
Citation: Oliveira, J.M.; Ramos, P.

Evaluating the Effectiveness of Time

Series Transformers for Demand

Forecasting in Retail. Mathematics

2024, 12, 2728. https://doi.org/

10.3390/math12172728

Academic Editors: Shuo Yu and

Feng Xia

Received: 27 July 2024

Revised: 26 August 2024

Accepted: 29 August 2024

Published: 31 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Evaluating the Effectiveness of Time Series Transformers for
Demand Forecasting in Retail
José Manuel Oliveira 1,2,*,† and Patrícia Ramos 2,3,†

1 Faculty of Economics, University of Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
2 Institute for Systems and Computer Engineering, Technology and Science, Campus da FEUP,

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
3 CEOS.PP, ISCAP, Polytechnic of Porto, Rua Jaime Lopes Amorim s/n, 4465-004 São Mamede de Infesta, Portugal
* Correspondence: jmo@fep.up.pt
† These authors contributed equally to this work.

Abstract: This study investigates the effectiveness of Transformer-based models for retail demand
forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion
Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance
was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5
competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark.
The results demonstrate that Transformer-based models significantly outperform traditional baselines,
with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE
improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Naïve
method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also sur-
passed traditional methods, their performance was slightly lower, indicating the potential for further
tuning. Additionally, this study highlights a trade-off between model complexity and computational
efficiency, with Transformer models, though computationally intensive, offering superior forecasting
accuracy compared to the significantly slower traditional models like AutoARIMA. These findings
underscore the potential of Transformer-based approaches for enhancing retail demand forecasting,
provided the computational demands are managed effectively.

Keywords: Transformer; time series forecasting; quantile forecasting; retail; Informer; Autoformer;
PatchTST; TFT

MSC: 68T07

1. Introduction

The global retail industry, a behemoth estimated at a staggering USD 25 trillion [1],
hinges on a fundamental principle: ensuring the expeditious orchestration of product
flow from supplier to consumer. This translates to a large-scale supply chain optimization
challenge, where even minor revenue gains can significantly impact a retailer’s profitability
due to high fixed costs and narrow margins. This necessitates the adoption of cutting-edge
technological advancements to enhance demand forecasting accuracy [2]. Sales forecasts
serve as the cornerstone for various critical business decisions, encompassing workforce
scheduling, inventory replenishment, and safety stock calculations [3]. Operational deci-
sions often take place at the product-store level, and typically on a daily or weekly basis.
As a result, granular forecasting methods are required to effectively manage a wide range
of time series data, which may show varying levels of volatility and intermittency (periods
with no sales) [4].

Transformers, a class of machine learning models centered on the self-attention mech-
anism, have revolutionized various fields since their inception for natural language pro-
cessing. Their capacity to efficiently process sequential data, coupled with their ability to

Mathematics 2024, 12, 2728. https://doi.org/10.3390/math12172728 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12172728
https://doi.org/10.3390/math12172728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8516-6418
https://orcid.org/0000-0002-0959-8446
https://doi.org/10.3390/math12172728
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12172728?type=check_update&version=3

Mathematics 2024, 12, 2728 2 of 28

exploit parallel computation, has led to state-of-the-art performance across diverse domains,
including image recognition, natural language generation, and reinforcement learning.

In the realm of time series analysis, where data unfolds sequentially over time,
RNNs (recurrent neural networks) have been the predominant approach [5,6]. While
RNNs, such as LSTM (long short-term memory) cells and GRUs (gated recurrent units),
have shown success in capturing temporal dependencies, they often grapple with vanishing
gradients, computational inefficiency, and limitations in handling long-range patterns [7].

The Transformer architecture offers a compelling alternative by processing input se-
quences in parallel and attending to all elements simultaneously. This enables the model
to effectively capture complex dependencies within time series data. While this approach
holds immense potential, the computational demands of self-attention, particularly when
dealing with extensive sequences [8], have necessitated the development of optimized
architectures [9]. In response, researchers have introduced several variants of the founda-
tional vanilla Transformer including Autoformer, Informer, TFT, and PatchTST, which have
demonstrated remarkable performance across a variety of time series forecasting domains.

While these models have been rigorously evaluated on datasets encompassing energy,
traffic, economics, weather, and even public health, a notable gap exists in the literature
regarding their application to retail time series data. This absence of research precludes a
comprehensive understanding of their efficacy and potential limitations in the context of
retail forecasting.

This paper offers a systematic evaluation of leading Transformer architectures applied
to time series forecasting within the retail domain. By utilizing the widely recognized M5
dataset, we provide:

• A benchmark for Transformer-based retail forecasting: Our study establishes a robust
baseline for future research by rigorously evaluating the performance of various
Transformer variants on a real-world retail dataset.

• Comparative analysis of point and probabilistic forecasts: We contribute to the under-
standing of Transformer capabilities by examining their performance in both point
and probabilistic forecasting scenarios within the retail context.

• Practical guidelines for Transformer implementation: Our research offers actionable
insights and best practices for effectively training Transformers on retail time series
data, including techniques to overcome common challenges.

• Advancement of Transformer knowledge in retail: By systematically exploring the po-
tential of Transformers in the retail domain, our work expands the body of knowledge
on applying this powerful technique to this critical industry.

The paper is structured as follows. Section 2 provides a comprehensive overview
of the evolution of deep learning techniques for time series forecasting, emphasizing the
transition from recurrent neural networks to groundbreaking Transformer architecture. The
section highlights the Transformer’s ability to efficiently capture long-range dependencies
and its superior performance compared to RNN-based models. Section 3 delves into the
intricacies of the Transformer architecture, explaining its core components and the rationale
behind its design. Furthermore, it explores key variants of the Transformer that have
emerged in recent years. Section 4 introduces traditional time series forecasting methods,
serving as essential baselines for comparison. Section 5 presents a rigorous empirical
evaluation of the proposed models on the M5 dataset, including a detailed analysis of
performance metrics and hyperparameter tuning. Finally, Section 6 summarizes the key
findings, contributions, and potential avenues for future research.

2. Related Work

In the domain of machine learning, deep learning algorithms have established them-
selves as the leading methodologies, achieving notable success across multiple computer
science fields, such as computer vision, natural language processing, and speech recog-
nition. Lately, there has been a surge in the use of these algorithms for time series fore-
casting, largely due to their ability to capture complex, non-linear relationships within

Mathematics 2024, 12, 2728 3 of 28

the data [10–12]. Among deep learning algorithms, recurrent neural networks (RNNs)
stand out as particularly noteworthy [13,14]. However, traditional RNNs face challenges in
training stability, which hinders their ability to capture long-range dependencies. Similar to
most neural networks, RNNs rely on gradient descent for training, with backpropagation
through time applied to calculate the gradient of the loss function concerning the network’s
weights. In deep networks, backpropagation can lead to problems such as vanishing or
exploding gradients. As the error signal propagates backward, certain components may
become negligibly small, resulting in minimal weight updates, or excessively large, caus-
ing training instability. To address these gradient-related issues, various techniques have
been developed over time. Long short-term memory (LSTM) cells and gated recurrent
units (GRUs) have proven particularly effective [15]. These gated mechanisms regulate the
flow of information through the network and help mitigate gradient instability. However,
even with stable training, RNNs can still struggle to learn relationships between distant
elements in a sequence. The limited memory of RNNs is a significant drawback, prompting
the introduction of attention mechanisms and Transformers in deep learning. Further-
more, RNNs typically do not take full advantage of parallel processing capabilities offered
by modern hardware accelerators such as graphical processing units (GPUs) and tensor
processing units (TPUs) [16].

Transformers leverage a unique architecture enabling highly parallelized computation
for sequential data [17,18]. This translates to significant speed improvements without bloat-
ing the network’s complexity. This efficiency stems from their core design, allowing them
to exploit the parallel processing prowess of GPUs and TPUs. Due to the attention-based
mechanisms, Transformers can efficiently relate information from all elements within a
sequence simultaneously, avoiding the vanishing gradient issues that plague RNNs and
their derivatives. This architectural advantage has led to remarkable advancements in
long-term and multivariate time series forecasting. However, the computational demands
and memory requirements of the self-attention component pose challenges for model-
ing extensive sequences. Researchers have addressed this hurdle by proposing various
performance optimization techniques specifically tailored for time series tasks.

Informer’s architecture [19] incorporates three significant innovations to enhance
efficiency and performance. The first is the ProbSparse self-attention mechanism, which
reduces the time complexity and memory usage of self-attention from O(L2) to O(L log L).
In this context, O, known as Big O notation, describes the upper bound of the algorithm’s
complexity, indicating how the computational resources required (time and memory)
grow with the length of the series, denoted by L. The ProbSparse mechanism achieves
this reduction by focusing on the most informative query-key pairs, thereby maintaining
high dependency alignment with significantly reduced computational cost. The second
innovation is the self-attention distilling technique, which prioritizes dominant attention
scores across layers. This technique progressively reduces input length and halves the
cascading layer input, efficiently handling extremely long sequences. As a result, the
space complexity is reduced to O((2 − ϵ)L log L). The third innovation is the generative-
style decoder. Unlike traditional methods that predict step-by-step, this decoder predicts
the entire sequence in a single forward operation. This approach dramatically improves
inference speed and mitigates the accumulation of prediction errors.

Autoformer [20] is an advanced Transformer architecture designed for long-term time
series forecasting, featuring two key innovations: a decomposition architecture and an
autocorrelation mechanism. The decomposition architecture progressively separates time
series data into trend and seasonal components, facilitating the extraction of long-term
patterns. The autocorrelation mechanism, replacing traditional self-attention, efficiently
identifies periodic dependencies, aggregating similar sub-series to improve computational
efficiency and prediction accuracy. This structure, with a complexity of O(L log L), allows
Autoformer to achieve superior performance in various forecasting tasks by effectively
handling complex temporal patterns.

Mathematics 2024, 12, 2728 4 of 28

The temporal fusion Transformer (TFT) architecture [21] is designed to address the
complexities of multi-horizon time series forecasting by integrating several specialized
components. It employs static covariate encoders to generate context vectors from static
features, which are utilized across the network. Gating mechanisms and sample-dependent
variable selections dynamically filter irrelevant inputs, ensuring focus on pertinent data.
A sequence-to-sequence layer processes known and observed inputs locally, capturing
short-term dependencies, while a temporal self-attention decoder identifies long-term
dependencies by weighing the importance of different time steps. This combination
allows TFT to handle diverse input types and provide interpretable insights into temporal
dynamics, significantly enhancing forecasting performance and interpretability.

Patch time series Transformer (PatchTST) [22] is a Transformer-based model designed
specifically for multivariate time series forecasting, incorporating two primary innovations:
segmentation of time series into subseries-level patches and a channel-independent process-
ing framework. Each univariate time series is independently normalized and segmented
into patches, which serve as input tokens for the Transformer. These patches are projected
into a higher-dimensional space with positional encodings to preserve temporal order. The
Transformer encoder, consisting of multi-head attention mechanisms, normalization layers,
and feed-forward networks, processes these tokens to generate latent representations. The
model then concatenates these representations and passes them through a linear head to
produce the forecasted values. This architecture reduces computational complexity by
decreasing the number of input tokens and enhances the model’s ability to capture long-
term dependencies, resulting in superior forecasting accuracy and efficiency compared to
traditional Transformer-based models.

