ |t|
3: firstVisit :“ true
4: for all p P Reverseptq do
5: time[p]:“ 0
6: if firstVisit then
7: firstVisit:“false
8: else if INppq ‰ H then
9: time[p]:“ maxttimerus|u P OUTppqu ` 1

10: end if
11: end for
12: return time
13: end function



Mathematics 2024, 12, 2677 6 of 62

When the graph is cyclic, we can use heuristics to approximate the vertex order, such
as using the progressive ID associated with the vertices to disambiguate and choose an
ordering when required.

Property Graphs

Property graphs [16] represent multigraphs (i.e., digraphs allowing for multiple edges
among two distinct vertices) expressing both vertices and edges as multi-labelled records.
The usefulness of this data model is remarked by its implementation in almost all recent
Graph DBMSs, such as Neo4j [4].

Definition 1 (Property Graph). A property graph [9] is a tuple pV, E, L, A, U, ℓ, κ, λq, where V
and E are sets of distinct integer identifiers (V Ď N, E Ď N, V X E “ H). L is a set of labels, A is a
set of attributes and U is a set of values. ℓ : VY E á ℘pLqmaps each vertex or edge to a set of labels;
κ : V Y E á A á U maps each vertex or edge within the graph and each attribute within A, to a
value in U; last, λ : E á V ˆV maps each edge e P E to a pair of vertices λpeq “ ps, tq P V ˆV,
where s is the source vertex and t is the target.

Property graphs do not support aggregated values, as values in U cannot contain
either vertices or edges, nor U is made to contain a collection of values.

RDF

The RESOURCE DESCRIPTION FRAMEWORK (RDF) [17] distinguishes resources via
UNIQUE RESOURCE IDENTIFIERS (URI), be them vertices or edges within a graph; those are
linked to their properties or other resources via triples, acting as edges. RDF is commonly
used in the semantic web and in the ontology field [18,19]. Thus, modern reasoners such as
Jena [20] or Pellet [21] assume such data structure as the default graph data model.

Definition 2 (RDF (Graph Data) Model). An RDF (Graph data) model [9] is defined as a set
of triples ps, p, oq, where s is called “subject”, p is the “predicate” and o is the “object”. Such triple
describes an edge with label p linking the source vertex s to the destination vertex o. Such predicate
can also be a source vertex [10]. Each vertex is either identified by a unique URI identifier or by a
blank vertex bi. Each predicate is only described by a URI identifier.

Despite this model using unique resource identifiers for either vertices or edges
differently from property graphs, RDF is forced to express attribute-value associations
for vertices as additional edges through reification. Thus, property graphs can be entirely
expressed as RDF triplestore systems as follows:

Definition 3 (Property Graph over Triplestore). Given a property graph G “ pV, E, A, U, ℓ, κ, λ1q,
each vertex vi P V induces a set of triples pvi, α, βq for each α P A such that κpvi, αq “ β having
β ‰ NULL. Each edge ej P E induces a set of triples ps, ej, dq such that λ1pejq “ ps, dq and another
set of triples pej, α1, β1q for each α1 P A such that κpej, α1q “ β1 having β1 ‰ NULL.

The inverse transformation is not always possible as RDF properties as property
graphs do not allow the representation of edges departing from other edges. RDF also
supports the unique identification of distinct databases being loaded within the same
physical storage through named graphs via a resource identifier. Even though it allows
named graphs to appear as triplet subjects, such named graphs can appear as neither
objects nor properties, thus not overcoming property graphs’ limitations on representing
nested data.

Notwithstanding the model’s innate ability to represent both vertices and edges via
URIs, the inability of the data model to directly associate each URI with a data record while
requiring it to express the property-value associations via triplets, requires the expression of
property updates via the deletion and subsequent creation of new triplets of the data, which
might be quite impractical. Given all the above, we still focus our attention on the Property
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Graph model, as it better matches our data representation desiderata by associating to
vertices labels, property-value associations, as well as binary relationships without any
data duplications.

3.1.2. Query Languages

Despite the recent adoption of a novel graph query language standard, GQL, (https:
//www.iso.org/obp/ui/en/#!iso:std:76120:en accessed on 19 April 2024), its definition has
still to be implemented yet in existing systems. This motivates us to briefly survey currently
available languages. Different from the more common characterisation of graph query
languages in terms of their potential of expressing traversal queries [22], a better analysis of
such languages involves their ability to generate new data. Our previous work [9] proposed
the following characterisation:

Graph Traversal and Pattern Matching: these are mainly navigational languages perform-
ing the graph visit through “tractable” algorithms through polynomial time visits
with respect to the graph size [18,23,24]. Consequently, such solutions do not nec-
essarily involve running a subgraph isomorphism problem, except when expressly
requested by specific semantics [22,25].

(Simple) Graph Grammars: as discussed in the forthcoming paragraph, they can add and
remove new vertices and edges that do not necessarily depend on previously matched
data, but they are unable to express full data transformation operations.

Graph Algebras: these are mainly designed either to change the structure of property
graphs through unary operators or to combine them through n-ary (often binary)
ones. These are not to be confused with the path-algebras for expressing graph
traversal and pattern-matching constructs, as they allow us to completely transform
graphs alongside the data associated with them as well as deal with graph data
collections [26–29].

“Proper” Graph Query Languages: We say that a graph query language is “proper” when
its expressive power includes all the aforementioned query languages, and possibly
expresses the graph algebraic operators while being able to express, to some extent,
graph grammar rewriting rules independently from their ability to express them
in a fully-declarative way. This is achieved to some extent in commonly available
languages, such as SPARQL and Cypher [4].

Graph Grammars

Graph grammars [30] are the theoretical foundations of current graph query languages,
as they express the capability of matching specific patterns L [31] within the data through
reachability queries while applying modifications to the underlying graph database struc-

ture (graph rewriting) R, thus producing a single graph grammar production rule L
f
ÝÑ R,

where there is an implicit morphism between some of the vertices (and edges) matched in L
and the ones appearing in R: the vertices (and edges) only appearing in R are considered as
newly inserted vertices, while the vertices (and edges) only appearing in L are considered as
removed edges; we preserve the remaining matched vertices. Each rule is then considered
as a function f , taking a graph database as an input and returning a transformed graph.

The process of matching L is usually expressed in terms of subgraph isomorphism:
given two graphs G and L, we determine whether G contains a subgraph Gi that is isomor-

phic to L, i.e., there is a bijective correspondence L
µL

i
ÐÑ G0 between the vertices and edges

of L and Gi. In graph query languages, we consider G as our graph database and return
f pGiq for each matched subgraph Gi. When no rewriting is considered, each possible match
G0 for L is usually represented in a tabular form [31,32], where the column header provides
the vertex and edge identifiers (e.g., variables) j from L, each row reflects each matched
graph Gi, and each cell corresponding to the column j represents µipjq. Figure 1 shows the
process of querying a graph g (Figure 1a) through a pattern L (Figure 1b), for which all the

https://www.iso.org/obp/ui/en/#!iso:std:76120:en
https://www.iso.org/obp/ui/en/#!iso:std:76120:en
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subgraphs matching in the former could be reported as morphisms listed as rows within a
table, which column headers reflect the vertex and edge variables occurring in the graph
pattern (Figure 1c).

1

2 3

4

5

i ii

iii

iv v

vi
µL
0

(a)

a

c

b

(b)

MTrL, gs a b c
µL

0 1 i 2
µL

1 1 ii 3
µL

2 2 iii 3
µL

3 2 iv 4
µL

4 3 v 4
µL

5 1 v 5

(c)
Figure 1. Listing all the subgraphs of g being a solution of the subgraph isomorphism
problem of g over L. (a) Graph g to be mathed; (b) Graph pattern L; (c) Morphism table
MTrL, gs where each row describes a morphism µi between the graph matching L and the
graph g.

Figure 2 illustrates graph grammar rules as defined in GraphLog [33] for both matching
and transforming any graph: we can first create the new vertices required in R, while
updating or removing x as determined by the vertex or edge f pµ´1

i pxqq occurring in R.
Deletions can be performed as the last operations from R. GraphLog still allows running of
one single grammar rule at a time, while authors assume to have a graph where vertices
are associated with data values and edges are labelled. Then, the rewriting operations
derived from R will be applied to every subgraph being matched via a previously identified
morphism in MTrL, gs for each graph g of interest. Still, GraphLog considered neither
the possibility of simultaneously applying multiple rewriting rules to the same graph nor
a formal definition of which order the rules should be applied. The latter is required to
ensure that any update on the graph can be performed incrementally while ensuring that
any update to a vertex u via th information stored in its neighbours will always rely on the
assumption that each neighbour will not be updated in any other subsequent step, thus
guaranteeing that the information in u will never become stale.

π(λ,X)← ξ(Y )[0]

X Y
λ = det||nmod:poss||...

(a)

V−→
S Z

nsubj+ dobj

ξ(V )[0]

(b)

ξ(H ′)[0]← ξ(
−→
H )[0]

π(cc, H ′)← ξ(Z)[0]

X −→
H

H′

Z

λ+
conj

cc

orig

λ

(c)

Figure 2. Graph grammar production rules à la GraphLog [33] in this paper’s use case
scenario: thick denotes insertions, crosses deletions, and optional matches are dashed. We
extended it with multiple optional edge label matches (}), key-value association πpλ, Xq
for property λ and vertex X, and multiple vertex values ξpXq. (a) Injecting the articles/
possessive pronouns (λ) in Y for an entity X as its own properties, while deleting λ and
Y; (b) Expressing the verb as a binary relationship between subject and direct object;
(c) Generating a new entity H1 coalescing the ones ÝÑH under the same conjunction Z, while
referring to its original constituents via orig.
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This paper solves the ordering issue by applying the changes on the vertices according
to their inverse topological order, thus updating the vertices sharing the least dependencies
with their direct descendants first.

Furthermore, as GraphLog authors are considering a no-property graph model, au-
thors do not consider the possibility of updating multiple property value associations over
a vertex, while not providing a formal definition of how aggregation functions over vertex
data should be defined. While the first problem can be solved only by properly exploiting a
suitable data model, the latter is solved by the combined provision of nested morphism, ex-
plicitly nesting the vertices associated with a grouped variable, while exploiting a scripting
language for expressing how level data manipulations when strictly required. Given these
considerations, we will also discuss graph data models (Section 3.1) and their respective
query languages (Section 3.1.2).

Proper Graph Query Languages

Given the above, we will mainly focus our attention on the last type of language.
Even though these languages can be closed under either property graphs or RDF, graphs
must not be considered as their main output result, since specific keywords like RETURN for
Cypher and CONSTRUCT for SPARQL must be used to force the query result to return graphs.
Given also the fact that such languages have not been formalised from the graph returning
point of view, such languages prove to be quite slow in producing new graph outputs [6,7].

GQL is largely inspired by Cypher, for which this standard might be considered its
natural extension. Such query language enables the partial definition of graph grammar
operations by supporting the following operators restructuring vertices and edges within
the graph: SET, for setting new values within vertices and edges, MERGE, for merging a set of
attributes within a single vertex or edges, REMOVE for removing labels and properties from
vertices and edges and CREATE for the creating of new vertices, edges and paths.

Notwithstanding the former, such language cannot express all the possible data
transformation operations, thus requiring an extension via its APOC library (https://Neo4
j.com/developer/Neo4j-apoc/, accessed on 13 November 2023) for defining User-Defined
Functions (UDF) in a controlled way, like concatenating the properties associated with
vertices’ multiple matches:

MATCH (a)-[b:cc]->(c)
WITH Collect(a.name) as names , c
CREATE (x {name: apoc.text.join(names , ’ ’)})
RETURN x

Thus, Cypher can collect values for then generating one single vertex (See also List-
ing A2) but, due to the structural limitations of the query language (not supporting nested
morphisms) and data model (not supporting explicit identifiers for both vertices and edges),
it does not support the nesting of entire sub-patterns of the original matching.

A further limitation of Cypher is the inability to create a relationship with a variable
as the name, as standard Cypher syntax only allows a string parameter. Using the APOC
library we can use apoc.create.relationship to pass a variable name from an existing
vertex for example. Given our last query creating the vertex x, we can continue the
aforementioned query:

MATCH (a) -[:dobj]->(b)
CREATE (y {name: b.name})
WITH a, x, y
CALL apoc.create.relationship(x, a.name , {}, y) YIELD rel
RETURN x, y, rel

As there are no associated formal semantics for the entirety of this language’s operators
except its fragment related to graph traversal and matching [16], for our proofs regarding
this language (e.g., Lemma 7) we are forced to reduce our arguments to common-sense

https://Neo4j.com/developer/Neo4j-apoc/
https://Neo4j.com/developer/Neo4j-apoc/
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reasoning an experience-driven observation from the usage of Cypher over Neo4j similarly
to the considerations in the former paragraph. In fact, such algebra does not involve the
creation of new graphs: this is also reflected by its query evaluation plan, which preferred
evaluation is a morphism table rather than expressing the rewriting in terms of updated
and resulting property graph. As a result, the process of creating or deleting vertices and
edges is not optimised.

Overall, Cypher suffers from the limitations posed by the property graph data model
which, by having no direct way to refer to the matched vertices or edges by reference, forces
the querying user to always refer to the properties associated with them; as a consequence,
the resulting morphism tables are carrying out redundant information that cannot reap the
efficient data model posed by columnar databases, where entire records can be referenced
by their ID. This is evident for DELETE statements, voiding objects represented within
the morphisms. This limitation of the property graph model, jointly with the need for
representing acyclic graphs, motivates us to use the Generalised Semistructured Model
(GSM) as an underlying data model for representing graphs, thus allowing us to refer
to the vertices and edges by their ID [34]. Consequently, our implementation represents
morphisms for acyclic property graphs as per Figure 1c.

Figure 3a provides a possible property graph instantiation of the digraph originally
presented in Figure 1a. Notwithstanding the former definition, Neo4j’s implementation
of the Property Graph model substantially differs from the aforementioned mathemat-
ical definition, as it does not allow the definition of an explicit resource identifier for
both vertices and edges. After expressing the matching query in Figure 1b in Cypher as
MATCH (a)-[b]->(c)RETURN *, the resulting morphism table from Figure 3b does not ex-
plicitly reference the IDs referring to the specific vertices and edges, thus making it quite
impractical to update the values associated with the vertices while continuing to restructure
the graph, as this will require to re-match the previously updated data to retain it in the
match. Although this issue might be partially solved by exploiting explicit incremental
views over the property graph model [32], this solution had no application in Neo4j v5.20,
thus making it impossible to fully test its feasibility within the available system. Further-
more, the elimination of an object previously matched within a morphism will update the
table by providing an empty object rather than providing a NULL match. This will motivate
us to investigate other ID-based graph data models.

Neo4j lists some additional existing limitations beyond APOC and the expressibility
of graph grammars in a declarative way with Cypher within their documentation (https://
Neo4j.com/docs/operations-manual/current/authentication-authorization/limitations/,
accessed on 13 November 2023), mainly related to the interplay between data access security
requirements and query computations.

At the time of writing, the most studied graph query language both in terms of
semantics and expressive power is SPARQL, which allows a specific class of queries
that can be sensibly optimised [5,31]. The algebraic language used to formally represent
SPARQL performs queries’ incremental evaluations [35], and hence allows for boosting the
querying process while data undergoes updates (both incremental and decremental).

play

0

Alice
2

Bob
3

and
5

cricket

4nsubj nsubj

conj

cc

dobj
µc
0

µb
0

(a)

a b c
({name: ”play”}) [: dobj] ({name: ”cricket”})
({name: ”play”}) [: subj] ({name: ”Alice”})
({name: ”play”}) [: subj] ({name: ”Bob”})
({name: ”Alice”}) [: conj] ({name: ”Bob”})
({name: ”Alice”}) [: cc] ({name: ”and”})
({name: ”Bob”}) [: cc] ({name: ”and”})

(b)
Figure 3. Framing Figure 1 in the context of Neo4j’s implementation of the Property
Graph model. (a) Dependency graph for “Alice and Bob play cricket”; (b) Neo4j’s property
graph morphism table.

https://Neo4j.com/docs/operations-manual/current/authentication-authorization/limitations/
https://Neo4j.com/docs/operations-manual/current/authentication-authorization/limitations/
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While the clauses represented within the WHERE statement are mapped to an op-
timisable intermediate algebra [31,36], thus including the execution of “optional joins”
paths [37] for the optional matching of paths, such considerations do not apply for the con-
straints related to the graph update or return, such as CONSTRUCT, INSERT, and DELETE. While
CONSTRUCT is required for returning a graph view as a final outcome, INSERT and DELETE cre-
ate and remove RDF triplets by chaining them with matching operations. These operations
also come with sensible limitations: while the first does not allow the return of updated
graphs that can be subsequently queried by the same matching algorithm, the two latter
statements merely update the underlying data structure and require the re-computation of
the overall matching query to retain the updated results. We will partially address these
limitations in our query language and data model by associating ID properties directly via
an object-oriented representation while keeping track of the updated information on an
intermediate view, which is always accessible within the query evaluation phase.

Last but not least, the usage of so-called named graphs allows for the selection of over
two distinct RDF graphs, which substantially differs from the queries expressible on Cypher,
where those can be only computed by one graph database at a time. Notwithstanding the
former, the latest graph query language standard is very different from SPARQL, hence,
for the rest of the paper, we are going to draw our attention to Cypher.

3.2. Nested Relational Model
3.2.1. Logical Model

A nested relational model describes data represented in tabular format, where each
table, composed of multiple records, comes with a schema.

Given a set of attributes Σ˚ and a set of datatypes T , a schema SP T is a finite function
mapping each string attribute in Σ‹ to its associated data type (S : Σ˚ á T ). A schema
is said to be not nested if it maps attributes to all basic data types, and nested otherwise.
This syncretises the traditional function-based notation for schemas within the traditional
relational model [13] with the tree-based characterisation of nested schemas

In this paper, we restrict the basic datatypes in B Ď T to the following ones: vertex-ID
ni, containment-ID ci, and a label or string str. Each of these types is associated with a set
of possible values through a B function: vertex- and containment-ID are associated with
natural numbers (Bpniq “ Bpciq “ N), while the string type is associated with the set of all
the possible strings (Bpstrq “ Σ˚).

A record Γ, associated with a schema SpΓq “ S, is also a finite function mapping
each attribute in dompSq to a possible value, either a natural number, a string, or a list of
records (tables) as specified by the associated schema S (@x P dompΓq. Γpxq P BpSpxqq).
We define a table T with schema SpTq “ S as a list of records all having schema S,
i.e., @Γ P T.SpTq “ SpΓq.

3.2.2. Query Languages

Relational algebra [13] is the de facto standard to decompose relational queries expressed
in SQL to its most fundamental operational constituents while providing well-founded
semantics for SQL. This algebra was later extended [38,39] to consider nested relationships.
Relational algebra was also adapted to represent the combination of single edge/triple
traversals in SPARQL, so as to express the traversal semantics of both required and optional
patterns [5].

We now detail a set of operators of interest that will be used across the paper.
We relax the union operation from standard relational algebra by exploiting the notion

of outer union [40]: given two tables t and s, respectively, with schema S and U, their outer
union is a table t\ s with schema S‘U and containing each record from each table where
shared attributes are associated with the same types (@x P dompSq XdompUq.Spxq “ Upxq):

t\ s “ tΓ|Γ P t_ Γ P su (3)
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A restriction [13] or projection [41] operation πLptq over a relational table t with
schema S returns a new table πLptq with schema in S|L where both its schema and its
records have a domain restricted to the attributes in L:

πLptq :“ xΓ|L | Γ P ty

A renaming [41] operation RLÑRptq over a relational table t with schema S and
L Ď dompSq replaces all the occurrences of attributes in L with ones in R, thus returning a
new table with schema S|dompSqzL ‘ rpri, Spliqq|xli, riy P ζpL, Rqs:

RLÑRptq “

C

Γ|dompΓqzL ‘ rpri, Γpliqq|xli, riy P ζpL, Rq, li P dompΓqs

ˇ

ˇ

ˇ

ˇ

ˇ

Γ P t

G

(4)

A nesting [38] operation νBÑA over a table t with schema S returns a new table
νBÑAptq with schema S|dompSqzB ‘ rpA, S|Bqs, where all the attributes referring to B are
nested within the attribute A, which is associated with the type S|B resulting from the
nested attributes. Operatively, it coalesces all the tuples in t sharing the same values not
in B as a single equivalence class c: we then restrict one representative of this class to the
attributes not in B for then extending it by associating to a novel attribute A the projection
of c over the attributes in B, i.e., πBpcq:

νBÑAptq :“ xpmin cq|dompSqzB ‘ rpA, πBpcqqs | c P t{¨ |dompSqzB 9“ ¨ |dompSqzBy (5)

A (natural) join [42] between two non-nested tables t and s with schemas S and U,
respectively, if dompSq X dompUq then it combines records from both tables that share the
same attributes, and otherwise extends each record from the left table with a record coming
from the right one (cross product):

t ’ s “ xΓi ‘ Γj | Γi P t, Γj P s, pΓi ‘ Γjq|S “ Γi, pΓi ‘ Γjq|U “ Γjy

Given a sequence of attributes L⃗ “ xL1 . . . Lny, this operation can be extended to join
the relationship coming from the right at any desired depth level by specifying a suitable
path to traverse the nested schema from the left relationship [38]:

t L⃗’s “

#

t ’ s L⃗ “ H
xt̃|SztL1u,‘pt̃pL1q

xL2,...,Lny’sq | t̃ P ty L⃗ “ L1, L2, . . . , Ln
(6)

This paper will automate the determination of L⃗ given the schemas of the two tables
(Section 5). Although it can be shown that the nested relational model can be easily
represented in terms of the traditional not-nested relational model [43], this paper uses
the nested relational model for compactly representing graph nesting operations over
morphisms. Last, the left (outer) join td|><|s extends the results from t ’ s by also adding all
the records from t having no matching tuples in s:

td|><|s “ pt ’ sq Y pt´ πSpt ’ sqq (7)

As per SPARQL semantics, the left outer join represents patterns that might option-
ally appear.

