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Abstract: The ABS (atom-bond sum-connectivity) index of a graph G is denoted by ABS(G) and is

defined as ∑xy∈E(G)

√
(dx + dy)−1(dx + dy − 2), where dx represents the degree of the vertex x in

G. In this paper, we derive the best possible upper bounds on the ABS index for fixed-order trees
possessing a given maximum degree, which provides a solution to the open problem proposed quite
recently by Hussain, Liu and Hua.
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1. Introduction

For terminology and notions concerning graph theory or chemical graph theory, we
refer the reader to books [1,2] or [3,4], respectively.

A property of graphs that remains the same under graph isomorphism is referred
to as a graph invariant [5]. The graph invariants that take only numerical quantities are
commonly known as topological indices in chemical graph theory [4]. It is important
to note that the choice of topological index depends on the specific application and the
structural features of interest.

Various topological indices capture different aspects of molecular structure and prop-
erties to aid in the prediction of molecular characteristics, and they are often used in QSPR
(quantitative structure–property relationship) studies and cheminformatics to correlate the
structure of chemical compounds with their properties or activities [6].

A common tool in mathematical chemistry to predict the physico-chemical character-
istics of chemical compounds is the connectivity index [7], which is a topological index
introduced in the mid-1970s. For a graph G, this index is represented by R(G) and is
defined as

R(G) = ∑
xy∈E(G)

(dx dy)
−1/2,

where E(G) is used for representing the edge set of G, and dx is used for representing the
degree of the vertex x in G. (If two or more graphs are under consideration at once, then
we use dG(x) instead of dx to represent the degree of x in G.) To discover more about the
connectivity index, see the books [8–10] and survey papers [11,12].

The atom-bond connectivity index (ABC index) [13,14] as well as the sum-connectivity
(SC) index [15] are variants of the connectivity index, which were introduced with the aim
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of improving QSAR studies involving topological indices. These two indices for a graph G
are defined as

ABC(G) = ∑
xy∈E(G)

√
(dx dy)−1(dx + dy − 2) and SC(G) = ∑

xy∈E(G)

(dx + dy)
−1/2.

We remark here that both the SC index and the connectivity index take into account only the
degrees of atoms in a molecular graph, while the ABC index takes into account the degrees
of both atoms and bonds in a molecular graph, providing a more detailed characterization
compared to some indices that focus only on atoms or bonds individually. To discover
more about the ABC index, see the surveys [16–20] and the related papers cited therein.
Particularly, the reader can consult [21,22] for the solution of a well-researched problem
on this index. Moreover, the surveys [19,23] and the related papers cited therein can be
consulted for additional information about the SC index.

The atom-bond sum-connectivity index (ABS index) [24] can be considered as a variant
of each of the ABC, connectivity and SC indices. For a graph G, this index is defined as

ABS(G) = ∑
xy∈E(G)

√
(dx + dy)−1(dx + dy − 2).

We remark that the ABS is a particular form of a more general index studied in [25].
Although the ABS index has been introduced quite recently, a considerable number

of publications on this index have already appeared. In [26–28], this index was not only
examined for its chemical applications but its mathematical aspects were also investigated.
Some results regarding the extremum values of the ABS index of trees having a fixed number
of degree-one and fixed-order vertices can be found in [29,30]. The ABS index was directly
compared with the SC index in [31]; see also [32], where several relationships between the
ABS index and some other connectivity indices were derived; see [33] for the general case.
The greatest values of this index over certain families of graphs with given parameters were
studied in [34]. The study on the extremum values of this index of fixed-order chemical trees,
chemical unicyclic graphs, chemical bicyclic graphs and chemical tricyclic graphs was carried
out in [35]. The ABS index of line graphs was studied in [36]. Some other extremal problems
regarding the ABS index of trees were addressed in [37,38].