The Pyraformer, FEDformer, and non-stationary Transformer are examples of ad-
vanced Transformer variants designed for time series forecasting, which are less widely
known and not as readily accessible through standard repositories [23–25] compared to
more established models like the vanilla Transformer, PatchTST, TFT, Autoformer, and
Informer. The Pyraformer architecture [26] introduces a novel pyramidal attention mecha-
nism designed to reduce the computational complexity inherent in modeling long-range
dependencies in time series data. It hierarchically aggregates information through multiple
layers of attention, effectively capturing both local and global temporal patterns. FED-
former [27], or the frequency-enhanced decomposed Transformer, integrates frequency
domain decomposition into the Transformer architecture to enhance long-term time series
forecasting. It decomposes time series data into trend and seasonal components using the
Fourier transform and processes these components separately using dedicated Transformer
layers. The non-stationary Transformer [28] addresses the challenges of non-stationarity
in time series data by incorporating a learnable transformation module that adapts the
input data to a stationary representation. This transformation is coupled with a standard
Transformer architecture, which then processes the now-stationary data for forecasting.

3. Time Series Transformer Models

Introduced by Google in 2017 [29], the Transformer architecture leverages attention
mechanisms to excel at processing sequential data. Initially conceived for natural language
tasks like machine translation, where it transforms input sequences from one language into
output sequences of another, the Transformer’s capabilities extend beyond text. By framing
time series data as sequential patterns, analogous to sentences in different languages, we can
apply the Transformer to tackle the challenge of multi-step time series forecasting. In essence,
the Transformer enables us to map historical time series segments to future value predictions.

In this section, we start with an explanation of the core functionalities within the
Transformer architecture, as introduced by [29] to tackle the intricate task of neural machine
translation. We will then delve into a rigorous exploration of the operations executed within
each Transformer component, along with the underlying rationale for these operations.
The Transformer architecture has witnessed prolific innovation, with numerous variations
emerging in recent years. While many of these modifications have been proposed to

Mathematics 2024, 12, 2728 5 of 28

enhance Transformer performance, our focus will be on the most prevalent and well-
established variants.

3.1. Vanilla Transformer

Let X = [x1, . . . , xL] ∈ RL×d denote a multivariate time series where L is the series’s
length and each xt ∈ Rd is a d-dimensional vector depicting the values of the d variables of
X at time t. The time series forecasting task is to predict future values of the target variable
at time L + 1, . . . , L + H where H is the forecast horizon.

Transformers, due to their attention mechanisms, treat input data as unordered sets
rather than sequential structures. Consequently, explicit encoding of temporal relation-
ships is essential for time series forecasting. This is typically accomplished by integrating
positional information into the input embeddings. A common strategy involves adding a
positional embedding to the projected input representation (see Figure 1). For this purpose,
one-dimensional convolutional layers can be employed to extract a higher D-dimensional
feature vector for each data point. Positional embeddings can be learned parameters or
fixed functions, such as sinusoidal encodings, or temporal-based alternatives. While dis-
tinct embeddings for the encoder and decoder are feasible, sharing a single embedding is
also a valid approach when input and output data share the same domain.

Multi-head
attention

Position-wise
FFN

Add & norm

Add & norm

Multi-head
cross-attention

Position-wise
FFN

Add & norm

Add & norm

Masked
multi-head

attention

Add & norm

FC

Input
Embedding

Output
Embedding

Positional
Encoding

Positional
Encoding

Encoder

Decoder

Input Output

× nd

ne ×

+ +

Figure 1. Transformer model architecture. The encoder component, positioned on the left, processes
the input generating a latent representation. The decoder component, positioned on the right,
leverages this representation to produce the output in an autoregressive manner. This means that the
decoder iteratively generates output elements, using previously produced elements as additional
input for subsequent predictions.

The encoder and decoder components are built from ne and nd successive layers, re-
spectively, as illustrated in Figure 1. Data flow sequentially through these layers, with each

Mathematics 2024, 12, 2728 6 of 28

layer’s output serving as input for the subsequent one. Encoder layers comprise two sub-
layers: a self-attention mechanism that establishes relationships between input elements
and a position-wise feed-forward neural network (FFN) acting as a nonlinear transfor-
mation. To facilitate gradient flow during training, residual connections are employed
between each sub-layer and its input, and layer normalization is applied to standardize
the output sequence [30]. Decoder layers adopt a similar architecture to encoder layers but
include an additional sub-layer. The initial sub-layer is a masked self-attention mechanism,
preventing the model from accessing future data points while processing the current one.
This output is then integrated with the encoder’s final hidden representation through
a cross-attention layer, followed by another position-wise feed-forward neural network.
Residual connections and layer normalization are also incorporated into decoder sub-layers.
The final decoder layer feeds into a prediction layer to generate the desired output.

Core computational units within Transformer models are attention mechanisms. These
mechanisms enable the model to selectively concentrate on specific input segments based
on the processed information. Among various attention formulations, Transformers employ
scaled dot-product attention, which bears a strong resemblance to multiplicative attention.
Attention computations involve three core components: queries Q, keys K, and values V.
By multiplying the input matrix X ∈ RL×D with learnable query, key, and value weight
matrices, we obtain Q ∈ RL×Dk , K ∈ RL×Dk , and V ∈ RL×Dv respectively:

Q = XWQ, K = XWK, V = XWV . (1)

Leveraging these matrices, we compute query-key comparisons through the multipli-
cation of Q and KT , followed by scaling, softmax application, and multiplication with V,
resulting in an L × D matrix. To mitigate numerical instabilities and gradient vanishing
during training, the dot product is scaled by dividing it by the square root of the key vector
dimensionality Dk. The self-attention output, a matrix where each row represents the
output vector for a corresponding query, is calculated as follows:

SelfAttention(Q, K, V) = softmax
(

QKT
√

Dk

)
V . (2)

Transformers utilize attention in two primary modes: self-attention and cross-attention.
In self-attention, queries, keys, and values are all derived from the same input sequence,
allowing the model to attend to different parts of the input itself. Conversely, in cross-
attention, queries originate from the preceding decoder sublayer, while key-value pairs
stem from the encoder’s hidden representation, facilitating interaction between the input
and output sequences.

A single self-attention mechanism encounters challenges in capturing the diverse
parallel relationships inherent in its inputs. To overcome this limitation, Transformers
employ multi-head self-attention layers [29]. These layers consist of multiple parallel
self-attention heads, each equipped with its own parameter set. This arrangement enables
each head to independently learn distinct facets of input interconnections at the same
abstraction level. Concretely, each head, denoted by index i, is furnished with separate
query, key, and value weight matrices: WQ

i , WK
i , and WV

i . These matrices project inputs
into distinct query, key, and value embeddings for each head while preserving the core
self-attention computations. Analogous to standard self-attention, the input and output
dimensions remain as D, while key and query embeddings adopt dimensionality Dk, and
value embeddings utilize Dv. Consequently, for each head i, we have weight matrices
WQ

i ∈ RD×Dk , WK
i ∈ RD×Dk , and WV

i ∈ RD×Dv . Multiplying these matrices by the input
matrix X ∈ RL×D generates Qi ∈ RL×Dk , Ki ∈ RL×Dk , and Vi ∈ RL×Dv The output of each
of the h heads has dimensions L × Dv. To integrate these outputs, they are concatenated
into a single matrix of size L × hDv. Finally, a linear projection WO ∈ RhDv×D reshapes
this matrix to the original output dimension D for each data point. Multiplying the

Mathematics 2024, 12, 2728 7 of 28

concatenated matrix by WO produces the self-attention output with dimensions L × D,
suitable for subsequent residual connections and layer normalization, as follows:

Qi = XWQ
i , Ki = XWK

i , Vi = XWV
i , hi = SelfAttention(Qi, Ki, Vi), i = 1, . . . , h , (3)

MultiHeadAttention(X) = Concatenate(h1, . . . , hh)W
O . (4)

Transformer models exhibit three primary limitations. Firstly, they demonstrate a
deficiency in capturing local dependencies. The scaled dot-product attention mecha-
nism (Equation (2)) is insensitive to proximal patterns, rendering the model vulnerable to
anomalies in time series forecasting. Secondly, Transformers suffer from a computational
bottleneck characterized by quadratic space complexity, scaling with the square of the
series’s length O(L2). This quadratic growth in memory requirements and computational
cost restricts their applicability to extended time series. To address these shortcomings,
various Transformer variants have been proposed, as detailed in the subsequent section.

3.2. Adaptive Transformer Architectures for Time Series Forecasting

In the realm of long sequence time series forecasting, traditional Transformer models
face significant challenges due to their quadratic time complexity, high memory usage, and
inherent limitations in handling long sequences. The Informer architecture [19] addresses
these issues with three core innovations: the ProbSparse self-attention mechanism, self-
attention distilling, and a generative style decoder. Firstly, the ProbSparse self-attention
mechanism is designed to enhance computational efficiency. Traditional self-attention
mechanisms in Transformers have a time complexity of O(L2), which becomes infeasible for
long sequences due to the exponential growth in computational and memory requirements.
The ProbSparse self-attention mechanism mitigates this by focusing only on the most
critical query-key pairs, thereby reducing the time complexity and memory usage to
O(L log L). This selective attention is based on a sparsity measurement that identifies
and prioritizes dominant attention scores, allowing the model to maintain performance
while significantly reducing computational overhead. Secondly, Informer introduces self-
attention distilling, a technique that further enhances efficiency by iteratively compressing
the input sequence length across layers. This method highlights the dominant attention
scores, effectively reducing the amount of data processed at each layer and subsequently
lowering the space complexity to O((2 − ϵ)L log L). By halving the input sequence length
in cascading layers, self-attention distilling ensures that the model can handle extremely
long sequences without a prohibitive increase in memory usage. Lastly, the generative
style decoder distinguishes Informer from traditional Transformers by predicting the entire
output sequence in a single forward operation rather than through a step-by-step decoding
process. This approach not only accelerates the inference process but also reduces the
cumulative error that typically accrues in sequential prediction models. By treating the
prediction of long time series sequences as a single generative task, Informer achieves
faster and more accurate long-sequence forecasts. The Informer architecture was validated
through extensive experiments using several datasets including electricity transformer
temperature (ETT), electricity consumption load (ECL), and Weather. These experiments
demonstrated its superior performance compared to existing methods.