3.2.3. Columnar Physical Model

Columnar physical models offer a fast and efficient way to store and retrieve data
where each table ℜ with a schema having a domain tid, A1, . . . , Anu is decomposed into
distinct binary relations ℜAi with a schema with domain tid, Aiu for each attribute Ai
in dompℜq, thus requiring to only refer to one record by its ID while representing data
boolean conditions through algebraic operations. As this decomposition guarantees that
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the full-outer natural join d|><|d1ďiďnℜAi of the decomposed tables is equivalent to the initial
relation ℜ, we can avoid listing NULL values in each ℜAi , thus limiting our space allocation
to the values effectively present in our original table ℜ. Another reason for adopting a
logical model compatible with this columnar physical model is to keep provenance informa-
tion [44] while querying and manipulating the data while carrying out data transformations.
By exploiting the features of the physical representation, we are no longer required to use
the logical model for representing both data and provenance information as per previ-
ous attempts for RDF graph data [45], as the columnar physical model allows natively
supporting id information for both objects (i.e., vertices) and containments (i.e., edges),
thus further extending the RDF model by extensively providing unique ID similarly to
what was originally postulated by the EPGM data model for allowing efficient distributed
computation [46]. These considerations remark on the generality of our proposed model
relying upon this representation.

We now discuss a specific instantiation of this columnar relational model for repre-
senting temporal logs: KnoBAB [11]. Although this representation might sound distant
from the aim of supporting an Object-Oriented database, Section 4.2 will outline how this
might be achieved. KnoBAB stores each temporal log into three distinct types of tables: (i)
a CountingTable storing the number of occurrences n of a specific activity label a P Σ in a
trace σi P L as a record xa, i, ny. Such a table, created in almost linear time while scanning
the log, comes at no significant cost at data loading. (ii) An ActivityTable preserving the
traces’ temporal information through records xid, a, i, j, p, xy asserting that the j-th event
σi

j of the i-th log trace σi comes with an activity label a and it is stored as the id-th record
of such a table. p (and x) points to the records containing the immediately preceding
(and following) event of the trace, thus allowing linear scans of the traces. This is of the
uttermost importance as the records are sorted by activity label, trace ID, and event ID
for enhancing query run times. (iii) The model also instantiates as many AttributeTableκ

as the keys κ P K in the data payload associated with temporal events, where each record
xa, v, idy remarks that the event occurring as the id-th element within the ActivityTableL
table with activity label a associates a key κ to a non-NULL value v. This data model also
come with primary and secondary indices further enhancing the access to the underlying
data model; further details are provided in [11].

At the time of writing, no property graph database exploits such a model for efficiently
querying data, in particular, Neo4j v5.20 stores property graphs using a simple data model
representation where the whole vertices, relationships, or properties are stored in distinct
tables (https://Neo4j.com/developer/kb/understanding-data-on-disk/, accessed on 24
August 2024). This substantially differs from the assumptions of the columnar physical
model, prescribing the necessity for decomposing any data representation in multiple
different tables, thus making the overall search more efficient by assuming that each data
record can be associated with a unique ID. To implement a model under these assumptions,
we then require both our logical (Section 4.1) and physical (Section 4.2) model to support
explicit identifiers for both objects (acting as graph vertices) and containment relationships
(acting as graph edges). Although Neo4j v5.20 guarantees to represent records in fixed-size
to fasten up the data retrieval process, this is insufficient to ensure fast access to edges or
vertices associated with a specific label. On the other hand, our solution tries to address
this limitation by explicitly indexing objects and containments by label information.

Concerning triple stores for RDF data. The only database effectively using column-
based storage is Virtuoso v1.1 (https://virtuoso.openlinksw.com/whitepapers/Virtuoso_
a_Hybrid_RDBMS_Graph_Column_Store.html, accessed on 24 August 2024): this solution
is mainly exploited for fast retrieving the data based on the subject, predicate, and object
values. As the underlying physical model does not differentiate between vertices and
edges due to the specificity of the logical model requiring that both relationships among
vertices (URIs) and properties associated with those must be represented via triples, it is
not possible to further optimise the data access by reducing the overall size of the data to
be navigated and searched. On the other hand, our proposed physical model (Section 4.2)

https://Neo4j.com/developer/kb/understanding-data-on-disk/
https://virtuoso.openlinksw.com/whitepapers/Virtuoso_a_Hybrid_RDBMS_Graph_Column_Store.html
https://virtuoso.openlinksw.com/whitepapers/Virtuoso_a_Hybrid_RDBMS_Graph_Column_Store.html
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will store this information into separate tables: the ActivityTable, registering all the objects
(and therefore, vertices) being loaded, an AttributeTableκ storing key-value properties
associated with the objects, and a PhiTableκ for representing the containment relationships
(and therefore, edges).

Last, both Virtuoso v1.1 and Neo4j v5.20 do not exploit query caching mechanisms as
the ones proposed in [47] for also enhancing the execution of multiple relational queries.
This approach, on the other hand, was recently implemented in KnoBAB, thus reinforcing
our previous claims for extending such previous implementation to adapt it to a novel
logical model. In particular, the Algorithm presented in Section 6.3 partially implements
this mechanism for caching intermediate traversal queries that might be shared across
patterns to be matched, thus avoiding visiting the same data multiple times for different
pattern matching.

4. Generalised Semistructured Model v2.0

We continue the discussion of this paper’s methodology by discussing the logical
model (Section 4.1) as a further extension of the Generalised Semistructured Model [34]
to explicitly support property-value associations for vertices via π. Although we propose
no property-value extension for containments, we argue that this is minor and does not
substantially change the theoretical and implementation results discussed in this paper for
Generalised Graph Grammar. We also introduce a novel columnar-oriented physical model
(Section 4.2 on the next page) being a direct application of our previous work on temporal
databases [11] already supporting collections of databases (log of traces): this will be revised
for loading and indexing collection of GSM databases defining our overall physical storage.
As the external data to be loaded into the physical model directly represents the logical
model, we show that these two representations are isomorphic (Lemma 1) by defining
explicitly the loading and serialisation operations (Algorithm from Section 4.2).

As directly updating the physical model with the changes specified in the rewriting
steps of the graph grammar rules might require massive restructuring costs, we instead keep
track of such changes in a separate non-indexed representation acting as an incremental
view to the entire database. We then refer to this additional structure as a GSM view ∆pgq
for each GSM database g loaded in the physical model (Section 4.3). We then characterise
the semantics of ∆pgq by defining the updating function for g as a materialisation function
considering the incremental changes recorded in ∆pgq (Section 4.3.2 on page 19).

Last, as we consider the execution of the rewriting steps for each graph as a transfor-
mation of the vertices and edges as referenced within each morphism, modulo the updates
tracked in ∆pgq, it becomes necessary to introduce some preliminary notation for resolving
vertex and edge variables from such morphism (Section 4.4).

4.1. Logical Model

The logical model for GSM describes a single object-oriented database g as a tuple
xO, ℓ, ξ, ϵ, π, ϕ, tϕy, where O Ď N is a collection of objects (references). Each object is
associated with a tuple of possible types ℓpoq and to a tuple of string-representations
ξpoq providing its human-readable descriptions. As an object might be the result of an
automated entity-relationship extraction process, each object is associated with a list of
confidence values ϵ : O á ℘pRq describing the trustworthiness of the provided information.
Differently from the previous definition [34], we extend the previous model to also associate
each object to an explicit property-value association for each object o P O through a finite
function π : Oˆ Σ˚ á V .

Differently from our previous definition of our GSM model, we express object rela-
tionships through uniquely identified vertex containments similar to edges as in Figure 1a,
to explicitly reference such containments in morphism tables similarly to Figure 1c. We
associate each object o with a containment attribute κ referring to multiple containment IDs
via ϕpo, κq P ℘pNq. An explicit index tϕ maps each of these IDs to a concrete containment
xoj, wy denoting that oj is contained in o through the containment relationship κ with a
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confidence score of w. This separation between indices and values is necessary to allow the
removal of containment values when computing queries efficiently. This also guarantees
the correct correspondence between each value ι in the domain of tϕ to the label associated
with the ι-th containment requiring each ι will be associated with one solve containment
relationship (e.g., arg minκPΣ˚Dj P g. ι P ϕpj, κq).

We avoid objects containing themselves at any nesting level by imposing a recursion
constraint [6] to be checked at indexing time: this allows both the definition of sound struc-
tural aggregations, which can be then conveniently used to represent multi-dimensional
data-warehouses [34]. Thus, we freely assume that no object shall store the same contain-
ment reference across containment attributes [6]: @o, κ.@o1, κ1.

``

o “ o1 ^ κ ‰ κ1
˘

_ o ‰ o1
˘

ñ

ϕpo, κq X ϕpo1, κ1q “ H. This property can also be adapted to conveniently represent Direct
Acyclic Graphs, by representing each vertex v P V of a weighted property-graph G “ pV, Eq
as a GSM object, and each edge u Ñ v P E with weight w and label κ reflects a containment
xv, wy P tϕpϕpi, κqq. Given this isomorphism g » Gg, we can also apply a layered and
reverse topological ordering of the vertices of g and denote it as Ortopopgq.

The Python code provided in Appendix A.5 showcases the possibility of instantiating
Python objects within the GSM model via the implementation of an adequate transforma-
tion function, mapping all native types as π key-value properties of a GSM object, while
associating the others to ϕ and tϕ containment relationships (Line 222). Containments also
enable the representation of other object-oriented data structures, such as dictionaries/maps
(Line 144) and linear data structures (Line 164), thus enabling a direct representation of
JSON and nested relational data (Line 53). As per our previous work [9], GSM also supports
the representation of XML (Line 117) and property graph data (Line 65). This also achieves
the representation aim of EPGM by natively supporting unique identifiers for both vertices
and edges, to better operate on those by directly referring to their IDs without the need
to necessarily carry out all of its associated payload information [46]. As such, this model
leverages all the pros and cons of the previous graph data models by framing them within
an object-oriented semistructured model.

4.2. Physical Model

We now describe how the former model can be represented in primary memory for
fastening up the matching and rewriting mechanism.

First, we would like to support the loading of multiple GSM databases while being
able to operate over them simultaneously similar to the named graphs in the RDF model.
Differently from Neo4j v5.20 and similarly to RDF’s named graphs, we ensure a unique
and progressive ID across different databases.

We directly exploit our ActivityTable for listing all the objects appearing within each
loaded GSM: as such, the id-th record xid, a, g, i, p, xy will refer to the i-th object in the g-th
GSM database, while a will refer to the first label of ℓjpiq, that is ℓjpiqr1s.

We extend KnoBAB’s ActivityTable to represent the ϕ containment relationship; the
result is a PhiTableκ for each containment attribute κ: each record xℓ0, g, osrc, w, odst, ιy
refers to a specific GSM database g through which object oi associated with the first label
ℓ0 “ ℓgpoiqr0s contains oj with an uncertainty score of w and is associated with an index
ι: this expresses the idea that ι P ϕposrc, κq with tϕpιq “ xodst, wy. At the indexing phase,
the table is sorted by lexicographical order over the record’s constituents. We extend this
table with two indices: a primary index P1

I mapping each first occurring ℓ value to the
first and the last object within the collection, and a secondary index P2

I mapping such
each database ID g and object ID oi to a collection of containment records expressing
µptϕ, ϕpoi, κqq for each oi and κ such that ϕpoi, κq ‰ H.

We retain the AttributeTableκ for expressing the properties associated with the GSM
vertices, for which we keep the same interpretation from Section 3.2.3 on page 12: thus,
each record xa, v, idy refers to ϕpoi, κq “ v where oi appears as the id-th record within the
ActivityTableL, now used to list all the objects occurring across GSM models.
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Last, ℓ and ξ properties are stored in a one-column table and a secondary index
mapping each database ID and object ID to a list of records referring to the strings associated
with the object ID. The same approach is also used to store the confidence values ϵ associated
with each GSM object.

Algorithm 2 shows the algorithms used for loading all of the GSM databases gi to be
loaded of interest to a single columnar database representation db, as well as providing the
algorithm used to serialize back the stored data into a GSM model for data visualisation
and materialisation purposes. Given this, we can easily prove the isomorphism between
the two shared data structures, thus also providing proof of the correctness of the two
transformations which, as a result, explains the formal characterisation of such an algorithm.

Algorithm 2 Loading a Logical Model into the Physical Model and serialising it back

1: function LOADINGANDINDEXING(G “ tg1, . . . , gnu)
2: for all gi “ xOi, ℓi, ξi, ϵi, πi, ϕi, ti,ϕy P G do
3: for all j P Oi do
4: Lipjq :“ ℓipjq; Xipjq :“ ξipjq; Cipjq :“ ϵipjq
5: ActivityTable.add(xℓpjqr0s, i, j, NULL, NULLy)
6: end for
7: end for
8: INDEX(ActivityTable) Ź Also sorting the table, [11]
9: for all κ P Σ˚, j P Oi s.t. ActivityTable[r]=xℓipjqr0s, i, j, p, xy do

10: for all ι P ϕipj, κq s.t. ti,ϕpιq “ xt, wy do
11: PhiTableκ .add(xℓpjqr0q, i, j, w, t, ιy)
12: end for
13: if πipj, κq ‰ NULL then, AttributeTableκ .add(xℓipjqr0s, πpj, κq, ry)
14: end for
15: INDEX(ActivityTableκ ,PhiTableκ|κ P Σ˚) Ź As in [11]
16: return db :“ xL, X, C, ActivityTable, rpκ, AttributeTableκ

q|κ P Σ˚s, rpκ, PhiTableκ
q|κ P Σ˚sy

17: end function

18: function SERIALISATION(db)
19: n :“ maxrPAttributeTable rp1q Determining the maximum number of GSM databases
20: for all i :“ 0 to n do
21: Oi :“ t j | Dl, p, x. xl, i, j, p, xy P ActivityTable u
22: ℓi :“ rpi, Lipjqq|j P Ois; ξi :“ rpi, Xipjqq|j P Ois; ϵi :“ rpi, Cipjqq|j P Ois

23: πi :“ rppj, κq, vq|xl, v, ry P AttributeTableκ , Dp, x. xl, i, j, p, xy P ActivityTable, κ P Σ˚s

24: ϕi :“ rpps, κq, tι1|Dl1, w1, d1, xl1, i, j, w1, d1, ι1y P

PhiTablek
uq|xl, i, s, w, d, ιy P PhiTableκκ P Σ˚s

25: ti,ϕ :“ pι, td, wuq|xl, i, s, w, d, ιy P PhiTableκ , κ P Σ˚s

26: yield xOi, ℓi, ξi, ϵi, πi, ϕi, ti,ϕy

27: end for
28: end function

Lemma 1. A collection of logical model GSM databases xgiyiďn is isomorphic to the ones loaded
and indexed physical model.

The proof is given in Appendix B.1. We refer to Section 8 for proofs related to the time
complexity for loading, indexing, and serialising operations.

4.3. GSM View ∆pgq

To avoid massive restructuring costs while updating the information indexed in the
physical model, we use a direct extension of the logical model to keep track of which objects
were newly generated, removed, or updated during the application of the rule rewriting
mechanisms. At query time, we instantiate a view ∆pgiq for each gi being loaded within
the physical model (Section 6.5). We want our view to support the following operations:
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(i) creation of new objects, (ii) update of the type/labelling information ℓ, (iii) updat-
ing the human-readable value characterisation ξ, (iv) update of the containment values,
(v) removal of specific objects, and (vi) substitution of previously matched vertices with
newly-created or other previously matched ones. While we are not explicitly supporting
the removal of specific properties or values, these can be easily simulated by setting specific
fields to empty strings or values. A view for gi is defined as follows:

∆pgiq “ xg∆
i , Γi, Γv

i , O`
i , O´

i , E´
i , ρiy (8)

where g∆
i “ xO∆

i , ℓ∆
i , ξ∆

i , ϵ∆
i , π∆

i , ϕ∆
i , t∆

ϕ,iy is a GSM database holding all the objects being
newly inserted alongside with the properties as well as the updated properties for the
objects within the graph g (i–iv), Γ refers to the nested morphism being considered while
evaluating the query, Γv denotes the extension of such morphism with the newly inserted
objects through variable declaration, which resulting objects are then collected in O` (i). O´

(and E´) tracks all the removed objects (and specific containment objects, resp.) through
their ID (v). Last, ρ is a replacement map

À

irpoi, oαpiqqs to be used when evaluating the
transformations over morphisms occurring at a higher topological sort layer, stating to refer
to an object oαpiq when oi occurs (vi). Γv and O` are used to retain the updated information
locally to each evaluated morphism, while the rest are shared across the evaluation of each
distinct morphism.

We equip ∆pgqwith update operations reflecting the insertion, deletion, update, and re-
placement operations as per rewriting semantics associated with each graph grammar
production rule. Such operations are the following:

START: re-initialises the view to evaluating a new morphism Γ1 by discarding any infor-
mation being local to each specific morphism:

START∆pgqpΓ
1q “ xg∆, Γ1,H,H, O´, E´, ρy (9)

DELCONT: We remove the i-th containment relationship from the database:

DELCONT∆pgqpiq :“ xg∆, Γ, Γv, O`, O´, E´ Y tiu, ρy

NEWOBJ: Generates a new empty object associated with a variable j and with a new
unique object ID |g| ` |g∆| ` 1:

NEWOBJ∆pgqpjq :“let fresh :“ |g| ` |g∆| ` 1 in

xg∆, Γ, PUTΓvpj, Γvpjq Y tfreshuq, O` Y tfreshu, O´, E´, ρy

REPLOBJ: replaces oi with oj if and only if oj was not removed (oj R O´):

REPLOBJ∆pgqppoi, ojqq :“

#

∆pgq oj P O´

xg∆, Γ, Γv, O`, O´, E´, ρ ˝ rpoi, ojqsy oth.

DELOBJ: We remove an object oi only if this was already in g or if this was inserted
in a previous evaluation of a morphism and, within the evaluation of the current
morphism, we remove the original object oi being replaced by õ “ ρpoiq:

DELOBJ∆pgqpoiq :“let õ :“ OPTGETρpoiq in
#

xg∆, Γ1,H, O`, O´ Y toiu, E´, ρy õ P O`

xg∆, Γ1,H, O`, O´ Y tõu, E´, ρy oth.
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UPDATE: updates one of the object property functions by specifying which of those should
be updated. In other words, this is the extension of PUT2 (Equation (2)) as a higher
function for updating the view alongside one of these components:

UPDATE
f
∆pgiq

pxi, jy , uq :“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

xO∆
i , PUT2

ℓ∆
i
pxi, jy , uq, ξ∆

i , ϵ∆
i , π∆

i , ϕ∆
i , t∆

ϕ,iy f ” ℓ

xO∆
i , ℓ∆

i , PUT2
ξ∆

i
pxi, jy , uq, ϵ∆

i , π∆
i , ϕ∆

i , t∆
ϕ,iy f ” ξ

xO∆
i , ℓ∆

i , ξ∆
i , ϵ∆

i , PUTπ∆
i
pxi, jy , uq, ϕ∆

i , t∆
ϕ,iy f ” π

let n :“ |dompt∆
i,ϕq| in f ” ϕ

let ϕ̃ :“ PUTϕ∆
i
pxi, jy , tn, . . . , n` |u|uq in

let t̃ :“ t∆
ϕ,i ‘

À

0ďjă|u|rpj` n, upjqqs in

xO∆
i , ℓ∆

i , ξ∆
i , ϵ∆

i , π∆
i , ϕ̃, t̃y

Concerning the time complexity, we can easily see that all operations take Op1q time
to compute by assuming efficient hash-based sets and dictionaries. Concerning UPDATEϕ,
this operation takes Op1q time, as we are merely inserting one pair at a time.

4.3.1. Object Replacement and Resolution

As our query language will have variables to be resolved via matched morphisms
and view updates (Appendix A.1), we focus on specific variable resolution operations.
Replacement operations should be interpreted as a reflexive and transitive closure over the
step-wise replacement operations performed while running the rewriting query (Section 6.5
on page 33).

Definition 4 (Active Replacement). The active replacement function resolves any object ID
x into its final replacement vertex following the chain of subsequent unique substitutions of each
single vertex in ρ, or otherwise returns x:

ρ‹
∆pgq

pxq :“

#

ρnpxq n1 “ arg maxnPN .x P dompρnq ^ ρnpxq ‰ ρn`1pxq
x oth.

During an evaluation of a morphism to be rewritten, such replacements and changes
should be effective from the next morphism while we would like to preserve the original
information while evaluating the current morphism.

Definition 5 (Local Replacament). The local replacement function blocks any notion of re-
placement while evaluating the original data matched by the current morphism while activating the
changes from the evaluation of any subsequent morphism where such newly-created vertices from
the current morphism will not be considered:

Óρ∆pgqpxq :“

#

ρ‹pxq ρ‹pxq R O`

x oth.

