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Abstract: In paired-organ studies such as ophthalmology, otolaryngology, and rheumatology, etc.,
various approaches take highly correlated bilateral data into account for homogeneity tests but are
less likely to focus on combined bilateral and unilateral data structures. Also, it is necessary and
important to adjust the effect of confounders on stratified combined bilateral and unilateral data since,
in these data structures, ignoring intra-class correlation and confounding effects can cause biased
statistical inference. This article derived three homogeneity tests (the likelihood ratio test, the Wald
test, and the score test) concerning these cooperative structure data to detect if ratios of proportions
retain consistency across strata. Simulation shows that the score test provides a robust Type I error
rate and satisfactory power performance. Finally, a real example is applied to demonstrate the
application of these three proposed tests.

Keywords: Donner’s model; correlated bilateral outcomes; relative risk test; score test; Wald test;
stratified data
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1. Introduction

Paired bilateral data occur naturally in clinical trial studies, especially in ophthalmol-
ogy, otolaryngology, and rheumatology, etc. Numerous clinical trials in ophthalmology
widely utilize data collection involving one or both eyes [1]. In these scenarios, each subject
may contribute either bilaterally or unilaterally, resulting in the data structure being bilat-
eral and unilateral data existing simultaneously. Also, in practice, to determine the effect of
exposure, some clinical trial procedures desire to stratify the data to avoid confounding
by stratifying two or more categories in subgroups, aiming to obtain unbiased treatment
effects. Estimating the effect of exposure can be biased if the investigator fails to adjust for
stratified factors when analyzing the homogeneity test during trials.

Data were stratified by some control variables such as location, age, gender, etc., to de-
tect whether the inference we were interested in involved treatment-by-stratum interaction.
In the stratified sample design with two groups, the homogeneity test concerning propor-
tions ratios is often referred to as inspecting if relative risk maintains the same across strata.
When the ratio of proportions in the two groups is significantly different, we can include a
confounding effect. If homogeneity is claimed, stratified data can be combined in a pooled
dataset to investigate statistical inference. Therefore, it was necessary and important that
we applied a homogeneity test to the stratified clinical data.

We investigated three homogeneity test methods of ratios of proportions on stratified
unilateral and bilateral data structures in two groups. For unilateral cases, the homogeneity
test can be treated as independent and applied by a usual method that has been studied in
detail and thoroughly in the literature [2]. Naturally, two eyes in the same patient tend to
be highly correlated in bilateral cases [3]. Without considering such a situation, standard
inference and test methods may produce misleading statistical significance and inadequate
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power. Previous studies have explored models specially designed to address intraclass
correlated data. Rosner introduced an approach referred to as the “constant R model” with
the assumption that dependence between two paired organs of the same subject is measured
as a constant R. Tang et al. [4], Ma et al. [5], Shan and Ma [6], and Liu et al. [7] then developed
related asymptotic and exact test methods based this model. Afterward, Dallal [8] pointed
out that the “Constant R model” could have poor performance on compound multinomial
sampling and then provided a new approach with the assumption that the conditional
probability of one eye given the other eye in the same person is not connected to the
probabilities of the individual in the general population. Donner [9] introduced a widely
used model under the assumption that the intraclass correlation coefficient, denoted as
“ρ”, is generally considered uniform across groups. The model, along with an adjusted
chi-square test, has been further validated in subsequent studies ([10–12]). Additionally,
asymptotic and exact testing methods ([7,13–15]) have been explored in later research. In
this paper, we incorporate Donner’s ρ model since the ρ model can also be applied to an
arbitrary number of units provided by an individual.

Statistical data analysis focusing on stratified data also has been extensively studied
in clinical trials. Lui and Kelly [16] focused on the homogeneity test of risk difference
in unilateral cases and then discussed sparse data with a bootstrap method to improve
the power of previous test designs. Li and Tang [17] applied the ρ model to fit stratified
matched-pair studies to develop computationally effective score test statistics. Tang and
Qiu [18] conducted the homogeneity test for risk difference under Rosner’s R model. Then,
Pei et al. [19], based on Donner’s model, explored homogeneity tests on stratified bilateral
data. However, several issues have been raised here, considering the combined data
structure. The aforementioned stratified data test methods only consider bilateral cases.
Therefore, to evaluate treatment effectiveness in these scenarios, unilateral and bilateral
cases occurred simultaneously. We further analyze and develop bilateral test methods
appropriate to the combined data structure. In this paper, our goal is to develop new
statistical test methods aiming to evaluate the homogeneity of the ratio of proportions
across strata under a combined data structure without the assumption of a common ratio.

The remainder of this article is structured as follows. Section 2 derives both constrained
and unconstrained maximum likelihood estimates for the parameters and examines three
different testing procedures: the likelihood ratio test, the Wald test, and the score test.
Section 3 presents Monte Carlo simulation studies designed to assess the performance of
these tests in terms of empirical Type I error rates and statistical power. Section 4 provides
an application of the methodologies to a real data example. Finally, Section 5 provides
conclusions and remarks.

2. Methods

Suppose there are J strata, and for each stratum, there are M = ∑ Mj patients, which
provide bilateral records and N = ∑ Nj patients, which provide unilateral records in g
groups, g = 1, 2. mlij represents the number of patients having l responses (l = 0, 1, 2)
in the ith group (i = 1, 2) of the jth stratum (j = 1, 2, . . . , J). ml+j is the total number of
patients having l responses among all groups, and m+ij is the total number of patients in
the ith group. The same notations are also applied to the unilateral case. The data structure
of the jth stratum is summarized in Table 1.

For the bilateral case, we denote Zijhk = 1 as an event that the kth eye (k = 1, 2) of
the hth patient in the ith treatment group from the jth stratum has an expected response,
cured or effected, Zijhk = 0 otherwise. Since we applied Donner’s ρ model here, it assumes
that the correlations of response between two eyes are the same across all individuals in
the two groups from a single stratum but can be different in different strata. Hence, for a
given j stratum, we can express Donner’s model as P(Zijhk = 1) = πijk, πij1 = πij2 = πij;
Corr(Zijh1, Zijh2) = ρj,−1 ≤ ρj ≤ 1, where πij is the ith group proportion in the jth stratum



Mathematics 2024, 12, 2719 3 of 15

that has an expected event, and ρj is the common correlation of the jth stratum. Then, the
probabilities of an expected response for none, one, or both eyes are as follows:

p0ij = ρj(1 − πij) + (1 − ρj)(1 − πij)
2,

p1ij = 2πij(1 − ρj)(1 − πij),

p2ij = ρjπij + (1 − ρj)π
2
ij.