Autoformer [20] is a sophisticated Transformer architecture specifically designed
to address the challenges of long-term time series forecasting by incorporating two key
innovations: a decomposition architecture and an autocorrelation mechanism. The architec-
ture follows a standard encoder–decoder structure but introduces a series decomposition
block as a fundamental operation. This block progressively separates time series into
trend-cyclical and seasonal components, leveraging moving average techniques to isolate
long-term trends and cyclical patterns from intermediate predictions. This progressive
decomposition enables Autoformer to handle complex temporal patterns more effectively
than traditional models. The autocorrelation mechanism replaces the conventional self-
attention mechanism, providing a more efficient and accurate method for dependency

Mathematics 2024, 12, 2728 8 of 28

discovery and information aggregation. By utilizing the inherent periodicity of time series
data, the autocorrelation mechanism identifies and aggregates similar sub-series across
different periods, significantly improving both computational efficiency and information
utilization. This mechanism achieves a computational complexity of O(L log L), making it
more suitable for long-term forecasting tasks compared to the quadratic complexity of stan-
dard self-attention mechanisms. In the encoder, the model focuses on capturing seasonal
patterns by eliminating long-term trends through decomposition blocks. The encoder’s out-
put, which contains seasonal information, is then used in the decoder to refine predictions.
The decoder, structured to progressively accumulate and refine trend-cyclical components,
combines the seasonal insights from the encoder with its own decomposition process to
enhance forecast accuracy. Extensive experimentation on multiple benchmarks, including
applications in energy, traffic, economics, weather, and disease forecasting, demonstrates
Autoformer’s superior performance. It achieves state-of-the-art accuracy, showing a 38% rel-
ative improvement over previous models, thereby establishing its effectiveness in handling
long-term time series forecasting tasks.

The temporal fusion Transformer (TFT) architecture [21] is a sophisticated model
designed for high-performance multi-horizon forecasting, integrating various components
to effectively handle both static and time-varying inputs. The TFT is particularly notable
for its ability to provide interpretability alongside its forecasting capabilities, making it a
valuable tool in time series analysis. At its core, the TFT architecture is built around several
key components that work together to process different types of input data. The TFT
employs gated residual networks (GRNs) to manage the flow of information through the
model. These gating mechanisms allow the architecture to adaptively skip over unnecessary
components, providing flexibility in processing. This is particularly useful in scenarios
where the relevance of certain inputs may vary, enabling the model to apply complex
non-linear transformations only when needed. To enhance the model’s interpretability and
efficiency, TFT incorporates variable selection networks that identify and select the most
relevant input variables at each time step. This feature ensures that the model focuses on
the most salient information, reducing noise from irrelevant inputs and improving overall
forecasting accuracy. The architecture includes specialized encoders for static covariates,
which are features that do not change over time. These encoders create context vectors that
condition the temporal dynamics of the model, allowing it to integrate static information
effectively into the forecasting process. TFT utilizes a combination of sequence-to-sequence
layers and multi-head attention mechanisms to capture both short-term and long-term
temporal relationships within the data. The sequence-to-sequence layer processes known
and observed inputs locally, while the attention mechanism enables the model to learn
dependencies across different time steps, enhancing its ability to recognize patterns and
trends. To provide a comprehensive view of the predicted outcomes, TFT incorporates
quantile regression techniques. This allows the model to generate prediction intervals,
offering insights into the range of likely target values at each prediction horizon. This
feature is particularly beneficial in applications where understanding uncertainty is crucial.
The TFT architecture is designed to handle a wide range of forecasting tasks, from simple
datasets with known inputs to complex scenarios involving multiple types of data. By
aligning its structure with the intricacies of multi-horizon forecasting, TFT achieves state-
of-the-art performance across various datasets. Moreover, the interpretability of the TFT
model is a significant advantage. It allows users to analyze important variables for specific
prediction problems, visualize persistent temporal relationships (such as seasonality), and
identify significant regime changes in the data. This interpretability is facilitated by the
attention mechanisms, which provide insights into how different inputs contribute to the
model’s predictions.

Patch time series Transformer (PatchTST) [22], a novel architecture designed for mul-
tivariate time series forecasting and self-supervised representation learning, leverages
the strengths of Transformers with two key innovations: segmentation of time series into
subseries-level patches and a channel-independent processing approach. This model ad-

Mathematics 2024, 12, 2728 9 of 28

dresses several challenges associated with traditional Transformer models, particularly in
handling long-term dependencies and computational efficiency. In PatchTST, time series
data are divided into subseries-level patches, which serve as input tokens for the Trans-
former. This segmentation has multiple benefits. By aggregating time steps into patches,
the model retains local semantic information, akin to how words are handled in natural
language processing. The patching mechanism significantly reduces the number of input
tokens N, which in turn reduces the computation and memory usage of attention maps
from O(N2) to O((L/S)2), where L is the original sequence length and S is the stride length.
This reduction in token length allows the model to attend to longer historical data without
an increase in computational burden, enhancing the model’s ability to capture long-term
dependencies. PatchTST processes each univariate time series independently through a
shared Transformer backbone. This channel-independent approach contrasts with channel-
mixing strategies, where information from multiple channels is combined. The advantages
of this method include (1) scalability: each channel’s data are processed separately, making
the model scalable and efficient, especially for high-dimensional multivariate time series;
and (2) modularity: by treating each channel independently, the model simplifies the
integration of new data channels and facilitates parallel processing. PatchTST’s architecture
is built on a vanilla Transformer encoder. The process involves instance Normalization and
Patching, i.e., each univariate series undergoes instance normalization and is segmented
into patches. These patches are projected into a higher-dimensional space and embedded
with positional encodings to maintain temporal order. The patches are processed by a
multi-head attention mechanism, followed by normalization, feed-forward layers, and
residual connections. This results in a latent representation of the time series. The latent
representations are flattened and passed through a linear head to generate the forecasted
values. Experiments demonstrate PatchTST’s superior performance in both supervised
and self-supervised settings. When applied to datasets like traffic, electricity, and weather,
PatchTST significantly reduced the mean squared error (MSE) compared to state-of-the-
art models. For instance, with a look-back window L = 336, the model achieved an
MSE of 0.367 using patching, compared to 0.518 without patching [22]. Additionally, self-
supervised pretraining further enhanced the model’s accuracy, achieving the best MSE of
0.349. For more in-depth information about each Transformer variant, please refer to the
original papers where the architectures are introduced.

4. Baselines

To objectively assess the performance of forecasting models, researchers and prac-
titioners often employ baseline models as a reference point [31]. These baselines serve
as a standard against which the accuracy and effectiveness of novel forecasting methods
can be compared. By establishing a benchmark, it becomes possible to quantify the im-
provement offered by a new model and to discern its added value in specific forecasting
scenarios. In essence, benchmarking provides a rigorous framework for evaluating the rela-
tive performance of different models, enabling informed decisions about model selection
and application.

Two of the most widely used benchmark models for time series forecasting are ex-
ponential smoothing (ETS) and autoregressive integrated moving average (ARIMA) [32].
These models have been extensively studied and applied in various domains, providing a
solid foundation for comparison. By establishing these models as a baseline, researchers
can gauge the effectiveness of more sophisticated techniques and identify areas for potential
improvement. Similarly, to establish a baseline for evaluating the performance of time
series forecasting models, the seasonal Naïve method is often employed [33]. This simple
yet effective approach leverages the recurring patterns present in seasonal data to generate
forecasts. By replicating the values from the same period in the previous season, the sea-
sonal Naïve method provides a straightforward and computationally efficient estimate of
future values. While its simplicity limits its ability to capture complex patterns, it serves as
a valuable benchmark for assessing the added value of more sophisticated models. The

Mathematics 2024, 12, 2728 10 of 28

following sections will provide an overview of ARIMA and ETS models, delving into
their underlying principles and methodologies. The Naïve and seasonal Naïve forecasting
methods will also be discussed.

4.1. ARIMA Models

The seasonal ARIMA model, represented as ARIMA(p, d, q)× (P, D, Q)m, is a model
specifically designed for stationary time series. It can be formulated as follows:

ϕp(B)ΦP(Bm)(1 − B)d(1 − Bm)Dηt = c + θq(B)ΘQ(Bm)εt , (5)

where the regular autoregressive and moving average polynomials, ϕp(B) and θq(B), are
of orders p and q respectively, while the seasonal autoregressive and moving average
polynomials, ΦP(Bm) and ΘQ(Bm), are of orders P and Q respectively. The terms are
defined as follows:

ϕp(B) = 1 − ϕ1B − · · · − ϕpBp , ΦP(Bm) = 1 − Φ1Bm − · · · − ΦPBPm ,

θq(B) = 1 + θ1B + · · ·+ θqBq , ΘQ(Bm) = 1 + Θ1Bm + · · ·+ ΘQBQm ,

where ηt represents the target time series, m is the seasonal period, and D and d denote
the degrees of seasonal and ordinary differencing respectively, and B is the backward
shift operator. Here, c = µ(1 − ϕ1 − · · · − ϕp)(1 − Φ1 − · · · − ΦP) with µ being the mean
of (1 − B)d(1 − Bm)Dηt, and εt a white noise series with zero mean and constant vari-
ance. For the time series to be stationary and invertible, the zeros of the polynomials
ϕp(B), ΦP(Bm), θq(B), and ΘQ(Bm) must all lie outside the unit circle. Non-stationary
time series can be transformed into stationary series by applying logarithmic transfor-
mations to stabilize the variance and by taking appropriate degrees of differencing to
stabilize the mean. Once the values for p, q, P, and Q are specified, the model param-
eters c, ϕ1, . . . , ϕp, θ1, . . . , θq, Φ1, . . . , ΦP, Θ1, . . . , ΘQ can be estimated by maximizing the
log-likelihood function. The values of p, q, P, and Q can be determined using Akaike’s
Information Criterion (AIC), which balances the log-likelihood with a regularization term
to penalize model complexity and prevent overfitting. For implementing ARIMA models,
we utilized the AutoARIMA function from the StatsForecast Python library [34], which
mirrors Hyndman’s [35] auto.arima function in the forecast package of the R program-
ming language.

4.2. Exponential Smoothing Models

Exponential smoothing methodologies are characterized by the interplay of observa-
tion and state equations. The former delineates the connection between the time series and
its constituent elements—level, trend, and seasonality—while the latter elucidates how
these components evolve temporally [36,37]. These components can interact additively (A)
or multiplicatively (M), with the potential for additive or multiplicative damped trends (Ad,
Md). Error terms can be incorporated additively or multiplicatively into each model. The
smoothing parameter governs the extent to which the error process modifies each com-
ponent. For in-depth exploration, the reader is directed to [38,39]. Table 1 presents the
state-space formulation for these models, where yt represents the time series observation at
period t, lt denotes the local level, bt signifies the local trend, st encapsulates local season-
ality, and m corresponds to the seasonal period. The smoothing parameters are denoted
by α, β, γ, and ϕ, and the error term εt is assumed to be normally and independently
distributed with zero mean and variance σ2, expressed as εt ∼ N(0, σ2). The Python li-
brary StatsForecast, specifically the AutoETS function, was employed to implement these
models [34]. This function mirrors the ets function within the R forecast package by [37].

Mathematics 2024, 12, 2728 11 of 28

Table 1. State-space formulation for exponential smoothing models with additive and multiplica-
tive error.