We consider objects as removed if they have no effective replacements to be enacted
in any subsequent morphism evaluation: x P dompρq ^ x P O´. Thus, we also need to
resolve objects’ properties (such as ℓ, ξ, π, and ϕ) by considering the changes registered
in ∆pgiq. We want to define a HOF property extraction that is independent of the specific
function of choice. By exploiting the notion of local replacement (Definition 5), we obtain
the following definition:

Definition 6 (Property Resolution). Given any property access function ℓ, ξ, ϕ, π, a GSM
database gi and a corresponding view ∆pgiq we define the following property resolution high-
order function:
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Óρ
f
∆pgq

poq “

$

’

&

’

%

H Óρ∆pgqpoq P O´
i

f∆pgiq
pÓρ∆pgqpoqq Óρ∆pgqpoq P O∆

i ^ f∆pgiq
pÓρ∆pgqpoqq ‰ H

fgipÓρgipoqq oth.

where we ignore any value associated with a removed vertex in O´
i (first case), we consider any

value stored in ∆pgiq as overriding any other value originally in the loaded graph (second case),
while returning the original value if the object underwent no updates (last case).

4.3.2. View Materialisation

Last, we define a materialisation function as a function updating a GSM database gi
with the updates stored in the incremental view ∆pgiq. We consider all the objects being
inserted (implicitly associated with a 1.0 ε score) and removed, as well as extending all the
properties as per the view, thus removing containment relationships originating from or
arriving at GSM objects.

MATERIALISE’pgi, ∆pgiqq “ xOi YO`
i zO

´
i ,

ℓ‘ ℓ∆
i ,

ξ ‘ ξ∆
i ,

ϵ‘

¨

˝

à

oPO∆
i zO´

i

rpo, 1.0qs

˛

‚,

π‘ π∆
i ,

à

xp,kyPdompϕq

rpxp, ky ,𭟋py ÞÑ y R E´
i , ϕpp, kqqqs ‘ ϕ∆

i ,

ptϕ ‘ t∆
ϕ,iqy

As a rewriting mechanism might add edges violating the recursion constraint, we
prune the containments loading to its violation by adopting the following heuristic: after
approximating the topological sort by prioritising the object ID, we remove all the contain-
ments generating a cycle where the contained object has an ID with a lower value than its
container ID. From this definition, we then derive the definition of the update of all the
GSM databases loaded in the physical model G with their corresponding updates in ∆ via
the following expression:

MATERIALISEpG, ∆q “ µpMATERIALISE1, ζpG, ∆qq (10)

4.4. Morphism Notation

We consider nested relationships mapping attributes to either basic data types or to not
nested schemas, as our query language will syntactically avoid the possibility of arbitrary
nesting depths. Given this, any attribute Ai can nest at a maximum level 1 of depth.
This will then motivate a similar requirement for the envisioned operator for composing
matched containments (collected in relational tables) into nested morphisms (Section 5).

As our query language requires resolving variables by associating each variable Ai
to the values stored in a specific morphism Γ, we need a dedicated function enabling this.
We can define a value extraction function for each morphism Γ and attribute Ai P dompΓq,
returning directly the value associated with Ai in Γ if Ai directly appears in the schema
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of Γ (dompΓq), and otherwise returns the list of all the possible values associated with it
within a nested relationship Aj having Ai in its domain:

IDXΓpAiq :“ let S :“ SpΓq in

$

’

&

’

%

xΓpAiqy SpAiq P B
xγipAiq|γi P ΓpAjqy D!Aj. Ai P dompSpAjqq

H oth.

(11)

When resolving a variable, we need to determine whether this refers to a containment
or to an object, thus selecting to remove the most appropriate type of constituent indicated
within a morphism. So, we can define a function similar to the former for extracting the
basic datatypes associated with a given attribute:

TIDXΓpAiq :“ let S :“ SpΓq in

$

’

&

’

%

SpAiq SpAiq P B
pSpAjqqpAiq D!Aj. Ai P dompSpAjqq ^ SpAjqpAiq P B
H oth.

(12)

We also need a function determining the occurrence of an attribute x nested in one of
the attributes of S. This will be used for both automating the discovery of the path L⃗ for
joining nested tables from our recently designed operator (Section 5) or for determining
whether two variables belong to the same nested cell of the morphism while updating the
GSM view. This boils down to defining a function returning Aj if Ai is an attribute of a
table nested in Aj, and NULL otherwise.

IDNESTSpAiq :“ arg min AjPdompSq

s.t.SpAjq‰B
Ai P dompSpAjqq (13)

Last, we need a function for returning all the object and containment IDs under the
circumstance that these contribute to the satisfaction of a boolean expression. We then
define such a function returning such IDs at any level of depth of a nested morphism:

SEpΓq “ let S “ SpΓq in tx P dompΓq|Spxq P Bu Y
ď

xPdompSq,SpxqRB
SEpΓpxqq (14)

5. Nested Natural Equi-Join

Although previous literature defines nested natural join, no known algorithmic imple-
mentation is available. As our query language will return nested morphisms by gradually
composing intermediate tables through natural or left joins is, therefore, important to
provide an implementation for such an operator. This will be required to combine tables
derived from the containment matching (Section 6.3) into nested morphisms, where it is
required to join via attributes appearing within nested tables (Section 6.4). Our lemmas
show the necessity of this operator by demonstrating the impossibility of expressing it via
Equation (6) directly, while capturing the desired features for generating nested morphisms.

We propose for the first time Algorithm 3 for computing the nested (left outer) equi-
join with a path L⃗ of depth at most 1. The only parameter provided to the algorithm is
whether we want a left outer equi-join or a natural one otherwise (isLeft) and, given
that the determination of the nesting path will depend on the schema of both the left and
right operand, we automate (Line 9) the determination of the L⃗ “ xNy path along which
compute the nested join for which, we freely assume that we navigate on the nested schema
of the left operand similarly to Equation (6): this assumption comes from our practical use
case scenario that we are gradually composing the morphisms provided as a left operand
argument with the containment relationships provided as the right operand. Furthermore,
to apply the definition from Equation (6) while automating the discovery of the path to
navigate to nest the relationship, we require that each attribute appearing from the right
table schema might appear as nested in one single attribute from the left table or, otherwise,
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we cannot automatically determine which left attribute to choose to nest the graph visit
(Line 8). Otherwise, we determine a unique attribute from the left table alongside which
apply the path descent (Line 9).

Algorithm 3 Nested Natural Equi-Join

1: function NESTEDNATURALEQUIJOINisLeft(L, R)
2: SL :“ SpLq; SR :“ SpRq
3: IR :“ pdompSLqztx P dompSLq|SLpxq R Buq X dompSRq

4: if IR “ H then return Lˆ R Ź Cross Product
5: if

Ť

tdompAiq|Ai P dompSLq ^ SLpAiq R Bu X dompSRq “ H then
6: if isLeft then return Ld|><|R else return L ’ R
7: end if

8: assert
ˇ

ˇ

ˇ

Ť

xPdompSRq IDNESTSLpxq
ˇ

ˇ

ˇ
“ 1 Ź Equation (13)

9: N :“ min
Ť

xPdompSRq IDNESTSLpxq
10: LM :“

À

cPL{ 9“IR
rpcpIRq, πSLzIRpcqqs

11: RM :“
À

cPR{ 9“IR
rpcpIRq, πSRzIRpcqqs

12: for all k P dompLMq Y dompRMq do
13: if k R dompRMq and isLeft then
14: for y P LMpkq yield k‘ y
15: else if k P dompLMq then
16: for all y P LMpkq, z P RMpkq do
17: y1 :“ copyof y
18: y1pNq :“if isLeft then return y1pNqd|><| z else return y1pNq ’ z
19: yield k‘ y1

20: end for
21: end if
22: end for
23: end function

The algorithm also takes into account whether no nesting path L⃗ “ xNy is derivable,
thus resorting to traditional relational algebra operations: if there are no shared attributes,
we boil down to the execution of a cross product (Line 4) and, if none of the attributes from
the right table appear within a nested attribute from the left table, then we boil down to a
classical left-outer or natural equijoin depending on the isLeft parameter (Line 6).

Otherwise, we know that some attributes from the right table appear as nested within
the same attribute N of the left table and that the two tables share the same non-nested
attributes. Then, we initialize the join across the two tables by first identifying the nested
attribute N from the left (Line 9). Given IR, the attributes appearing as nonnested attributes
from the left table also appear in the right one, we partition the tables by 9“IR, thus identify-
ing the records having the same values for the same attributes in IR (Lines 10–11). Then,
we start producing the results for the nested join by iterating over the values k appearing
in either of the two tables (Line 12): if k appears only over the left table and we want to
compute a left nested join (Line 13), we reconstruct the original rows appearing from such
table and return them (Line 14). Last, we only consider values k for IR appearing on both
tables and, for each row y from the left table having values in k, we compute the left (or
natural equi-)join of ypNqwith each row z from the right table and combine the results with
k (Line 18).

Properties

We prove that L⃗’ cannot trivially boil down to ’ unless L⃗ “ H; otherwise, if Ai is in L⃗
not appearing as an attribute for the to-be-joined table schemas, we will be left out with the
left table and not a classic un-nested natural join. Proofs are postponed to Appendix B.2.
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Lemma 2. Given Sptq “ S and L⃗ “ xA1, A2, . . . , Any, if A1 R dompSq, then t L⃗’s “ t

As this is not a desired feature for an operator whose application should be automated,
this justifies the need for a novel nested algebra operator for composing nested morphisms,
which should shift to left joins [37] for composing optional patterns provided within the
right operand (isLeft), while also backtracking to natural joins or cross products if no
nested attribute is shared across matched containments. The following lemma discards
the possibility of the aforementioned limitation to occur from our operator, by instead
capturing the notion of cross-products when tables are not sharing non-nested attributes.

Lemma 3. Given tables L and R, respectively, with schema S and U with non-shared attributes
(dompSq X dompUq “ H), either NESTEDNATURALEQUIJOINFalse(L, R) or
NESTEDNATURALEQUIJOINTrue(L, R) compute Lˆ R.

We also demonstrate that the proposed operator falls back to the natural join when
no attribute nested in the left operand appears in the right one, while also capturing the
notion of left join by changing the isLeft

Lemma 4. Given tables L and R, respectively, with schema S and U where no nested attribute appear-
ing in the left table appears in the schema of the second, then NESTEDNATURALEQUIJOINfalse(L, R)“
L ’ R and NESTEDNATURALEQUIJOINtrue(L, R)“ Ld|><|R.

The next lemma observes that our proposed operator not only nests the computation
of the join operator within a table, but also implements an equijoin doing a value match
across the table fields that are shared within the shallowest level. This is a desideratum
to guarantee the composition of nested morphisms within the same GSM database ID,
thus requiring sharing at least the same dbid field (Section 6.3). Still, these operations
cannot be expressed through the nested join operator available from the current literature
(Equation (6)).

Lemma 5. Given tables L and R, respectively, with schema S and U, that is SpLq “ S and
SpRq “ U, where the left table has a column N ( N P dompSq) being nested (SpNq R B) and also
appearing in the right table (N P dompUq), NESTEDNATURALEQUIJOINfalse(L, R) cannot be
expressed in terms of L xNy’R for N P dompSq XdompUq, N P dompSpNqq, and dompSpNqq X
dompUq ‰ H.

6. Generalised Graph Grammar

After a preliminary and example-driven representation of the proposed query lan-
guage (Section 6.1), we characterise the semantics of the proposed query language in terms
of procedural semantics being subsumed in Algorithm 4. This is defined by the following
phases: after determining the order of application of the matching and rewriting rules
(Line 2), we match and cache the traversal of each containment relationship to reduce
the number of accesses to the physical model (Line 3), from which we then proceed to
the instantiation of the morphisms, to produce the MTr¨, ¨s table (Line 4). This fulfills the
matching phase. Finally, by visiting the objects from each GSM database in reverse topolog-
ical order, we then access each morphism stored in MTr¨, ¨s for then applying (Line 5) the
rewriting rules according to the sorting in Line 2. As this last phase produces the views for
each gi GSM database we then materialise this view and store the resulting logical model on
disk (Line 6). Each of the forthcoming sections discusses each of the aforementioned phases.
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Algorithm 4 Generalised Graph Grammar (gg) evaluation

1: function GENERALISEDGRAPHGRAMMARS(gg, G “ tg1, . . . , gnu) Ź G » db (Lemma 1)
2: SORTRULES(gg) Ź Algorithm 5
3: CACHEINTERMEDIATERESULTS(gg, db) Ź Algorithm 6
4: INSTANTIATEMORPHISMS(gg, db) Ź Algorithm 7
5: ∆ :“GENERATEGRAPHVIEWS(gg, G) Ź Algorithm 8
6: return MATERIALISE(G, ∆) Ź Equation (10)
7: end function

6.1. Syntax and Informal Semantics

We now discuss our novel’s proposed matching and rewriting language by taking
inspiration from graph grammar. To achieve language declarativeness, we do not force the
user to specify the order of application of the rules as in graph rewriting.

Figure 4 provides the Backus-Naur Form (BNF) [48] for the proposed query language
for matching and rewriting object-oriented databases by extending the original definition of
graph grammars. Each query (gg) is a list of semi-colon-separated rules (rule), where each
of those describes a matching and rewriting rule, Li ÑΘ Ri. For each uniquely identified
rule (pt), we identify a match Li (obj cont+ joining*) and an optional (?) rewrite Ri (op*
obj). Those are separated by an optional condition predicate Θ (Appendix A.2 on page 43),
providing the conditions upon which the rewriting needs to be applied to the database
view, and ãÑ.

Li is characterised by one single entry-point similarly to GraphQL [49] as well as other
navigational approaches to visiting graph-based data [50], thus defining the main GSM
object through which we relativise the graphs’ structural changes or update around its
neighbouring vertices, as defined by its ego-network cont of objects being either contained
(- - clabel -> obj) or containing (<- clabel - - obj) the entry-point obj. While objects
should be always referred to through variables, containment relationships might be op-
tionally referred to through a variable. Edge traversal beyond the ego-net is expressed
through additional edges (joining). We require that at least one of the edges should be
a mandatory one. Differently from Cypher, we can match containments by providing
more possible alternatives for the containment label rather than just considering one single
alternative: this acts as the SPARQL’s union operator across differently matched edges, each
for a distinct edge label. Please observe that this boils down to a potentially polynomial
sub-problem of the usual subgraph isomorphism problem, being still in NP despite the
results in Section 8 proposed for the present query language.

Up to this point, all these features are shared with graph query languages. We now
start discussing features extending those: we generate nested embeddings by structurally
grouping entry-point matches sharing the same containing vertex: this is achieved by
specifying the need to group an object (") along one of its containment vertices via a
containment relationship remarked with @. Last, we use return statements in the rewritings
to specify which entry-point objects should be replaced by any other matched or newly
created objects.

Example 1. Listing 1 expresses the graph grammar rules from Figure 2 in our proposed language
with minor extensions: we achieve declarativeness when associating multiple string values
coming from nested vertices (and therefore, associated with a single variable) to one single
vertex, as strings will be normally space-joined (Line 12) with a syntax equivalent to setting
such properties where no nestings are in a morphism (Line 2). A return statement at Line 22
guarantees that, while considering matching a GSM database from Figure 3a, objects 2 and 3
for Alice and Bob in X will be replaced by the newly instantiated “Alice Bob” object h when
considering the subsequent creation of the edge “plays” (Line 31). This remarks the need for
visiting the GSM database in topological order to minimise the rewriting costs when the updates
are applied. This is also guaranteed by the matching assumption only considering objects within
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the entry-point’s ego-net, as we ensure to pass on the information by layers via return statements.
Figure 5a shows the result of this rewrite.

String str P Σ˚
Integer int P N
Variables vars ::“ str
Labels labels ::“ (str })* str
Query gg ::“ (rule ;)* rule
Rule rule ::“ (pt : str) = (entrypoint : obj) cont+ joining*

(WHERE Θ)? (ãÑ op* (res : obj))?
Object obj ::“ ( "? vars )
Contain cont ::“ - - clabel -> obj

| <- clabel - - obj
| - - clabel hook

Join-Contain joining ::“ obj - - clabel -> obj
| obj <- clabel - - obj

CLabel clabel ::“ [ @? ?? (var : str : )? labels ]
Pred Θ ::“ arg1 “ arg2

| arg1 ‰ arg2
| arg1 ď arg2
| arg1 ě arg2
| Θ1_Θ2
| Θ1^Θ2
| TEST script

| str1 unmatched str2.str3
| str1 matched str2.str3
| FILL Θ

Rewrite op ::“ del str
| new str
| set expr1 as expr2

Val expr ::“ str
| SCRIPT script

| label expr
| src expr
| dst expr
| ξ init @ expr
| ℓ init @ expr
| π expr1 @ expr2
| ϕ expr1, expr2
| if Θ over str then expr2 else expr3

PredArg arg ::“ str
| expr

Figure 4. Proposed language for Graph Grammars over the GSM expressed in ANTLR4-
flavoured BNF notation [51]. Terminal symbols are expressed in green. script refers to a
double-quoted string representing a program in the Script v2.0 language [34]. Similarly to
Regular Expression syntax [48], ? refer to optional sub-expressions, + (or *) indicate one (or
zero) or more occurrences of a given sub-expression.

When grouping entry-points, we require those to be grouped over one same containing
object, to unambiguously refer the nested entry-points to one single morphism. This allows
the query language to coalesce morphisms.



Mathematics 2024, 12, 2677 25 of 62

Listing 1. Expressing the graph grammar rules represented visually in Figure 2 in our
proposed language (file: paper_simple.txt).

1 p1 = (X)--[l:det|| nmod_poss ||amod||mark||case||punct|| advmod ||
ãÑ advcl||dep]->(Y)

2 ãÑ set (π (label l) @ X) as (ξ 0 @ Y)
3 del Y
4 (X);
5
6 p2 = (>> H)<-[@l:]--(X)
7 --[conj] hook
8 --[? case]->(K)
9 --[? c : cc]->(Z)

10 ãÑ new h
11 set (φ orig , h) as H element (>>)
12 set (π conj @ h) as (ξ 0 @ Z)
13 set (ξ 0 @ h) as (ξ 0 @ H)
14 set (φ (if ((label l ) = nmod) over l then
15 (ξ 0 @ K)
16 else
17 (label l)
18 ), X) as h
19 del Z
20 del K
21 del l
22 (h);
23
24 p3 = (V)--[@n:nsubj]->(>>S)
25 --[? mark]->(M)
26 --[? aux]->(A)
27 --[? neg]->(N)
28 --[@l:dobj||ccomp||nmod]->(>>Z)
29 (Z) --[? case]->(T)
30 ãÑ

31 set(φ (SCRIPT "(^(^(^(^␣(^␣(␣[(ξ t|\"A\"|u) 0]) \" \") ([ (ξ t|\"N
ãÑ \"|u) 0])) \" \") ([ (ξ t|\"V\"|u) 0])) \" \") ([ (ξ t|\"T\"
ãÑ |u) 0])") , S) as Z

32 set(π kernel @ S) as (ξ 0 @ S)
33 del V
34 del T
35 del M
36 del A
37 del N
38 (S)

Example 2. The usefulness of a nested morphism representation can be promptly shown with
the example in Figure 5 while focusing on the morphism tables referring to the matching of the
subject-verb.object structure of a sentence (Figure 5b). Each morphism can contain two distinct
nested relationships, one referring to the subject (S) and one to the object (Z). The possibility of
representing such values in a nested morphism allows us to better group vertices to be considered
while referring to those with the same variable while keeping unique entry-point instances.

Example 3. With reference to the morphism resulting from matching (con-)/dis-junctions with
a sentence (Figure 5c), entry-point grouping allows the creation of one single vertex matching as
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a single subject for the sentence, thus ensuring the creation of one final single vertex per group of
matched entry-points.

Alice Bob
cc:and

6
cricket

4

play

Alice
2

Bob
3

orig orig

(a)

graph V n label S l label Z

0 0 nsubj n S

↑2 2

↑3 3

dobj l Z

↑1 4

(b)

graph X *

0 0 H l label l c label c Z

2 nsubj ↑2 cc ↑4 5

(c)

Figure 5. Applying the rewriting rules expressed in Figure 2 to the graph originally
presented in Figure 3a: different colours refer to different matching rules. Filled vertices
in the left (and right) graph refer to the distinct vertex entry-points (and newly generated
components), while uparrows Ò are used to differentiate containment IDs from the ones
for the objects. (a) Generating a binary relationship between the subject as a single entity
and the direct object. (b) Morphisms Mrp3, g0s. (c) Morphisms Mrp2, g0s, where * refers to
sub-matches nested over the entry point (See Algorithm from Section 6.4).

We also show how the language allows us to break the declarativeness assumption
when we want to specifically compose values according to a specific value composition
function:

Example 4. The user is free to break this declarative assumption by directly specifying the order of
combination when it is required to combine the values from different variables. This can be observed in
a longer query considering more morphosyntactic language features, which is provided online (https:
//github.com/datagram-db/datagram-db/blob/v2.0/data/test/einstein/einstein_query.txt, accessed
on 18 July 2024). This can be used to fully rewrite the database as per Figure 6. As the creation
of the will-not-have containment in this will require combining values from vertices 3, 8, and 9
and, respectively, associated with variables V, A, and N, we can use a scripting language as a direct
extension of Script v2.0 [34] for determining the order of strings’ composition. Please observe that
this formulation, contrary to Neo4j’s APOC in v5.20, also supports optional object matches, where
the values associated with non-existing NULL objects are resolved into empty strings (see Proof for
Lemma 7 in Appendix B.3).

By explicitly expressing a containment relationship across the nested entry-point X via
so-called hook containments defining equivalence classes, we split the nested morphism Γ
into as many new morphisms as the equivalence classes in IdxΓpXq

ℜ (see Section 6.3).