Similarly, let Yijh = 1 be the same event in the unilateral case that there is an expected
response from hth patient in the ith treatment group of the jth stratum. Since πij is the
group probability of which patient has an exposure treatment, P(Yijh = 1) = πij will
be straightforward.

Table 1. Data structure for the jth stratum in the stratified unilateral and bilateral cases.

Group (i)
Number of Responses in Event 1 2 Total

0 m01j m02j m0+j
1 m11j m12j m1+j
2 m21j m22j m2+j

Total m+1j m+2j Mj

0 n01j n02j n0+j
1 n11j n12j n1+j

Total n+1j n+2j Nj

2.1. Maximum Likelihood Estimation

As previously mentioned, our lies in whether the risk ratio exhibits consistency across
strata. Consequently, we can formulate the following hypotheses:

H0 : δ1 = · · · = δJ ,

vs.
H1 : δs ̸= δt, f or any s ̸= t, 1 ≤ s, t ≤ J,

where δj =
π2j
πij

is the ratio of proportions between two groups in the jth stratum. Under this

assumption, π2j = δjπ1j with δj ∈ (0, ∞) and the corresponding log-likelihood l(π1, δ, ρ)
can be expressed as

l(π1, δ, ρ) =
J

∑
j=1

lj(π1j, δj, ρj) + log C,

where

lj(π1j, δj, ρj) = m01j log[ρj(1 − π1j) + (1 − ρj)(1 − π1j)
2]

+m11j log[2π1j(1 − ρj)(1 − π1j)]

+m21j log[ρjπ1j + (1 − ρj)π
2
1j]

+n01j log(1 − π1j) + n11j log π1j

+m02j log[ρj(1 − δjπ1j) + (1 − ρj)(1 − δjπ1j)
2]

+m12j log[2δjπ1j(1 − ρj)(1 − δjπ1j)]

+m22j log[ρjδjπ1j + (1 − ρj)(δjπ1j)
2]

+n02j log(1 − δjπ1j) + n12j log δjπ1j,

and δ is the parameter that we focus on while π1, ρ are nuisance parameters.
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2.1.1. Unconstrained Maximum Likelihood Estimate

Under the unconstrained condition, the maximum likelihood estimation (MLE) of π1j
and ρj , denoted as π̂1j and ρ̂j, can be determined as the solution to the following equations:

∂l
∂π1j

= 0,
∂l

∂π2j
= 0,

∂l
∂ρj

= 0, j = 1, . . . , J.

For a given ρj in the jth stratum, we can simplify the above equation for π1j as a fourth-
order polynomial, and let the data for the ith group be Dij = (m0ij, m1ij, m2ij, n0ij, n1ij)

T .
We have

π̂ij =
b −

√
b2 − 3c(2Mj + Nj)

(
cos(θ)−

√
3 sin(θ)

)
(2Mj + Nj)

(
3 ρj − 3

) ,

where

b = ρ(3Mj + Nj + n1+j)− (2, 3, 4, 1, 2)DT
ij ,

c = ρ2(Mj + n1+j)− ρ(2, 4, 4, 1, 3)DT
ij + m1+j + 2m2+j + n1+j,

θ =
1
3

arccos

2b3 − 9(2Mj + Nj)bc + 27(2Mj + Nj)
2(m1+j + m2+j + n1+j)(1 − ρj)ρj

2
(

b2 − 3c(2Mj + Nj)
)3/2

.

The (t + 1)th update for πij can be computed directly from the formula above, whereas ρ is
updated using the Fisher scoring algorithm.

ρ
(t+1)
j = ρ

(t)
j −

(
∂2l
∂ρ2

j
(π

(t)
1j , π

(t)
2j ; ρ(t))

)−1
∂l

∂ρj
(π

(t)
1j , π

(t)
2j ; ρ

(t)
j ).

Continue iterating these steps until convergence is achieved. The form of the second derivative
is detailed in Appendix A regarding the information matrix. Then, the risk ratio δ̂j can be obtained by
π̂2j
π̂1j

by each stratum. After the above iteration procedure, we obtain unconstrained MLEs denoted by

(π̂1j, δ̂j, ρ̂j), j = 1, . . . , J.

2.1.2. Constrained Maximum Likelihood Estimates
Under the null hypothesis, δ1 = δ2 = . . . = δJ = δ, δj are same across strata. Then, we

know π2j = δπ1j, which means that the response rates are known once we obtain π1j so that the
log-likelihood function can be simplified as follows:

l(π1, ρ) =
J

∑
j=1

l0(π1j, ρj) + log C,

where

l0(π1j, ρj) = m01j log[ρj(1 − π1j) + (1 − ρj)(1 − π1j)
2]

+m11j log[2π1j(1 − ρj)(1 − π1j)]

+m21j log[ρjπ1j + (1 − ρj)π
2
1j]

+n01j log(1 − π1j) + n11j log π1j

+m02j log[ρj(1 − δπ1j) + (1 − ρj)(1 − δπ1j)
2]

+m12j log[2δπ1j(1 − ρj)(1 − δπ1j)]

+m22j log[ρjδπ1j + (1 − ρj)(δπ1j)
2]

+n02j log(1 − δπ1j) + n12j log δπ1j.
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In the jth stratum, we begin by determining constrained MLEs by setting the score statistics
l0(π1j, ρj) for ρj and π1j to zero,

∂l0
∂π1j

= −
m01j[2(1 − ρj)(1 − π1j + ρj]

ρj(−π1j + (1 − ρj)(1 − π1j)2 +
m11j(1 − 2π1j)

π1j(1 − π1j)

+
m21j[2π1j(1 − ρj) + ρj]

π1jρj + (1 − ρj)π
2
1j

− n01j
1

1 − π1j
+ n11j

1
π1j

+ δ
{
−

m01j[2(1 − ρj)(1 − δπ1j + ρj]

ρj(−δπ1j + (1 − ρj)(1 − δπ1j)2 +
m11j(1 − 2δπ1j)

δπ1j(1 − δπ1j)

+
m21j[2δ0π1j(1 − ρj) + ρj]

δπ1jρj + (1 − ρj)δ2π2
1j

− n02j
1

δ(1 − δπ1j)
+ n12j

1
δ2π1j

}
= 0,

∂l0
∂ρj

=
m01jπ1j

ρj + (1 − ρj)(1 − π1j)
+

m02jδ0π1j

ρj + (1 − ρj)(1 − δ0π1j)

−
m11j + m12j

1 − ρj
+

m21j(1 − π1j)

ρj + (1 − ρj)π1j
+

m22j(1 − δ0π1j

ρj+)1 − ρj)δ0π1j
= 0.