Additive Error Models
Seasonal Component

N A M

Tr
en

d
C

om
po

ne
nt

N

yt = lt−1 + εt

lt = lt−1 + αεt

yt = lt−1 + st−m + εt

lt = lt−1 + αεt

st = st−m + γεt

yt = lt−1st−m + εt

lt = lt−1 + αεt/st−m

st = st−m + γεt/lt−1

A

yt = lt−1 + bt−1 + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

yt = lt−1 + bt−1 + st−m + εt

lt = lt−1 + bt−1 + αεt

bt = bt−1 + βεt

st = st−m + γεt

yt = (lt−1 + bt−1)st−m + εt

lt = lt−1 + bt−1 + αεt/st−m

bt = bt−1 + βεt/st−m

st = st−m + γεt/(lt−1 + bt−1)

Ad

yt = lt−1 + ϕbt−1 + εt

lt = lt−1 + ϕbt−1 + αεt

bt = ϕbt−1 + βεt

yt = lt−1 + ϕbt−1 + st−m + εt

lt = lt−1 + ϕbt−1 + αεt

bt = ϕbt−1 + βεt

st = st−m + γεt

yt = (lt−1 + ϕbt−1)st−m + εt

lt = lt−1 + ϕbt−1 + αεt/st−m

bt = ϕbt−1 + βεt/st−m

st = st−m + γεt/(lt−1 + ϕbt−1)

Multiplicative Error Models

Seasonal Component

N A M

Tr
en

d
C

om
po

ne
nt

N

yt = lt−1(1 + εt)

lt = lt−1(1 + αεt)

yt = (lt−1 + st−m)(1 + εt)

lt = lt−1 + α(lt−1 + st−m)εt

st = st−m + γ(lt−1 + st−m)εt

yt = lt−1st−m(1 + εt)

lt = lt−1(1 + αεt)

st = st−m(1 + γεt)

A

yt = (lt−1 + bt−1)(1 + εt)

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt−1 + bt−1)εt

yt = (lt−1 + bt−1 + st−m)(1 + εt)

lt = lt−1 + bt−1 + α(lt−1 + bt−1 + st−m)εt

bt = bt−1 + β(lt−1 + bt−1 + st−m)εt

st = st−m + γ(lt−1 + bt−1 + st−m)εt

yt = (lt−1 + bt−1)st−m(1 + εt)

lt = (lt−1 + bt−1)(1 + αεt)

bt = bt−1 + β(lt−1 + bt−1)εt

st = st−m(1 + γεt)

Ad

yt = (lt−1 + ϕbt−1)(1 + εt)

lt = (lt−1 + ϕbt−1)(1 + αεt)

bt = ϕbt−1 + β(lt−1 + ϕbt−1)εt

yt = (lt−1 + ϕbt−1 + st−m)(1 + εt)

lt = lt−1 + ϕbt−1 + α(lt−1 + ϕbt−1 + st−m)εt

bt = ϕbt−1 + β(lt−1 + ϕbt−1 + st−m)εt

st = st−m + γ(lt−1 + ϕbt−1 + st−m)εt

yt = (lt−1 + ϕbt−1)st−m(1 + εt)

lt = (lt−1 + ϕbt−1)(1 + αεt)

bt = ϕbt−1 + β(lt−1 + ϕbt−1)εt

st = st−m(1 + γεt)

4.3. Naïve

The Naïve method is a basic forecasting technique that assumes the next observation
in a time series will be equal to the previous observation. In other words, it predicts no
change from the most recent data point. Mathematically, this can be expressed as follows:

ŷt = yt−1 , (6)

where ŷt is the forecasted value at time t, and yt−1 is the observed value at time t − 1.
While extremely simple, the Naïve method can serve as a benchmark for evaluating the
performance of more complex forecasting models. It is particularly useful when there is no
clear trend, seasonal pattern, or other discernible structure in the data.

4.4. Seasonal Naïve

The seasonal Naïve method is also a straightforward approach to time series fore-
casting that leverages the seasonal patterns inherent in data. This model posits that the
future value of a series can be accurately predicted by the most recent observation from the
corresponding period in the past. Mathematically, this can be expressed as follows:

ŷt = yt−m , (7)

Mathematics 2024, 12, 2728 12 of 28

where ŷt is the forecasted value at time t, yt−m is the observed value m periods prior to t,
and m represents the length of the seasonal cycle (e.g., 12 for monthly data with annual
seasonality). In essence, the seasonal Naïve model assumes that seasonal patterns persist
consistently over time, and therefore, the best prediction for a future value is the equivalent
value from the previous occurrence of the same season. While simplistic, this method can
also serve as a valuable baseline for comparison with more complex forecasting techniques.

5. Empirical Evaluation
5.1. Dataset

To establish the robustness and generalizability of research findings, it is impera-
tive that they can be independently verified and contrasted with related work. Conse-
quently, this study leverages the widely recognized and publicly accessible M5 competition
dataset [40], providing a well-established foundation for our investigation. The M5 com-
petition constituted a rigorous benchmark for forecasting methodologies, demanding the
generation of both accurate point estimates and probabilistic intervals for hierarchical time
series data. The competition’s focus on Walmart, the undisputed global leader in retail
revenue, rendered it a particularly challenging and high-stakes endeavor.

The M5 dataset encompasses a hierarchical structure composed of 3049 distinct prod-
ucts classified into three primary categories: Foods, Hobbies, and Household goods. These
categories are further subdivided into seven product departments (Foods1, Foods2, Foods3,
Hobbies1, Hobbies2, Household1, and Household2). Sales data for these items were col-
lected from ten retail stores distributed across three states: California (CA), Texas (TX),
and Wisconsin (WI). California has four stores (CA1, CA2, CA3, and CA4), Texas has three
stores (TX1 and TX2), and Wisconsin also has three stores (WI1, WI2, and WI3). The dataset
spans approximately 5.4 years, capturing daily sales records from 29 January 2011 to 19
June 2016, resulting in a total of 1969 daily observations.

5.2. Forecasting Design

In this study, we conducted a comprehensive evaluation of five Transformer-based
models: the vanilla Transformer, temporal fusion Transformer (TFT), Informer, patch time
series Transformer (PatchTST), and Autoformer. These models were assessed using the
extensive M5 competition dataset, which comprises 30,490 time series representing the
sales for 3049 products across ten distinct retail stores.

To accurately evaluate a model’s ability to forecast unseen time series data, it is
essential to set aside a portion of the dataset as test data that remains excluded from
the training process. This is typically achieved through a train-test split. However, a
more precise estimation of the model’s performance can be obtained via time series cross-
validation (evaluation on a rolling forecasting origin) [38]. This approach evaluates the
model’s generalization ability across multiple forecast horizons within the same time series,
offering a more reliable measure of its predictive accuracy. In this study, we adhered to the
framework of the M5 competition, utilizing a forecast horizon of 28 days. To thoroughly
evaluate the forecast accuracy, we implemented a cross-validation strategy using the
last three windows, each spanning 28 days (please see Figure 2). Specifically, Window
1 encompasses the period from 28 March 2016 to 24 April 2016; Window 2 spans from
25 April 2016 to 22 May 2016; and Window 3 covers 23 May 2016, to 19 June 2016. This
methodology ensures a rigorous and comprehensive assessment of the model’s forecasting
capabilities, offering a robust evaluation of its performance on unseen data.

Mathematics 2024, 12, 2728 13 of 28

Available historic time series

Time

Window 1

Window 2

Window 3
C

ro
ss

-v
al

id
at

io
n

Training ForecastingValidation

Figure 2. Model training using a validation set split and model evaluation using cross-validation.

5.3. Point and Probabilistic Forecasting

While point forecasts, providing a single expected value for a future quantity, have
historically dominated forecasting practice, their limitations in capturing uncertainty have
become increasingly apparent. A more comprehensive understanding of the predictive
distribution is essential for robust decision-making, particularly in domains characterized
by high-impact, low-probability events. Quantile forecasts, which provide estimates of
values below which a certain proportion of the distribution lies, offer a substantial en-
hancement in this regard. Quantile forecasts are indispensable for risk management and
decision-making under uncertainty [41]. By providing a range of potential outcomes, they
enable a more nuanced assessment of the likelihood of various scenarios. For instance,
in financial markets, quantile forecasts can inform the calculation of value at risk (VaR),
a crucial metric for risk management. In the energy sector, quantile forecasts of demand
can assist in optimizing power generation and storage, mitigating the risks associated
with demand fluctuations [42]. In the retail industry, quantile forecasts possess particu-
lar significance. Often, specific quantiles hold practical implications. For example, in a
simplified supply chain context, the chosen quantile directly correlates with the optimal
safety stock level in the newsvendor problem. By accurately estimating quantiles, retailers
can mitigate stockouts and overstocks, thereby optimizing inventory levels and reducing
costs. Moreover, quantile forecasts can inform pricing strategies, promotion planning,
and demand forecasting for new products. Beyond these specific applications, quantile
forecasts contribute to a more holistic approach to forecasting. They provide valuable
insights into the shape of the predictive distribution, allowing for the identification of
potential outliers, skewness, and other distributional characteristics. This information can
be leveraged to improve the accuracy of point forecasts and to develop more sophisticated
forecasting models [43]. In this study, all Transformer-based models were trained to min-
imize the Mean Absolute Error (MAE) for point forecasting and a Multi-Quantile Loss
function (MQLoss) for probabilistic forecasting. The latter employed nine quantile levels:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The Transformer models were implemented using the
NeuralForecast Python library [25].

5.4. Hyperparameter Tuning

Selecting a model that consistently excels in out-of-sample predictions is a critical
step in the modeling process. To this end, a validation set is commonly employed to
differentiate between competing models. Given the sensitivity of deep learning models
to hyperparameter choices and initial conditions, a meticulous model selection strategy
is indispensable. In this study, the final 28-day period of the training data, encompassing
29 February to 27 March 2016, was reserved as a validation set to objectively assess and
rank alternative model configurations (please refer to Figure 2). To systematically explore
the hyperparameter space and identify optimal configurations, the Optuna optimization
framework [44] was employed.

Mathematics 2024, 12, 2728 14 of 28

Optuna is an open-source Python library for automating and accelerating hyper-
parameter optimization, particularly in machine learning. It helps find the best set of
hyperparameters for models, improving performance. Optuna offers a define-by-run API
for dynamic search space construction, efficient search algorithms like TPE, random search,
and grid search, pruning for resource optimization, support for parallel and distributed
optimization, and seamless integration with popular machine learning frameworks like
TensorFlow, PyTorch, and scikit-learn. The process involves defining an objective function,
creating a study, running optimization, and analyzing results. Optuna simplifies the often
time-consuming task of hyperparameter tuning, allowing the researcher to focus on other
machine learning aspects.