Example 5. We appreciate the usefulness of such morphism splitting while looking at a more
convoluted example, as the one considering the rewriting in the sentence depicted in Figure 6a:
vertices Matt and Tray and play and have from conjunctions but at different branches of the

https://github.com/datagram-db/datagram-db/blob/v2.0/data/test/einstein/einstein_query.txt
https://github.com/datagram-db/datagram-db/blob/v2.0/data/test/einstein/einstein_query.txt
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sentence structure. Furthermore, all four constituent vertices have the same containing vertex
believe for which, if no hook relationship was considered, they would have been added within the
same morphism as per the previous example.

Still, given that those vertices are associated with different conj as they appear in different coor-
dinating conjunctions, we can use this as a hook relationship to distinguish those, for then obtaining
two separate morphisms as illustrated by the first two rows in Figure 7b. Thus, hooks help in splitting
nested entry-points structurally by identifying similar elements through structural information.

believe

0

Matt

5

and
7

Tray

6

cricket

21

Carl

25

Bob

20

and
26

Alice

19

and
23

play 2

have 3

Carl
10

Dan
11

way

12

a

14

or
1

that

22

will9

not8

and

13

amuse

15

to

17

themselves

16

ac
l

nsubjns
ub
j

conj

cc

cc

ccomp

ccomp

conj

m
ar
k

aux

neg

n
su
b
j

nsub
j

nsubj

dobj

conj conj

conjcc

cc

n
su
b
j

ns
ub
j

do
bj

detconj

cc

mark

dobj

(a)

Matt Tray
cc:and

30

Matt

5

Tray

6

cricket

21

Carl

25

Bob

20

Alice

19

Carl Dan
cc:and

27

Carl

10

Dan

11

way
det:a

14

amuse
mark:to

17

themselves

16

Alice Bob Carl
cc:and and

28

Carl Dan Alice Bob Carl
cc:or

29
or
ig

orig

ac
l

origor
ig

or
ig

orig

orig

play

bel
ieve

or
ig or
ig

wi
ll
no
t h

av
e

dobj

(b)
Figure 6. Applying the rewriting rules expressed in Figure 2: different colours refer to
different graph grammar rules (b and c) , filled vertices in the left (and right) graph refer to
the distinct vertex entry-points (and newly generated components). (a) Dependency graph
for “Matt and Tray believe that either Alice and Bob and Carl play cricket or Carl and Dan will not
have a way to amuse themselves”. While object IDs are presented as numbers, containment
IDs are omitted. (b) Generating a binary relationship between the subject as a single entity
and the direct object.
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graph X l label l Y

1 2 mark ↑12 22

1 12 det ↑1 14

1 15 mark ↑13 17

(a)

graph X *

1 0 H l label l c label c Z

2 ccomp ↑29 cc ↑22 1

3 ccomp ↑30 NULL NULL NULL

1 0 H l label l c label c Z

5 nsubj ↑14 cc ↑23 7

6 nsubj ↑15 NULL NULL NULL

1 2 H l label l c label c Z

19 nsubj ↑16 cc ↑25 23

20 nsubj ↑17 cc ↑26 26

25 nsubj ↑18 NULL NULL NULL

1 3 H l label l c label c Z

10 nsubj ↑19 cc ↑24 13

11 nsubj ↑20 NULL NULL NULL

(b)

graph V n label S l label Z A N M

1 0 nsubj n S

↑14 5

↑15 6

ccomp l Z

↑29 2

↑30 3

NULL NULL NULL

1 2 nsubj n S

↑16 19

↑17 20

↑18 25

dobj l Z

↑3 21

NULL NULL 22

1 3 nsubj n S

↑19 10

↑20 11

dobj l Z

↑4 12

9 8 NULL

(c)
Figure 7. Resulting morphisms from the application of the graph grammar rules from
Listing 1 over the GSM database in Figure 6a, from which the resulting rewritten database
Figure 6b is then obtained. (a) Morphisms Mrp1, g1s. (b) Morphisms Mrp2, g1s, where
* refers to sub-matches nested over the entry point (See Algorithm from Section 6.4).
(c) Morphisms Mrp3, g1s.

Last, these examples provide an intuitive motivation for why the matching within
our query language can express distances of at most one containment relationship from
the entry-point match. We want to guarantee that, given two objects matching the query
entry-points, located at different distances from the vertex appearing last within the re-
verse topological order, these are still reachable within the distance of crossing a single
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containment. Similarly to semistructured data literature, we refer to one as its (direct)
ancestor and to the other as its (direct) descendant. If the entry point considering in its
match the aforementioned direct descendant object is replaced with another object, be it
recently created during the application of the rewriting rules or already existing within
the database, we want this information to be passed directly during the execution of the
rewriting associated with the match of the object of the direct descendant. For this, we need
both an explicit return mechanism, which allows the possibility of explicitly telling the
objects appearing at the higher layers induced by the topological order that the previous
object has been replaced, and to keep the match size compact, so that we can guarantee
that any entry-point value updated at a lower level is retrieved immediately.

6.2. Determining the Order of Application of the Rules

We determine the application order of our language rules for each entry-point vertex
of interest (Algorithm 5). This boils down to solving a scheduling problem, which requires
first determining the interdependencies across the graph grammar rules. All the matching
constructs Li for each rule Li ÑΘ Ri in our query gg have variables that might be shared
across morphisms.

Algorithm 5 Sorting the Graph Grammar rules by application order

1: procedure SORTRULES(gg)
2: V :“ tpi | pi “ Li ÑΘ Ri P ggu

3: E :“
!

pi Ñ pj
ˇ

ˇ pi.res ‰ NULL^ pi.res “ pj.entrypoint_

pi.entrypoint “ pj.entrypoint, pi P V, pj P V
)

4: G :“ pV, Eq
5: time:“LAYERFROMTOPOLOGICALSORT(G,APPROXVtopo(G)) Ź Algorithm 1
6: sort each x in gg by timerxs in ascending order
7: end procedure

As per Example 1, each rewriting Ri might replace the entry-points with a single new
object, or we preserve the previously matched ones otherwise. These are then input to
any later morphism being considered while applying the rewritings. For this, we might
consider the variables across patterns as hints to the query language on how the updated or
matched objects are going to influence their updates, thus declaring their interdependencies.
By reducing this to a dependency ordering, we consider the dependency graphs for the
matching and rewriting rules, (Line 4), where each vertex represents a rule (Line 2). Each
edge connecting two vertices (or patterns) represents a connection between the entry-
point or returned variable from the source pattern and any other non-entrypoint variable
occurring in the target pattern (Line 3). As the resulting graph might contain loops as some
patterns might exhibit mutual dependencies, we are then forced to run an approximated
topological sorting algorithm (Line 5) to determine an approximated scheduling order
across such tasks through a DFS visit of the graph [52]: we start traversing the graph from
the first rule appearing in the graph grammar while avoiding visiting edges leading to
already-visited vertices; if we visited all the vertices reachable from such initial vertex while
still having unvisited ones, we recommence the same visit starting from the earliest vertex
that was not already visited. We add each visited vertex inside a stack after each of its
children has been fully visited. By doing so, we prioritise the rules’ declaration order which
then acts as a heuristic for guiding the algorithm to decide upon a specific visiting order.

6.3. Containment Matching

With Algorithm 6, we define the steps realising containment matching for each Li
from a rule pi to later on generate a morphism table MTrLi, gjs per GSM database gj,
as discussed in Section 6.4. The algorithm works as follows: (i) after caching the PhiTableκ

referenced by the containments in the matching patterns to minimize the tables’ access in a
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uniform schema specification, (ii) we specialise such tables to the specific schema induced
by the variables’ names and nesting occurring in the matching Li. Last, (iii) we collect the
matching containments by separating them between required or optional ones.

Algorithm 6 Intermediate Edge Result Caching

1: procedure UNIQUECACHEID(c “ pq, isOutq, L)
2: global queryCache, queryMap, emptySet
3: if L “ H then emptySet=emptySetYtcu else
4: for all l P L do
5: queryCache = queryCacheYtlu
6: end for
7: end procedure
8: function FROMDB(κ, db)
9: t :“ xy ; Sptq :“ rpdbid,Nq, psrc, niq, pedge, ciq, pedgeLabel, Σ˚q, pdst, niqs

10: if PhiTableκ
P db then

11: t :“ xrpdbid, iq, psrc, jq, pedge, rq, pedgeLabel, κq, pdst, dqs |
r ă |PhiTableκ

|, PhiTableκ
prq “ xl, i, j, w, d, ιyy

12: end if
13: return t
14: end function
15: function TOTABLE(t, x, y, lx, nestCont)
16: if lx “ NULL then t :“ Rsrc,dstÑx,ypπdbid,src,dstptqq
17: else t :“ Rsrc,edge,edgeLabel,dstÑx,lx ,lx`“_label”,yptq
18: if nestCont then t :“ νlx ,yÑyptq
19: return t
20: end function

21: procedure CACHEINTERMEDIATERESULTS(gg, db)
22: global queryCache, queryMap, emptySet
23: for all pi “ L ÑΘ R P gg s.t. L ” xep, in, out, join, hooky do
24: for all q P in s.t. q “ xu, l, lx, all, opty do UNIQUECACHEID(pq, falseq, l)
25: for all q P out s.t. q “ xu, l, lx, all, opty do UNIQUECACHEID(pq, trueq, l)
26: for all q P join s.t. q “ xu, l, lx, all, opt, vy do UNIQUECACHEID(pq, trueq, l)
27: queryCache = queryCache Yhook
28: end for
29: if emptySet ‰ H then queryCache“ tκ|PhiTableκ

P dbu
30: cache :“

À

xPqueryCacherpx, FROMDBpx, dbqqs
31: for all pi “ L ÑΘ R P gg s.t. L ” xxep, aggepy , in, out, join, hooky do
32: hooki :“ πdbid,src,dstp\jPhookTOTABLEpcachepiq, src, dst, NULL, falseqq
33: for all q P out, ι P queryCachepq, trueq s.t. q “ xxu, agguy , l, lx, all, opty do
34: t :“ TOTABLEpcachepιq, ep, u, lx, all and agguq

35: if opt then opti :“ opti Y ttu else reqi :“ reqi Y ttu
36: end for
37: for all q P in, ι P queryCachepq, falseq s.t. q “ xxu, agguy , l, lx, all, opty do
38: t :“ TOTABLEpcachepιq, u, ep, lx, falseq
39: if opt then opti :“ opti Y ttu else reqi :“ reqi Y ttu
40: end for
41: for all q P join s.t. q “ xxu, falsey , l, lx, all, opt, xv, aggvyy do
42: t :“ TOTABLEpcachepιq, u, v, lx, all and agguq

43: if opt then opti :“ opti Y ttu else reqi :“ reqi Y ttu
44: end for
45: end for
46: end procedure
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6.3.1. Pseudocode Notation for Li

We describe the notation used in our pseudocode being the machine readable repre-
sentation of the query syntax discussed in Section 6.1.

We define each object variable as a pair xx, aggy P N “ Σ˚ ˆ t0, 1u, where x is the
variable name and agg denotes whether the vertex should be aggregated (1) or not (0).
In our pseudocode, each matching Li is represented as the tuple xep, in, out, join, hooky,
where ep P N specifies the pattern entry-point and each ingoing (or outgoing) edge is
represented by a pair xu, l, lx, all, opt, vy, where u P N remarks the variable associated with
the container (or contained) object alongside the containment relationship through ϕ and tϕ,
l P ℘pΣ˚q provides a potentially empty-set of containment relationships, lx is an optional
containment variable, allP t0, 1u determines whether the edges should be considered in
the aggregation or not, and optP t0, 1u determines whether the match should be considered
as optional or not. The join edges extend such records as xu, l, lx, all, opty by specifying
both the containment (v P N ) and container (u P N ) variable explicitly, and hookP ℘pΣ˚q

determines whether the aggregated entry-points over the single incoming container should
be subdivided in equivalence classes according to the containment labels in hook, and we
perform no clustering otherwise.

6.3.2. Procedural Semantics for Matching and Caching Containments

We now narrate the operations required to match each containment occurring across
patterns while representing those as relational tables expressing either required (reqi),
optional (opti), or hook-driven equivalence relationships (hooki) per pattern pi.

First, we define the semantics associated with the matching of each object ego-net
as described in TOTABLE from Algorithm 6 (Line 15): either containment (src)- -[lx :
L]->(dst) or (dst)<-[lx : L]- -(src) are represented as records with fixed schema (Line 9)
where each record refers to a single containment ι (edge) in ϕpsrc, ℓq for a container src,
where xdst, wy “ tϕpιq and dst refers to the contained object; in this, we also retain the
containing db as dbid and the containment ℓ P L (edgeLabel). At this stage, all containments
are associated with the same schema and are not specialised to abide by a specific schema
induced by a matching specification. This allows us to easily cache PhiTableκ containments
(Line 30).

Next, we discuss how we specialise the results from the cache according to the schema
induced by the variables occurring in each matching Li. This is carried out by renaming
generic containing/containment/contained object labels (src/edge/dst) with the variable
names in Li associated with them; if the patterns also contain references to the edge variable
(lx), we also retain each ID in ϕxpu, Lq as lx, and lx’s label (Line 17) and we discard such
information otherwise (Line 16). If the edge expresses an aggregation from the container
to the content (e.g., (src)–[@L]–(" dst)), we nest lx (if available) and dst from the table
obtained at the previous step (Line 18). This makes the major difference with existing graph
query languages, as we consider containment identifiers as a separate class from object
ones (thus differently from SPARQL) and we also produce nested morphisms according to
the query annotations.

Last, we collect the tables while differentiating where those are associated with a
required or optional pattern (Lines 35, 39, and 43), acting as the basic building step for
defining nested morphisms as in the subsequent section.

6.3.3. Algorithmic Choices for Optimisation

After discussing the procedural semantics of the matching of containments occur-
ring across all Li-s, we describe the algorithmic choices for optimisation purposes. First,
to minimize the access to a relational database, we ensure that each PhiTableκ is accessed at
most once across all the edges by collecting all the labels of interest across table-matched
containments in queryCache (Line 5). If some containments have no containment attribute
specified, we remember the existence of such containment (Line 3) for which we will
then require considering all the PhiTableκ records, as a containment for which no label is
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specified forces to consider all the containments (Line 29). Only after this, we access the
physical model to transform each PhiTableκ per κ P queryCache to a containment table to
be then composed into the final nested morphism table, thus ensuring minimal memory
access (Line 30).

6.4. Morphism Instantiation and Indexing

Algorithm 7 combines each table produced from the previous phase to generate the
morphisms describing the result of matching Li through the generation of morphisms being
recorded within an MTrLi, gis table for each GSM database gi. Similarly to SPARQL’s triple
navigation semantics, we generate the morphisms Pi for all GSM databases by natural
joining all the tables associated with the mandatory containments (Line 10), while left-
joining Pi (the resulting table from the natural join of the required containments) against
the optional patterns set and updating Pi with such a result (Line 13).

Algorithm 7 Morphism instantiation and indexing

1: procedure INSTANTIATEMORPHISMS(gg, G “ tg1, . . . , gnu) Ź global MT
2: for all pi “ Li ÑΘ Ri P gg do
3: global reqi, opti, hooki Ź Algorithm 6
4: e :“ L.entrypoint
5: if|reqi| “ 0 then continue
6: sort each t in reqi by |t| in ascending order
7: Pi :“ reqip0q
8: for j “ 1 to |reqi| ´ 1 do
9: if |Pi| “ 0 then break

10: Pi :“ NESTEDNATURALEQUIJOINfalsepPi, reqipjqq
11: end for
12: if |Pi| “ 0 then continue
13: Pi :“ ΛpNESTEDNATURALEQUIJOINtrue, Pi, optiq

14: if L.entrypoint = p"zq and Dx, obj. <-[@ x : . . .]- -obj P cont then
15: e :“ obj
16: Pi :“ νSpPiqztdbid,x,x_labeluÑ‹pPiq

17: hook:“TRANS(SYMM(REFL(hooki)))
18: ℜ :“ tℜi|gi P GF^ tℜi .s ô pi, tpzq, spzqq P hookuu
19: for all Γ P Pi and γi P Γp‹q{ℜΓpdbidq do
20: MTrLi, Γpgraphqs.add(Γ|tgraph,x,x_labelu ‘ rp‹, γiqs)
21: end for
22: else
23: for all Γ P Pi do MTrLi, Γpgraphqs.addpΓq
24: end if
25: for all gj P G do
26: sort each Γ in MTrLi, gjs by OrtopopΓpeqqq in ascending order
27: end for
28: end for
29: end procedure

We further nest the morphism if and only if the entry-point is aggregated via a single
containment object obj (Line 14), for which we then nest in a fresh attribute ‹ all the
attributes except the database where obj is contained, obj itself, and optionally the edge
labels for the containment if the pattern exhibits its variable (Line 16).

Hooks derive an equivalence relationship ℜi per GSM database gi having a ‹-nested
morphism through which to optionally split the morphisms. We retain only the container
and containment relationship and their containing database ID (Line 32 from Algorithm 6),
for then obtaining a suitable equivalence relationship ℜi by computing the reflextive,
symmetric, and transitive closure of that relationship (Line 17). Then, we potentially split
the table nested in ‹ according to the equivalence classes associated with each equivalence
relationship ℜi obtained from hooks (Line 19) and update the morphism table accordingly.
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Concerning the composition of cached tables, to reduce the equi-join time we first
sort the tables by increasing size (Line 6) for then stopping the joins as soon as we find or
compute an empty morphism, thus entailing that no collection of objects across all dbs can
match Li (Lines 5 and 9). As a last optimisation, we populate MT collecting the morphisms
by database ID and rule ID (Lines 20 and 23). Last, we sort each morphism in MTrLi, gjs by
entry-point (Line 4) reverse topological order (Line 26) or, if these were nested in ‹, by their
container object (Line 15). This induces a primary block indexing mapping each elected
vertex e to a set of morphisms containing it.

6.5. Graph Rewriting Operations (op from Ri)

Finally, we apply the transformation operations required by the rewriting side of
the rule for each instantiated morphism in MT across all GSM databases. This works by
keeping track of the desired changes within a GSM view per loaded GSM database.

We now discuss Algorithm 8. For updating GSM views, we apply the rewriting query
for each database gj as described by the rewriting patterns Ri in gg (Line 2): we visit
per GSM database its objects according to the reverse topological order from Ortopopgiq

(Line 4) while retaining the objects v appearing in the aforementioned primary block index
of a non-empty morphism table MrLi, gjs for each production rule pi “ Li ÑΘ Ri P gg
(Line 5): we skip the morphisms Γ associated with v if either a previously matched vertex
was deleted and not replaced with a new one (Line 6), or if the current morphism Γ does
not satisfy a possible WHERE condition Θ associated with LΘ (Line 8). For the remaining
morphisms, we run the operations listed in Ri in order of appearance (Line 9).

Algorithm 8 Rewriting phase

1: function GENERATEGRAPHVIEWS(gg, G “ g1, . . . , gn)
2: for all gi P G do
3: ∆pgiq :“new GraphView(|Vpgiq|)
4: for all v P Ortopopgiq s.t. v R O´

i do Ź Section 4.1
5: for all pi “ Li ÑΘ Ri P gg s.t. MTrL, gis ‰ H do
6: for all Γ P MTrL, gis s.t. @col.␣OptionalLpcolq ñ Γpcolq R O´

i do
7: ∆pgiq :“ START∆pgiq

pΓq Ź Equation (9)

8: if Θ ‰ true and
ˇ

ˇ

ˇ
rrΘss1,MT

Γ,gi

ˇ

ˇ

ˇ
“ 0 then continue Ź Figure A2

9: “”, T, p, ∆pgiq, MT :“ νpR, T, p, ∆pgiq, MTq Ź Figure 8
10: end for
11: end for
12: end for
13: yield ∆pgiq

14: end for
15: end function

We now discuss the definition of ν through SOS semantics enclosed within the eval-
uation of Line 9 in detail. Figure 8 describes the interpretation of all rewriting rules Rj
updating the GSM view ∆pgiq, where the first three updates and exploit the functions
from Section 4.3. All the y-s are interpreted as evaluated expressions without intermediate
assignments. Rule NEWOBJECT creates a new object and refers it to the variable j. Rule
DELOBJECT deletes a pre-existing or a newly-created object, and Rule DELOBJECT deletes a
single container-containment relationship that was defined at loading time. We can easily
distinguish between variables referring to objects or containments by the simple type asso-
ciated with the attribute. For now, we do not allow the explicit removal of containments at
run-time unless the containment is explicitly specified via containment update.