However, there is no closed-form for these solutions, so we applied the iterative methods
proposed by Ma and Liu [15]

(1) For the jth stratum, start with the initial value δ = 1/J ∑J
j=1 δ̂j, then the initial estimates of

π1j and ρj can be obtained by treating data as a whole without a strata effect, which are also the same
as the estimates under null hypotheses using Donner’s approach [20], which is as follows:

π̂
(0)
1j =

m1+j + 2m2+j + n1+j

2Mj + Nj
,

ρ̂j
(0) =

4m0+jm2+j − m2
1+j

(m1+j + 2m0+j)(m1+j + 2m2+j)
.

(2) Since δ is constant across strata, we update this by

δ(t+1) = δ(t) − 1

∑J
j=1

∂2 lj

∂δ2 (π
(t)
1j , ρ

(t)
j , δ(t))

×
J

∑
j=1

∂lj

∂δ
(π

(t)
1j , ρ

(t)
j , δ(t)).

(3) The (t + 1)th updates for π1j and ρj can be obtained by the Fisher Scoring algorithm
as follows: π

(t+1)
1j

ρ
(t+1)
j

 =

π
(t)
1j

ρ
(t)
j

+
[
I1

(j)]−1
(π

(t)
1j , ρ

(t)
j )×

[ ∂l0
∂π1j
∂l0
∂ρj

]∣∣∣∣∣
δ=δ(t+1) ,π1j=π

(t)
1j ,ρj=ρ

(t)
j

,

where I(j)
1 is the 2 × 2 Fisher information matrix with respect to π1j, π2j, ρj. For more details on the

derivation of the Fisher information matrix, please see Appendix A.

(4) Repeat steps (2) and (3) until convergence.

After the above iteration procedure, we obtain constrained MLEs denoted by (π̂1j,H0 , δ̂H0 , ρ̂j,H0),
j = 1, . . . , J.

2.2. Hypothesis Testing Methods
2.2.1. Likelihood Ratio Test (TL)

The likelihood ratio test is usually defined by

TL = 2[l(π̂1, δ̂, ρ̂)− l(π̂1,H0 , δ̂H0 , ρ̂H0 )]

= 2
J

∑
j=1

[lj(π̂1j, δ̂j, ρ̂j)− lj(π̂1j,H0 , δ̂H0 , ρ̂j,H0 )],
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which, under null hypothesis, asymptotically follows a chi-square distribution with J − 1 degrees
of freedom.

2.2.2. Wald-Type Test (TW)
The null hypotheses H0 : δ1 = δ2 = · · · = δJ = δ is equivalent to π2j = δπ1j for all strata

j = 1, 2, . . . , J, which can be rewritten as follows:

CβT = 0

where β = [δ1, π11, ρ1, δ2, π12, ρ2, . . . , δJ , π1J , ρJ ] and

C =


1 0 0 −1 0 0

1 0 0 −1 0 0
. . .

. . .
1 0 0 −1 0 0


J−1,3J

.

The Wald-type test statistic (TW ) for testing H0 can be defined as follows:

TW = (βCT)(CI−1CT)−1(CβT)|β=[π̂11,π̂12,ρ̂1,π̂12,π̂22,ρ̂2,...,π̂1J ,π̂2J ,ρ̂J ],δ=δ̂H0
,

where I is the Fisher information matrix for β (see Appendix A) and still, TW is asymptotically
distributed as a chi-square distribution with J-1 degrees of freedom. Then, H0 should be rejected at
the significant level α if TW > χ2

J−1,1−α.
Then, the Wald test statistic is provided as the objective to test H0a : δs = δt vs H1a : δs ̸= δt, s ̸= t

given by

TWa = (βcT)(cI−1cT)−1(cβT)|β=[π̂11,π̂12,ρ̂1,π̂12,π̂22,ρ̂2,...,π̂1J ,π̂2J ,ρ̂J ],δ=δ̂H0
,

where c = (0, . . . , 0, 1, 0, 0, . . . , 0,−1, 0, 0, . . . , 0) with (1, 0, 0) in the (3s− 2) th element to 3s th element,
(3t − 2) th element to 3t th element, and 0 otherwise. TWa is asymptotically distributed as a chi-square
distribution with 1 degree of freedom.

2.2.3. Score Tests (TSC)
The score test statistic TSC utilizes constrained MLEs, and under the null hypothesis, each

stratum has the same ratio δ̂H0 . TSC is given by

T2
SC = U I−1(δ, π1, ρ)UT |δ = δ̂H0 π1 = π̂1,H0 , ρ = ρ̂H0

,

where the score is

U .
= (U1, . . . , U J) =

(
∂l
∂δ

, 0, 0, . . . ,
∂l
∂δ

, 0, 0
)

,

since ρ is nuisance parameter. See Appendix A for the formula of I(δ, π1, ρ).
T2

SC is also asymptotically distributed as a chi-square distribution with 1 degree of freedom.
Then, H0 should be rejected at the α significance level if TSC > χ2

J−1,1−α.

3. Simulations
In this section, we evaluate the performance of these three methods, TL, TW , and TSC, as

investigated in the previous section, specifically assessing their effectiveness in controlling the Type I
error rate and statistical power. Empirical Type I errors are summarized under various parameter
settings: Mj = Nj = 25, 50, 100, with strata J = 2, 4, 8, π10 = 0.3, 0.4, and ρ = 0.2, 0.5, 0.7 for
a balanced design. Additionally, different parameter settings consider (Mj, Nj) = (60, 50) as the
imbalanced data structure. Here, we choose δ0 = 0.8, 1, 1.2 for the null hypothesis. For each parameter
setting, we generate 50,000 random samples under the null hypothesis, and the empirical Type I error
is calculated as the ratio of the number of rejections to 50,000. The results for all configurations with
J = 2, 4, 8 are shown in Tables 2–4.
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Table 2. The empirical Type I error rates for testing H0 : δ1 = · · · = δJ = δ corresponding to nominal
α = 5% based on 50,000 replications under J = 2.