Table 2 outlines the hyperparameter search spaces explored in this study. As men-
tioned before, the Optuna hyperparameter optimization (HPO) framework was employed
to randomly sample values from these spaces, generating various model configurations.
The configuration yielding the highest validation score, as measured by mean absolute
error (MAE) for point forecasts or multi-quantile loss (MQLoss) for probabilistic forecasts,
was selected as the optimal model. In particular, the values for the learning rate were
chosen randomly on a logarithmic scale between 10−4 and 10−2, ensuring that each order of
magnitude is equally represented. We first take the base-10 logarithm of the bounds to ob-
tain −4 and −2, then sample a random value uniformly between these logarithmic bounds,
and finally exponentiate the sampled value to transform it back to the original scale.

Table 2. Model’s hyperparameter search spaces used in HPO.

Hyperparameter Range Parameter Type

Input size {28, 28 × 2, 28 × 3} Discrete

Hidden size {64, 128, 256} Discrete

Learning rate [10−4, 10−2] Continuous (log)

Batch size {32, 64, 128, 256} Discrete

Windows batch size {128, 256, 512, 1024} Discrete

Random seed [1, 20] Discrete (int)

Table 3 summarizes the hyperparameter optimization settings for the Optuna frame-
work. To mitigate overfitting, early stopping was implemented with a patience of four
steps, and a validation check was performed every 100 steps. A total of 30 distinct model
configurations were evaluated during the optimization process.

Table 3. Hyperparameter optimization settings for Transformer-based models.

Parameter Value

Maximum number of training steps 5000

Validation check steps 100

Early stopping patience steps 4

Number of trials 30

Validation function
MAE,

MQLoss

Table 4 provides a detailed overview of the specific parameter configurations em-
ployed for each Transformer-based model in this study. These configurations were selected
to ensure both optimal performance and comparability across different models. Key param-
eters include the number of multi-head self-attention layers, encoder layers, and decoder

Mathematics 2024, 12, 2728 15 of 28

layers, which vary across models, reflecting differences in their architectures. Other param-
eters, including convolutional hidden size, activation function, inference window batch
size, and scaling, remain consistent across most models, ensuring uniformity in certain
aspects of the network design. Unique parameters, such as the ProbSparse attention factor
in the Informer and Autoformer models, the linear hidden size, patch length, and stride
in PatchTST, and the moving average window in the Autoformer model, are specifically
designed to enhance the efficiency and accuracy of these models under different scenarios.

Table 4. Specific parameter configurations for each Transformer-based model.

Parameter Transformer TFT Informer PatchTST Autoformer

Multi-head self-attention layers 4 4 4 16 4

Encoder layers 2 — 2 3 2

Decoder layers 1 — 1 — 1

Convolutional hidden size 32 — 32 — 32

Activation function GELU — GELU GELU GELU

Dropout 0.05 0.1 0.05 0.2 0.05

Attention layer dropout — 0.0 — 0.0 —

Flatten head dropout — — — 0.0 —

Linear layer dropout — — — 0.2 —

Decoder input size multiplier 0.5 — 0.5 — 0.5

ProbSparse attention factor — — 3 — 3

Linear hidden size — — — 256 —

Patch length — — — 16 —

Stride — — — 8 —

Moving average window — — — — 25

Inference windows batch size 1024 1024 1024 1024 1024

Scaling Robust Robust Robust Robust Robust

Table 5 displays the optimal hyperparameter configurations determined by Optuna for
both MAE (mean absolute error) and MQLoss (multi-quantile loss) optimization objectives.
The upper and lower sections of the table correspond to MAE and MQLoss, respectively.
Each model exhibited distinct optimal hyperparameter settings, highlighting the impor-
tance of tailoring hyperparameters to the specific architecture. Some trends were observed
across multiple models. Most models benefited from larger input sizes, indicating the
importance of capturing historical context. Hidden sizes varied across models, suggesting
that the optimal size depends on the model’s complexity and the nature of the data. Learn-
ing rates were generally low, demonstrating the need for careful optimization to avoid
overfitting. Larger batch sizes and window batch sizes were common, suggesting that
processing more data at once can improve training efficiency and stability. The random
seed played a role in the optimal hyperparameters for some models, emphasizing the
stochastic nature of the optimization process.

Mathematics 2024, 12, 2728 16 of 28

Table 5. Optimal hyperparameter configurations from Optuna: MAE (upper) and MQLoss (lower).

Hyperparameter Transformer TFT Informer PatchTST Autoformer

MAE

Input size 28 × 3 28 × 2 28 × 2 28 28

Hidden size 256 64 256 128 64

Learning rate 0.000527 0.003697 0.000160 0.000152 0.000349

Batch size 128 128 256 256 256

Windows batch size 512 1024 1024 128 1024

Random seed 20 4 4 5 8

MQLoss

Input size 28 × 2 28 × 2 28 × 2 28 × 2 28

Hidden size 256 256 256 64 64

Learning rate 0.000114 0.000761 0.000290 0.001385 0.000862

Batch size 256 256 128 256 256

Windows batch size 512 1024 1024 512 1024

Random seed 1 18 16 8 17

5.5. Performance Measures

We evaluated the performance of Transformer-based models in both point and prob-
abilistic forecasting contexts. To assess point forecast accuracy, we employed the mean
absolute scaled error (MASE). MASE is computed by scaling the absolute forecast error by
the historical seasonal error of the time series, as follows:

MASEi,j =

1
H

Lj+H

∑
t=Lj+1

|yi,t − ŷi,t|

1
Lj − m

Lj

∑
t=m+1

|yi,t − yi,t−1|

, (8)

MASE =
1
N

1
J

N

∑
i=1

J

∑
j=1

MASEi,j , (9)

where yi,t is the value of time series i at time t, ŷi,t is the corresponding forecast, H is the
forecast horizon (28 days in this case), Lj is the forecast origin of cross-validation window j,
J is the number of cross-validation windows (3 in this case), m is the seasonal period (7 days
in this case), MASEi,j is the MASE value for time series i on cross-validation window j, and
N is the total number of time series (30,490 in our case study). This metric was chosen due
to its robust properties compared to other point forecast evaluation measures [45].

The quality of probabilistic forecasts was assessed using the Weighted Quantile
Loss (WQL) metric. Closely related to the Continuous Ranked Probability Score (CRPS),
WQL is a standard measure for evaluating the accuracy of probabilistic forecasts [46,47].
It quantifies the agreement between the predicted probability distribution and the ac-
tual observations, across an evenly spaced grid of quantile levels [48]. Consistent with
the MQLoss function, we computed the WQL using nine equally spaced quantile levels:
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

The Quantile Loss at level q of time series i at time t is defined as follows:

ρq,i,t(yi,t, ŷq
i,t) =

{
2(1 − q)(ŷq

i,t − yi,t), if yi,t < ŷq
i,t

2q(yi,t − ŷq
i,t), if yi,t ≥ ŷq

i,t
, (10)

Mathematics 2024, 12, 2728 17 of 28

where ŷq
i,t is the predicted quantile q of time series i at time t; that is, we expect the observa-

tion yi,t to be less than ŷq
i,t with probability q. For example, the 10th predicted percentile

would be ŷ0.1
i,t . Thus, the quantile loss measures how well a model predicts a specific

quantile of the actual distribution, asymmetrically penalizing overestimations and under-
estimations based on the quantile’s value. The quantile loss at level q can be interpreted
similarly to an absolute error. When q = 0.5, the quantile loss at level 0.5, ρ0.5,i,t(yi,t, ŷ0.5

i,t) is
equivalent to the absolute error. For other values of q, the “error” (ŷq

i,t − yi,t) is weighted
to reflect the likelihood of being positive or negative. If q > 0.5, ρq,i,t(yi,t, ŷq

i,t) imposes a
heavier penalty when the observation is greater than the estimated quantile than when
it is less. The reverse is true for q < 0.5. In retail, the cost of being understocked is often
higher than the cost of being overstocked. Therefore, forecasting at quantile q = 0.75 can
be more informative than forecasting at the median quantile (q = 0.50). In these cases,
ρ0.75,i,t(yi,t, ŷ0.75

i,t) assigns a larger penalty weight to under-forecasting (yi,t ≥ ŷ0.75
i,t) and a

smaller penalty weight to over-forecasting (yi,t < ŷ0.75
i,t).

The weighted quantile loss for a cross-validation window j is calculated by dividing
the total quantile loss by the sum of absolute time series values within the following
forecast horizon:

WQLj =
1

q ∑N
i=1 ∑

Lj+H
t=Lj+1 |yi,t|

N

∑
i=1

Lj+H

∑
t=Lj+1

∑
q∈Q

ρq,i,t(yi,t, ŷq
i,t) , (11)

where Q represents the set of quantiles considered (in this case, Q = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}), ρq,i,t(yi,t, ŷq

i,t) is defined in Equation (10), and the other variables (H, Lj, and
N) are defined as in the MASE equations (Equations (8) and (9)).

The overall weighted quantile loss is determined by taking the average of the WQL
values across all cross-validation windows:

WQL =
1
J

J

∑
j=1

WQLj , (12)

where J is defined as in Equation (9).
By optimizing hyperparameters using MAE and MQLoss on a separate validation

set, we mitigate the risk of overfitting, ensuring that the model generalizes well to unseen
data. While MAE and MQLoss are effective for training and hyperparameter tuning, MASE
and WQL are more robust metrics that account for scale invariance and distributional
properties of the target variable, providing a more accurate assessment of real-world
forecasting performance. This approach allows us to balance efficient model training with
accurate prediction.

5.6. Results and Discussion

Tables 6 and 7 provide a comprehensive evaluation of Transformer-based models
and traditional baselines across various forecast horizons. The models are assessed using
mean absolute scaled error (MASE) and weighted quantile loss (WQL), with lower values
indicating superior performance. The percentage values in these tables represent the
improvement compared to the seasonal Naïve method.

Table 6 reveals that Transformer-based models significantly outperform baselines,
particularly the seasonal Naïve method. Among the Transformer models, Transformer,
Informer, and TFT exhibit the best performance, with consistent improvements in MASE
ranging from approximately 26% to 29% across all forecast horizons. This indicates that
these models effectively minimize absolute errors relative to a Naïve benchmark. While
Autoformer and PatchTST also outperform baseline methods, their improvements are
slightly lower, suggesting they may require further tuning to achieve optimal performance.
In contrast, traditional baseline models like AutoARIMA and AutoETS, though better

Mathematics 2024, 12, 2728 18 of 28

than the seasonal Naïve method, lag significantly behind the Transformer-based models.
The Naïve method, as expected, performs poorly, with positive percentages indicating a
deterioration in accuracy compared to the seasonal Naïve approach.

Table 6. Performance of Transformer-based models and baselines evaluated with respect to MASE.