We discuss the set update for the vertices’ label values; we distinguish the following
cases: if both the number of variable and values are in the same number, we assign for each
i-th variable the u-th occurring resolved value (LABELZIP); otherwise, we assign to each
object associated with the resolved variable the collapsed string values (LABELVALFLAT).
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We can obtain similar rules for ξ which are omitted here for conciseness, but that can be
retrieved in the appendix (Figure A4).

x“r”, Γ, p, NEWOBJjp∆pgqq, MTy Ñν R

x“new j; r”, Γ, p, ∆pgq, MTy Ñν R
NEWOBJECT

TIDXΓpjq “ ni x“r”, Γ, p, FpDELOBJ, ∆pgq, IDXΓpjqq, MTy Ñν R

x“del j; r”, Γ, p, ∆pgq, MTy Ñν R
DELOBJECT

TIDXΓpjq “ ci x“r”, Γ, p, FpDELCONT, ∆pgq, IDXΓpjqq, MTy Ñν R

x“del j; r”, Γ, p, ∆pgq, MTy Ñν R DELCONT

xx, ∆pgq, truey Ñϱ xVar, ∆pg1q, Iy
@

y, ∆pg1q, false, Γ, MT
D

ÑE xVal, Jy
|Var| “ |Val| idx P N

x“r”, Γ, p, Fppx, xi, uyq ÞÑ UPDATEℓxpxi, idxy , uq, ∆pg1q, ζpVar, Valqq, MTy Ñν R
x“set ℓ idx @ x as y; r”, Γ, p, ∆pgq, MTy Ñν R LABELZIP

xx, ∆pgq, truey Ñϱ xVar, ∆pg1q, Iy
@

y, ∆pg1q, false, Γ, MT
D

ÑE xVal, Jy
|Val| ‰ |Var| idx P N

x“r”, Γ, p, Fppx, iq ÞÑ UPDATEℓxpxi, idxy , λpValqqq, ∆pg1q, Varq, MTy Ñν R
x“set ℓ idx @ x as y; r”, Γ, p, ∆pgq, MTy Ñν R LABELVALFLAT

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IN “ IL

x“r”, Γ, p, Fppx, xa, b, cyq ÞÑ UPDATEπ
x pxa, by , cq, ∆pgq, ζpVar, Name, Valqq, MTy Ñν R

x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PI3ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IL
x“r”, Γ, p, Fppx, xb, a, cyq ÞÑ UPDATEπ

x pxa, by , cq, ∆pgq, Nameˆ ζpVar, Valqq, MTy Ñν R
x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PI2ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IN “ ´1_ IR “ IN ^ IL “ ´1
x“r”, Γ, p, Fppx, xa, byq ÞÑ UPDATEπ

x pxa, by , λpValqq, ∆pgq, ζpName, Varqq, MTy Ñν R
x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PI2’ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ^ IR “ ´1
x“r”, Γ, p, Fppx, xb, cyq ÞÑ UPDATEπ

x pxVarp0q, by , cq, ∆pgq, ζpName, Valqq, MTy Ñν R
x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PI2”ZIP

Figure 8. Cont.
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xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ^ IR “ ´1
x“r”, Γ, p, UPDATEπ

∆pgq
pxVarp0q, λpNameqy , λpValqq, MTy Ñν R

x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PIALLFLAT

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ‰ ´1^ IR “ ´1
x“r”, Γ, p, Fppx, yq ÞÑ UPDATEπ

x pxVarp0q, yy , λpValqq, ∆pgq, Nameq, MTy Ñν R
x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PIVAREXT

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IN “ ´1_ IV “ ´1
x“r”, Γ, p, Fppx, pa, bqq ÞÑ UPDATEπ

x pxa, by , λpValqq, ∆pgq, Idˆ Nameq, MTy Ñν R
x“set π t @ z as y; r”, Γ, p, ∆pgq, MTy Ñν R PIEXTOTH

p “ xxp’, aggy , in, out, join, hooky
x”pp’q”, Γ, p, ∆pgq, MTy Ñν x“”, Γ, p, ∆pgq, MTy NOREWR

p “ xxq, falsey , in, out, join, hooky q ‰ p’
xp’, ∆pgq, falsey Ñϱ xRepl, ∆pgq, Iy xq, ∆pgq, falsey Ñϱ xOrig, ∆pgq, Jy

∆1 :“ Fppx, py, zqq ÞÑ REPLOBJxpy, zq, ∆pgq, Origˆ Replq

x”pp’q”, Γ, p, ∆pgq, MTy Ñν x“”, Γ, p, ∆1, MTy
NOAGGREWR

p “ xxq, falsey , xxxcont, falsey , l, lx, all, opt, vyy , out, join, hooky q ‰ p’
xp’, ∆pgq, falsey Ñϱ xRepl, ∆pgq, Iy xq, ∆pgq, falsey Ñϱ xOrig, ∆pgq, Jy
xcont, ∆pgq, falsey Ñϱ xCont, ∆pgq, Ky

C :“ tκ P Σ˚|Do P K.Dι PÓρ
ϕ

∆pgq
poq. Óρ

tϕ

∆pgq
pιq X Orig ‰ Hu

∆1 :“ Fppx, py, zqq ÞÑ REPLOBJxpy, zq, ∆pgq, Origˆ Replq

∆2 :“ Fppx, py, z, tqq ÞÑ UPDATE
ϕ
xpxy, zy , Replq, ∆1, Contˆ Cq

x”pp’q”, Γ, p, ∆pgq, MTy Ñν x“”, Γ, p, ∆2, MTy
AGGREWR

Figure 8. Graph Rewriting SOS for view update.

We treat the property π and the containment ϕ updates differently, as they deal with
the resolution of three variables. We are also interested in whether different resolved
variables belong to the same nested table within the morphism or not, with the rationale
being that we can freely associate each value within the same nesting row-by-row (P2ZIP,
P2’ZIP, and P2”ZIP), while we need to compute the cross-product between the assignments
if the value belongs to distinct nestings (Clearly in P3ZIP). This is determined via the
second parameter of expression evaluationÑE (Appendix A.3) by transferring the attribute
information originated by the variable resolutionÑρ (Appendix A.1). In all the remaining
occasions, we arbitrarily decide to flatten the associated expressions. Please observe that,
if the querying user wants more control over the precise value to be associated, they can
always refer to SCRIPT expressions, thus breaking the declarative assumptions for a more
controlled output.

Even in this case, we can formulate the rules for setting the ϕ-s similarly to our previous
discussion for the π-s. Therefore, we defer to Figure A5 provided in the Appendix A.4.

We conclude by analysing the semantics associated with the replacement via Ri’s
return statement, the last and mandatory operation for declared rewriting operations.
We apply no rewriting if the returned variable is the variable entry-point (NOREWR).
Otherwise, if the entry-point variable is not aggregated, we resolve the replacement and
entry-point (Repl and Orig, respectively) and we replace any object in Orig associated with
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the entry-point variable p1 with an object in Repl associated with the replacing variable p1

(NOAGGRREWR). Otherwise (AGGRREWR), the rewriting occurs by replacing the objects
in Orig, associated with the entry-point’s container and the objects in Repl, associated
with the returned variable p’. Furthermore, given C the containment labels for which the
entry-point is contained by its aggregating object in cont, we also update the containing
for the cont objects to also contain via C the replacing objects in Repl. As this provides the
final update, we then consider this last resulting GSM view of the resulting view for our
rewriting step.

As no SOS rule matches the empty string, no further operation is conducted, and the
rewriting program terminates after considering the final rewriting statement.

7. Language Properties

Given the previous language description, we want to characterise its properties by
juxtaposing them with Cypher’s. Full proofs are provided in Appendix B.3. We start by
showing that, unlike current graph query languages, we propose a rewriting language
framed as generalised graph grammars: we relate our proposed language to the graph gram-
mars as, similarly to these, the absence of a matched pattern leads to no view updates. Still,
we claim that such language provides a generalisation of the former by supporting explicit
data-aware update operations over the objects and containments, while also defining ex-
plicit semantics determining the order of the application of such rules, both across rules
and within each GSM database.

Lemma 6. If either we query all the GSM databases with no rules, or all the rules have no rewritings,
or none of the matches returned a morphism, or none of the ones being matched pass the associated
Θ condition, then we return the same GSM databases as the ones being originally loaded.

Next, we ensure that the rules are applied in reverse topological order, thus minimis-
ing the restructuring cost of the GSM database while achieving declarativeness for rule
application, as the user does not specify this within the query formulation, as no matched
pattern leads to no view updates.

Property 1. The rules are applied in (reversed) topological order while visiting each GSM.

On the other hand, we can show that Cypher forces the user to specify in which
order the updates shall be applied, thus breaking the declarative assumption for a good
query language.

Lemma 7. The application of the rewriting in Cypher in lexicographical order requires explicitly
determining the order of the morphisms’ application and the order of the graph’s visit.

Next, we state the usefulness of an explicit return statement within the interpreta-
tion of a rule as it allows us to propagate the updates on the subsequently evaluated
morphisms.

Lemma 8. If an entry-point match is deleted and a new object is re-created inheriting all of its
properties, this new object will not be connected to the entry point’s containers unless the newly-
returned object was applied.

To a minor extent, we also show a greater amount of declarativeness if compared
to current graph query languages by automatically generating a new object if an update
operation occurs with reference to an optionally matched variable that was not matched to
an existing object.
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Lemma 9. The setting of properties to variables not associated with a newly-created object variable
and not associated with an actual GSM object due to an optional match reduces to the creation of a
new object associated with the variable, which then always receives this and any following update
associated with the same variable.

At this point, it could be argued that, although our proposed rewriting language
performs queries that cannot be expressed in other graph query languages, this does
not return the matched subgraphs as in such other languages, similar to Cypher’s return
statement due to the considerations from Lemma 6. The following Lemma shows otherwise.
Thanks to this, this language is considered more expressive than Cypher.

Lemma 10. The proposed graph grammar query language can express traversal queries retaining
only the objects and containments being matched and traversed.

Corollary 1. The proposed graph query language is more expressive than current graph query
languages.

8. Time Complexity

We now study the computational complexity associated with the algorithms discussed
in the previous section and infer this from the implementation details discussed while
reasoning on the SOS discussion. Proofs are postponed to Appendix B.4. Please observe
that, as previously noted from previous graph query language literature (Section 3.1.2),
the following results do not intend to prove P vs NP, as we are deliberately expressing
a sub-problem of the more generic subgraph isomorphism problem that can be easily
captured through algebraic operations.

Lemma 11. The time complexity of sorting the rules within the query is quadratic over the number
of query rules.

Lemma 12. The intermediate edge result caching time complexity has a polynomial cost being
linear in both the loaded databases and the number of available objects.

Corollary 2. The cost for generating the nested morphisms is polynomial with the size of the entire
data loaded within the physical model.

Lemma 13. The rewriting cost is polynomial and linear with the number of rewriting operations
and the number of the morphisms.

Corollary 3. The time complexity of the whole Generalised Graph Grammars is polynomial with
the size of the loaded physical model.

9. Empirical Evaluation

For our empirical evaluation, we study the use case of graph grammar in the con-
text of rewriting graphs representing the grammatical structure of a natural-language
sentence. Universal dependencies [53] capture these syntactical features across languages
by exploiting a shared annotation scheme. In this context, the usual approach to graph
rewriting boils down to rewriting a PROLOG-like logical program by applying declara-
tive rewriting rules (https://github.com/opencog/relex accessed on 22 April 2024) via
a unification algorithm [54], where compound terms are equivalently expressing binary
relationship and properties associated with specific vertices. Given the general inter-
est for such an approach within the domain of Natural Language Processing (NLP),
the present paper is going to specifically focus on use case scenarios within such domain.
This will also give us the opportunity to re-use freely available datasets for sentences for our
experiments (https://osf.io/btjqw/?view_only=f31eda86e7b04ac886734a26cd2ce43d and
https://osf.io/rpu37/, accessed on 21 April 2024), which can be then deemed as repeatable.

https://github.com/opencog/relex
https://osf.io/btjqw/?view_only=f31eda86e7b04ac886734a26cd2ce43d
https://osf.io/rpu37/
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Notwithstanding the previous approaches, we want to achieve a more data-driven ap-
proach to sentence rewriting, where atoms can also be associated with properties and labels,
thus motivating the definition of the proposed query language. Furthermore, the extension
of the graph grammar language with a script can be used to compose data and define
boolean conditions allowing us to break the declarativeness assumption only when the user
wants more control over how data are processed. Thus, we postulate that our proposed
query language extends the current literature in several aspects way beyond graph database
literature while postulating the possibility of applying concurrently multiple rewriting rules
over disparate sentences via a sole declarative query. The proposed approach shares some
similarities with programming language research where, after representing a program in
terms of its operational semantics, we can apply graph rewriting rules over abstract semantic
graphs [55], which are usually represented as trees, for which similar considerations like the
former can be applied.

We test the implementation of our physical model and associated query language as
implemented in our novel object-oriented database, named DatagramDB, which source code
associated with the current paper is freely available online (https://github.com/datagram-
db/datagram-db/releases/tag/v2.0, accessed on the 22 April 2024). We conducted all
our benchmarks on a Dell Precision mobile workstation 5760 running Ubuntu 22.04 LTS.
The specifications of the machine include an Intel® Xeon(R) W-11955M CPU @ 2.60 GHz
x16, 64 GB DDR4 3200 MHz RAM.

9.1. Comparing Cypher and Neo4j with Our Proposed Implementation

Given the problems being evidenced by the Cypher query language from Lemma 7,
we cannot automate the benchmarking of Cypher for all the possible sentences coming
from an online available dataset. By recalling the results of this lemma, we observe that,
when the query is not able to capture a pattern albeit optionally, this will have a cascade
effect on the entire query for which none of the following rewriting operations will be
applied. Given this, the same query might not necessarily provide the same output across
different sentences having a different sentence structure. Thus, we cannot use one single
query for dealing with unpredictable sentence structure that, in the worst-case scenario,
would require us to write one single query per input sentence. We then preferred to limit
our comparison to two sentences, for which we designed the minimal Cypher query exactly
capturing the syntactical features expressed by these sentences while using the same query
for DatagramDB across all the sentences.

We considered two distinct dependency graphs: “Alice and Bob play cricket”, the one
in Figure 3a, and the one resulting from the dependency parsing of the “Matt and Tray. . . ”
sentence from Figure 6a. We loaded them in both Neo4j v5.20 and our proposed GSM
database. In Cypher, we then run the query as formulated in the previous section, while we
construct a fully declarative query in our proposed graph query language syntax directly
representing an extension of the patterns in Figure 2. From now on, when referring to
Neo4j, we will always refer to version 5.20.

Examining Table 1, we can see our solution consistently outperforms the Neo4j solu-
tion by two orders of magnitude. Furthermore, the data materialisation phase does not
significantly impact the overall running time, as its running times are always negligible
compared to the other ones. Additionally, Neo4j does not consider a materialisation phase,
as the graph resulting from the graph rewriting pattern is immediately returned and stored
as a distinct connected component of the previously loaded graph. This then clearly re-
marks the benefit of the proposed approach for rewriting complex sentences into a more
compact machine representation of the dependency graphs.

https://github.com/datagram-db/datagram-db/releases/tag/v2.0
https://github.com/datagram-db/datagram-db/releases/tag/v2.0
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Table 1. Table displaying results from rewriting the aforementioned sentences.

Data Model Loading/Indexing
(avg. ms)

Querying
(avg. ms)

Materialisation
(avg. ms) Total (ms)

Neo4j
"

Simple 1.83 ˆ 100 7.03 ˆ 100 N/A 8.86 ˆ 100

Complex 9.32 ˆ 100 1.93 ˆ 102 N/A 2.02 ˆ 102

GSM
"

Simple 9.63 ˆ 10´2 4.82 ˆ 10´1 2.40 ˆ 10´2 6.02 ˆ 10´1

Complex 6.91 ˆ 10´1 9.00 ˆ 10´1 6.67 ˆ 10´1 2.26 ˆ 100

9.2. Scalability for the Proposed Implementation

For testing the scalability of our implemented system, we used a corpora of sentences
used for natural-language common-sense question answering [56] which we rewrote into
dependency graphs using Stanford NLP [57]. As its output is failing systematically at
correctly recognising verbs in passive form when at the present time and at recognising
negations due to its training-based nature [58], we provide a piece of software amending its
output so that all the syntactic and the semantic information retained within the sentence
could pertain in a graph structure. This server also transforms the internal Stanford
NLP dependency graph into a collection of GSM databases serialised in textual format.
The resulting server is available online (https://github.com/datagram-db/stanfordnlp_
dg_server accessed on 19 April 2024).

Given the resulting GSM representation of the two sentences, we provide two distinct
scalability tests: in the first one, we sample the dataset into sentences to determine the
algorithm’s scalability in terms of both the number of GSM databases and the number of
vertices, while in the second we will only consider scalability regarding the sole number of
GSM databases while maintaining the sample distribution of the sentence’s lengths, thus
reflecting the number of GSM objects within the database.

Concerning the first scenario, we choose the sentences containing |Oi| P t5, 10, 15, 18u
words, and for each of them we choose 300 sentences each, thus obtaining sample sets
S|Oi|

300 . Then, we further sample S|Oi|
4 into three distinct subsets S|Oi|

i having cardinality of

S|Oi|
i “ 75 ¨ i for which S|Oi|

i Ă S|Oi|
i`1 for n ą 0 and 1 ď i ă i` n ď 4. This will be useful to

then plot the rewriting running times using for the x-axis either the number of sentences
(or GSM databases) or the sequence length, to better analyze the overall time complexity.
The results for these experiments are reported in Figure 9.

(a) (b)

Figure 9. Analysing DatagramDB. (a) Results grouped by number of words per sentence.
(b) Results grouped by number of databases.

From these plots, we can clearly remark that querying and materialisation times are
clearly linear over the size of objects being loaded or GSM databases being matched and
rewritten, thus remarking the efficiency for the overall envisioned approach: please observe
that we cannot achieve a better time complexity that a linear scan without additional

https://github.com/datagram-db/stanfordnlp_dg_server
https://github.com/datagram-db/stanfordnlp_dg_server
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heuristics, as we still have to perform the visit over each GSM database by also performing
a linear scan of the database objects in reverse topological (layered) order. We can also
motivate these results by having graphs in which the branching factor is relatively small
compared to the overall number of available vertices, thus β ! |Oi| for each GSM database
gi. We also observe that, for these smaller datasets, the resulting materialisation time is
almost negligible compared to the query time, which, across the board, dominates the
loading and indexing time.

By comparing such running times with the ones from Neo4j, we can easily observe
that, while we were able to process 300 GSM databases in 100 milliseconds, Neo4j could
rewrite just one single graph in double time. Given this, our approach has a throughput
of almost 600 times over Neo4j. This further remarks the impracticality of using the
competing solution for analysing more sentences in the future, e.g., while considering
sentences crawled from the web.

While it might initially seem that all phases (loading, querying, and materialisation)
exhibit linear time complexity, we will try to consider a larger set of data to better outline
the time complexity associated with our implementation.

Concerning the second scenario, we decided to sample the internet dataset in a subset
of sentences S1, . . . , S4, S where |Si| “ 10i. S represents the entire dataset while ensuring
that each dataset of a lesser size is always contained in the larger dataset. Furthermore,
we ensure that the number of words, and therefore, of objects on each sampled database
reflects a similar frequency distribution of the number of objects per resulting GSM database
(Figure 10). By doing so, for our final scalability tests in which we consider more data,
we make up for the lack of long sentences with the number of sentences reflected in the
number of the GSM databases to be processed.

Figure 10. Sampled probability density function associated with the number of words
within the sentences for each subset of traces.

Figure 11 provides the benchmarks for these experiments: a non-linear but polynomial
loading time might be possibly related to the data parsing time and the time to store such
data in primary memory, while the remaining running times keep a linear time complexity
concerning the increase in the number of the GSM databases to be rewritten, similarly to
the previous experiments. Querying time always dominates in indexing time by at least
one order of magnitude, thus showing that most of the significant computations occur
while matching and rewriting. Materialisation times are on the same order of magnitude
as indexing time, thus also showing that this cost does not exceed the actual querying
phase. Overall, the efficiency of our system is also reflected by a linear querying time for
the datasets being considered.
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Figure 11. Running time of each algorithm with different sentence samples.

10. Conclusions and Future Works

This paper offers the definition of a matching and rewriting mechanism similar to
the one provided by graph grammar implemented over object-oriented databases. As our
definition supports both data matches and complex data update operations over the objects
of interest, whose features were not considered in previous graph grammar formulations,
we name our proposed language Generalised Graph Grammars. Our theoretical results
prove the impossibility of expressing the same query with the same degree of generality of
Cypher, which requires specifying a different query for any potential graph to be queried,
thus posing a major limitation to automating rewriting operations over graphs. Empirical
results prove that our query language offers an implementation faster than the ad-hoc
query formalised in Cypher and run over Neo4j v5.20, in terms of both running time
and throughput expressed in the number of queries runnable per comparable amount of
time. These results aim to observe the inadequacy of graph-centric implementations of data
representations since a large amount of literature now agrees in stating that more traditional
and relational representations often offer better performances with respect to queries both
natively supported by graph languages [59] and in representing new operations on graphs
that require their rewriting [6,7].

At this stage, we considered nested morphisms of at most depth of 1, thus requiring
that each cell of a morphism table should contain at most one non-nested table. Future
works will investigate whether there might be any benefit for further generalising this
nesting to arbitrary depth, thus requiring further extending the definition of the Nested
Natural Equi-Join operator to arbitrary depths.

Notwithstanding the possibility of the current model expressing uncertainty within
the data, the rewriting operations always assume to deal with perfect information, thus
generating objects or containments containing no uncertainty. Future works will address
this gap by further extending the SOS semantics of these rewriting steps while consid-
ering provenance information [44], thus relieving the user from explicitly defining the
uncertainty of the generated data by adding further declarativeness to the query language
here proposed.

Although Lemma 10 showed that the proposed graph query language is also able
to remove the unmatched objects and contents, our current algorithm is not tailored for
effectively matching this case, as the removing pattern will be forced to return all the objects
and containments for then removing them. Future works will extend this by optimising
testing conditions for our general language while matching the objects and containments.
As a direct consequence of this, our returned morphisms are not pruned after testing the Θ
condition, which is just evaluated in the rewriting phase due to the fact that any updates
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to the GSM views will also alter the outcome of Θ. Future works will use static analysis
approaches to determine when Θ can be effectively used for pruning morphisms before
being returned in the matching phase, and condition rewriting strategies to push condition
evaluations towards the generation of the morphism as discussed in Sections 6.3 and 6.4.