δ = 0.8 δ = 1 δ = 1.2

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 5.86 2.72 5.72 5.88 2.65 5.72 5.84 2.56 5.63
0.4 5.74 3.67 5.61 5.61 3.45 5.48 5.59 3.35 5.48

0.5 0.3 5.57 2.34 5.49 5.68 2.23 5.55 5.62 2.04 5.46
0.4 5.36 3.24 5.29 5.43 3.12 5.33 5.60 2.93 5.52

0.7 0.3 5.88 2.13 5.47 5.84 2.01 5.54 5.89 1.81 5.61
0.5 5.66 3.22 5.58 5.47 3.01 5.49 5.43 3.06 5.82

50/50 0.2 0.3 5.36 3.92 5.28 5.29 3.72 5.21 5.39 3.69 5.28
0.4 5.25 4.34 5.20 5.25 4.25 5.21 5.28 4.13 5.21

0.5 0.3 5.18 3.65 5.12 5.21 3.51 5.17 5.18 3.43 5.11
0.4 5.17 4.24 5.15 5.24 4.11 5.22 5.29 4.02 5.23

0.7 0.3 5.25 3.46 5.19 5.16 3.38 5.13 5.30 3.38 5.22
0.4 5.19 4.08 5.16 5.34 4.09 5.31 5.30 4.06 5.38

100/100 0.2 0.3 5.23 4.56 5.21 5.08 4.34 5.04 5.14 4.39 5.10
0.4 5.02 4.58 4.99 5.18 4.67 5.14 5.20 4.63 5.15

0.5 0.3 5.06 4.31 5.04 5.03 4.26 5.03 5.09 4.21 5.05
0.4 5.18 4.62 5.17 5.23 4.62 5.22 5.25 4.59 5.22

0.7 0.3 4.92 4.07 4.90 5.10 4.20 5.09 5.11 4.20 5.09
0.4 5.08 4.55 5.08 5.08 4.51 5.07 5.22 4.56 5.23

60/50 0.2 0.3 5.31 3.97 5.27 5.20 3.93 5.14 5.28 3.91 5.22
0.4 5.19 4.40 5.16 5.23 4.37 5.18 5.27 4.31 5.21

0.5 0.3 5.26 3.89 5.24 5.26 3.76 5.22 5.25 3.63 5.19
0.4 5.23 4.24 5.21 5.24 4.17 5.20 5.31 4.15 5.25

0.7 0.3 5.20 3.79 5.17 5.29 3.62 5.25 5.30 3.53 5.22
0.4 5.12 4.14 5.12 5.21 4.07 5.19 5.15 4.07 5.25

Table 3. The empirical Type I error rates for testing H0 : δ1 = · · · = δJ = δ corresponding to nominal
α = 5% based on 50,000 replications under J = 4.

δ = 0.8 δ = 1 δ = 1.2

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 5.86 3.13 5.50 5.83 2.93 5.52 5.91 2.75 5.56
0.4 5.78 3.87 5.52 5.61 3.45 5.34 5.67 3.30 5.46

0.5 0.3 5.48 2.74 5.26 5.59 2.53 5.37 5.71 2.32 5.42
0.4 5.34 3.33 5.20 5.37 3.06 5.19 5.74 2.91 5.59

0.7 0.3 6.36 2.58 5.44 6.27 2.46 5.60 6.27 2.26 5.68
0.5 5.48 3.40 5.25 5.52 3.06 5.42 5.26 3.11 5.84

50/50 0.2 0.3 5.43 3.94 5.26 5.43 3.74 5.26 5.38 3.64 5.21
0.4 5.28 4.27 5.15 5.28 4.14 5.18 5.36 4.04 5.20

0.5 0.3 5.18 3.67 5.06 5.30 3.49 5.18 5.37 3.37 5.20
0.4 5.18 4.13 5.11 5.24 3.96 5.13 5.28 3.83 5.19

0.7 0.3 5.23 3.54 5.10 5.34 3.40 5.22 5.45 3.27 5.31
0.4 5.30 3.98 5.24 5.29 3.94 5.24 5.04 3.85 5.27

100/100 0.2 0.3 5.14 4.42 5.05 5.07 4.29 5.00 5.10 4.33 5.03
0.4 5.01 4.61 4.96 5.06 4.54 5.00 5.10 4.42 5.01

0.5 0.3 5.12 4.29 5.06 5.06 4.09 5.00 5.11 4.01 5.04
0.4 5.09 4.55 5.06 5.10 4.44 5.05 5.36 4.48 5.29

0.7 0.3 5.04 4.18 4.97 5.16 4.19 5.11 5.28 4.15 5.21
0.4 5.24 4.61 5.24 5.21 4.47 5.16 5.35 4.52 5.34

60/50 0.2 0.3 5.32 3.85 5.17 5.27 3.81 5.16 5.29 3.72 5.15
0.4 5.13 4.26 5.04 5.26 4.20 5.13 5.46 4.11 5.29

0.5 0.3 5.21 3.75 5.13 5.23 3.59 5.16 5.35 3.60 5.20
0.4 5.33 4.21 5.26 5.21 4.06 5.13 5.49 3.99 5.36

0.7 0.3 5.17 3.66 5.11 5.24 3.49 5.17 5.34 3.39 5.24
0.4 5.33 4.16 5.29 5.26 3.91 5.19 5.26 3.97 5.47
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Table 4. The empirical Type I error rates for testing H0 : δ1 = · · · = δJ = δ corresponding to nominal
α = 5% based on 50,000 replications under J = 8.

