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Abstract: The precise and robust localization of pupils is crucial for advancing medical diagnostics
and enhancing user experience. Currently, the predominant method for determining the center of the
pupil relies on the principles of multi-view geometry, necessitating the simultaneous operation of
multiple sensors at different angles. This study introduces a single-stage pupil localization network
named ResDenseDilateNet, which is aimed at utilizing a single sensor for pupil localization and
ensuring accuracy and stability across various application environments. Our network utilizes near-
infrared (NIR) imaging to ensure high-quality image output, meeting the demands of most current
applications. A unique technical highlight is the seamless integration of the efficient characteristics
of the Deep Residual Network (ResNet) with the Dense Dilated Convolutions Merging Module
(DDCM), which substantially enhances the network’s performance in precisely capturing pupil
features, providing a deep and accurate understanding and extraction of pupil details. This innovative
combination strategy greatly improves the system’s ability to handle the complexity and subtleties
of pupil detection, as well as its adaptability to dynamic pupil changes and environmental factors.
Furthermore, we have proposed an innovative loss function, the Contour Centering Loss, which is
specifically designed for irregular or partially occluded pupil scenarios. This method innovatively
calculates the pupil center point, significantly enhancing the accuracy of pupil localization and
robustness of the model in dealing with varied pupil morphologies and partial occlusions. The
technology presented in this study not only significantly improves the precision of pupil localization
but also exhibits exceptional adaptability and robustness in dealing with complex scenarios, diverse
pupil shapes, and occlusions, laying a solid foundation for the future development and application of
pupil localization technology.

Keywords: pupil localization; center determination; ResNet; dense dilated convolutions; NIR

MSC: 68T45

1. Introduction

Pupil localization technology is a method for precisely measuring the position of
the pupil and its movement relative to the head and is aimed at efficiently tracking eye
movements. This technology reveals the distribution of human visual attention, cognitive
processing, and emotional states. As a result, it has shown significant application value in
multiple fields such as psychology, human–computer interaction, driving safety assessment,
medical diagnosis, market research, and virtual reality. For instance, Cao utilized pupil
localization technology in the field of human–computer interaction, greatly enhancing
the interactive experience between users and computers as well as related devices [1].
Similarly, Ahmad and colleagues have applied this technology in the realm of intelligent
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driving, assessing the safety of the driving process by analyzing changes in the driver’s
visual state [2]. In the context of gaze estimation tasks for VR devices, the precision of
pupil tracking plays a pivotal role in determining the effectiveness and fluidity of the
human–computer interaction. When pupil tracking is highly accurate, it ensures that the
user’s gaze is correctly interpreted by the system, allowing for intuitive and responsive
interactions. This precision is especially critical in VR environments, where the user’s sense
of immersion and control is directly tied to how well the system can follow and respond
to their eye movements. Any discrepancy in tracking can disrupt the experience, leading
to misaligned actions, user frustration, and a diminished sense of presence within the
virtual environment.

In the field of pupil detection, existing localization methods primarily fall into two
categories: traditional methods and those based on deep learning, each with its unique
advantages and limitations. Regarding traditional methods, Song et al. have emphasized
a multi-template matching algorithm based on XLD contours [3]. This method locates
the pupil edge using XLD contours and ellipse-fitting techniques, achieving precise pupil
localization. It relies on classic image processing technology and is suitable for scenarios
where real-time performance is not a critical requirement. With the development of deep
neural networks and advancements in computing power, numerous innovative detection
algorithms have emerged. A typical example of a deep learning-based approach is the pupil
localization method using a hybrid vision transformer network proposed by Wang et al. [4].
This method initially uses a Convolutional Neural Network (CNN) to extract local feature
maps from eye images and then feeds these features into the encoder of a vision transformer
to capture global relationships, ultimately predicting the pupil center’s position accurately.
This approach combines the local-feature-learning capability of CNNs with the global
information processing of vision transformers, enhancing the accuracy and efficiency of
pupil localization. On the other hand, Jia and others have proposed a coarse-to-fine neural
network architecture, which includes stages of rough classification and fine regression,
further improving the accuracy of pupil detection [5]. This phased approach enhances the
precision and robustness of localization by fine-tuning after the preliminary positioning.
Common detection algorithms in pupil detection network workflows can be categorized
into single-stage and two-stage object detection algorithms. Single-stage object detection
algorithms, like the YOLO series [6] and SSD algorithms [7], perform object detection by
dividing the image into multiple small areas and setting anchor boxes of different sizes on
feature maps of different scales. Chen and others proposed a single-stage object detection
algorithm using a lightweight backbone network for feature extraction, aiming to reduce
the network size and to improve the inference speed, making it suitable for eye detection
tasks on small low-power computers [8]. In contrast, two-stage object detection algorithms,
like the R-CNN series [9], first extract regions of detected objects and then classify and
regress these object areas. Zhang and others proposed an improved MTCNN infrared
human eye detection algorithm, which offers good detection performance while ensuring
real-time capabilities, although it has limitations in target detection applications involving
complex scenes [10]. To better meet the real-time requirements of eye tracking and to better
adapt to mobile devices with limited computing resources, we simplified the training and
inference process, avoiding the steps of candidate region generation and selection. This
significantly reduces the computation requirements, resulting in an end-to-end single-stage
method that improves processing speed and better adapts to mobile devices with limited
computing power.