For a graph G and x ∈ V(G), we define NG(x) = {α : αx ∈ E(G)}; particularly,
every element of this set is referred to as a neighbor of x. Also, x is a pendent vertex if
dG(x) = 1, and x is branching if dG(x) > 2. Moreover, x is referred to as a claw if dG(x)− 1
of its neighbors are pendent. Let V0(G) represent the set of pendent vertices of G. Define
V1(G) = {y ∈ V(G) : NG(y) ∩ V0(G) ̸= ∅}. The maximum degree of G is represented
as ∆ = ∆(G). The graph that results from G by removing x ∈ V(G) is represented by
G − x. Also, the graph that results from G by deleting xy ∈ E(G) is represented as G − xy.
Similarly, if xy ̸∈ E(G), then G + xy represents the graph that is constructed from G after
inserting the edge xy. A pendent path P = v0v1 · · · vr in a graph G is a nontrivial path such
that dG(v0) = 1, dG(vr) ≥ 3, and dG(vi) = 2 whenever 2 ≤ i ≤ r − 1. We call the vertices v0
and vr as the end vertices of P. The number r is called the length of the pendent path P.
When r equals 1, P represents a pendent edge. Consider T as a tree with n = |V(T)| and
∆ = ∆(T). When ∆ equals 2, then T = Pn. Also, when ∆ equals n − 1, then T = K1,n−1.
Thus, for the subsequent discussion, we assume that ∆ lies between 3 and n − 2.

We are interested in the following problem, posed recently in [39]:

Problem 1. Let T(n, ∆) denote the class of all n-order trees with a maximum degree of ∆. Find the
tree(s) possessing the largest ABS index over T(n, ∆).

The next section gives a solution to Problem 1 when ∆ ∈ {3, 4}. In Section 3, a solution
to Problem 1 is provided when 3 ≤ ⌈n/2⌉ ≤ ∆ ≤ n − 2. Finally, Problem 1 with the
constraints 5 ≤ ∆ < ⌈n/2⌉ is addressed in Section 4, where we utilize computer software
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to determine trees possessing the largest ABS index over T(n, ∆) for every pair (n, ∆)
satisfying 5 ≤ ∆ < ⌈n/2⌉ and 11 ≤ n ≤ 16. Based on the structures of the obtained
extremal trees, we pose two conjectures.

2. Trees with Maximum Degree 3 or 4

This section is concerned with a solution to Problem 1 when ∆ ∈ {3, 4}. The solution
to Problem 1 for ∆ = 4 and n ≥ 11 follows from Theorem 12 of [24] because the trees
possessing the largest ABS index over T(n, 2) ∪T(n, 3) ∪T(n, 4) have a maximum degree
of 4 for n ≥ 11 (see Theorem 12 in [24]). Also, T(6, 4) consists of exactly one graph. The
graphs with the greatest ABS index in T(n, 4) with 7 ≤ n ≤ 10 are given in Figure 1; these
trees are found by utilizing computer software. In what follows, we provide a solution to
Problem 1 when ∆ = 3.

n = 7 n = 8

n = 9 n = 10

Figure 1. The trees possessing the greatest ABS index in T(n, 4) with 7 ≤ n ≤ 10.

The number of edges in an n-order tree T with a maximum degree of 3 that join the
vertices of degrees α and β is denoted by mα,β. The ABS index can therefore be expressed
in terms of mα,β, as given below:

ABS(T) = ∑
1≤α≤β≤3

√
1 − 2

α + β
mα,β, (1)

Let nα represent the number of degree α vertices in tree T. Then,
3

∑
α=1

nα = n, (2)

3

∑
α=1

α · nα = 2(n − 1), (3)

∑
1≤α≤3

α ̸=β

mβ,α + 2mβ,β = β · nβ, β = 1, 2, 3. (4)

Theorem 1. Let T(n, 3) denote the class of all n-order trees such that ∆ = 3.

(a). If n is even and n ≥ 4, then the largest ABS index in T(n, 3) is(
3
√

2 + 2
√

6
12

)
n +

3
√

2 − 4
√

6
6

,

which is possessed by only those trees that consist of vertices of degrees 1 and 3; for an example,
see Figure 2.
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(b). If n is odd and n ≥ 7, then the largest ABS index in T(n, 3) is(
3
√

2 + 2
√

6
12

)
n +

15
√

2 − 70
√

6 + 24
√

15
60

,

which is possessed by only those trees that have only one vertex with a degree of 2, whose both
neighbors have degree 3; for an example, see Figure 3.

Figure 2. Examples of trees possessing the greatest ABS index in the class T(10, 3).

Figure 3. Examples of trees possessing the greatest ABS index in the class T(11, 3).