Although the current language supports the update of objects and containments
within GSM objects, the provided query semantics do not consider the possibility that such
updates can be still matched by the query, thus triggering additional rewriting operations.
Future works will also consider further generalising the database matching and rewriting
approach by considering the fix-point over the loaded database until convergence is met,
thus meeting the former desiderata. We will also consider extending our containments
with property-values associations similarly to the property graph model, and considering
updating the objects’ and containments’ costs while performing the rewriting operations.

Last, preliminary experiments [34] conducted on a physical model being the direct
mapping of the logical model in memory provide promising results showcasing the pos-
sibility of expressing not only JSON files but also representing indexing data structures
in GSM that eventually lead to scalable query processing for JSON data. Future works
will also compare the efficiency of DatagramDB if compared to other databases supporting
object-oriented representations such as MongoDB or MySQL [60].
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Appendix A. Full Definitions

Appendix A.1. Variable Resolution

Before discussing value or boolean expression evaluation, we need to consider their
base case first, which is the evaluation of variables occurring in such expressions. We,
therefore, discuss these first before introducing the other steps. We consider variables
referring to both objects and containments while supporting the update operations only for
the latter. We, therefore, resolve the variables while returning the IDs for either matched
objects or containments.

We, furthermore, want to achieve declarativeness while considering variables: if
associated with NULL values as a result of a missed optimal match, we want to return empty
values, while if we set values to them, we want to create implicitly new vertices. We need
to then provide a new parameter to explicitly consider the creation of new objects when
the expression context allows us to do so over unreferenced and unmatched variables.
Furthermore, the single variable might be associated with multiple objects if referring to a

https://osf.io/btjqw/?view_only=f31eda86e7b04ac886734a26cd2ce43d
https://osf.io/btjqw/?view_only=f31eda86e7b04ac886734a26cd2ce43d
https://osf.io/rpu37/
https://github.com/datagram-db/datagram-db/releases/tag/v2.0
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morphism attribute within a nested relationship. Since the resolution of variables within
our language may require to access previously replaced or substituted values such as from
∆pgq, we also have to refer to ∆pgq and g to carry out the variable resolution.

Since these operations can also involve updating the environment, we express these
operations via SOS rather than using algebraic notation. Figure A1 shows the SOS for the
sole variable resolution, returning a tuple containing (in order of appearance) the resolved
variables, the possibly updated view due to object insertion, and the potentially nested
attribute containing a nested table expressing the variable as an attribute.

If the variable belongs to the morphism’s schema and is associated with a non NULL
value within the morphism while being associated with a basic type, we return the value
stored in it (EXRES). If the variable refers to a nested attribute, we resolve the variable
(IDXΓpxq, Equation (11)) and return all the associated values via Ó ρ

f
∆pgq

(Definition 6,
EXRESNEST). If the variable was declared within the rewriting pattern alongside the cre-
ation of a new object, we return the ID associated with the newly created object (NEWRES).
If the variable is neither newly declared nor in the morphism’s schema, we return no result,
as there os no binding and the query language is not expected to return a value (NORES).
Last, if we require the object to be created (new=true) as we set values associated with an
object and the morphism did not return an object ID associated with x due to an optional
match, we then create a new object in the GSM view õ associated with a fresh value, while
returning the updated view (FORCERES). This behaviour is completely disabled and no
view is updated if the original expression does not force the creation of a new object due to
an expression evaluation (NOFRES). In all the other circumstances, we resolve no reference
IDs (NOFCRES).

x P dompΓq SpΓqpxq P B
xx, ∆pgq, newy Ñϱ xÓρ∆pgqpΓpxqq, ∆pgq,´1y EXRES

x P dompΓq SpΓqpxq R B
xx, ∆pgq, newy Ñϱ

A

µ
´

Óρ∆pgq, IDXΓpxq
¯

, ∆pgq, IDNESTSpΓqpxq
E EXRESNEST

x P dompΓνq

xx, ∆pgq, newy Ñϱ xΓνpxq, ∆pgq,´1y NEWRES
x R dompΓνq x R dompSpΓqq
xx, ∆pgq, newy Ñϱ xH, ∆pgqy ,´1 NORES

x R dompΓq x P SpΓq SpΓqpxq “ ni g1 :“ NEWOBJ∆pgqpxq õ :“ max g1.O

xx, ∆pgq, truey Ñϱ xõ, g1,´1y
FORCERES

x R dompΓq x P SpΓq SpΓqpxq P B
xx, ∆pgq, falsey Ñϱ xH, ∆pgq,´1y NOFRES

x R dompΓq x P SpΓq SpΓqpxq “ ci

xx, ∆pgq, truey Ñϱ xH, ∆pgq,´1y NOFCRES

Figure A1. Variable resolution with potential view updates (ϱ).

Appendix A.2. Predicate Evaluation (Θ)

We now discuss boolean predicate evaluation: given that the variables might refer to
nested attributes referring to multiple objects or containment, for which we are interested
in comparing the labels, values, or properties associated with them, we might be interested
in returning not only one single boolean value but one single boolean value per comparison
outcome. Given this, we need a notion of sets explicitly remarking that some elements
were not inserted. A maximum cardinality set is a pair of a set S and a natural number n
denoted as *S, n+ such that |S| ď n. This type of set can be used to efficiently represent how
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many elements satisfy a given condition if the number of elements is previously known.
So, if |S| ă n, we know that not all the n elements of interest satisfy a given condition. We
also constrain such sets to contain at most n items. We can easily override traditional set
operations over such sets as follows

*S, n +X * S1, m+ “ *SX S1, maxpn, mq+

*S, n +Y * S1, m+ “ *SY S1, maxpn, mq+

*S, n + z * S1, m+ “ *SzS1, maxpn, mq+

We say a maximum cardinality set *S, n+ is full if the cardinality of S is equal to n:
FULLp*S, n+q ô |S| “ n^ n ‰ 0. We say that such maximum cardinality set is empty if
S is empty: *S, n+ » H ô S “ H. The cardinality of the maximum cardinality set is the
cardinality of its constituent set: |*S, n+| “ |S|.

Figure A2 provides the definition providing the considered semantics. For this, we
require that two original variables refer to the same cardinality of values, or that at least
one of them is associated with one single value (TESTCOMP). For this, we can then return
a maximal cardinality set *S, M+ where S indicates the resulting tuple indices associated
with a true value, and M refers to the maximum size of the morphisms.

rrTEST scriptssMT
Γ,g,∆pgq

:“

#

*S, |S|+ evalpscriptqholds, S “
Ť

xPSEpΓq IdxΓpxq
*H, M+ oth.

(TestScript)

rrarg1ĺarg2ss
MT
Γ,g,∆pgq

:“ let t1 :“ ηparg1, ∆pgq, Γ, MTq and t2 :“ ηparg2, ∆pgq, Γ, MTq in
$

’

&

’

%

*ti P µpĺ, ξpt1, t2qq|i “ trueu, |t1|+ |t1| “ |t2|

*ti P µpx ÞÑ t1p0q ĺ x, t2q|i “ trueu, |t2|+ |t1| “ 1
*ti P µpx ÞÑ x ĺ t2p0q, t2q|i “ trueu, |t1|+ |t2| “ 1

(TestComp)

rrFILL ΘssMT
Γ,g,∆pgq

:“

#

*S, |S|+
ˇ

ˇ

ˇ
rrΘssMT

Γ,g,∆pgq

ˇ

ˇ

ˇ
ą 0, S “

Ť

xPSEpΓq IdxΓpxq

*H, M+ oth.
(TestFill)

rrXmatched L.YssMT
Γ,g,∆pgq

:“ IDXΓpXq X
ď

Γ1PMrL,gs

IDXΓ1pYq (TestMatch)

rrXunmatched L.YssMT
Γ,g,∆pgq

:“ IDXΓpXqz
ď

Γ1PMrL,gs

IDXΓ1pYq (TestUmatch)

rrΘ1^Θ2ss
MT
Γ,g,∆pgq

:“ rrΘ1ss
MT
Γ,g,∆pgq

X rrΘ2ss
MT
Γ,g,∆pgq

(TestConj)

rrΘ1_Θ2ss
MT
Γ,g,∆pgq

:“ rrΘ1ss
MT
Γ,g,∆pgq

Y rrΘ2ss
MT
Γ,g,∆pgq

(TestDisj)

Figure A2. Predicate Evaluation semantics rrΘssMT
Γ,g,∆pgq

.

Furthermore, we might also be interested in determining whether objects being
matched in the current morphism also appear (TESTMATCH) or not (TESTUMATCH) in an-
other morphism L associated with a variable y. Given that we are interested in the objects ac-
tually being matched and not in later changes provided by subsequent transformations, we
can simply refer to IDXΓpXq listing the reference IDs associated with an attribute X in Γ. This
can be easily represented as a maximum cardinality set *tx P IdxΓpXq|x ‰ NULLu, |IdxΓpXq|+
by stripping the NULL values, while returning the intersection (TESTMATCH) or the differ-
ence (TESTUMATCH) for those IDs.



Mathematics 2024, 12, 2677 45 of 62

As the tests in the second last paragraph will return no sets whose indices are released
to neither object nor containment ID while the former will return such indices, we need an
intermediate predicate where these two set-boolean results are computed, to return for the
former a full maximum cardinality set containing all the ID references from the morphism Γ
if the underlying expression will not return an empty maximum cardinality set (TESTFILL).

We associate a similar behaviour to the typecasting of a script evaluation to a boolean
value, for which we return an empty set if this is false and tall the occurring references
within the morphism otherwise (TESTSCRIPT).

Last, we interpret the conjunction and the disjunction of such multivalued boolean
semantics as the intersection (TESTCONJ) or the union (TESTDISJ) at the set of reference ID
satisfying the base case candidates.

Appendix A.3. Expression Evaluation (expr)

Last, we are interested in evaluating expressions exploiting the variables withheld by
each morphism. Please also observe that these expressions will have different operational
semantics if compared to the ones associated with assignments, as the former will only
retrieve values associated with the expressions, and the latter describe how to update
the view with the newly assigned value. For this, these expressions will only return the
final value associated with them. As the morphisms might be also nested, their final
representation will be a one-column table with an arbitrary attribute, for which time is one
of the basic types.

Figure A3 shows the SOS associated with the expression evaluation. From this, we
provide η as a shorthand for the above relationship:

ηpx, δ, Γ, NTq :“ T s.t. xx, δ, false, Γ, MTy ÑE xT, Iy

In other words, η computes the first projection of ÑE, being the evaluation of an
expression x.

xx, ∆pgq, falsey Ñϱ xT, ∆pgq, Iy
x“x”, ∆pgq, true, Γ, MTy ÑE xT, Iy VARE

x“x”, ∆pgq, false, Γ, MTy ÑE xx,´1y STRE

TIDEΓpxq “ ci x“x”, ∆pgq, true, Γ, MTy ÑE xV, Iy
x“label x”, ∆pgq, f, Γ, MTy ÑE xµpℓgi , Vq, Iy LABELE

TIDXΓpxq “ ni idx P N x“x”, ∆pgq, true, Γ, MTy ÑE xV, Iy

x“ξ idx@ x”, ∆pgq, f, Γ, MTy ÑE xµ
´

Ó ρ
ξ
∆pgiq

, V
¯

, Iy
XIE

TIDXΓpxq “ ni idx P N x“x”, ∆pgq, true, Γ, MTy ÑE xV, Iy

x“ℓ idx@ x”, ∆pgq, f, Γ, MTy ÑE xµ
´

Ó ρℓ∆pgiq
, V

¯

, Iy
ELLE

x“x”, ∆pgq, true, Γ, MTy ÑE xV, Iy x“str”, ∆pgq, false, Γ, MTy ÑE xP, Jy
|P| “ |V|

x“ϕ str, x”, ∆pgq, f, Γ, MTy ÑE

A

µ
´

Ó ρ
ϕ

∆pgiq
, ζpP, Vq

¯

, I
E CONTZIPE

Figure A3. Cont.
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x“x”, ∆pgq, true, Γ, MTy ÑE xV, Iy x“str”, ∆pgq, false, Γ, MTy ÑE xP, Jy
|P| “ 1 |P| ă |V|

x“ϕ str, x”, ∆pgq, f, Γ, MTy ÑE

A

µ
´

y ÞÑÓ ρ
ϕ

∆pgiq
py, Pp0qq, V

¯

, I
E CONTE

rrΘss1,MT
Γ,gi

“ *S, n + |S| “ n xy, ∆pgq, f, Γ, MTy ÑE xR, Iy

x“if Θ over x then y else z”, ∆pgq, true, Γ, MTy ÑE xR, Iy ALLTRUEE

DM.rrΘss1,MT
Γ,gi

“ *H, M + xz, ∆pgq, f, Γ, MTy ÑE xR, Iy

x“if Θ over x then y else z”, ∆pgq, true, Γ, MTy ÑE xR, Iy ALLFALSEE

rrΘss1,MT
Γ,gi

“ *T, n+ xx, ∆pgq, f, Γ, MTy ÑE xX, Iy
xy, ∆pgq, f, Γ, MTy ÑE xL, Jy xz, ∆pgq, f, Γ, MTy ÑE xR, Ky

x“if Θ over x then y else z”, ∆pgq, true, Γ, MTy ÑE
xµpi ÞÑ iftepXpiq P T, Lpiq, Rpiqq, ζpdompXq, L, Rqq, Iy

ZIPE

Figure A3. Expression evaluation (E) with no view update, where iftepx, y, zq is an expres-
sion returning y if x holds and z otherwise.

For the evaluation of the attribute associated with a containment ID (LABELE), we
directly apply λ to all the non-NULL matches, as containment IDs are never updated in this
version of the language. For extracting values (XIE) or labels (ELLE) associated with the
object x at the numerical index idx not associated with an evaluated expression, we resort
instead to the Property Resolution function also encompassing the changes in the GSM
view (Definition 6). The interpretation of ϕpx, strq considers both x and str as expressions,
where only the former is forced to be interpreted as a variable if is a string: if x and str are
associated with a tuple of values V and P of the same cardinality, we then return ϕpy, zq
for py, zq P ζpV, Pq (CONTZIPE), and if otherwise |P| “ 1 we return ϕpy, Pp0qq for y P V
(ContE).

Last, for conditional expressions, we first evaluate a condition Θ which, as per the
forthcoming discussion, will return a set of object or containment IDs for which the entire
expression holds. If such a set is full, we return the evaluation of the expression associated
with the “then” branch (ALLTRUEE), if it is empty, we return the evaluation of the ex-
pression associated with the “else” branch (ALLFALSEE), and otherwise, we first interpret
Θ over the IDs referenced by a variable x, and then return the i-th value from the left
expression if the MES associated with Θ contains the i-th object reference after x, and the
i-th value from the else branch otherwise.

If we need to evaluate the string as a variable as it appears as the leftmost argument
of a label, ξ, ℓ, or ϕ, then we use variable resolution ρ (Appendix A.1 on page 42) to
evaluate the values associated with the variable (VARE), and we consider this as a simple
string otherwise (STRE). Please observe that this invented value is then associated with an
unexisting nested morphism ´1.

Appendix A.4. Full SOS Rewriting Specifications

This section describes through Figures A4 and A5 the remaining set-update operations
that were not reported in Figure 8 for conciseness. These refer to ξ updates (Figure A4),
similar to the ones for ℓ, and ϕ (Figure A5), similar to the ones for π.
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xx, ∆pgq, truey Ñϱ xVar, ∆pg1qy
@

y, ∆pg1q, false, Γ, MT
D

Ñ Val
|Var| “ |Val| idx P N

x“r”, Fppx, xi, uyq ÞÑ UPDATE
ξ
xpxi, idxy , uq, ∆pg1q, ζpVar, Valqq, MTy Ñν R

x“set ξ idx@ x as y; r”, Γ, p, ∆pgq, MTy Ñν R XIZIP

xx, ∆pgq, truey Ñϱ xVar, ∆pg1qqqy
@

y, ∆pg1q, false, Γ, MT
D

Ñ Val
|Val| ‰ |Var| idx P N

x“r”, Fppx, iq ÞÑ UPDATE
ξ
xpxi, idxy , λpValqqq, ∆pg1q, Varq, MTy Ñν R

x“set ξ idx@ x as y; r”, Γ, p, ∆pgq, MTy Ñν R XIVALFLAT

Figure A4. Remaining setting functions for ξ-s being the extension of Figure 8.

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IN “ IL

x“r”, Γ, p, Fppx, xa, b, cyq ÞÑ UPDATE
ϕ
xpxa, by , cq, ∆pgq, ζpVar, Name, Valqq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHI3ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IL

x“r”, Γ, p, Fppx, xb, a, cyq ÞÑ UPDATE
ϕ
xpxa, by , cq, ∆pgq, Nameˆ ζpVar, Valqq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHI2ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IR “ IN “ ´1_ IR “ IN ^ IL “ ´1

x“r”, Γ, p, Fppx, xa, byq ÞÑ UPDATE
ϕ
xpxa, by , λpValqq, ∆pgq, ζpName, Varqq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHI2’ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ^ IR “ ´1

x“r”, Γ, p, Fppx, xb, cyq ÞÑ UPDATE
ϕ
xpxVarp0q, by , cq, ∆pgq, ζpName, Valqq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHI2”ZIP

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ^ IR “ ´1

x“r”, Γ, p, UPDATE
ϕ

∆pgq
pxVarp0q, λpNameqy , λpValqq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHIALLFLAT

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IL “ IN ‰ ´1^ IR “ ´1

x“r”, Γ, p, Fppx, yq ÞÑ UPDATE
ϕ
xpxVarp0q, yy , λpValqq, ∆pgq, Nameq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHIVAREXT

xz, ∆pgq, truey Ñϱ xVar, ∆pg1q, IRy xt, ∆pg1q, false, Γ, MTy ÑE xName, INy

xy, ∆pg1q, false, Γ, MTy ÑE xVal, ILy IN “ ´1_ IV “ ´1

x“r”, Γ, p, 1Fppx, pa, bqq ÞÑ UPDATE
ϕ
xpxa, by , λpValqq, ∆pgq, Idˆ Nameq, MTy Ñν R

x“set pφ t, zq as y; r”, Γ, p, ∆pgq, MTy Ñν R PHIEXTOTH

Figure A5. Remaining setting functions for ϕ-s being the extension of Figure 8.
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Appendix A.5. Converting GSM from Any Data Representation

Listing A1. Python code showing the conversion of an arbitrary Python object represen-
tation of some data to a GSM representation. In particular, we showcase the conversion
of (possibly nested) Pandas dataframes, XML data, NetworkX graphs, and XML trees.
As we also showcase the representation of arbitrary Python objects, thus including linear
collections and dictionaries, we also support JSON conversion.