The development of pupil localization technology has gone through multiple stages,
with modern localization methods broadly categorized into four types: mechanical record-
ing, electrical recording, image recording, and near-infrared recording (NIR) [11]. Me-
chanical recording measures changes in pupil position through electromagnetic induction
signals. Although this method excels in accuracy, it may cause eye discomfort and has
relatively high manufacturing costs. In contrast, electrical recording uses electrode devices
to monitor changes in pupil position, offering lower costs and greater operability but



Mathematics 2024, 12, 2703 3 of 14

with larger measurement errors, which impact the data reliability to some extent. Image
recording captures eye images through cameras, followed by subsequent analysis and
processing. This method demonstrates excellent measurement precision; however, its per-
formance is somewhat affected by variations in light intensity. NIR employs near-infrared
photosensitive devices, measuring the state of the pupil’s position by analyzing the light
reflected from different structures of the eye. As a non-invasive technique, NIR significantly
enhances user comfort and performs well in terms of measurement accuracy. Furthermore,
with the advancement of virtual reality devices, NIR shows substantial market potential
in the consumer sector [12]. Consequently, this study has collected and organized a large
volume of NIR data and, based on the characteristics of this data, proposes an advanced
pupil localization network.

This study introduces an end-to-end, single-stage pupil localization system that is
specifically designed for NIR ocular images. The system achieves precise pupil localization
with good real-time performance, showing an excellent ability to meet the computational
power requirements of mobile devices. The core of this system lies in the adoption of
the ResDenseDilateNet network in combination with our original Contour Centering
Loss. ResNet, as a deep residual network, is widely recognized for its efficiency and
stability in the field of image recognition. Its skip connections effectively mitigate the
vanishing gradient problem, allowing the network to extract more complex features at
deeper levels. On the other hand, DDCM, through the combination of dense connections
and dilated convolutions, is capable of capturing multi-scale contextual information and
handling high-resolution features effectively. The ResDenseDilateNet network, integrating
dilated convolution [13] with a densely connected architecture [14], enhances the accuracy
and computational efficiency of pupil center localization through its efficient parameter
configuration and superior feature extraction capabilities. The Contour Centering Loss, a
novel loss function, further optimizes the accuracy of pupil localization by minimizing the
discrepancy between the pupil contour and the predicted center. This approach, merging
modern deep learning techniques with precise geometric analysis, not only boosts the
performance of the pupil localization system but also provides new perspectives and tools
for future research and applications in related fields. The main contributions of this inquiry
are summarized as follows:

(1) An end-to-end, single-stage pupil localization network, ResDenseDilateNet, is pro-
posed that significantly enhances the accuracy and computational efficiency of pupil
localization by integrating dilated convolution with a densely connected architecture.

(2) A loss function, named Contour Centering Loss, has been designed specifically for
irregular circles, which effectively optimizes localization precision by minimizing the
discrepancy between the pupil contour and its predicted center.

(3) By merging deep learning techniques with geometric analysis, the performance of
pupil localization has been substantially improved, offering vital technical support for
the development of interactive technologies in the electronics domain and applications
in medical diagnostics.

2. Methods

This research introduces an innovative end-to-end, single-stage pupil localization
network that has been meticulously developed to address the challenges of pupil segmen-
tation and localization in NIR images. The network, christened ResDenseDilateNet, is
illustrated in Figure 1. ResDenseDilateNet adeptly merges the principles of a Residual
Network (ResNet) [15] with a Dense Dilated Convolutions Merging Module. Furthermore,
the network employs a specially designed loss function, termed the Contour Centering
Loss, that has been exclusively tailored for accurate pupil localization. This unique loss
function focuses on minimizing the disparity between the predicted pupil contour and
its actual center, significantly enhancing the precision of localization. The integration of
ResNet effectively counters the prevalent issue of gradient vanishing during deep neural
network training. With the incorporation of skip connections [16], ResNet allows gradi-
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ents to directly traverse through a specific layer [17], aiding the network in mastering
identity mapping and ensuring consistent model performance even with an increased
network depth. The Dense Dilated Convolutions Merging Module, by expanding the spac-
ing within the convolutional kernel, enlarges the network’s receptive field. This strategic
augmentation enables the network to retain computational efficiency while substantially
improving its ability to capture long-range information, thus markedly enhancing the
model’s comprehension of spatial relationships in images.
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ResDenseDilateNet is capable of efficiently handling the complexities involved in
pupil localization while maintaining a high sensitivity to details. The implementation of
this approach not only improves the accuracy of pupil localization but also enhances the
model’s adaptability to various pupil textures and sizes.