Proof. For the unknowns m1,3, m3,3, n3, n2 and n1, we solve Equations (2)–(4). The values
of m1,3 and m3,3 are provided below:

m1,3 =
1
4
(2n + 4 − m2,3 − 2m2,2 − 5m1,2), (5)

m3,3 =
1
4
(2n − 8 − 3m2,3 − 2m2,2 + m1,2). (6)

By utilizing Equations (5) and (6) in Equation (1), we arrive at the following equation:

ABS(T) =

(
3
√

2 + 2
√

6
12

)
n +

3
√

2 − 4
√

6
6

+

(
2
√

6 − 15
√

2 + 8
√

3
24

)
m1,2

+

(
3
√

2 − 2
√

6
12

)
m2,2 +

(
8
√

15 − 5
√

2 − 10
√

6
40

)
m2,3. (7)

Let

ΓABS(T) =

(
2
√

6 − 15
√

2 + 8
√

3
24

)
m1,2 +

(
3
√

2 − 2
√

6
12

)
m2,2

+

(
8
√

15 − 5
√

2 − 10
√

6
40

)
m2,3. (8)
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Thus, Equation (7) can be rewritten as follows:

ABS(T) =

(
3
√

2 + 2
√

6
12

)
n +

3
√

2 − 4
√

6
6

+ ΓABS(T). (9)

Observe that

ΓABS(T) ≈ −0.10240 m1,2 − 0.05469 m2,2 − 0.01455 m2,3 ≤ 0, (10)

which means that it suffices to search tree T for which ΓABS(T) is maximum in order to
achieve the greatest values of the ABS index of T.

(a). Suppose that n is even and n ≥ 4. Let T4 be the star graph of order 4. Let Tn+2
denote the tree formed by attaching two new pendent vertices at a pendent vertex of Tn.
Thus, it is always possible to construct an n-order tree consisting of only vertices of degrees
1 and 3 when n is even and n ≥ 4; for such a tree, the value of ΓABS is 0. Thus, part (a) now
follows from (8) and (10).

(b). Suppose that n is odd and n ≥ 7. Then, every n-order tree T with a maximum
degree of 3 possesses at least one vertex of degree 2. However, (8) or (10) imply that

ΓABS(T) ≤
8
√

15 − 5
√

2 − 10
√

6
20

(11)

with equality if and only if n2 = 1, m2,3 = 2 and m1,2 = m2,2 = 0. Let T∗
7 denote the tree

with 7 vertices depicted in Figure 4. Denote the constructed tree by T∗
n+2 by attaching two

new pendent vertices at a pendent vertex of T∗
n for odd n ≥ 7. Thus, it is always possible to

construct an n-order tree such that ∆ = 3 and where it only has a single vertex with a degree
of 2, whenever n is odd and n ≥ 7; for such a tree, the value of ΓABS is 8

√
15−5

√
2−10

√
6

20 .
Thus, part (b) now follows from (8) and (11).

Figure 4. The tree T∗
7 used in the proof of Theorem 1.

3. On n-Order Trees of Maximum Degree at Least ⌈n/2⌉
This section is devoted to finding a solution to Problem 1 when ∆ ≥ ⌈n/2⌉. Before

proving the main result of the present section, we prove a crucial lemma.

Lemma 1. For a tree T, take x, y ∈ V(T), satisfying dT(x) > dT(y) ≥ 2. Also, take xx0, yy0 ∈
E(T), where y0 is pendent and x0 does not lie on the unique path connecting x and y. Let
NT(x0) \ {x} = {x1, x2, · · · , xr−1} with r ≥ 2. Assume that T′ is the tree formed from T by
removing the edges x0x1, x0x2, · · · , x0xr−1 and inserting the edges y0x1, y0x2, · · · , y0xr−1. Then,

ABS(T′) > ABS(T).
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Proof. Observe that

ABS(T′)− ABS(T) =

√
1 − 2

dT(y) + r
+

√
1 − 2

dT(x) + 1

−
√

1 − 2
dT(x) + r

−
√

1 − 2
dT(y) + 1

=

(√
1 − 2

dT(y) + r
−
√

1 − 2
dT(x) + r

)

+

(√
1 − 2

dT(x) + 1
−
√

1 − 2
dT(y) + 1

)
. (12)

The derivative of the function Ψ defined by

Ψ(α) =

(√
1 − 2

dT(y) + α
−
√

1 − 2
dT(x) + α

)
with α ≥ 2,

is
Ψ′(α) = Φ(dT(y) + α)− Φ(dT(x) + α),

where dT(x) and dT(y) are fixed integers satisfying dT(x) > dT(y) ≥ 2, and

Φ(β) =
1
β2

√
β

β − 2
.