Forecasting Methods MASE

Transformer Models Horizon = 1–7 Horizon = 8–14 Horizon = 15–21 Horizon = 22–28 Horizon = 1–28

Transformer 0.8154 −29.02% 0.8874 −26.75% 0.8913 −26.49% 0.8806 −27.29% 0.8687 −27.37%
Informer 0.8164 −28.94% 0.8869 −26.80% 0.8901 −26.59% 0.8815 −27.21% 0.8687 −27.36%

TFT 0.8165 −28.92% 0.8867 −26.81% 0.8910 −26.51% 0.8813 −27.23% 0.8689 −27.35%
Autoformer 0.8344 −27.37% 0.9031 −25.46% 0.9080 −25.11% 0.9058 −25.21% 0.8878 −25.77%

PatchTST 0.8531 −25.74% 0.9215 −23.93% 0.9238 −23.81% 0.9138 −24.54% 0.9031 −24.49%

Baselines

AutoARIMA 0.9741 −15.21% 1.0240 −15.48% 1.0286 −15.17% 1.0245 −15.41% 1.0128 −15.32%
AutoETS 0.9964 −13.27% 1.0619 −12.35% 1.0687 −11.86% 1.0653 −12.04% 1.0481 −12.37%

Seasonal Naïve 1.1488 — 1.2115 — 1.2125 — 1.2111 — 1.1960 —
Naïve 1.2511 +8.91% 1.3109 +8.20% 1.3190 +8.79% 1.3178 +8.81% 1.2997 +8.67%

Note: All percentage values in the table represent the percentage improvement compared to the seasonal Naïve method.

Table 7. Performance of Transformer-based models and baselines evaluated with respect to WQL.

Forecasting Methods WQL

Transformer Models Horizon = 1–7 Horizon = 8–14 Horizon = 15–21 Horizon = 22–28 Horizon = 1–28

Transformer 0.5298 −34.62% 0.5370 −30.72% 0.5477 −29.67% 0.5594 −30.80% 0.5436 −31.42%
Informer 0.5345 −34.05% 0.5410 −30.20% 0.5524 −29.06% 0.5628 −30.38% 0.5477 −30.89%

TFT 0.5294 −34.68% 0.5376 −30.63% 0.5496 −29.43% 0.5582 −30.94% 0.5438 −31.39%
Autoformer 0.5468 −32.52% 0.5508 −28.94% 0.5621 −27.82% 0.5751 −28.85% 0.5587 −29.50%

PatchTST 0.5365 −33.80% 0.5470 −29.42% 0.5602 −28.06% 0.5681 −29.72% 0.5531 −30.22%

Baselines

AutoARIMA 0.5712 −29.52% 0.5670 −26.84% 0.5788 −25.69% 0.5934 −26.59% 0.5775 −27.14%
AutoETS 0.5649 −30.29% 0.5686 −26.63% 0.5797 −25.56% 0.5975 −26.07% 0.5777 −27.11%

Seasonal Naïve 0.8104 — 0.7750 — 0.7788 — 0.8083 — 0.7926 —
Naïve 0.8773 +8.26% 0.9630 +24.26% 1.0805 +38.74% 1.2385 +53.22% 1.0407 +31.30%

Note: All percentage values in the table represent the percentage improvement compared to the seasonal Naïve method.

Similarly, Table 7 shows that Transformer-based models substantially improve WQL
over baseline methods. TFT and Transformer models again lead in performance, showing
WQL reductions of up to 34% compared to the seasonal Naïve method, particularly for
shorter forecast horizons (1–7 days). This underscores their effectiveness in minimizing
forecast errors for probabilistic forecasting tasks. Informer also shows comparable perfor-
mance, with slightly lower but still significant improvements. However, Autoformer and
PatchTST exhibit smaller improvements in WQL, suggesting they may be less suited for
minimizing quantile loss or require further refinement for this specific metric. The baseline
models, AutoARIMA and AutoETS, show significant reductions in WQL, indicating better
performance than the seasonal Naïve method but remaining inferior to Transformer-based
models. Notably, the Naïve method performs poorly, with WQL increasing significantly,
especially at longer horizons, indicating a substantial degradation in forecast quality.

An important aspect of the analysis is how the models’ performance changes across
different forecast horizons, as captured by MASE and WQL metrics. In Table 6, the variation
of MASE across different horizons (1–7, 8–14, 15–21, 22–28 days) reveals interesting trends.

Transformer-based models exhibit their lowest MASE values in the shortest forecast
horizon (1–7 days), highlighting their strong capability in accurately predicting short-
term periods. As the forecast horizon extends, there is a slight increase in MASE across all

Mathematics 2024, 12, 2728 19 of 28

models, reflecting the inherent difficulty in making accurate predictions over longer periods.
For instance, the Transformer model’s MASE increases slightly from 0.8154 (1–7 days) to
0.8806 (22–28 days), maintaining substantial improvement over the baselines even in longer-
term forecasting. Table 7 presents the variation in WQL across the same forecast horizons,
offering insights into how models manage uncertainty in their predictions. Similar to MASE
results, WQL values are lowest for Transformer models in the shortest horizon (1–7 days).
For example, the TFT model achieves a WQL of 0.5294, demonstrating strong performance
in handling short-term uncertainties. As the forecast horizon extends, WQL generally
increases for all models, reflecting the increased difficulty in making accurate quantile
predictions. However, the increase is relatively controlled for Transformer models, with the
Transformer model’s WQL rising modestly from 0.5298 (1–7 days) to 0.5594 (22–28 days).
This suggests that these models retain their effectiveness in managing uncertainty, even as
the forecasting task becomes more challenging. Baseline models, particularly AutoARIMA
and AutoETS, also show an increase in WQL as the horizon extends, further highlighting
their challenges in handling uncertainty in longer-term forecasts.

In Table 6, the percentage improvements in MASE compared to the seasonal Naïve
method are detailed across various horizons. Transformer-based models show substantial
improvements over the seasonal Naïve method, particularly in the short-term horizon.
For instance, the Transformer model achieves a 29.02% reduction in MASE, indicating a
significant enhancement in forecasting accuracy for short-term predictions. These improve-
ments remain consistent as the forecast horizon extends to medium-term periods, with the
Transformer models maintaining a percentage improvement close to 27–28%. This stability
suggests that these models effectively reduce errors even as the task complexity increases
with longer horizons. Although the improvement percentage slightly decreases as the
forecast horizon extends to 22–28 days, the Transformer models still offer substantial MASE
reductions, with the Transformer model achieving a 27.29% improvement, demonstrating
its ability to outperform the seasonal Naïve baseline even in longer-term scenarios. Simi-
larly, Table 7 provides insights into the percentage improvements in WQL compared to the
seasonal Naïve method. The Transformer-based models show even greater improvements
in WQL than in MASE. For example, the TFT model achieves a remarkable 34.68% reduction
in WQL for the shortest horizon, highlighting its effectiveness in reducing uncertainty in
short-term forecasts. As with MASE, improvements in WQL remain robust across medium-
term horizons, with most Transformer models showing a 30–31% reduction. This indicates
that the models not only maintain accuracy but also effectively manage uncertainty in
predictions over these periods. Although the improvement in WQL slightly decreases as
the forecast horizon extends, Transformer models still achieve a notable reduction. For
instance, the Transformer model achieves a 30.80% improvement over the seasonal Naïve
method, illustrating that even in more challenging, longer-term scenarios, these models
significantly reduce uncertainty in their forecasts.

To better understand the relative performance, we calculated the relative MASE and
relative WQL for each model compared to the seasonal Naïve method over the 1–28-day
forecast horizon, as illustrated in Figure 3. This analysis provides a clearer picture of
the percentage improvement achieved by each model. The relative performance analysis
confirms the significant improvements achieved by Transformer-based models compared
to the seasonal Naïve method and the baseline models. TFT, Informer, and Transformer
exhibit the best overall performance across both metrics. While the Transformer models
consistently outperform the baseline models in both MASE and WQL, it is worth noting
that their relative performance is slightly different across the two metrics. The Transformer
models exhibit larger relative improvements in MASE compared to the baseline models.
This indicates that they are particularly effective in minimizing absolute errors. While the
Transformer models still outperform the baseline models in WQL, their relative improve-
ments are slightly smaller compared to MASE. This suggests that while they are effective
in capturing uncertainty, their advantage over the baseline models may be less pronounced
in terms of quantile loss.

Mathematics 2024, 12, 2728 20 of 28

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative MASE

Naïve
Seasonal Naïve

AutoETS
AutoARIMA

PatchTST
Autoformer

TFT
Informer

Transformer

1.0867
1.0000

0.8763
0.8468

0.7551
0.7423

0.7265
0.7264
0.7263

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Relative WQL

Naïve
Seasonal Naïve

AutoETS
AutoARIMA
Autoformer

PatchTST
Informer

TFT
Transformer

1.3130
1.0000

0.7289
0.7286

0.7050
0.6978
0.6911
0.6861
0.6858

Baselines Transformer Models

Figure 3. Relative MASE (left) and WQL (right) for Transformer-based models and baselines
compared to the seasonal Naïve method over the 1–28-day forecast horizon.

Tables A1–A6 present a comprehensive comparison of the performance of Transformer-
based models and baseline forecasting methods across different states, stores, categories,
and departments, evaluated using the mean absolute scaled error (MASE) and weighted
quantile loss (WQL) metrics. Table A1 presents the performance of Transformer-based
models and baseline methods across three states, namely, California (CA), Texas (TX),
and Wisconsin (WI). The table highlights the effectiveness of Transformer models, which
generally outperform baseline methods across all states and metrics. However, the specific
performance differences may vary slightly between states. This suggests that the effec-
tiveness of Transformer models is not limited to a particular geographic region. Table A2
showcases the MASE for Transformer-based models and baselines across ten stores located
in three states: California (CA1, CA2, CA3, and CA4), Texas (TX1, TX2, and TX3), and Wis-
consin (WI1, WI2, and WI3). Table A3 illustrates the WQL for Transformer-based models
and baselines across the same ten stores as in Table A2. The Transformer models exhibit
consistent performance across all ten stores, indicating their ability to handle diverse store-
specific characteristics. The baselines show more variability in performance, suggesting
that their effectiveness may be more sensitive to store-level factors. Table A4 compares the
performance of Transformer-based models and baselines across three categories—Foods,
Hobbies, and Household—using both MASE and WQL metrics. The Transformer models
again outperform the baselines across all three categories. However, the relative perfor-
mance differences may vary slightly between categories. This suggests that the effectiveness
of Transformer models is not limited to a particular product category. Table A5 evaluates
the MASE for Transformer-based models and baselines across seven departments within
the three main categories: Foods (Foods1, Foods2, and Foods3), Hobbies (Hobbies1 and
Hobbies2), and Household (Household1 and Household2). Table A6 presents the WQL for
the same departments as in Table A5. The Transformer models continue to exhibit superior
performance across all seven departments. This highlights their ability to handle diverse
product-specific characteristics.