2.1. Dilated Convolutions

Dilated convolution, also known as convolution with dilation, represents an advanced
design in convolutional network modules that is aimed at enhancing and broadening the
capabilities of traditional convolutional neural networks [18]. By incorporating techniques
based on dilated convolution, these modules effectively aggregate contextual information
from multiple scales while maintaining the resolution and coverage of images or feature
maps unchanged. The uniqueness of this module lies in its support for the exponential
expansion of the receptive field without relying on pooling layers or subsampling layers
to increase the size of the receptive field. Within dilated convolution modules, a series of
filters with exponentially growing strides are applied, facilitating in-depth analysis of the
input data [19]. This approach allows the network to capture a broader range of contextual
information without adding an extra computational burden or losing vital spatial informa-
tion. This characteristic makes dilated convolution particularly suitable for applications
requiring fine spatial resolution, such as image segmentation, object detection, and video
analysis. Dilated convolution operates by inserting a fixed number of spaces between each
element of the standard convolutional kernel [20], thereby increasing the effective size of
the convolutional kernel without actually increasing the number of its weights.

The operational principle of dilated convolution is intuitively elucidated in Figure 2.
Specifically, panel (a) illustrates the outcome of a 1-dilated convolution, which is akin to a
standard convolution, where the receptive field for each element spans a 3 × 3 area. Panel
(b) unveils the effect of a 2-dilated convolution, under which circumstances the receptive
field for each element is expanded to a 7 × 7 matrix. Panel (c) showcases the impact of a
4-dilated convolution, whereby the receptive field for each element is further enlarged to
15 × 15. The precise calculation formula for the size of the receptive field is presented in
Equation (1).

Fi+1 = (2i+2 − 1)× (2i+2 − 1) (1)
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The actual size of the dilated convolution kernel can be calculated using Equation (2),
where k denotes the size of the original convolution kernel, a represents the dilation rate,
and K signifies the size of the convolution kernel after dilation [21]. Dilated convolution
achieves an expansion of its size by inserting spatial units between adjacent elements of
the original convolution kernel, thereby broadening the data region processed without
directly increasing the number of parameters within the convolution kernel. This method
allows the network to effectively enlarge its receptive field without significantly increasing
its computational burden, catering to the extraction of features across varying scales. By
adjusting the dilation rate, researchers can flexibly control the spatial resolution of the
model while maintaining relative complexity constant, which is particularly valuable for
processing data with complex spatial structures [22].

K = k + (k − 1)(a − 1) (2)

2.2. Dense Dilated Convolutions Merging Module (DDCM)

The DDCM is a cutting-edge component in neural network architecture that is de-
signed specifically to boost the performance of Convolutional Neural Networks (CNNs)
when dealing with image and video analysis tasks [23]. Central to the DDCM is its integra-
tion of dilated convolutions with dense connectivity, as illustrated in Figure 3. The module
layers multiple dilated convolutional layers, each utilizing a unique dilation rate. This setup
is intended to enable the network to learn features across various scales simultaneously,
thereby enhancing its ability to comprehend the complex structures present in images.
Moreover, the incorporation of dense connectivity means that the output from each layer
is not just transferred to the subsequent layer but also combined with the outputs from
all previous layers. This approach of dense information flow ensures that the network
effectively leverages the features learned from earlier layers throughout its layers.
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This architecture, which merges dilated convolutions with dense connectivity, sig-
nificantly enhances the model’s efficiency and precision in processing advanced image
features. In the specific task of pupil localization, the model is required to accurately iden-
tify the subtle details of the pupil while also understanding the overall context of the image.
This challenge demands that the model concurrently processes fine local information and
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extensive background knowledge. The DDCM, through its innovative structural design,
provides the model with the multi-scale information necessary for capturing complex visual
patterns. This structure allows each layer to not only utilize the detailed features from
the previous layer but also to integrate information from all the preceding layers, thereby
achieving higher accuracy and robustness in identifying pupil positions. This approach
effectively addresses challenges posed by variations in lighting and other environmental
factors, especially when dealing with NIR images.