δ = 0.8 δ = 1 δ = 1.2

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 6.00 3.95 5.46 6.09 3.58 5.56 6.25 3.22 5.71
0.4 5.99 4.35 5.47 5.90 3.87 5.50 6.08 3.54 5.59

0.5 0.3 5.70 3.53 5.32 5.67 3.01 5.29 5.87 2.64 5.42
0.4 5.64 3.89 5.35 5.72 3.49 5.42 5.98 3.18 5.72

0.7 0.3 7.18 3.40 5.51 6.87 3.06 5.56 6.81 2.74 5.76
0.5 5.95 3.88 5.50 5.90 3.51 5.74 4.89 3.40 5.88

50/50 0.2 0.3 5.49 4.43 5.21 5.45 4.12 5.19 5.46 3.92 5.18
0.4 5.38 4.64 5.17 5.45 4.49 5.25 5.51 4.32 5.25

0.5 0.3 5.24 4.05 5.06 5.37 3.78 5.19 5.45 3.68 5.22
0.4 5.39 4.56 5.26 5.52 4.26 5.37 5.46 4.01 5.32

0.7 0.3 5.34 3.91 5.18 5.33 3.71 5.18 5.43 3.45 5.22
0.4 5.30 4.34 5.19 5.48 4.13 5.37 5.08 4.15 5.44

100/100 0.2 0.3 5.30 4.59 5.18 5.23 4.47 5.11 5.21 4.31 5.12
0.4 5.13 4.82 5.03 5.23 4.70 5.12 5.31 4.59 5.19

0.5 0.3 5.07 4.44 5.01 5.01 4.19 4.94 5.19 4.11 5.08
0.4 5.06 4.59 5.00 5.16 4.49 5.09 5.29 4.48 5.22

0.7 0.3 5.10 4.37 5.03 5.11 4.19 5.02 5.24 4.07 5.13
0.4 5.21 4.59 5.18 5.18 4.45 5.12 5.35 4.49 5.33

60/50 0.2 0.3 5.45 4.42 5.24 5.45 4.26 5.22 5.39 3.98 5.18
0.4 5.33 4.67 5.13 5.32 4.51 5.15 5.40 4.23 5.17

0.5 0.3 5.39 4.20 5.22 5.34 3.94 5.17 5.39 3.78 5.24
0.4 5.33 4.52 5.21 5.27 4.15 5.15 5.56 4.09 5.36

0.7 0.3 5.25 3.99 5.11 5.24 3.80 5.08 5.28 3.68 5.12
0.4 5.35 4.38 5.24 5.27 4.06 5.19 4.97 3.92 5.27

In addition to the specific parameter configurations mentioned earlier, we also construct the
empirical Type I error rates for random parameter settings across each of J = 2, 4, 8, and various
sample sizes m = n = 20, 40, 80. The parameters ρ and π are drawn from a uniform distribution.
For each of the 1000 configurations, we processed 50,000 replications and calculated the empirical
Type I error rate. The 1000 empirical Type I error rates are summarized in the box plot shown in
Figure 1. This plot reveals that the score test performs satisfactorily, as its Type I error remains close
to the assumed nominal level of 0.05 across various configurations. The likelihood ratio test performs
a wider range of empirical Type I error rates, while the Wald test tends to be more liberal compared
to the other two tests across different configurations. Additionally, as the number of strata increases,
the performance of the test becomes less stable, particularly for extra strata. However, the score test
continues to demonstrate robustness within an acceptable range. As the group and sample size
become larger, the discrepancy between the score test and the other two tests about the Type I error
rate range becomes smaller, with the median of the Type I error rate among the three tests being
closer than the small sample size of m, n.

As defined by Tang et al. [4], hypothesis testing is classified as liberal if the ratio of the empirical
Type I error rate to the nominal Type I error rate is greater than 1.2 (i.e., exceeding 6% for α = 5%,
emphasized as bolded numbers in the results). It is considered conservative if this ratio is below
0.8 (i.e., less than 4%, also highlighted in the results) and robust if the ratio falls between 0.8 and
1.2. The results presented in Tables 2–4 indicate that the score test T2

SC consistently produces stable
Type I error rates across all scenarios. In contrast, the likelihood ratio test is liberal, especially
in cases with small sample sizes, while the Wald test exhibits a conservative behavior. Notably,
the likelihood ratio test and Wald test tend to be either liberal or conservative with moderate or small
sample size (e.g., m = 25 or fewer) and also show similar trends as the correlation coefficient increases.
However, when the sample size is sufficiently large (e.g., m = n = 100 or more, as indicated by
the simulation results), both the likelihood ratio test and the Wald test perform comparably to the
score test, providing similar results for Type I error rate and power. Consequently, the score test and
adjusted chi-square test are preferred for stable control of the Type I error rate.
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Figure 1. Box plots of empirical sizes when J = 2, 4, 8 and m = n = 20, 40, 80.

Next, we assess the power performance of the proposed statistics under similar Type I error
parameter settings. The empirical power for TSC, TL, and TW across these settings is shown in
Tables 5–7. Each table includes footnotes specifying the different settings for each stratum. The simu-
lation results indicate that the score test consistently provides satisfactory power compared to the
others. The likelihood ratio test tends to overestimate power due to its empirical level exceeding the
nominal level, whereas the Wald test often shows reduced power due to overfitting. As previously
mentioned, increasing the sample size results in the power of the three statistics becoming more
comparable. The score test is recommended for practical use among the methods evaluated as our
conclusion from simulation results.
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Table 5. Power performance for J = 2.

δ = (0.8, 1.2) δ = (0.7, 1.3) δ = (0.7, 1.2)

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 0.1961 0.1483 0.1925 0.3699 0.3268 0.3649 0.2940 0.2452 0.2895
0.4 0.2695 0.2414 0.2663 0.5239 0.5143 0.5224 0.4106 0.3875 0.4060

0.5 0.3 0.1797 0.1248 0.1778 0.3395 0.2801 0.3359 0.2624 0.2024 0.2588
0.4 0.2429 0.2111 0.2410 0.4729 0.4554 0.4708 0.3666 0.3395 0.3650

0.7 0.3 0.1767 0.1141 0.1717 0.3278 0.2592 0.3233 0.2565 0.1871 0.2520
0.4 0.2331 0.2006 0.2372 0.4425 0.4358 0.4566 0.3502 0.3224 0.3550

50/50 0.2 0.3 0.3371 0.3182 0.3347 0.6353 0.6271 0.6333 0.5112 0.4972 0.5086
0.4 0.4824 0.4759 0.4806 0.8170 0.8231 0.8154 0.6924 0.6934 0.6905

0.5 0.3 0.3060 0.2813 0.3044 0.5829 0.5711 0.5817 0.4635 0.4444 0.4621
0.4 0.4320 0.4214 0.4308 0.7642 0.7686 0.7633 0.6337 0.6329 0.6327

0.7 0.3 0.2878 0.2589 0.2868 0.5609 0.5446 0.5599 0.4392 0.4155 0.4375
0.4 0.4101 0.4021 0.4115 0.7311 0.7423 0.7375 0.6070 0.6025 0.6064