1 import xml
2 from c o l l e c t i o n s import d e f a u l t d i c t
3 from c o l l e c t i o n s . abc import I t e r a b l e
4 import xml . e t r e e . ElementTree as ET
5 import gsm_stream_ser ia l ize
6 import networkx
7 from pandas import DataFrame
8
9

10 c l a s s MyCallable :
11
12 @abstractmethod
13 def c a l l ( s e l f , * args , * * kwargs ) −> o b j e c t :
14 pass
15
16 # Notes : gsm_stream_ser ia l ize . gsm_objec t_x i_content r e f e r s to the c r e a t i o n of a containment r e l a t i o n s h i p
17 # gsm_stream_ser ia l ize . gsm_object r e f e r s to the c r e a t i o n of a GSM o b j e c t
18
19 def fullname ( o ) :
20 k l a s s = o . _ _ c l a s s _ _
21 module = k l a s s . __module__
22 i f module == ’ b u i l t i n s ’ :
23 re turn k l a s s . __qualname__ # avoid outputs l i k e ’ b u i l t i n s . s t r ’
24 re turn module + ’ . ’ + k l a s s . __qualname__
25
26 p r i m i t i v e s = ( bool , s t r , in t , f l o a t , type ( None ) )
27
28 def i s _ p r i m i t i v e ( ob j ) :
29 re turn type ( ob j ) in p r i m i t i v e s
30
31
32 import i t e r t o o l s
33 _cont = i t e r t o o l s . count ( )
34
35 def next_id ( ) :
36 re turn next ( _cont )
37
38 def skipFor ( i ) :
39 f o r x in range ( i ) :
40 next ( _cont )
41
42 c l a s s GSMSimpleSerializer :
43 def gsm_conversion ( s e l f , obj , id=None , f f =" record " , scor ing=None , acc=None , l a b e l =" l a b e l " ) :
44 i f i s _ p r i m i t i v e ( ob j ) :
45 re turn s e l f . b a s i c _ o b j e c t ( obj , id , scoring , acc )
46 e l i f i s i n s t a n c e ( obj , ET . Element ) :
47 re turn s e l f . xml_to_gsm ( obj , id , scoring , acc )
48 e l i f i s i n s t a n c e ( obj , networkx . c l a s s e s . multidigraph . MultiDiGraph ) or \
49 i s i n s t a n c e ( obj , networkx . c l a s s e s . digraph . DiGraph ) or \
50 i s i n s t a n c e ( obj , networkx . c l a s s e s . graph . Graph ) or \
51 i s i n s t a n c e ( obj , networkx . c l a s s e s . multidigraph . MultiGraph ) :
52 re turn s e l f . graph_to_gsm ( obj , id , scoring , acc , l a b e l )
53 e l i f i s i n s t a n c e ( obj , DataFrame ) :
54 re turn s e l f . l i s t _ t o _ g s m ( ob j . t o _ d i c t ( ’ records ’ ) , id , f f , scoring , acc )
55 e l i f i s i n s t a n c e ( obj , d i c t ) :
56 re turn s e l f . dict_to_gsm ( obj , id , f f , scoring , acc )
57 e l i f i s i n s t a n c e ( obj , l i s t ) or i s i n s t a n c e ( obj , tuple ) :
58 re turn s e l f . l i s t _ t o _ g s m ( obj , id , f f )
59 e l s e :
60 i f ob j i s not None and h a s a t t r ( obj , ’ __ d ic t__ ’ ) :
61 re turn s e l f . dict_to_gsm ( vars ( ob j ) , id , fullname ( ob j ) , scoring , acc )
62 e l s e :
63 re turn s e l f . object_to_gsm ( obj , id , scoring , acc )
64
65 def graph_to_gsm ( s e l f , G, id=None , scor ing=None , acc=None , l a b e l =" l a b e l " ) :
66 i f i s i n s t a n c e (G, networkx . c l a s s e s . digraph . DiGraph ) or \
67 i s i n s t a n c e (G, networkx . c l a s s e s . graph . Graph ) or \
68 i s i n s t a n c e (G, networkx . c l a s s e s . multidigraph . MultiGraph ) :
69 G = networkx . MultiDiGraph (G)
70 i f acc i s None :
71 acc = [ ]
72 i f id i s None :
73 id = next_id ( )
74 i f G i s not None :
75 e l l = [ fullname (G) ]
76 e l s e :
77 e l l = [ ]
78 x i = [ ]
79 i f scor ing i s not None :
80 s c o r e s = scor ing (G)
81 e l s e :
82 s c o r e s = [ 1 . 0 ]
83 content = d e f a u l t d i c t ( l i s t )
84 pi = d e f a u l t d i c t ( l i s t )
85 mapp = d i c t ( )
86 i f G i s not None :
87 f o r node_id , node_data in G. nodes ( data=True ) :
88 xid = s e l f . dict_to_gsm ( node_data , None , s t r ( node_id ) , scoring , acc ) . id
89 mapp[ node_id ] = xid
90 i f scor ing i s not None :
91 xscore = scor ing ( node_data )
92 e l s e :
93 xscore = [ 1 . 0 ]
94 o r i g _ i d = id
95 containment = gsm_stream_ser ia l ize . gsm_objec t_x i_content ( xid , xscore , or ig_id , d i c t ( ) )
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96 content [ " nodes " ] . append ( containment )
97 f o r source , t a r g e t , pi in G. edges ( data=True ) :
98 edge_id = next_id ( )
99 i f l a b e l i s not None and l a b e l in pi :

100 edge_e l l = [ pi [ l a b e l ] ]
101 e l s e :
102 edge_e l l = [ " _ _ l a b e l " ]
103 edge_xi = [ ]
104 edge_content = { " s r c " : [ gsm_stream_ser ia l ize . gsm_objec t_x i_content (mapp[ source ] , [ 1 . 0 ] , edge_id , d i c t ( ) ) ] ,
105 " dst " : [ gsm_stream_ser ia l ize . gsm_objec t_x i_content (mapp[ t a r g e t ] , [ 1 . 0 ] , edge_id , d i c t ( ) ) ] }
106 i f scor ing i s not None :
107 xscore = scor ing ( pi )
108 e l s e :
109 xscore = [ 1 . 0 ]
110 ob j = gsm_stream_ser ia l ize . gsm_object ( edge_id , edge_el l , edge_xi , xscore , edge_content , pi )
111 acc . append ( ob j )
112 containment = gsm_stream_ser ia l ize . gsm_objec t_x i_content ( edge_id , xscore , id , d i c t ( ) )
113 content [ " edge " ] . append ( containment )
114 ob j = s e l f . f i n a l i z e G e n e r a t i o n ( acc , content , e l l , id , pi , scores , x i )
115 return obj
116
117 def xml_to_gsm ( s e l f , root , id=None , scor ing=None , acc=None ) :
118 a s s e r t i s i n s t a n c e ( root , ET . Element )
119 i f acc i s None :
120 acc = [ ]
121 i f id i s None :
122 id = next_id ( )
123 i f root i s None :
124 e l l = [ ]
125 e l s e :
126 e l l = [ root . tag ]
127 i f scor ing i s not None :
128 s c o r e s = scor ing ( root )
129 e l s e :
130 s c o r e s = [ 1 . 0 ]
131 i f root . t e x t i s not None :
132 x i = [ root . t e x t . s t r i p ( ) ]
133 e l s e :
134 x i = [ ]
135 pi = root . a t t r i b
136 content = d e f a u l t d i c t ( l i s t )
137 f o r c h i l d in root :
138 s e l f . ex t rac tContent ( acc , content , c h i l d . tag , id , scoring , c h i l d )
139 ob j = gsm_stream_ser ia l ize . gsm_object ( id , e l l , xi , scores , d i c t ( content ) , pi )
140 acc . append ( ob j )
141 return obj
142
143 def dict_to_gsm ( s e l f , d , id=None , fullname=" record " , scor ing=None , acc=None ) :
144 i f acc i s None :
145 acc = [ ]
146 i f id i s None :
147 id = next_id ( )
148 e l l = [ fullname ]
149 x i = [ ]
150 i f scor ing i s not None :
151 s c o r e s = scor ing ( d )
152 e l s e :
153 s c o r e s = [ 1 . 0 ]
154 content = d e f a u l t d i c t ( l i s t )
155 pi = d e f a u l t d i c t ( l i s t )
156 i f d i s not None :
157 a s s e r t i s i n s t a n c e ( d , d i c t )
158 f o r k , v in d . items ( ) :
159 s e l f . e x t r a c t F i e l d _ g l o b a l ( acc , content , k , v , id , pi , scor ing )
160 ob j = s e l f . f i n a l i z e G e n e r a t i o n ( acc , content , e l l , id , pi , scores , x i )
161 return obj
162
163
164 def l i s t _ t o _ g s m ( s e l f , l s , id=None , fullname=" l i s t " , scor ing=None , acc=None , fieldname=" arg " ) :
165 i f acc i s None :
166 acc = [ ]
167 i f id i s None :
168 id = next_id ( )
169 e l l = [ fullname ]
170 x i = [ ]
171 i f scor ing i s not None :
172 s c o r e s = scor ing ( l s )
173 e l s e :
174 s c o r e s = [ 1 . 0 ]
175 content = d e f a u l t d i c t ( l i s t )
176 pi = d e f a u l t d i c t ( l i s t )
177 i f l s i s not None :
178 a l l I n X i = a l l (map( lambda x : ( x i s not None ) and ( i s i n s t a n c e ( x , s t r ) or
179 i s i n s t a n c e ( x , f l o a t ) or
180 i s i n s t a n c e ( x , i n t ) or
181 i s i n s t a n c e ( x , bool ) ) , l s ) )
182
183 i f a l l I n X i :
184 f o r fromField in l s :
185 i f fromField i s not None :
186 x i . append ( fromField )
187 e l s e :
188 f o r fromField in l s :
189 i f fromField i s not None :
190 s e l f . ex t rac tContent ( acc , content , fieldname , id , scoring , fromField )
191 ob j = s e l f . f i n a l i z e G e n e r a t i o n ( acc , content , e l l , id , pi , scores , x i )
192 return obj
193
194 def f i n a l i z e G e n e r a t i o n ( s e l f , acc , content , e l l , id , pi , scores , x i ) :
195 p2 = d i c t ( )
196 f o r k , v in pi . i tems ( ) :
197 i f len ( v ) == 1 :
198 p2 [ k ] = v [ 0 ]
199 e l i f len ( v ) > 1 :
200 p2 [ k ] = " [ " + " , " . j o i n (map( s t r , v ) ) + " ] "
201 ob j = gsm_stream_ser ia l ize . gsm_object ( id , e l l , xi , scores , d i c t ( content ) , p2 )
202 acc . append ( ob j )
203 return obj
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204
205 def b a s i c _ o b j e c t ( s e l f , obj , id=None , scor ing=None , acc=None ) :
206 i f acc i s None :
207 acc = [ ]
208 i f id i s None :
209 id = next_id ( )
210 i f ob j i s None :
211 e l l = [ fullname ( ob j ) ]
212 e l s e :
213 e l l = [ ]
214 x i = [ s t r ( ob j ) ]
215 i f scor ing i s not None :
216 s c o r e s = scor ing ( ob j )
217 e l s e :
218 s c o r e s = [ 1 . 0 ]
219 ob j = s e l f . f i n a l i z e G e n e r a t i o n ( acc , d e f a u l t d i c t ( l i s t ) , e l l , id , d e f a u l t d i c t ( l i s t ) , scores , x i )
220 return obj
221
222 def object_to_gsm ( s e l f , obj , id=None , scor ing=None , acc=None ) :
223 i f ob j i s not None and h a s a t t r ( obj , ’ __d ic t __ ’ ) :
224 re turn s e l f . dict_to_gsm ( vars ( ob j ) , id , fullname ( ob j ) , scoring , acc )
225 i f acc i s None :
226 acc = [ ]
227 i f id i s None :
228 id = next_id ( )
229 i f ob j i s None :
230 e l l = [ fullname ( ob j ) ]
231 e l s e :
232 e l l = [ ]
233 x i = [ ]
234 i f scor ing i s not None :
235 s c o r e s = scor ing ( ob j )
236 e l s e :
237 s c o r e s = [ 1 . 0 ]
238 content = d e f a u l t d i c t ( l i s t )
239 pi = d e f a u l t d i c t ( l i s t )
240 i f ob j i s not None :
241 f i e l d s = [ f f o r f in d i r ( ob j ) i f not c a l l a b l e ( g e t a t t r ( obj , f ) ) and not f . s t a r t s w i t h ( ’ __ ’ ) ]
242 f o r f i e l d in f i e l d s :
243 fieldName = f i e l d
244 fromField = g e t a t t r ( obj , fieldName )
245 s e l f . e x t r a c t F i e l d _ g l o b a l ( acc , content , fieldName , fromField , id , pi , scor ing )
246 ob j = s e l f . f i n a l i z e G e n e r a t i o n ( acc , content , e l l , id , pi , scores , x i )
247 return obj
248
249
250 def e x t r a c t F i e l d _ g l o b a l ( s e l f , acc , content , fieldName , fromField , id , pi , scor ing ) :
251 i f fromField i s not None :
252 i f i s i n s t a n c e ( fromField , s t r ) or i s i n s t a n c e ( fromField , f l o a t ) or i s i n s t a n c e ( fromField , i n t ) or i s i n s t a n c e (
253 fromField , bool ) :
254 pi [ fieldName ] . append ( fromField )
255 e l i f i s i n s t a n c e ( fromField , I t e r a b l e ) :
256 f o r x in fromField :
257 s e l f . e x t r a c t B a s i c F i e l d ( acc , content , fieldName , id , pi , scoring , x )
258 e l s e :
259 s e l f . e x t r a c t B a s i c F i e l d ( acc , content , fieldName , id , pi , scoring , fromField )
260
261
262 def e x t r a c t B a s i c F i e l d ( s e l f , acc , content , fieldName , id , pi , scoring , x ) :
263 i f x i s not None :
264 i f i s i n s t a n c e ( x , s t r ) or i s i n s t a n c e ( x , f l o a t ) or i s i n s t a n c e ( x , i n t ) or i s i n s t a n c e ( x , bool ) :
265 pi [ x ] . append ( x )
266 e l s e :
267 s e l f . ex t rac tContent ( acc , content , fieldName , id , scoring , x )
268
269 def ex t rac tContent ( s e l f , acc , content , fieldName , id , scoring , x ) :
270 xid = s e l f . gsm_conversion ( x , None , f f =" record " , scor ing=scoring , acc=acc ) . id
271 # xid = s e l f . object_to_gsm ( x , None , scoring , acc ) . id
272 i f scor ing i s not None :
273 xscore = scor ing ( x )
274 e l s e :
275 xscore = [ 1 . 0 ]
276 o r i g _ i d = id
277 containment = gsm_stream_ser ia l ize . gsm_objec t_x i_content ( xid , xscore , or ig_id , d i c t ( ) )
278 content [ fieldName ] . append ( containment )
279
280
281 c l a s s GSMSerial izer ( MyCallable ) :
282
283 def _ _ i n i t _ _ ( s e l f , type , f f =" record " , scor ing=None , l a b e l =" l a b e l " ) :
284 super ( GSMSerializer , s e l f ) . _ _ i n i t _ _ ( )
285 s e l f . type = type
286 s e l f . f f = f f
287 s e l f . scor ing = scor ing
288 s e l f . l a b e l = l a b e l
289 s e l f . parent = GSMSimpleSerializer ( )
290
291 def skipFor ( s e l f , i ) :
292 s e l f . parent . skipFor ( i )
293
294 def c a l l ( s e l f , obj , id=None ) −> o b j e c t :
295 a s s e r t i s i n s t a n c e ( obj , s e l f . type )
296 acc = [ ]
297 re s = s e l f . parent . gsm_conversion ( obj , id , s e l f . f f , s e l f . scoring , acc , s e l f . l a b e l )
298 return acc , re s
299
300
301 i f __name__ == " __main__ " :
302
303 c l a s s Node :
304 def _ _ i n i t _ _ ( s e l f , data ) :
305 s e l f . l e f t = None
306 s e l f . r i g h t = None
307 s e l f . data = data
308
309 def Pr in tTree ( s e l f ) :
310 p r i n t ( s e l f . data )
311
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312 root = Node ( 1 0 )
313 root . r i g h t = Node( 1 2 0 )
314 root . l e f t = Node ( 5 )
315 root . l e f t . l e f t = Node ( 1 )
316 root . l e f t . r i g h t = Node ( 7 )
317 root . r i g h t . r i g h t = Node( 1 3 0 )
318
319 s e r = GSMSerial izer ( )
320 acc = [ ]
321 # se r . object_to_gsm ( root , acc=acc )
322
323 p = " " " <?xml vers ion ="1 .0"? >
324 <data >
325 <country name=" L i e c h t e n s t e i n ">
326 <rank >1</rank>
327 <year >2008</year >
328 <gdppc>141100</gdppc>
329 <neighbor name=" Austr ia " d i r e c t i o n ="E"/>
330 <neighbor name=" Switzerland " d i r e c t i o n ="W"/>
331 </country >
332 <country name=" Singapore ">
333 <rank >4</rank>
334 <year >2011</year >
335 <gdppc>59900</gdppc>
336 <neighbor name=" Malaysia " d i r e c t i o n ="N"/>
337 </country >
338 <country name="Panama">
339 <rank >68</rank>
340 <year >2011</year >
341 <gdppc>13600</gdppc>
342 <neighbor name=" Costa Rica " d i r e c t i o n ="W"/>
343 <neighbor name=" Colombia " d i r e c t i o n ="E"/>
344 </country >
345 </data > " " "
346 root = ET . f romstr ing ( p )
347 # se r . gsm_conversion ( root , acc=acc )
348
349 # Create a Graph o b j e c t
350 import networkx as nx
351 G = nx . MultiDiGraph ( )
352
353 # Add the nodes to the graph , with p r o p e r t i e s
354 G. add_node ( "Max" , age =20 , gender=" male " )
355 G. add_node ( " Al ice " , age =22 , gender=" female " )
356 G. add_node ( " Bob " , age =21 , gender=" male " )
357
358 # Add the edges to the graph
359 G. add_edge ( "Max" , " Al ice " , l a b e l ="knows" )
360 G. add_edge ( " Al ice " , "Max" , l a b e l ="knows" )
361 G. add_edge ( " Al ice " , " Bob " , l a b e l ="knows" )
362
363 s e r . graph_to_gsm (G, acc=acc )
364 p r i n t ( acc )

Appendix B. Proofs

Appendix B.1. Transformation Isomorphism

Proof (for Lemma 1). Proving this reduces to prove that xgiyiďn “

SERIALISATIONpLOADINGpxgiyiďnqq and db “ LOADINGpSERIALISATIONpdbqq. We can
prove this by extending the definition of the transformations being given in Algorithm 2.

xg̃iyiďn “ SERIALISATIONpLOADINGpxgiyiďnqq: We can consider one GSM database g̃i

being returned at a time, for which we consider its constituents xÕi, ℓ̃i, ξ̃i, ϵ̃i, π̃i, ϕ̃i, t̃i,ϕy.
To do this, we want to show that such a returned database is equivalent to the
originally loaded gi. To conduct this, we need to show that each of the constituents
is equivalent.

We can prove that Õi “ Oi as follows:

j P Õi ô Dl, p, x. xl, i, j, p, xy P ActivityTable ô j P Oi

We can prove that ℓ̃i 9“ℓi, ξ̃i 9“ξi, and ϵ̃i 9“ϵi as follows:

ℓ̃ipjq “ Lipjq “ ℓipjq ξ̃ipjq “ Xipjq “ ξipjq ϵ̃ipjq “ Cipjq “ ϵipjq

We can also prove that the properties are preserved:

π̃ipj, κq “ v ô xℓipjqr0s, v, ry P AttributeTable^ Dp, x.ActivityTablerrs “ xℓipjqr0s, i, j, p, xy

ô xℓipjqr0s, v, ry P AttributeTable^ActivityTablerrsp2q “ j^ j P Oi

ô πpj, κq “ v^ j P Õi
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For ϕ̃ipj, κq, we can easily show that this is associated with no value only if there are
no records referring to a containment for j in the loaded database, which we can easily
show that this derives from an originally empty contained from the loaded database
gi. On the other hand, this function returns a set S of identifiers only if there exists at
least one containment record in PhiTableκ , for which we can derive the following:

ϕ̃ipj, κq “ S ô S “ t ι | Dl, w, d. xl, i, j, w, d, ιy P PhiTableκ
u

ô S “ t ι | ι P ϕipj, κq u

ô S “ ϕipj, κq

Given that ϕ̃ipj, κq and S “ ϕipj, κq, this sub-goal is closed by transitivity closure over
the equality predicate.

We can prove similarly the equivalence t̃i,ϕ 9“ti,ϕ as a corollary of the previous sub-cases:

t̃i,ϕpιq “ xd, wy ô Dl, j. xl, i, j, w, d, ιy P PhiTableκ

ô ι P ϕipj, κq ^ ti,ϕpιq “ xd, wy

ô ι P ϕ̃ipj, κq ^ ti,ϕpιq “ xd, wy

ô ti,ϕpιq “ xd, wy

db “ LOADINGpSERIALISATIONpdbqq: In this case, we need to show that each table in db
is equivalent to those in db. We can prove similarly to the previous step that L “ L,
X “ X, and C “ C.

Next, we need to prove that the ActivityTables being returned are equivalent. We
can achieve this by guaranteeing that both tables should contain the same records.
After remembering that the values of p and x are determined through the indexing
phase, from which we determine the offset where the objects with immediately
preceding and following IDs are stored, we can then guarantee that these values will
be always the same under the condition that the two tables will always contain the
same records, for which these values will be the same. After remembering from the
previous proof that l̃ipjq Pq ” Lipjq P db, for l̃i P SERIALISATIONpdbq and L P db, we
can also have that l̃ipjqp0q ” Lipjqp0q:

xl, i, j, p, xy P ActivityTable ô g̃i P db^ l̃ipjqr0s “ l ^ j P Õi

ô g̃i P db^ l̃ipjqr0s “ l ^ Dl1, p1, x1. xl1, i, j, p1, x1y P ActivityTable

^ Lipjqr0s “ l1

ô Dp1, x1. xl, i, j, p1, x1y P ActivityTable

Given that the first three components of the record always correspond, this entails
that we will preserve the number of records across the board, hence preserving the
same record ordering, thus also guaranteeing that x “ x1 and x “ x1.

By adopting the equivalence of the previous and next offset for the AttributeTable from
the previous sub-proof, we can then also prove that each record of the AttributeTable
always corresponds to an equivalent one in the AttributeTable.

xl, v, ry P AttributeTable
κ
ô ActivityTableprq “ xl, i, j, p, xy ^ π̃ipj, κq “ v

Dl1, r1. xl1, v, r1y P AttributeTableκ
^ActivityTablerr1s “ xl1, i, j, p, xy

Given that we can prove that l̃ “ l also by the previous sub-case and r̃ “ r as
the records’ index will always correspond after sorting and indexing, we can close
this sub-goal.
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Last, we need to prove that the PhiTableκ tables are equivalent, which can be closed
as follows:

xl, i, j, w, d, ιy P PhiTable
κ
ô ℓipjqp0q “ l ^ ι P ϕipj, κq ^ ti,ϕpιq “ xd, wy

ô xl, i, j, w, d, ιy P PhiTableκ

Appendix B.2. Nested Equi-Join Properties

Proof (for Lemma 2). If L ‰ Hwith L⃗ “ xA1, A2, . . . , Any, then we can rewrite the defini-
tion of L⃗’ as follows:

t L⃗’s “
!

t̃|SzA1
‘ pt̃pA1q

xA2,...,Any’sq
ˇ

ˇ

ˇ
t̃ P t

)

If A1 R dompt̃q, then t̃pA1q “ H by assuming to represent a NULL value as an empty table
by default. While doing so and by t̃|SztA1u “ t̃ by former assumption, the former result can
be rewritten as:

“

!

t̃|SztA1u

ˇ

ˇ

ˇ
t̃ P t

)

“ t

Proof (for Lemma 3). Given the hypothesis and with reference to Algorithm 3, we have
IR “ H, which then yields Lˆ R (Line 4).

Proof (for Lemma 4). Given the hypothesis and with reference to Algorithm 3, this satisfies
the condition at Line 5, for which we can then immediately close our goal.