2.3. Contour Centering Loss

Existing pupil center localization techniques primarily rely on directly determining
the center point position from the outputs of detection or segmentation algorithms. How-
ever, given that the pupil often presents as an irregular circle, coupled with significant
variations in pupil shape across different individuals, these methods frequently result in
substantial localization errors and may adversely affect pupil tracking performance. To
address this challenge, this study introduces an innovative loss function design specifically
tailored to accurately determine the center positions of irregular circular objects. This loss
function aims to optimize the precision of pupil center localization while enhancing the
system’s adaptability to the diversity of pupil shapes, thereby improving overall robust-
ness. Through the meticulous design of this loss function, we can significantly reduce
localization errors due to the irregularity of pupil shapes while maintaining a high degree
of accuracy. Figure 4 illustrates a conceptual diagram of the principles behind this loss
function, providing a visual explanation of its mechanism for the precise center localization
in irregular shapes.
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The loss function is contingent upon the computation of the curvature at points
on the pupil boundary, as defined by Equation (3). Here, Ki represents the curvature,
and the points (xi−1, yi−1) and (xi+1, yi+1) are the coordinates of two points adjacent
to (xi, yi) along the segmented boundary. The formula calculates the measure of the
curvature by determining the difference in the tangent values of the angle formed by
these three points. During pupil movement, it is common for the eyelids to partially
obscure the boundary, resulting in segments that exhibit a straight-line appearance with
curvature values approaching zero. Such occurrences can substantially impede the accurate
localization of the pupil’s center. To address this, the method introduces a curvature
threshold to effectively eliminate boundary points that yield aberrant curvature information
due to occlusion, thereby enhancing the precision of pupil center localization.

Ki = |arctan2(yi+1 − yi, xi+1 − xi)− arctan2(yi − yi−1, xi − xi−1)| (3)

The pupil typically exhibits an elliptical characteristic, and uniform sampling along its
boundary may lead to a displacement in the estimated center of the pupil. To address this
issue and to select a higher density of points in areas of lower curvature, thus reducing the
positional offset of the pupil’s center, this study employs a sampling strategy based on the
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reciprocal of the curvature, as outlined in Equation (4). Within this equation, a small fixed
constant ϵ is incorporated to ensure the stability of the sampling approach and to prevent
division by zero in regions where the curvature is minimal.

Ri =
1

Ki + ϵ
(4)

Subsequently, the normal equations at the aforementioned sampled points are metic-
ulously calculated, as demonstrated in Equation (4). Initially, it is necessary to calculate
the gradient mi at the sampling point Pi as well as at its adjacent points Pi−1 and Pi+1. This
process enables the precise definition of the normals to the curve at each sampled point.
Upon obtaining the normals, the coordinates of the intersection point between two normals
are calculated, as demonstrated in Equation (6). This equation outlines the method for
determining the precise coordinates where the two geometric lines intersect, providing a
crucial step in the analysis process.

mi =
yi+1−yi−1
xi+1−xi−1

ni = − 1
mi

y − yi = ni(x − xi)

(5)

xint = n1x1−n2x2+y2−y1
n1−n2

yint = n1(xint − x1) + y1
(6)

In practical applications, image noise and imperfections in boundary segmentation
lead to the formation of a dispersed region of intersection points. The DBSCAN clustering
algorithm [24], a density-based clustering method, is adept at identifying areas of high
density and considering them as distinct clusters. Therefore, we employ the DBSCAN algo-
rithm to manage the scattered intersection points within the image. This algorithm clusters
tightly grouped points by analyzing the density relationship between each point and its
neighbors, subsequently calculating the centroid of the cluster. The centroid represents the
optimal estimate of the central point within the original dispersed area using the calculation
process outlined in Equation (7). This method robustly addresses the challenges posed
by image noise and imperfect boundary segmentation, thereby enhancing the accuracy of
pupil center determination.

xcenter =
1
n

n
∑

i=1
xint−i

ycenter =
1
n

n
∑

i=1
yint−i

(7)

Finally, the deviation loss is calculated using the mean squared error (MSE) func-
tion [25], as depicted in Equation (8). Here, ci represents the coordinates of the actual
center point, ĉi denotes the coordinates of the predicted center point, and N signifies the
number of image samples. This function constrains and calibrates the offset of the center
coordinates. Thus, we have successfully developed a comprehensive loss function tailored
for pupils and other irregular circular shapes, enhancing the model’s sensitivity to central
point information and achieving greater accuracy and robustness.