100/100 0.2 0.3 0.5797 0.5755 0.5786 0.8994 0.9015 0.8988 0.8000 0.8002 0.7989
0.4 0.7622 0.7642 0.7615 0.9796 0.9814 0.9796 0.9294 0.9321 0.9292

0.5 0.3 0.5307 0.5219 0.5295 0.8582 0.8598 0.8577 0.7430 0.7402 0.7412
0.4 0.7089 0.7082 0.7087 0.9630 0.9642 0.9626 0.8973 0.8992 0.8971

0.7 0.3 0.4988 0.4914 0.4983 0.8308 0.8335 0.8306 0.7166 0.7144 0.7161
0.4 0.6779 0.6772 0.6775 0.9519 0.9540 0.9522 0.8766 0.8778 0.8764

60/50 0.2 0.3 0.3674 0.3491 0.3656 0.6859 0.6812 0.6838 0.5525 0.5429 0.5494
0.4 0.5188 0.5139 0.5168 0.8561 0.8626 0.8552 0.7344 0.7369 0.7327

0.5 0.3 0.3238 0.3031 0.3229 0.6196 0.6122 0.6185 0.4978 0.4794 0.4964
0.4 0.4632 0.4550 0.4624 0.8056 0.8096 0.8050 0.6756 0.6754 0.6744

0.7 0.3 0.3050 0.2788 0.3044 0.5939 0.5806 0.5925 0.4693 0.4483 0.4683
0.4 0.4387 0.4285 0.4389 0.7741 0.7792 0.7775 0.6420 0.6414 0.6424

Table 6. Power performance for J = 4.

δ = (0.8, 1.2, 0.8, 1.2) δ = (0.7, 1.3, 0.7, 1.3) δ = (0.7, 0.8, 1.2, 1.3)

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 0.2338 0.1761 0.2260 0.4669 0.4105 0.4565 0.2940 0.2452 0.2895
0.4 0.3400 0.3020 0.3326 0.6681 0.6524 0.6653 0.4106 0.3875 0.4060

0.5 0.3 0.2083 0.1446 0.2027 0.4270 0.3485 0.4202 0.2624 0.2024 0.2588
0.4 0.3001 0.2501 0.2958 0.6078 0.5795 0.6066 0.3666 0.3395 0.3650

0.7 0.3 0.2048 0.1307 0.1955 0.4115 0.3165 0.4015 0.2565 0.1871 0.2520
0.4 0.2768 0.2374 0.2839 0.5597 0.5538 0.5831 0.3502 0.3224 0.3550

50/50 0.2 0.3 0.4256 0.3881 0.4198 0.7922 0.7860 0.7896 0.5112 0.4972 0.5086
0.4 0.6063 0.5966 0.6028 0.9412 0.9443 0.9394 0.6924 0.6934 0.6905

0.5 0.3 0.3806 0.3387 0.3765 0.7303 0.7125 0.7279 0.4635 0.4444 0.4621
0.4 0.5463 0.5282 0.5432 0.9070 0.9095 0.9058 0.6337 0.6329 0.6327

0.7 0.3 0.3530 0.3064 0.3495 0.7040 0.6816 0.7012 0.4392 0.4155 0.4375
0.4 0.5126 0.4961 0.5125 0.8797 0.8874 0.8844 0.6070 0.6025 0.6064

100/100 0.2 0.3 0.7243 0.7164 0.7223 0.9812 0.9818 0.9809 0.8000 0.8002 0.7989
0.4 0.9044 0.9062 0.9034 0.9994 0.9996 0.9994 0.9294 0.9321 0.9292

0.5 0.3 0.6674 0.6562 0.6663 0.9631 0.9647 0.9629 0.7430 0.7402 0.7412
0.4 0.8569 0.8573 0.8558 0.9977 0.9982 0.9977 0.8973 0.8992 0.8971

0.7 0.3 0.6346 0.6165 0.6339 0.9512 0.9512 0.9506 0.7166 0.7144 0.7161
0.4 0.8300 0.8284 0.8294 0.9957 0.9963 0.9957 0.8766 0.8778 0.8764

60/50 0.2 0.3 0.4637 0.4338 0.4599 0.8378 0.8331 0.8356 0.5525 0.5429 0.5494
0.4 0.6586 0.6496 0.6559 0.9623 0.9656 0.9616 0.7344 0.7369 0.7327

0.5 0.3 0.4079 0.3712 0.4053 0.7758 0.7631 0.7739 0.4978 0.4794 0.4964
0.4 0.5909 0.5768 0.5890 0.9324 0.9334 0.9318 0.6756 0.6754 0.6744

0.7 0.3 0.3820 0.3416 0.3798 0.7438 0.7268 0.7416 0.4693 0.4483 0.4683
0.4 0.5550 0.5401 0.5549 0.9098 0.9149 0.9140 0.6420 0.6414 0.6424
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Table 7. Power performance for J = 8.

δ = (0.8, 1.2, 0.8, 1.2 δ = (0.7, 1.3, 0.7, 1.3 δ = (0.7, 0.8, 1.2, 1.3
0.8, 1.2, 0.8, 1.2) 0.7, 1.3, 0.7, 1.3) 0.7, 0.8, 1.2, 1.3)

m/n ρ π0 TL TW TSC TL TW TSC TL TW TSC

25/25 0.2 0.3 0.3019 0.2450 0.2909 0.6193 0.5921 0.6062 0.4722 0.4240 0.4582
0.4 0.4635 0.4227 0.4532 0.8502 0.8526 0.8502 0.6936 0.6779 0.6888

0.5 0.3 0.2710 0.1992 0.2626 0.5856 0.5067 0.5763 0.4348 0.3471 0.4220
0.4 0.4041 0.3556 0.3971 0.7998 0.7807 0.7957 0.6378 0.6011 0.6332

0.7 0.3 0.2734 0.1808 0.2575 0.5736 0.4760 0.5581 0.4276 0.3196 0.4096
0.4 0.3683 0.3341 0.3784 0.7347 0.7491 0.7670 0.5763 0.5673 0.6065

50/50 0.2 0.3 0.5932 0.5546 0.5865 0.9428 0.9399 0.9405 0.8306 0.8168 0.8260
0.4 0.8052 0.7995 0.8017 0.9911 0.9970 0.9910 0.9601 0.9646 0.9595

0.5 0.3 0.5305 0.4817 0.5260 0.9104 0.8979 0.9083 0.7711 0.7453 0.7679
0.4 0.7457 0.7347 0.7424 0.9840 0.9913 0.9839 0.9316 0.9351 0.9304