To visualize the computational efficiency of Transformer-based models and baselines,
Figure 4 presents a bar plot comparing their training and prediction times. When trained
using the MAE, the Informer demonstrates the longest training time among the Transformer
models, taking nearly 4 h, while PatchTST is the most efficient, completing training in
just over 1 h. Other models like Autoformer, Transformer, and TFT fall in between these
extremes, with training times ranging from approximately 2 h and 16 min to just under
3 h. In contrast, when trained using the MQLoss, all models experience a significant
increase in training time, particularly TFT, which takes nearly 8 h. PatchTST remains
the fastest but still requires more time compared to when using MAE, indicating the
computational cost of training with MQLoss. Comparing these with the baseline methods,
it is evident that traditional models like AutoARIMA are exceptionally time-consuming,
with AutoARIMA taking over 24 h, far exceeding the time taken by even the slowest
Transformer model. Simpler methods like Naïve and seasonal Naïve are much faster,

Mathematics 2024, 12, 2728 21 of 28

completing in mere seconds, which contrasts sharply with the more sophisticated but
time-intensive Transformer models. Overall, the results underscore the trade-off between
model complexity and computational efficiency, with Transformer-based models offering
more sophisticated forecasting capabilities at the expense of significantly higher training
times, especially when using more complex loss functions like MQLoss.

Tra
nsf

orm
er TFT

Inf
orm

er

Pat
chT

ST

Auto
for

mer

Auto
ARIMA

Auto
ET

S

Se
aso

na
l N

aïv
e

Naïv
e

10 2

10 1

100

101

Ti
m

e
(h

ou
rs

)
Transformers with MAE Transformers with MQLoss Baselines

Figure 4. Training and prediction times for Transformer-based models using MAE and MQLoss,
alongside baseline methods. The bar plot shows the computational efficiency of Transformer models
and baselines, comparing the time required for training and prediction.

Figure 5 presents point forecasts on the left and probabilistic forecasts on the right
for an illustrative time series from the Foods3 department of store TX3, across three
cross-validation windows. These forecasts were generated by both Transformer-based
models and traditional baselines. The forecasts are plotted alongside the ground truth
values (gray), with the mean and median forecasts in blue and 80% prediction intervals
shaded in light blue. Each plot includes MASE and WQL metrics to assess forecasting
accuracy for each model.

Regarding the point forecasts, the Transformer-based models consistently outperform
the baseline methods, demonstrating superior accuracy and effectively capturing the un-
derlying patterns in the data. The forecast lines (blue) remain relatively stable, reflecting
smoother predictions across the three cross-validation windows. Consequently, the MASE
values for these models are lower, indicating better forecasting accuracy. The Autoformer
model achieves the lowest MASE (1.040), closely followed by the Informer (1.054). Au-
toARIMA produces reasonable forecasts but exhibits some deviations from the ground
truth, particularly after sharp spikes or dips, resulting in a higher MASE (1.534) compared
to the Transformer-based models. AutoETS tends to underperform, as indicated by its
higher MASE (2.554), reflecting its challenges in accurately predicting the actual values.
The seasonal Naïve method struggles to capture the complexity of the time series, leading
to pronounced oscillations in predictions that do not align well with the ground truth, as
reflected by a MASE of 2.293. The Naïve method performs the worst, with a MASE of 3.035.
Its simplistic approach results in predictions that often fail to capture any variations in
the time series, leading to significant forecasting errors. Overall, the Transformer-based
models outperform the traditional baselines in terms of MASE, with Autoformer and
Informer showing particularly strong results. These models tend to provide more stable
forecasts, which is beneficial for time series with less pronounced seasonal patterns or
abrupt changes. Traditional baselines, particularly Naïve and seasonal Naïve, exhibit
significant limitations in capturing the complexities of the time series, leading to poorer
forecast accuracy. These findings highlight the effectiveness of Transformer-based models
in forecasting tasks, especially compared to traditional time series models.

Mathematics 2024, 12, 2728 22 of 28

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.177

Transformer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.150

TFT

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.054

Informer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.123

PatchTST

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.040

Autoformer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 1.534

AutoARIMA

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 2.554

AutoETS

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 2.293

Seasonal Naïve

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 MASE: 3.035

Naïve

Ground Truth Mean Forecast

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.464

Transformer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.519

TFT

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.439

Informer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.532

PatchTST

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.447

Autoformer

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 0.633

AutoARIMA

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

25

50
 WQL: 1.066

AutoETS

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

50

 WQL: 0.967
Seasonal Naïve

2015-12 2016-01 2016-02 2016-03 2016-04 2016-05 2016-06
0

50

100 WQL: 1.197
Naïve

Ground Truth Median Forecast 80% Interval

Figure 5. Point forecasts (left) and probabilistic forecasts (right) for an example series.

The plots on the right side of Figure 5 provide visual evidence of the uncertainty
associated with the forecasts, as represented by the prediction intervals. The probabilistic
forecasts of the Transformer-based models generally outperform those of the traditional
baselines, with lower WQL values indicating better predictive distributions. Notably, the
Informer and Autoformer models deliver the most accurate probabilistic forecasts within
the Transformer-based category, achieving WQL values of 0.439 and 0.447, respectively, and
generally exhibiting narrower prediction intervals. The Transformer, TFT, and PatchTST
models follow with slightly higher WQL values (0.464, 0.519, and 0.532, respectively),
suggesting marginally less accurate probabilistic forecasting. AutoARIMA performs rel-
atively well among traditional models, with a WQL of 0.633, though it still lags behind
the Transformer-based models. AutoETS and seasonal Naïve models exhibit higher WQL
values of 1.066 and 0.967 respectively, indicating lower accuracy in their probabilistic pre-
dictions. The Naïve model has the highest WQL at 1.197, reflecting its simplistic approach
and lack of sophistication in capturing the true distribution.

Mathematics 2024, 12, 2728 23 of 28

The plots in Figure 5 demonstrate the superior performance of Transformer-based
models for time series forecasting in this particular case. However, the performance of
these models may vary depending on the characteristics of the specific time series being
forecasted. The choice of model may therefore depend on specific requirements, such as
the need for accurate point forecasts or probabilistic predictions.

6. Conclusions

The findings of this study highlight the superior performance of Transformer-based
models compared to traditional baseline methods in time series forecasting tasks. These
models, particularly Transformer, Informer, and TFT, demonstrate significant improve-
ments in both accuracy and probabilistic forecasting metrics. Specifically, these models
achieve substantial reductions in mean absolute scaled error (MASE) and weighted quan-
tile loss (WQL), outperforming the seasonal Naïve method and traditional models like
AutoARIMA and AutoETS by wide margins. The consistent performance of Transformer,
Informer, and TFT, with MASE improvements of 26% to 29% across all forecast horizons
and WQL reductions of up to 34% for shorter horizons, underscores their effectiveness
in minimizing forecasting errors. This suggests that these models are highly capable of
handling diverse forecasting scenarios, offering robust performance across different evalu-
ation metrics. While Autoformer and PatchTST also outperform baseline methods, their
slightly lower performance and smaller improvements in WQL indicate that they may
require further tuning or optimization, especially for probabilistic forecasting tasks. This
highlights the importance of model selection and hyperparameter tuning in achieving the
best possible results. This study also reveals a notable trade-off between model complexity
and computational efficiency. Transformer-based models, while offering advanced fore-
casting capabilities, come with significantly higher training times, particularly when using
complex loss functions like MQLoss. Informer, for instance, has the longest training time,
while PatchTST is the most computationally efficient. Traditional models like AutoARIMA,
however, are far more time-consuming, with training times exceeding 24 h, underscoring
their inefficiency compared to the faster and more accurate Transformer-based models. In
conclusion, Transformer-based models represent a significant advancement in time series
forecasting, providing more accurate and reliable predictions than traditional methods.
However, the increased computational demands of these models necessitate careful consid-
eration of resource allocation and model optimization to balance forecasting performance
with training efficiency.

The substantial improvements in forecasting accuracy achieved by Transformer-based
models have practical implications for retail inventory management. By providing more
accurate forecasts, these models can help retailers optimize inventory levels, reduce stock-
outs, and enhance overall operational efficiency. The adoption of these advanced models
can lead to better decision-making processes and improved customer satisfaction through
more reliable product availability. Our study underscores the potential of Transformer-
based models as a significant advancement in time series forecasting. The findings suggest
that retailers should consider integrating these models into their forecasting workflows to
leverage their enhanced predictive capabilities. Moreover, the success of these models in
the retail sector opens avenues for their application in other domains requiring accurate
demand forecasting.

Nevertheless, applying Transformer models to retail data presents several challenges,
primarily due to the large size of datasets typically encountered in this domain, often
consisting of a vast number of time series. While the Transformer architecture has shown
great promise in time series forecasting, it remains an area of active research. Numerous
variations of the vanilla Transformer model have been developed, many of which are
proving to be highly competitive and, as demonstrated in this study, even outperform
traditional statistical approaches. However, one of the significant challenges associated with
using Transformer models for retail forecasting is the algorithm’s complexity. Transformers
require considerable computational resources, both in terms of time and memory, especially

Mathematics 2024, 12, 2728 24 of 28

as the length of the input increases. This complexity can be a barrier to widespread adoption,
particularly in environments where computational resources are limited. Despite these
challenges, there is considerable excitement around the potential of Transformer models.
Their advantages over other architectures, particularly in capturing complex temporal
patterns [21], make them a compelling choice for future developments. We anticipate that
ongoing research will continue to refine these models, making them more efficient and
accessible for a broader range of applications in the near future.

Future research should explore the scalability and adaptability of Transformer-based
models across different industries and datasets. Additionally, further investigation into
optimizing model architectures, hyperparameter tuning, and training techniques could
yield even greater forecasting performance. To further enhance the practical applicability
of Transformer-based models in retail demand forecasting, future work could explore the
inclusion of external covariates, such as promotions and holidays. Additionally, comparing
these models to other advanced machine learning techniques, such as XGBoost and Light-
GBM, could provide valuable insights into their relative strengths and weaknesses. The
ongoing development and refinement of these models promise to continue advancing the
field of time series forecasting, offering robust solutions to complex predictive challenges.

Author Contributions: Conceptualization, J.M.O. and P.R.; methodology, J.M.O. and P.R.; software,
J.M.O. and P.R.; validation, J.M.O. and P.R.; formal analysis, J.M.O. and P.R.; investigation, J.M.O. and
P.R.; resources, J.M.O. and P.R.; data curation, J.M.O. and P.R.; writing—original draft preparation,
J.M.O. and P.R.; writing—review and editing, J.M.O. and P.R.; visualization, J.M.O. and P.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is financed by Portuguese national funds through FCT—Fundação para a Ciência
e Tecnologia, under the project UIDP/05422/2020.

Data Availability Statement: A publicly available dataset was used in this study. The data can be
found here: https://www.kaggle.com/competitions/m5-forecasting-accuracy/data (accessed on 1
April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Performances of Transformer-based models and baselines across three states: California (CA),
Texas (TX), and Wisconsin (WI); evaluated with respect to MASE and WQL.