MSE =
1
N

N

∑
i=1

(ci − ĉi)
2 (8)

3. Experiments and Results
3.1. Experimental Environment and Data

The experiment utilized a deep learning architecture based on the ResNet network,
which operated on a high-performance computer equipped with a 13th-generation Intel
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Core i7 processor and two NVIDIA GeForce RTX 4090 graphics cards, each with 24 GB of
VRAM. The system ran on Ubuntu 20, with Pytorch 1.11.0 selected as the deep learning
framework due to its suitability for complex image recognition tasks. The training configu-
ration for the ResNet model included a batch size of 64, and to better handle high-resolution
images, the input image size was adjusted to 320 × 320 pixels, which aided in capturing
more detailed image features. The optimizer chosen was the Stochastic Gradient Descent
(SGD), with a learning rate set at 0.01 and a decay momentum of 0.0001. Additionally, the
experiment incorporated weight decay and data augmentation techniques to enhance the
model’s generalization capability.

This study collected and manually annotated a dataset for eye tracking and pupil
localization in virtual reality (VR) glasses application scenarios. The dataset comprises
22,330 near-infrared (NIR) images from 120 participants. The purpose of data collection
was clearly communicated, and participation was entirely voluntary. The participants
included university students as well as employees across various age groups. As shown
in Figure 5, capturing a comprehensive range of eye states, including eye opening and
closing, as well as pupil positions. The creation of the dataset took into account individual
differences, environmental lighting interference, and variables such as eyeglass wear to
ensure its wide applicability and representativeness in real-world applications. At the same
time, NIR technology meets the current demands for iris recognition applications and is
better suited for VR devices in terms of iris-based payment and security verification.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 15 
 

posed by image noise and imperfect boundary segmentation, thereby enhancing the ac-
curacy of pupil center determination. 

center int
1

center int
1

1

1

n

i
i
n

i
i

x x
n

y y
n

−
=

−
=

=

=




 (7)

Finally, the deviation loss is calculated using the mean squared error (MSE) function 
[25], as depicted in Equation (8). Here, ic  represents the coordinates of the actual center 

point, ˆ ic   denotes the coordinates of the predicted center point, and N   signifies the 
number of image samples. This function constrains and calibrates the offset of the center 
coordinates. Thus, we have successfully developed a comprehensive loss function tailored 
for pupils and other irregular circular shapes, enhancing the model’s sensitivity to central 
point information and achieving greater accuracy and robustness. 

( )2

1

1 ˆMSE
N

i i
i

c
N

c
=

= −  (8)

3. Experiments and Results 
3.1. Experimental Environment and Data 

The experiment utilized a deep learning architecture based on the ResNet network, 
which operated on a high-performance computer equipped with a 13th-generation Intel 
Core i7 processor and two NVIDIA GeForce RTX 4090 graphics cards, each with 24 GB of 
VRAM. The system ran on Ubuntu 20, with Pytorch 1.11.0 selected as the deep learning 
framework due to its suitability for complex image recognition tasks. The training config-
uration for the ResNet model included a batch size of 64, and to better handle high-reso-
lution images, the input image size was adjusted to 320 × 320 pixels, which aided in cap-
turing more detailed image features. The optimizer chosen was the Stochastic Gradient 
Descent (SGD), with a learning rate set at 0.01 and a decay momentum of 0.0001. Addi-
tionally, the experiment incorporated weight decay and data augmentation techniques to 
enhance the model’s generalization capability. 

This study collected and manually annotated a dataset for eye tracking and pupil 
localization in virtual reality (VR) glasses application scenarios. The dataset comprises 
22,330 near-infrared (NIR) images from 120 participants. The purpose of data collection 
was clearly communicated, and participation was entirely voluntary. The participants in-
cluded university students as well as employees across various age groups. As shown in 
Figure 5, capturing a comprehensive range of eye states, including eye opening and clos-
ing, as well as pupil positions. The creation of the dataset took into account individual 
differences, environmental lighting interference, and variables such as eyeglass wear to 
ensure its wide applicability and representativeness in real-world applications. At the 
same time, NIR technology meets the current demands for iris recognition applications 
and is better suited for VR devices in terms of iris-based payment and security verification. 

 
Figure 5. Examples of images from the dataset. Figure 5. Examples of images from the dataset.