0.7 0.3 0.4975 0.4415 0.4913 0.8882 0.8715 0.8865 0.7371 0.7026 0.7333
0.4 0.7090 0.6952 0.7100 0.9737 0.9848 0.9762 0.9105 0.9181 0.9139

100/100 0.2 0.3 0.9040 0.9015 0.9033 0.9997 0.9996 0.9997 0.9934 0.9935 0.9932
0.4 0.9881 0.9880 0.9879 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

0.5 0.3 0.8563 0.8490 0.8548 0.9982 0.9984 0.9982 0.9845 0.9844 0.9845
0.4 0.9739 0.9742 0.9735 0.9997 0.9999 0.9997 0.9993 0.9996 0.9993

0.7 0.3 0.8274 0.8188 0.8263 0.9974 0.9974 0.9974 0.9763 0.9754 0.9758
0.4 0.9668 0.9658 0.9661 0.9997 0.9999 0.9997 0.9986 0.9987 0.9986

60/50 0.2 0.3 0.6426 0.6107 0.6371 0.9645 0.9634 0.9636 0.8768 0.8686 0.8737
0.4 0.8525 0.8489 0.8502 0.9944 0.9986 0.9944 0.9755 0.9786 0.9749

0.5 0.3 0.5661 0.5249 0.5618 0.9375 0.9307 0.9361 0.8198 0.8038 0.8172
0.4 0.7882 0.7764 0.7855 0.9906 0.9943 0.9902 0.9598 0.9614 0.9593

0.7 0.3 0.5336 0.4885 0.5302 0.9177 0.9070 0.9160 0.7887 0.7628 0.7852
0.4 0.7511 0.7315 0.7523 0.9878 0.9904 0.9893 0.9407 0.9432 0.9434

4. Application
To address the unilateral and bilateral combined data structure, a double-blinded clinical

trial reported by Mandel et al. [21] and Le [20] provides us with the ability to implement our
methodology for real-world data. This trial aimed to compare the efficacy of two antibiotics, Cefaclor
and Amoxicillin, in treating acute otitis media with effusion (AOM) in children. The study sought
to evaluate the safety and effectiveness of Cefaclor compared to Amoxicillin, the standard first-
line treatment, in order to identify potentially more effective medications [22]. The trial involved
214 children (293 ears) who received either unilateral or bilateral tympanocentesis before being
randomly assigned to one of the treatment groups. After a 14-day treatment course, outcomes were
recorded. The unilateral group had binary outcomes (cured or not cured), while the bilateral group
was categorized into three outcomes: cured (both ears AOM-free), partially cured (one ear AOM-free),
and not cured. Table 8 summarizes the frequency of patients in each outcome category by intervention
group at the end of the trial.

The parameter estimates shown in Tables 9 and 10 provide the statistics and corresponding
p-values for the three methods. Notably, all p-values are greater than 0.05. Table 9 indicates no
evidence to reject the null hypothesis H0 : δ1 = δ2 = . . . = δJ = δ with J = 3, suggesting that there is
no significant difference in the proportions between Cefaclor and Amoxicillin across the strata.

Table 8. Number of ears in different age strata of children cured by antibiotics (Treatment
arm—Cefaclor vs. Control arm—Amoxicillin).

Age Group

<2 yrs 2–5 yrs ≥6 yrs

Number of AOM-Free Ears TRT Control TRT Control TRT Control

Bilateral
0 8 11 6 3 0 1
1 2 2 6 1 1 0
2 8 2 10 5 3 6

Unilateral 0 3 2 24 14 11 11
1 9 10 7 22 8 7
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Table 9. MLEs of risk ratios, correlation coefficient, and risk incidence for each strata.

Constrained MLEs Unconstrained MLEs

Age δ ρ π1 π2 δ ρ π1 π2

<2 yrs
1.1007

0.7654 0.5022 0.5528 0.7663 0.6756 0.5921 0.4527
2–5 yrs 0.5502 0.4770 0.5250 1.5284 0.5599 0.4011 0.6130
≥6 yrs 0.8111 0.4926 0.5422 1.0489 0.8118 0.5065 0.5312

Table 10. Statistic and p-value for comparing two groups treatment effect.

Method TLR TW TSC

statistic 4.5624 4.6593 4.8774
p-value 0.1022 0.0973 0.0873

5. Conclusions
In this article, we developed three test procedures to assess homogeneity in combined unilateral

and bilateral samples within stratified two-group clinical trial data. For the estimation of unrestricted
and restricted MLEs, we proposed relatively efficient iteration solutions by treating relative risks as
common to decrease the estimator dimension.

Simulation results demonstrate that the score test performs robustly, maintaining a satisfactory
Type I error rate and power across various parameter settings, including different group sizes and
numbers of strata. In contrast, the likelihood ratio test tends to produce inflated results when sample
sizes are small, while the Wald test is conservative and prone to overfitting with small sample sizes.
However, as the number of strata increases and the relative risk becomes larger, the Wald test’s
performance also becomes inflated. When the sample size is large, especially when it exceeds 100,
the results of the three tests converge closely to the true values. Therefore, the score test is generally
preferred for assessing homogeneity in combined sample designs. Simulation results furthermore
indicated that a combined data structure incorporating unilateral and bilateral data at once could
gain more power than bilateral data only [19].

This study utilizes a statistical approach grounded in Donner’s parametric model, which
calculates the rate by aggregating outcomes across groups, treating paired organs and bilateral
results as indistinguishable. Given the inflated or conservative Type I error rates observed in the
likelihood ratio and Wald tests, future research may explore the development of an exact test tailored
to small sample size settings. It is important to note that Donner’s model assumes a common intra-
class correlation for bilateral outcomes, which may present challenges if significant differences in
correlation exist between the paired organs of different individuals or across different groups in
clinical trials. In other words, we should initially validate the correlation in conjunction with our
model-based method presentation. In addition, there is necessity to adjust for confounding effect
when we involves in strata. Furthermore, some research examines the difference between the paired
organs such eyes can be dominant and non-dominant [23] while researchers usually do not collect
(or it is hard to collect) the handedness of the individuals [1]. We could consider if those data are
available in a real-world example. Considering the assumptions discussed above, we plan to explore
these topics in future work to support our methods using a more stable foundation.