Proof (for Lemma 5). As dompSq X dompUq “ tNu, this violates the condition for the
rewriting Lemma 3, which is not then rewritten accordingly. Furthermore, the condition
dompSpNqqXdompUq ‰ H violates the condition for the rewriting Lemma 4, which is then
not applied. Given IR as defined in Line 3 of Algorithm 3, we show that this algorithm
computes the following:

A

t̃|IR ‘
´

t̃pNq ‘ s̃|UzIR

¯

| t̃ P L, s̃ P R, t̃ 9“IR s̃
E

This equates to equi-joining the tables over the IR records where N R IR by con-
struction, and by nesting all the records from the right table sharing the same IR values
with the records from the left table. Last, we can easily observe that this cannot be easily
expressed in terms of L xNy’R, as the rewriting of the former expression in the following
way, for which it is evident that the former operator did not consider the recursive natural
joining of the records by considering the commonly-shared attributes during its descent:

L xNy’R “ xt̃|SztNu,‘pt̃pNq xy’sq | t̃ P ty

“ xt̃|IR ‘ pt̃pNq ‘ s̃q | t̃ P t, s̃ P Ry

This can be easily observed by the lack of 9“IR component that captures the essence of
such a natural join condition.

Appendix B.3. Language Properties

Proof (for Lemma 6). As by the conditions stated in the current Lemma we either generate
an empty morphism table MTr, s (no rules, no rewritings, no matches) or all the generated
morphisms are ignored as all the Θ values are falsified (Line 8 from Algorithm 8), then
we will always have an empty view ∆pgiq for all the GSM databases gi loaded in the
physical model. Considering this, the proof is an application of Equation (10), by which
the materialisation of a GSM database gi with a view ∆pgiq containing no changes simply
returns gi. As gi is stored in a physical model, this result is also validated via Lemma 1.
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Proof (for Property 1). This condition is generated by Line 4 from Algorithm 8, as we use
the reverse topological order index Ortopopgiq associated with each GSM DB gi to visit the
entry-point objects or, when nested, their containing object associated with the reported
morphism in MTrLi, Gis.

Proof (for Lemma 7). As per previous discussions, the proof for this lemma will be given
intuitively by analysing the Cypher representation of the graph grammar represented
visually in Figure 2 and previously represented by our proposed Generalised Graph Gram-
mar language in Listing 1. We then provide the query required for rewriting the sentence
expressed in Figure 6a:

The current Neo4j v5.20 implementation does not support the theorised graph incre-
mental views for Cypher [32]. As we require to update the graph while querying, it is not
possible to entirely create a new graph without restructuring or expanding a previously
loaded one as per graph joins [7] or nesting [6] by simply returning some newly-created
relationships or vertices; returning a new graph and rewriting a previous match will come
at the cost of either restructuring the previously loaded graph, thus requiring additional
overhead costs for re-indexing and updating the database while querying, or by creating
a new distinct connected component within the loaded graph (CREATE statements from
Listing A2). As it is impossible to refer by the vertices and edges through their ID, thus
exploiting graph provenance techniques for mapping the newly created vertices to the ones
from the previously loaded graph [45], we are forced to join the loaded vertices (e.g., Lines
35–37, 50–52, and 67) with the newly created ones (e.g., Lines 38, 53, and 68, respectively)
by their property values (e.g., Lines 39, 54, and 70, respectively). Our proposed approach
avoids such cost via the aforementioned objects’ and containments’ ID-based morphism
representation while keeping track of the restructuring operations (property UPDATE, in-
sertion NEWOBJ, deletion DELOBJ and DELCONT, and substitution REPLOBJ) over a graph
g within an incremental view ∆pgq (Section 4.3).

Listing A2. Cypher representation for Figure 2 to rewrite the sentence from Figure 6a.

1 \\ Create the grouped vertices
2 MATCH (a) -[:subj]->(b) -[:cc]->(c)
3 WHERE (b) <-[:conj]-() OR (b) -[:conj]->()
4 WITH a, Collect(b.name) as names , c
5 WHERE size(names) > 1 // To make sure it is only grouping

ãÑ vertices with multiple names
6 OPTIONAL MATCH (a) -[:neg]->(d)
7 CREATE (x {name: apoc.text.join(names , ‘ ’), cc: c.name , dobjRel

ãÑ : a.name})
8 WITH a, c, d, x, names
9 CALL apoc.create.addLabels(x, names) YIELD node

10 CALL apoc.do.when(
11 d IS NOT NULL ,
12 ‘‘SET x.neg = d.name ’’,
13 ’’,
14 {c:c, d:d, a:a, x:x})
15 YIELD value as~neg
16
17 // Create the origins
18 WITH neg
19 MATCH (n) // Match only vertices with no relationships
20 WITH LABELS(n) as nameLabels , Collect(DISTINCT n) as nameNodes
21 WHERE size(nameLabels) > 0
22 FOREACH (nNode IN nameNodes |
23 FOREACH (nLabel IN nameLabels |
24 CREATE (y {name: nLabel }) <-[:orig]-(nNode)))
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25
26 // Create dobj node
27 WITH *
28 MATCH (d) <-[:dobj]-(a)
29 WITH Collect(DISTINCT d.name) as objects , a~FOREACH (obj IN

ãÑ objects |
30 CREATE (y {name: obj , dobjRel: a.name}))
31
32 // Check for ’det ’
33 WITH *
34 MATCH (n) WHERE NOT (n) -[]->() AND NOT (n) <-[]-()
35 WITH n
36 MATCH (d) <-[:dobj]-(a)
37 MATCH (e) -[:orig]->()
38 WHERE e.dobjRel = a.name AND d.name = n.name
39 OPTIONAL MATCH (d) -[:det]->(f)
40 CALL apoc.do.when(
41 f IS NOT NULL ,
42 ’SET n.det = f.name ’,
43 ’’,
44 {n:n, f:f})
45 YIELD value as~det
46
47 // Create relationships
48 WITH det
49 MATCH (m) WHERE NOT (m) -[]->() AND NOT (m) <-[]-()
50 WITH m
51 MATCH (d) <-[:dobj]-()
52 MATCH (e) -[:orig]->()
53 WHERE e.dobjRel = m.dobjRel
54 WITH DISTINCT e, m
55 CALL apoc.do.when(
56 e.neg IS NOT NULL ,
57 ’CALL apoc.create.relationship(e, e.neg + ‘‘ ’’ + e.dobjRel , {},

ãÑ m) YIELD rel RETURN rel ’,
58 ’CALL apoc.create.relationship(e, e.dobjRel , {}, m) YIELD rel

ãÑ RETURN rel ’,
59 {e:e, m:m})
60 YIELD value as~dobjRel
61
62 // Create ? acl node
63 WITH dobjRel
64 MATCH (p) WHERE NOT (p) -[]->() AND NOT (p) <-[]-()
65 WITH p
66 MATCH (a) -[:acl]->(b)
67 MATCH (c) <-[:orig]-(d) -[]->(e)
68 WITH DISTINCT p, a, e
69 WHERE e.name = a.name
70 CREATE (y {name: ’?’}) <-[:acl]-(e)
71 WITH p, y
72 CALL apoc.create.relationship(y, p.dobjRel , {}, p) YIELD rel as~

ãÑ aclRel
73
74 // Group the groups
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75 WITH aclRel
76 MATCH (a) -[:conj]->(b) -[:cc]->(c) <-[:cc]-(a)
77 MATCH () <-[:orig]-(d)-[r]->()
78 WHERE type(r) CONTAINS a.name OR type(r) CONTAINS b.name
79 WITH a, b, c, d, r
80 ORDER BY d.name ASC
81 WITH Collect(DISTINCT d.name) as names , c
82 CREATE (x {name: apoc.text.join(names , ’ ’ + c.name + ’ ’)})
83 WITH x, names
84 CALL apoc.create.addLabels(x, names) YIELD node as~groupedGroup
85
86 // Add properties to rels
87 // mark
88 WITH groupedGroup
89 MATCH (c) <-[:mark]-(a) -[:dobj]->(b)
90 MATCH (d)-[r]->(e)
91 WHERE type(r) CONTAINS a.name AND b.name = e.name
92 CALL apoc.create.setRelProperty(r, ’mark ’, c.name) YIELD rel as~

ãÑ markRel
93
94 // aux
95 WITH markRel
96 MATCH (d) <-[:aux]-(a) -[:subj]->() -[:cc]->()
97 MATCH () <-[:orig]-(f)-[r]->()
98 WHERE type(r) CONTAINS a.name
99 CALL apoc.create.setRelProperty(r, ’aux ’, d.name) YIELD rel as~

ãÑ auxRel
100
101 // Create rels to orig groups
102 WITH auxRel
103 MATCH (a) -[:orig]->(b)
104 MATCH (x) WHERE NOT (x) -[]->() AND NOT (x) <-[]-()
105 WITH DISTINCT a, x
106 WHERE apoc.text.join(LABELS(a), ’ ’) IN LABELS(x)
107 CALL apoc.create.relationship(x, ’orig ’, {}, a) YIELD rel as~

ãÑ origRel
108
109 // Rel from M+T to A+B+C|C+D
110 WITH x
111 MATCH (d) <-[:subj]-(a) -[:ccomp]->(b) -[:subj]->(c)
112 MATCH (e) -[:orig]->(f)
113 WITH a, b, c, d, e, f, x
114 ORDER BY d.name ASC , c.name ASC
115 WITH Collect(DISTINCT c.name) as endNames , x, Collect(DISTINCT d

ãÑ .name) as startNames , e, a~WHERE apoc.text.join(startNames
ãÑ , ’ ’) = e.name AND apoc.text.join(endNames , ’ ’) IN
ãÑ LABELS(x)

116 CALL apoc.create.relationship(e, a.name , {}, x) YIELD rel as~
ãÑ finalRel

117
118 WITH finalRel
119 MATCH q=() -[]->()
120 MATCH (z)
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121 CALL apoc.create.removeLabels(z, LABELS(z)) YIELD node // Remove
ãÑ all labels from vertices

122 WITH q, z
123 RETURN q, z

Cypher does not ensure to apply the graph rewriting rules as intended in our scenarios:
let us consider the dependency graph generated from the recursive sentence “Matt and Tray
believe that either Alice and Bob and Carl play cricket or Carl and Dan will not have a way to amuse
themselves” and let us try to express patterns in Figure 2b,c as two distinct MATCH-es with
their respective update operations as per the following Listing:

1 MATCH (a)-[b:cc]->(c)
2 WITH Collect(a.name) as names , Collect(DISTINCT a) as nameNodes ,

ãÑ c
3 CREATE (x {name: apoc.text.join(names , ’ ’), cc: c.name})
4 FOREACH (p IN nameNodes | CREATE (y {name: p.name}) <-[:orig]-(x)

ãÑ )
5 WITH x
6 MATCH (a) -[:dobj]->(b)
7 CREATE (y {name: b.name})
8 WITH a, x, y
9 CALL apoc.create.relationship(x, a.name , {}, y) YIELD rel

10 WITH y
11 MATCH q=() -[]->()
12 RETURN q

Instead of generating one single connected component representing the result, we
will generate as many distinct connected components as subgraphs being identified as
matching the patterns, while this does not occur with a simple sentence structure (Figure 3a)
where we achieve the correct result as in Figure 5. We must MATCH elements of the graph
multiple times, constantly rejoining on data previously MATCH-ed in earlier stages of the
query for establishing relationships over previously grouped vertices (Lines 108 and 118
from Listing A2). This then postulates the inability of such language to automatically apply
an order of visit for restructuring the loaded graph (e.g., we need to tell the query language
to first group-by the vertices—Lines 2–15—and then establish the orig relationships—Lines
18–24) while not expressing an automated way to merge each distinct transformed graph
into one cohesive, connected component. This then forces the expression of a generic graph
matching and rewriting mechanism to be dependent on the specific recursive structure
of the data. Thus, requiring the creation of a broader query, where we need to explicitly
instruct the query language on the correct way to visit the data while instructing how to
reconcile each generated subgraph from each morphism within one final graph.

During the delineation of the final Cypher query succeeding in obtaining the correct
rewritten graph (also Listing A2), we also highlighted the impossibility of Cypher propagat-
ing the temporary result generated by a rewriting rule and propagating it to another rule
to be applied upstream: this requires carrying out intermediate sub-queries establishing
connections across patterns sharing intermediate vertices, and the re-computation of the
same intermediate solutions, such as vertex grouping (cfr. Line 4 and Line 116). Since
Cypher also does not support the explicit grouping of vertices based on a pattern as in [46],
this required us to identify the vertices satisfying each specific pattern, label them appro-
priately in a unique way (e.g. Line 9), and then compare the result obtained (e.g., Line 20
for generating orig relationships). This limitation can be overcome by providing two inno-
vations: first, using nested relational tables for representing morphisms, where each nest
will contain the sub-pattern of interest possibly to be grouped. Second, we track any vertex
substitution for entry-point vertex matches via incremental views. This substitution can
be easily propagated at any level by considering the transitive closure of the substitution
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function (Definition 5), while the order of visit in the graph guarantees the correctness of
the application of such substitution (Algorithm 8).

Listing A2, constructed for the specific matches referring to the sentence “Matt and
Tray...”, will not fully execute on a different sentence without the given dependencies, as no
match is found, and therefore, no rewriting can occur. Current graph query languages are
meant to return a subgraph from the given patterns. In Cypher, you must abide by what is
contained within the data, if the data are not there we need to remove the match from the
query, which we cannot forecast in advance. This results in constant analysis of the data.
For us, the intention is to have graph grammar rewriting rules whereby if a match is not
made, no rewriting occurs.

By leveraging such limitations of Cypher while juxtaposing the desired behaviour
of the language, we derive a declarative graph query language where patterns can be
expressed similarly to Figure 5.

Proof (for Lemma 8). This is a direct application of the SOS rules from Figure 8: any
removed vertex will not be replaced by a newly inserted vertex within the matched entry-
point ego-net if not explicitly updating the containment to also add the newly created
object. If an entry-point was removed, the only way to preserve the connectivity of the
GSM objects is to exploit the replacement, through which we will explicitly state that,
for any explicitly declared container within the matched pattern, we will insert the created
object or any other previously matched object of choice within the container’s containment
relationships also containing the object.

Proof (for Lemma 9). This requires discussing the SOS rules from Figure 8, from which
we set or update values, labels, containments, and properties associated with objects.
Concerning label updates, such updates occur over variable x, in which variable resolution
ρ is always in the form xx, ∆pgq, truey: if the variable does not appear in the morphism, we
expand the first two cases from Figure A1. We need to exclude the case it was declared
with a new statement from Figure 8, as we will have otherwise x in Γν from ∆pgq. As we
have the parameter true, this also excludes the rule NOFRES (Figure A1). We can then
see that we do not create an optimally matched containment, as expected by the intended
semantics. Thus, we restrict our case to FORCERES (Figure A1), on which we see that a
new object is created, thus updating ∆pgq, and that we know the ID of this object as it will
be naturally the next incrementally number being available. Then, the label update will
always occur, which will then preserve the update in ∆pgq. These choices are reflected
in the materialisation phase by extending each database g and prioritising the changes
described in the view ∆pgq.

Proof. Given the possibility of visiting several patterns L1, . . . , Ln, we can express the
matching of those in our proposed query language as rules pi “ Li Ñ H for 1 ď i ď n,
where both objects and containments must be explicitly referenced with a variable. Still,
this formulation will not explicitly remove any object or containment not being visited.
Enabling this requires the extension of the former query with two additional rules, one
for removing all the vertices not visited in the different pattern (om), and the other for
explicitly removing unmatched containments (cm). Given the variables Ao, . . . , Wo referring
to matched objects and Ac, . . . , Wc to matched containments in L1, . . . , Ln, we can then
express om and cm as the following rules being defined immediately after pn:

om = (Z)
where (Z unmatched p1 . An ^ (. . . Z unmatched pn . Wn)
ãÑ del Z (Z);

cm = (X)--[Y:]->(Z)
where (Y unmatched p1 . Ac ^ (. . . Y unmatched pn . Wc)
ãÑ del Z (Z);
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As we rewrite the same matching object, no replacement will occur and given that
the matching (Z) and (X)--[Y:]->(Z) will return all the objects and containments across
the databases, we have to further test those to delete only the ones being not matched in
L1, . . . , Ln.

Proof (for Corollary 1). This follows from our previous proof, for which we clearly showed
that our proposed language can match and rewrite graphs declaratively while considering
optional rewrites. Cypher has some limitations in this regard, as it forces the user to specify
the order in which the matching and rewriting rules should be applied. Furthermore,
our language can return the matched morphisms similarly to SPARQL while allowing
the generation of multiple morphism tables rather than just one, and selecting just the
objects and containments being matched while removing the remaining ones similarly to
Cypher. Therefore, the proposed language over GSM generalizes over current graph query
languages over a novel generalised semistructured model enabling this.

Appendix B.4. Time Complexity

Proof (for Lemma 11). Regarding Algorithm 5, as we defined a graph connecting each
rule appearing in the query, which will be then represented as a vertex, in the worst-
case scenario, we will have a fully connected graph with E “ V ˆ V. Thus, the cost of
creating this graph is quadratic, as Op|V| ` |V|2q is in Op|V|2q. Given that the approximate
topological sort uses a DFA visit of the resulting graph and that the layering is linear over
the size of the vertices, and given that |V| “ |gg| by construction we, therefore, obtain an
overall global quadratic time complexity over the size of the query when expressed via the
number of available rules.

Proof (for Lemma 12). Suppose that each rule has at most c containment relationships,
which will be provided by disjunction reference to all the k containment labels recorded
in the physical model. Thus, the caching phase will take at most ck|gg| ` k time, as we
might still consider all of these labels if we have containments for which the containment
relationship is not specified.

Thus, the caching mechanism will guarantee sole access to each PhiTablek once. By es-
timating an average branching factor β across the loaded GSM in the physical model and
by assuming that, in the worst case scenario, all the objects will contain containments for
all the k labels, then the cost of caching the tables to make them ready to the morphism
representation takes k|db|Oβ time, where O is the average number of objects stored across
GSM databases.

Now, we consider the cost associated with a table of size |db|Oβ. We can freely assume
that rewriting operations are in Op1q, as in our implementation, morphisms are striped by
schema information and are merely represented as tuples while associating the schema to
the sole table. Similarly, the projection costs are linear over the size of the table, while the
nesting operation can be performed in linear time while reducing the size of the table to
|db|O due to the ego-net assumptions enforced within the structure of the matching pattern.
Overall, this comes at Op|db|Oβq time.

In the worst-case scenario, the association of containment to a table will take cost
k|db|Oβ, thus totalling an overall cost in Opck|db|Oβq, which also dominates the time
complexity of the other phases.

Proof (for Corollary 2). This proof refers to the time complexity of Algorithm 7, which can
be seen as a corollary of the previous lemma, for which we already derived the estimated
table size m “ |db|Oβ for each required table composing the final morphism. Let us denote
r (and o) as the maximum number of required (and optional) matches appearing across
all Li from gg-s. As the nested relational algebra can be always expressed in terms of “flat”
relational algebra, we can upper-bound the time complexity of Algorithm 3 by Opm2q.
This gives us a worst-case scenario time complexity of Opmr`oq for computing Pi for each
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rule pi P gg, which is a linear time complexity over the size of the worst-case scenario
yielded table.

The nesting operator νBÑAptq from Equation (5) being optionally used to nest mor-
phisms if entry-point vertices are grouped by a direct ancestor can be easily implemented
with a linear time complexity over the size of the table that we want to nest: this boils
down to computing the equivalence class of 9“R over the fields R “ dompSptqqztA, Bu and
holding such information as a map from the values t̃pRq for each t̃ P t to the collection of
rows t|B for which t̃|R “ t|R. Thus, Line 16 comes with a linear cost over the size of the
table Pi.

Given that the time complexity of computing the symmetric closure of a relationship
is trivially linear while the time complexity of computing the transitive closure for a
relationship is upper-bounded by the Floyd–Warshall algorithm with a cubic time, this
leads to a worst-case time complexity of Op|db|O3

q time for computing each ℜi (Lines 17
and 18).

We can freely assume that the insertion cost of each morphism within the MTr¨, ¨s
table comes at a linear cost, while the sorting of each MTrLi, gjs comes with a cost of
Oppr` oqmr`o logpmqqwith m “ |db|Oβ. This phase clearly dominates over all the previous
ones, and thus we can freely assume that the time complexity of computing each mor-
phism is in Oppr` oqmr`o logpmqq. This leads to an overall time complexity of Op|gg|pr`
oqmr`o logpmqq for generating all the morphisms, which can be still upper-bounded by a
polynomial time complexity.

Proof (for Lemma 13). In Section 4.3, we observed that all the functions that were there
introduced can be computed in Op1q time via the GSM view update; these operations also
occur with the definition ofÑν at the basis of the graph rewriting operations outlined in
Section 6.5 and Figure 8: the worst case scenario for the evaluation of such expressions
refers to the evaluation of variables associated with nested relationships, thus referring to
at most β object per morphism Γ. Given that each rewriting operation considers one single
morphism at a time and that, within the worst-case scenario, we consider the cross-product
of the objects associated with both variables, the computation of each operation shall take
at most Opβ2q time.

Given |gg|mr`o the number of possible nested morphisms as determined from the
previous corollary, this overall leads to an overall time complexity of Op|gg|mr`oβ2q for
overall computing Algorithm 8.

Proof (for Corollary 3). This is a corollary for all the previous lemmas, as the composition of
polynomial-time algorithms leads to an overall algorithm of polynomial-time complexity.
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