During the data collection process, the left and right eyes of each participant were
recorded independently to minimize the impact of individual physiological differences on
the accuracy of the data, with a schematic of the collection process illustrated in Figure 6.
Participants were asked to open and close their eyes under various gaze directions (up,
down, left, right, forward), employing a multi-angle collection strategy aimed at providing
a rich sample set that reflects the diversity of eye states. This, in turn, enhances the
training effectiveness and generalization capability of eye-tracking algorithms. Particularly
noteworthy is that the collected near-infrared (NIR) images vividly reveal the details of the
eye structure, which is crucial for precise pupil localization and the accurate determination
of eye states. The chosen shooting distance of 7 cm not only complies with the current usage
scenarios of VR glasses but also optimizes image quality, avoiding distortion issues that
might arise from too close a distance. Furthermore, all images were manually annotated,
offering detailed information on the open or closed state of the eyes and the precise position
of the pupil.
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3.2. Evaluation Metrics

In this study, we introduced several evaluation metrics to thoroughly analyze and
measure the comprehensive performance of the pupil localization model; these included
the mean Intersection over Union (mIoU) [26], mean absolute error (MAE), and relative
positional error (RPE) [27], as illustrated in Equation (9). These metrics aim to comprehen-
sively reveal the model’s efficacy and precision from multiple dimensions. The mIoU, an
amalgamation of the Intersection over Union (IoU) across all classes, offers a balanced and
comprehensive measure of performance. It provides deep insights into the model’s perfor-
mance by holistically considering the accuracy of the model in correctly segmenting the
pupil’s region and its completeness. The mIoU reflects the proportion of overlap between
the predicted segmentation and the ground truth among all possible regions, offering a
robust evaluation of both the precision and recall of the model’s segmentation accuracy.
This combined evaluation method is particularly suited for scenarios demanding high
accuracy and completeness in segmentation tasks. The MAE provides an intuitive and pre-
cise quantification of the average deviation between the model’s predicted pupil positions
and the actual observations [28]. In the context of pupil localization, the magnitude of the
MAE directly impacts the final system’s usability and user experience, as any deviation
in prediction could lead to a misjudgment of user focus or the incorrect interpretation of
visual information. The RPE on the other hand, considers the relative difference between
predicted and actual positions, a crucial metric in applications requiring high-precision
geolocation or refined visual tracking. It not only measures the model’s performance in
terms of localization accuracy but also reflects its robustness in dealing with complex or
changing environments.

mIoU =
1
N

N
∑

i=1

TPi
TPi + FPi + FNi

MAE =
1

H × W

H
∑

r=1

W
∑

c=1

∣∣∣∣P(r, c)− G(r, c)
∣∣∣∣

RPE =

√
(xest − xtrue )

2 + (yest − ytrue )
2

D

(9)

In Equation (9), TP denotes the number of true positives, or correctly predicted positive
instances, while FP represents the number of negative instances incorrectly predicted as
positive, and FN refers to the number of positive instances incorrectly predicted as negative.
H and W correspond to the height and width of the input image, respectively, and P(r, c)
and G(r, c) represent the pixel points of the predicted probability map and the true labels.
xtrue and ytrue are the coordinates of the actual pupil center, whereas xest and yest are the
coordinates of the determined pupil center. D serves as a normalization factor, which,
in the context of pupil localization experiments, is the diameter of the pupil. Through
comprehensive evaluation, it is possible not only to gain a holistic understanding of
the performance of the pupil localization model but also to discern the challenges and
limitations the model may encounter in practical applications.

3.3. File Formats for Graphics

In the fields of computer vision and biometric systems research, precise segmentation
of the pupil is critical, especially in the process of localizing the pupil center. Accurate
identification of the pupil boundary not only directly impacts the accuracy of localiza-
tion but also significantly affects the overall system performance. In light of this, the
current study aims to develop an efficient and innovative deep learning model, namely
ResDenseDilateNet, that is focused on enhancing the precision and robustness of pupil
segmentation. ResDenseDilateNet combines the benefits of residual learning, densely
connected networks, and dilated convolutions, creatively addressing key challenges in
pupil segmentation. The core of this network design lies in improving the capture of pupil
edge details while reducing the sensitivity to noise, ensuring highly precise and reliable
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segmentation results. To comprehensively evaluate the performance of ResDenseDilateNet,
a series of comparative experiments were conducted, meticulously comparing it against
several classical and cutting-edge deep learning networks in the field, as shown in Table 1.

Table 1. Comparative experiments on the pupil segmentation effect.

Parameters mIoU MAE Parameters (M)