In addition to risk ratio exploration, Zhang and Ma [24] investigated homogeneity testing on
the risk difference between stratified bilateral and unilateral combined data. She proposed that
the score test is a worthwhile hypothesis testing with well-performed power and a robust Type I
error rate, which can be evidence supporting that our model-based method on risk ratio holds more
comprehensive conclusions.
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Appendix A

Appendix A.1. Fisher Information Matrix for Given δ

Under the null hypothesis, π1j and ρj can be obtained by the Fisher scoring algorithm. The Fisher
information matrix for jth stratum is written as follows:

I(j)
1 =

[
I1j
11 I1j

12
I1j
12 I1j

22

]
=

[
m+1j A1 + m+2jδ

2 A2 + A3 m+1jB1 + m+2jδ B2
m+1jB1 + m+2jδB2 m+1jC1 + m+2jC2

]
,

where

A1 =
(2 − 2 ρj) (2 π1j

2 − 2 π1j + 1)
π1j (1 − π1j)

+
(2 π1j

2 + 1) (1 − ρj)
2 − 2 π1j (1 − ρj) (2 − ρj) + 1

(1 − π1j)
2 (1 − ρj) + ρj (1 − π1j)

+
2 π1j

2 (1 − ρj)
2 + ρ2

j + 2 π1j ρj (1 − ρj)

π1j
2 (1 − ρj) + π1j ρj

,

A2 =
ρ2

j + 2 δ2 π1j
2 (1 − ρj)

2 + 2 δ π1j ρj (1 − ρj)

δ π1j ρj − δ2 π1j
2 (ρj − 1)

+
(2 δ2 π1j

2 + 1) (1 − ρj)
2 − 2 δ π1j (1 − ρj) (2 − ρj) + 1

(1 − δ π1j)
2 (1 − ρj) + ρj (1 − δ π1j)

+
(2 − 2 ρj) (2 δ2 π1j

2 − 2 δ π1j + 1)
δ π1j (1 − δ π1j)

,

A3 = n+1j
1

π1j(1 − π1j)
+ n+2j

δ

π1j (1 − δ π1j)
,

B1 =
1 − π1j

ρj + (1 − π1j) (1 − ρj)
+

π1j

ρj + π1j (1 − ρj)
,

B2 =
1 − δπ1j

ρj + (1 − δπ1j) (1 − ρj)
+

δπ1j

ρj + δπ1j (1 − ρj)
,

C1 =
2 π1j (1 − π1j)

1 − ρj
+

π1j
2 (1 − π1j)

ρj + (1 − π1j) (1 − ρj)
+

π1j (1 − π1j)
2

ρj + π1j (1 − ρj)
,

C2 =
2 δπ1j (1 − δπ1j)

1 − ρj
+

δ2π1j
2
(1 − δπ1j)

ρj + (1 − δπ1j) (1 − ρj)
+

δπ1j (1 − δπ1j)
2

ρj + δπ1j (1 − ρj)
.

Appendix A.2. Fisher Information Matrix for the Wald Test and Score Test

The Fisher information matrix I is a 3J × 3J block diagonal matrix.

I =


I1 0 · · · 0
0 I2 · · · 0
...

. . .
...

0 · · · · · · I J ,


with the diagonal elements

I j =

I j
11 I j

12 I j
13

I j
12 I j

22 I j
23

I j
13 I j

23 I j
33,


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where

I j
11 = m+2jπ

2
1j

[ (2 − 2 ρj) (2 π1j
2 − 2 π1j + 1)

π1j (1 − π1j)

+
(2 π1j

2 + 1) (1 − ρj)
2 − 2 π1j (1 − ρj) (2 − ρj) + 1

(1 − π1j)
2 (1 − ρj) + ρj (1 − π1j)

+
2 π1j

2 (1 − ρj)
2 + ρ2

j + 2 π1j ρj (1 − ρj)

π1j
2 (1 − ρj) + π1j ρj

]
+ n+2jπ

2
1j

1
δjπ1j(1 − δjπ1j)

,

I j
12 =

δj

π1j
I j
w11,

I j
13 = m+2jπ1j

[ 1 − δπ1j

ρj + (1 − δπ1j) (1 − ρj)
+

δπ1j

ρj + δπ1j (1 − ρj)

]
,

I j
22 = m+1j

[ (2 − 2 ρj) (2 π1j
2 − 2 π1j + 1)

π1j (1 − π1j)

+
(2 π1j

2 + 1) (1 − ρj)
2 − 2 π1j (1 − ρj) (2 − ρj) + 1

(1 − π1j)
2 (1 − ρj) + ρj (1 − π1j)

+
2 π1j

2 (1 − ρj)
2 + ρ2

j + 2 π1j ρj (1 − ρj)

π1j
2 (1 − ρj) + π1j ρj

]
+ m+2jδ

2
[ ρ2

j + 2 δ2 π1j
2 (1 − ρj)

2 + 2 δ π1j ρj (1 − ρj)

δ π1j ρj − δ2 π1j
2 (ρj − 1)

+
(2 δ2 π1j

2 + 1) (1 − ρj)
2 − 2 δ π1j (1 − ρj) (2 − ρj) + 1

(1 − δ π1j)
2 (1 − ρj) + ρj (1 − δ π1j)

+
(2 − 2 ρj) (2 δ2 π1j

2 − 2 δ π1j + 1)
δ π1j (1 − δ π1j)

]
+ n+1j

1
π1j(1 − π1j)

+ n+2j
δ

π1j (1 − δ π1j)
,

I j
23 = m+1j

[ 1 − π1j

ρj + (1 − π1j) (1 − ρj)
+

π1j

ρj + π1j (1 − ρj)

]
+ m+2jδ

[ 1 − δπ1j

ρj + (1 − δπ1j) (1 − ρj)
+

δπ1j

ρj + δπ1j (1 − ρj)

]
,

I j
33 = m+1j

[2 π1j (1 − π1j)

1 − ρj
+

π1j
2 (1 − π1j)

ρj + (1 − π1j) (1 − ρj)
+

π1j (1 − π1j)
2

ρj + π1j (1 − ρj)

]
+ m+2j

[2 δπ1j (1 − δπ1j)

1 − ρj
+

δ2π1j
2
(1 − δπ1j)

ρj + (1 − δπ1j) (1 − ρj)
+

δπ1j (1 − δπ1j)
2

ρj + δπ1j (1 − ρj)

]
.
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