Certainly, the function Φ is strictly decreasing for β > 2; thus, Ψ′(α) > 0 for α ≥ 2. Hence,
Ψ(α) ≥ Ψ(2); thus, (12) yields

ABS(T′)− ABS(T) ≥
(√

1 − 2
dT(y) + 2

−
√

1 − 2
dT(x) + 2

)

+

(√
1 − 2

dT(x) + 1
−
√

1 − 2
dT(y) + 1

)

=

(√
1 − 2

dT(y) + 2
−
√

1 − 2
dT(y) + 1

)

−
(√

1 − 2
dT(x) + 2

−
√

1 − 2
dT(x) + 1

)
. (13)

As the function Υ defined by

Υ(γ) =

(√
1 − 2

γ + 2
−
√

1 − 2
γ + 1

)
with γ ≥ 2,

is strictly decreasing, one gets ABS(T′) > ABS(T) from (13).

Now, we prove the main result of this section.
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Theorem 2. If T is an n-order tree of maximum degree ∆ satisfying the condition 3 ≤
⌈n

2

⌉
≤

∆ ≤ n − 2, then

ABS(T) ≤ (∆ − 1)

√
1 − 2

∆ + 1
+ (n − ∆ − 1)

√
1 − 2

n − ∆ + 1
+

√
1 − 2

n
. (14)

The sufficient and necessary condition for the equality in (14) is T ∼= Wn,∆, where Wn,∆ is
the graph constructed by attaching n − ∆ − 1 pendent vertices to one pendent vertex of K1,∆ (see
Figure 5).

∆−1︷ ︸︸ ︷

︸ ︷︷ ︸
n−∆−1

Figure 5. The tree Wn,∆ defined in Theorem 2.

Proof. If T is isomorphic to Wn,∆, then

ABS(T) = (∆ − 1)

√
1 − 2

∆ + 1
+ (n − ∆ − 1)

√
1 − 2

n − ∆ + 1
+

√
1 − 2

n
.

Next, we establish (14).
Among all n-order trees of maximum degree ∆ satisfying the given condition, we assume

that T is the one for which ABS(T) is maximum. Suppose that there exists z ∈ V(T), provided

that dT(z) = ∆, where ∆ ≥ 3. Given that ∆ is greater than or equal to
⌈n

2

⌉
, it follows that

NT(z)∩ V0(T) is not an empty set. Now, let us choose a vertex x0 from V0(T), such that zx0
forms an edge in E(T). Our primary goal is to illustrate two crucial facts.

Fact 1. The vertex z is a claw.

Proof of Fact 1. Suppose that z does not exhibit a claw-like structure. Let us consider a
vertex y from V1(T) excluding z, such that there exists an edge yy0 within E(T), where y0
belongs to V0(T). Under this condition, we can identify a vertex x within NT(z) that is
not a part of V0(T) and does not lie on the unique path connecting z and y. Let us take

NT(x) \ {z} = {x1, x2, . . . , xr}, where r ≥ 1. Given that ∆ is greater than or equal to
⌈n

2

⌉
and y is distinct from z, we can deduce that

dT(y) ≤ n − ∆ − 1 ≤
⌊n

2
− 1
⌋
≤ ∆ − 1 < dT(z).

Set
T ′ = T − xx1 − · · · − xxr + y0x1 + · · ·+ y0xr.

Note that T ′ has maximum degree ∆ and that V(T ′) = V(T). By utilizing Lemma 1,
we conclude that

ABS(T ′) ≥ ABS(T),



Mathematics 2024, 12, 2704 8 of 11

which contradicts the choice we made regarding T.