SegNet 0.098 0.043 43.87
UNet 0.095 0.048 36.04

PSPNet 0.096 0.044 49.59
SFNet 0.098 0.043 37.76

ResDenseDilateNet 0.098 0.042 19.91

From Table 1, it is evident that this study meticulously analyzed five different deep
neural network architectures, including the widely applied SegNet, UNet, PSPNet, SFNet,
and our innovatively proposed ResDenseDilateNet. To comprehensively and deeply eval-
uate the performance of these models on specific tasks, three key quantitative metrics
were employed: mIoU, MAE, and the number of model parameters (Parameters, in mil-
lions). These metrics together form an all-encompassing evaluation system aimed at deeply
mining and comparing the performance and efficiency of these models across various
dimensions. In terms of the mIoU, all networks compared exhibited relatively close scores,
indicating a certain level of similarity in overall performance among these models. How-
ever, it is noteworthy that our proposed ResDenseDilateNet took the lead in this metric.
Although the advantage is not overwhelmingly significant, it still reflects the potential and
effectiveness of ResDenseDilateNet in terms of comprehensive accuracy. Yet, when we turn
to the MAE metric, the performance of ResDenseDilateNet stands out prominently, with a
score of 0.042, significantly outperforming all other models, especially when compared with
the industry benchmark UNet model, showing an improvement margin of 12.5 percentage
points. This significant performance enhancement not only marks a notable advance in the
accuracy of pupil boundary determination but also signifies the importance of such preci-
sion improvements in pupil localization tasks, particularly for determining the center of the
pupil. Additionally, in terms of model parameter efficiency, ResDenseDilateNet, with only
19.91 million parameters, significantly surpasses other models. This result reveals the inno-
vation and optimization in the structural design of ResDenseDilateNet. A lower number of
parameters not only means reduced storage requirements for the model but also implies
faster inference speeds and lower energy consumption in practical applications, such as
real-time processing and deployment on mobile devices. This high-efficiency characteristic
makes ResDenseDilateNet an ideal choice for resource-constrained environments.

3.4. Evaluating the Accuracy of Pupil Localization

In this study, we introduce an innovative central loss function designed to enhance
the accuracy of pupil center determination, especially in cases involving irregular shapes
or partial occlusions of the pupil. This new loss function deeply considers the challenges
faced by existing localization techniques when dealing with high variability and complex
visual environments and aims to address the insufficient accuracy of traditional algorithms
under these conditions. By precisely locating the pupil center, this method significantly
improves the accuracy and reliability of eye-tracking technologies and visual attention
analysis. To comprehensively evaluate the performance of our proposed central loss func-
tion, a series of detailed and systematic experiments were designed. These experiments
not only tested the effectiveness of the loss function under various challenging conditions
but also conducted an in-depth comparative analysis with several advanced loss functions
widely used in the fields of object detection and image segmentation today. These include
CIoU (Complete Intersection over Union), SIoU (Scale-Invariant Intersection over Union),
and EIoU (Enhanced Intersection over Union), each demonstrating significant effective-
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ness in improving localization accuracy, adapting to scale changes, and enhancing model
generalization capabilities, serving as important tools in the field of computer vision.

During the experimental phase of this research, 12 independent and diverse test
datasets were meticulously selected to ensure that the evaluation results are comprehensive,
highly objective, and credible. These carefully chosen datasets cover a range of pupil images
from simple to complex and from standardized to those presenting unique challenges,
ensuring the diversity of experimental conditions and the generalizability of the results.
Each dataset was used to thoroughly assess and compare the performance of different
loss functions on the critical task of pupil center determination. We paid special attention
to the core metric of relative error, as it is a key parameter for measuring the efficacy of
pupil localization algorithms. The magnitude of relative error directly reflects the deviation
between the model’s predicted pupil center position and the actual position, serving as an
intuitive and effective metric for evaluating the localization accuracy. This metric is crucial
for understanding and improving pupil localization technology, especially when applied
in precise eye-tracking and visual attention research fields. In Table 2, we meticulously
present the detailed comparison results using these different loss functions on the selected
test datasets. Through this data, we can deeply analyze and interpret the performance
differences among various loss functions in pupil localization tasks and their specific impact
on the final localization accuracy. Such comparisons not only provide a solid evaluation
foundation for our central loss function but also offer valuable insights and implications
for the research on pupil localization technology in the broader field of computer vision.

Table 2. Comparison of the influence of different loss functions on the RPE.

Trial
Loss

CIoU (%) SIoU (%) EIoU (%) Center (%)

1 0.51 0.64 0.88 0.76
2 0.78 0.59 1.09 0.80
3 0.67 1.18 1.16 0.69
4 0.59 1.73 0.16 0.11
5 1.71 1.23 0.75 0.43
6 1.20 0.99 0.77 0.33
7 1.13 0.74 0.89 0.59
8 1.88 0.98 0.54 0.46
9 1.27 0.96 1.28 0.48
10 0.77 1.73 0.58 0.66
11 1.21 1.32 0.70 0.42
12 1.36 0.59 0.45 0.35

Through an in-depth analysis of the data presented in Table 2, it is clearly observed
that the central loss function developed in this study demonstrates exceptional accuracy
and notable stability in the task of determining the pupil center position compared with
several other loss functions widely used in the field of computer vision, such as CIoU,
SIoU, and EIoU. The primary advantage of this novel central loss function lies in its precise
prediction capability for the pupil center position, particularly in processing pupil images
with irregular shapes and complex textures, where it exhibits outstanding recognition
and localization accuracy. More critically, the central loss function has shown a high
degree of consistency and stability across diverse testing conditions and datasets with
varying characteristics. This indicates that the function can provide solid and reliable
pupil position determination in a wide range of complex and variable visual environments,
significantly reducing the fluctuation and error rate of prediction results. In practical
application scenarios, such stability and robustness are crucial as they ensure that the
algorithm remains efficient and accurate under various conditions. The characteristics of
the central loss function not only enhance its application potential in visual recognition
and precise localization but also offer important directions for the future development of
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pupil localization technology. Its excellent performance suggests broad applications in
fields such as eye tracking, facial recognition, augmented reality, and human–computer
interaction, greatly improving the performance and user experience of these technologies.

To more comprehensively evaluate the algorithm proposed in this study and highlight
its significant advantages over traditional methods in handling complex pupil localization
tasks, ablation experiments were conducted, with the results shown in Figure 7. Specif-
ically, our experimental framework mainly covered the following key variants: (1) As a
performance benchmark, we first utilized the unmodified ResNet architecture. (2) Building
on this, we introduced the DDCM to explore its enhancing effect on the model performance.
(3) Subsequently, we integrated our original Contour Centering Loss into ResNet to assess
its effect on improving accuracy. (4) Finally, we simultaneously incorporated DDCM and
Contour Centering Loss into the ResNet architecture to verify the synergistic effect of these
two technologies. To precisely quantify and compare the effects of these configurations, we
selected RPE as the key evaluation metric. This metric not only reflects the model’s capa-
bility in precise localization but also serves as an important tool for measuring algorithm
performance. Through these thorough ablation experiments, we can not only intricately
dissect the impact of each individual component on the overall algorithm performance but
also validate the efficiency and superior performance of our proposed composite algorithm
in challenging visual tasks.
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From Figure 7, it is apparent that the baseline performance of the original ResNet
model on the RPE reveals its inherent limitations in processing complex visual tasks,
highlighting the urgent need for improvements to the existing architecture. By integrating
the DDCM into the ResNet architecture, we achieved a significant expansion of the receptive
field. The use of dense dilated convolution techniques effectively enhanced the network’s
spatial resolution and feature-extraction capability, allowing the model to capture multi-
scale contextual information in images more intricately. This structural improvement
resulted in quantifiable performance enhancements in localization accuracy, enabling the
model to parse visual information across a broader spatial scale. Subsequently, we tested the
integration of the Contour Centering Loss function into the ResNet architecture separately,
with the aim of improving the model’s precision in recognizing image edges and contour
features. The introduction of Contour Centering Loss significantly boosted the model’s
responsiveness to contour information, thereby enhancing its localization accuracy. This
loss function particularly emphasizes the model’s capability in boundary localization and
pupil center determination, which is crucial for pupil localization tasks that rely heavily
on precise contour detection. The significant performance improvement of the ResNet
model with both DDCM and Contour Centering Loss on the RPE metric highlights the
complementary effect of the proposed modules in enhancing the performance of deep
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neural networks. The synergistic action of DDCM’s receptive field expansion and Contour
Centering Loss’s enhancement of contour features notably improved the model’s feature
representation capability and spatial localization accuracy. This fusion strategy not only
enhanced the network’s ability to handle complex visual scenarios but also provided
empirical evidence for the further optimization of deep learning architectures.

4. Conclusions

In this paper, we introduce ResDenseDilateNet, an efficient single-stage pupil local-
ization network designed to significantly enhance the precision and robustness of pupil
localization. The network innovatively combines the efficient processing capabilities of
ResNet with the refined feature capture properties of the DDCM, enabling more accurate
identification and understanding of the subtle features of the pupil, thus effectively making
it applicable to a variety of complex and variable visual environments. Another highlight
within this study is the introduction of the Contour Centering Loss function, an innovative
loss function specifically designed for dealing with irregularly shaped or partially occluded
pupils. It not only significantly improves the accuracy of pupil localization but also en-
hances the network’s adaptability in handling the diversity of pupil shapes and complex
occlusion conditions. Through this approach, ResDenseDilateNet demonstrates exceptional
flexibility and stability while maintaining high precision. The successful application of
this technology promises a widespread impact and application prospects in fields such as
human–computer interaction, medical diagnosis, and virtual reality. In future research,
we plan to focus on the in-depth optimization of the network architecture with the aim of
significantly enhancing its ability to capture multi-scale features and dynamically adjust
weights. This will improve both its processing speed and operational efficiency while
also ensuring better performance in complex scenarios, making it more aligned with the
growing demands of mobile and embedded applications.
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