According to Fact 1, we have the option to designate a vertex x such that it is the
unique vertex with an edge zx in E(T), and dT(x) is greater than or equal to 2. Now,
consider the sub-tree Tx which includes the vertex x in the graph obtained by removing
vertex z from graph T.

Fact 2. Tx ∼= K1,n−∆−1.

Proof of Fact 2. Let us assume that Tx is not isomorphic to K1,n−∆−1. In this case, there
must be an edge y′y in the sub-tree where neither y nor y′ is a pendent vertex. Additionally,
let us denote the degrees of y′ and y as s and t, respectively, where both s and t are greater
than or equal to 2. We select edge y′y in such a way that the distance between z and
y is maximized. Consequently, y takes the form of a claw with its neighbors in the set
NT(y) ∩ V0(T) denoted as y1, y2, . . . , yt−1. Now, we define T ′ as the result of removing the
edges yy1, yy2, . . . , yyt−1 and adding the edges y′y1, y′y2, . . . , y′yt−1 to the original graph
T. Then,

ABS(T)− ABS(T ′) < (t − 1)

√
1 − 2

1 + t
+

√
1 − 2

s + t
− t

√
1 − 2

s + t

= (t − 1)

√
1 − 2

1 + t
− (t − 1)

√
1 − 2

s + t

= (t − 1)

[√
1 − 2

1 + t
−
√

1 − 2
s + t

]

< 0,

which contradicts the choice we made regarding T.

Now, in view of Facts 1 and 2, the proof of Theorem 2 is completed.

4. On n-Order Trees of Maximum Degree Less than ⌈n/2⌉
In this section, we consider Problem 1 when 5 ≤ ∆ < ⌈n/2⌉. We use a computer

program to find a tree possessing the largest ABS index over T(n, ∆) for every pair (n, ∆)
satisfying 5 ≤ ∆ < ⌈n/2⌉ and 11 ≤ n ≤ 16; these trees with the largest ABS index
are depicted in Figure 6 (The authors would like to thank Tariq Alraqad for helping in
obtaining the trees shown in Figure 6). Based on the structures of these trees, we pose the
following conjectures.

Conjecture 1. If T is a graph possessing the largest ABS index over T(n, ∆) with 5 ≤ ∆ < ⌈n/2⌉,
then T has at most a single vertex of degree t, where 2 ≤ t ≤ ∆ − 1.

Conjecture 2. Let T denote a graph possessing the largest ABS index over T(n, ∆) with 5 ≤ ∆ <
⌈n/2⌉. If T contains a vertex u with a degree of t, with 2 ≤ t ≤ ∆ − 1, and if ∆ is fixed, then there
exists an integer n0, provided that for every n ≥ n0, all the neighbors of u have degree ∆.
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(11, 5)

(13, 6)

(12, 5) (13, 5)

(14, 5) (14, 6)

(15, 5) (15, 6) (15, 7)

(16, 5) (16, 6) (16, 7)

Figure 6. The trees that have the greatest ABS indices in T(n, ∆) for every pair (n, ∆) satisfying
5 ≤ ∆ < ⌈n/2⌉ and 11 ≤ n ≤ 16.

5. Concluding Remarks

In this paper, the best possible upper bounds on the ABS index for fixed-order trees
possessing a given maximum degree under certain constraints are derived. In particular, a
solution to Problem 1 (that was posed quite recently by Hussain, Liu and Hua in [39]) is
provided when 3 ≤ ⌈n/2⌉ ≤ ∆ ≤ n − 2. Problem 1 with the constraints 5 ≤ ∆ < ⌈n/2⌉ is
also addressed by utilizing computer software to determine trees possessing the largest
ABS indices over the class T(n, ∆) for every pair (n, ∆) satisfying 5 ≤ ∆ < ⌈n/2⌉ and
11 ≤ n ≤ 16. Based on the structures of the obtained extremal trees for 5 ≤ ∆ < ⌈n/2⌉,
we posed two conjectures, namely Conjectures 1 and 2. Consequently, Problem 1 with the
constraints 5 ≤ ∆ < ⌈n/2⌉ is generally open for further research. Also, the present study
can be extended towards the fixed-order and fixed-size graphs containing cycles with a
given maximum degree; for instance, fixed-order unicyclic graphs, bicyclic graphs, and
tricyclic graphs, with a given maximum degree.
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