Forecasting Methods MASE WQL

Transformer Models CA TX WI CA TX WI

Transformer 0.8900 0.8396 0.8694 0.5498 0.5430 0.5355
Informer 0.8907 0.8399 0.8683 0.5543 0.5468 0.5396

TFT 0.8912 0.8397 0.8683 0.5503 0.5422 0.5363
Autoformer 0.9100 0.8585 0.8877 0.5643 0.5590 0.5508

PatchTST 0.9232 0.8758 0.9036 0.5594 0.5542 0.5435

Baselines

AutoARIMA 1.0166 0.9982 1.0222 0.5821 0.5827 0.5667
AutoETS 1.0505 1.0383 1.0547 0.5797 0.5887 0.5655

Seasonal Naïve 1.2114 1.1764 1.1950 0.7999 0.8220 0.7571
Naïve 1.3611 1.2564 1.2611 1.0741 1.0856 0.9560

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data

Mathematics 2024, 12, 2728 25 of 28

Table A2. Performances of Transformer-based models and baselines across ten stores located in three
states: California (CA1, CA2, CA3, and CA4), Texas (TX1, TX2, and TX3), and Wisconsin (WI1, WI2,
and WI3); evaluated with respect to MASE.

Forecasting Methods MASE

Transformer Models CA1 CA2 CA3 CA4 TX1 TX2 TX3 WI1 WI2 WI3

Transformer 0.8186 0.9901 0.8665 0.8846 0.9058 0.7514 0.8615 0.8893 0.8888 0.8301
Informer 0.8194 0.9903 0.8685 0.8845 0.9064 0.7514 0.8618 0.8895 0.8865 0.8289

TFT 0.8192 0.9896 0.8709 0.8852 0.9064 0.7515 0.8612 0.8882 0.8864 0.8304
Autoformer 0.8374 1.0102 0.8876 0.9046 0.9247 0.7694 0.8812 0.9090 0.9070 0.8470

PatchTST 0.8487 1.0248 0.8955 0.9237 0.9441 0.7869 0.8963 0.9257 0.9212 0.8638

Baselines

AutoARIMA 0.9331 1.1078 0.9760 1.0497 1.0785 0.8957 1.0205 1.0264 1.0372 1.0030
AutoETS 0.9496 1.1139 1.0048 1.1336 1.1275 0.9276 1.0597 1.0531 1.0811 1.0299

Seasonal Naïve 1.1042 1.3177 1.1663 1.2576 1.2618 1.0634 1.2040 1.2148 1.2202 1.1498
Naïve 1.2048 1.5542 1.3096 1.3759 1.3922 1.1410 1.2362 1.3334 1.2359 1.2140

Table A3. Performances of Transformer-based models and baselines across ten stores located in three
states: California (CA1, CA2, CA3, and CA4), Texas (TX1, TX2, and TX3), and Wisconsin (WI1, WI2,
and WI3); evaluated with respect to WQL.

Forecasting Methods WQL

Transformer Models CA1 CA2 CA3 CA4 TX1 TX2 TX3 WI1 WI2 WI3

Transformer 0.5443 0.5606 0.5130 0.6235 0.5508 0.5369 0.5423 0.5583 0.5173 0.5376
Informer 0.5498 0.5659 0.5171 0.6262 0.5552 0.5408 0.5455 0.5626 0.5206 0.5424

TFT 0.5467 0.5631 0.5116 0.6218 0.5501 0.5368 0.5409 0.5587 0.5174 0.5396
Autoformer 0.5594 0.5754 0.5257 0.6411 0.5674 0.5526 0.5583 0.5736 0.5321 0.5534

PatchTST 0.5534 0.5719 0.5193 0.6389 0.5633 0.5473 0.5532 0.5675 0.5244 0.5455

Baselines

AutoARIMA 0.5793 0.5886 0.5410 0.6688 0.5947 0.5808 0.5744 0.5942 0.5421 0.5725
AutoETS 0.5749 0.5787 0.5426 0.6734 0.6035 0.5810 0.5837 0.5874 0.5443 0.5724

Seasonal Naïve 0.7927 0.7873 0.7564 0.9322 0.8483 0.8224 0.7990 0.8001 0.7120 0.7752
Naïve 1.0621 1.0867 1.0154 1.2056 1.1568 1.0966 1.0135 1.0442 0.8525 1.0075

Table A4. Performances of Transformer-based models and baselines across three categories: Foods,
Hobbies, and Household; evaluated with respect to MASE and WQL.

Forecasting Methods MASE WQL

Transformer Models Foods Hobbies Household Foods Hobbies Household

Transformer 0.8932 0.7915 0.8767 0.5099 0.7007 0.5772
Informer 0.8921 0.7933 0.8774 0.5145 0.7028 0.5811

TFT 0.8915 0.7942 0.8782 0.5109 0.6991 0.5760
Autoformer 0.9110 0.8116 0.8972 0.5231 0.7215 0.5960

PatchTST 0.9219 0.8344 0.9143 0.5173 0.7186 0.5896

Baselines

AutoARIMA 0.9970 1.0041 1.0391 0.5366 0.7673 0.6191
AutoETS 1.0075 1.0841 1.0843 0.5372 0.7718 0.6164

Seasonal Naïve 1.1799 1.1889 1.2218 0.7317 1.0869 0.8497
Naïve 1.2817 1.2845 1.3326 0.9576 1.4460 1.1171

Mathematics 2024, 12, 2728 26 of 28

Table A5. Performances of Transformer-based models and baselines across seven departments—three
from the Foods category (Foods1, Foods2, and Foods3), two from the Hobbies category (Hobbies1
and Hobbies2), and two from the Household category (Household1 and Household2)—evaluated
with respect to MASE.

Forecasting Methods MASE

Transformer Models Foods1 Foods2 Foods3 Hobbies1 Hobbies2 Household1 Household2

Transformer 0.8751 0.9367 0.8769 0.8054 0.7529 0.9637 0.7867
Informer 0.8738 0.9341 0.8766 0.8070 0.7549 0.9634 0.7885

TFT 0.8748 0.9339 0.8754 0.8080 0.7558 0.9640 0.7895
Autoformer 0.8906 0.9537 0.8956 0.8247 0.7751 0.9858 0.8056

PatchTST 0.9043 0.9683 0.9040 0.8470 0.7992 0.9954 0.8306

Baselines

AutoARIMA 1.0009 1.0539 0.9685 0.9911 1.0405 1.0593 1.0182
AutoETS 1.0245 1.0674 0.9740 1.0648 1.1380 1.0783 1.0906

Seasonal Naïve 1.2174 1.2380 1.1420 1.1737 1.2314 1.2462 1.1966
Naïve 1.2792 1.3422 1.2531 1.2901 1.2690 1.3667 1.2975

Table A6. Performances of Transformer-based models and baselines across seven departments—three
from the Foods category (Foods1, Foods2, and Foods3), two from the Hobbies category (Hobbies1
and Hobbies2), and two from the Household category (Household1 and Household2)—evaluated
with respect to WQL.

Forecasting Methods WQL

Transformer Models Foods1 Foods2 Foods3 Hobbies1 Hobbies2 Household1 Household2

Transformer 0.5858 0.5530 0.4847 0.6790 0.8909 0.5302 0.7504
Informer 0.5875 0.5570 0.4900 0.6809 0.8943 0.5339 0.7551

TFT 0.5840 0.5545 0.4860 0.6776 0.8885 0.5293 0.7481
Autoformer 0.5963 0.5669 0.4981 0.6973 0.9338 0.5464 0.7889

PatchTST 0.5955 0.5652 0.4903 0.6956 0.9210 0.5395 0.7743

Baselines

AutoARIMA 0.6138 0.5852 0.5095 0.7343 1.0575 0.5578 0.8449
AutoETS 0.6259 0.5877 0.5076 0.7357 1.0887 0.5515 0.8557

Seasonal Naïve 0.8614 0.7837 0.6948 1.0330 1.5596 0.7624 1.1714
Naïve 1.0774 1.0113 0.9219 1.3824 2.0038 1.0028 1.5389

References
1. Wellens, A.P.; Boute, R.N.; Udenio, M. Simplifying tree-based methods for retail sales forecasting with explanatory variables. Eur.

J. Oper. Res. 2024, 314, 523–539. [CrossRef]
2. Ramos, P.; Oliveira, J.M.; Kourentzes, N.; Fildes, R. Forecasting Seasonal Sales with Many Drivers: Shrinkage or Dimensionality

Reduction? Appl. Syst. Innov. 2023, 6, 3. [CrossRef]
3. Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Ben Taieb, S.; Bergmeir, C.; Bessa, R.J.; Bijak, J.;

Boylan, J.E.; et al. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [CrossRef]
4. Oliveira, J.M.; Ramos, P. Investigating the Accuracy of Autoregressive Recurrent Networks Using Hierarchical Aggregation

Structure-Based Data Partitioning. Big Data Cogn. Comput. 2023, 7, 100. [CrossRef]
5. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in Time Series: A Survey. In Proceedings of the

Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, Macao, China, 19–25 August 2023 ; Elkind, E., Ed.;
Survey Track; International Joint Conferences on Artificial Intelligence Organization: Darmstadt, Germany, 2023; pp. 6778–6786.
[CrossRef]

6. Ahmed, S.; Nielsen, I.E.; Tripathi, A.; Siddiqui, S.; Ramachandran, R.P.; Rasool, G. Transformers in Time-Series Analysis: A
Tutorial. Circuits Syst. Signal Process. 2023, 42, 1531–5878. [CrossRef]

7. Lindemann, B.; Müller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A survey on long short-term memory networks for time series
prediction. Procedia CIRP 2021, 99, 650–655. [CrossRef]

8. Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? Proc. AAAI Conf. Artif. Intell. 2023,
37, 11121–11128. [CrossRef]

http://doi.org/10.1016/j.ejor.2023.10.039
http://dx.doi.org/10.3390/asi6010003
http://dx.doi.org/10.1016/j.ijforecast.2021.11.001
http://dx.doi.org/10.3390/bdcc7020100
http://dx.doi.org/10.24963/ijcai.2023/759
http://dx.doi.org/10.1007/s00034-023-02454-8
http://dx.doi.org/10.1016/j.procir.2021.03.088
http://dx.doi.org/10.1609/aaai.v37i9.26317

Mathematics 2024, 12, 2728 27 of 28

9. Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting. arXiv 2019, arXiv:1907.00235.

10. Mahmoud, A.; Mohammed, A. A Survey on Deep Learning for Time-Series Forecasting. In Machine Learning and Big Data
Analytics Paradigms: Analysis, Applications and Challenges; Hassanien, A.E., Darwish, A., Eds.; Springer International Publishing:
Cham, Switzerland, 2021; pp. 365–392. [CrossRef]

11. Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, Y.; Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider, M.; Salinas, D.;
Stella, L.; et al. Deep Learning for Time Series Forecasting: Tutorial and Literature Survey. ACM Comput. Surv. 2022, 55, 1–36.
[CrossRef]

12. Oliveira, J.M.; Ramos, P. Cross-Learning-Based Sales Forecasting Using Deep Learning via Partial Pooling from Multi-level Data.
In Proceedings of the Engineering Applications of Neural Networks; Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E.,
Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 279–290.

13. Casolaro, A.; Capone, V.; Iannuzzo, G.; Camastra, F. Deep Learning for Time Series Forecasting: Advances and Open Problems.
Information 2023, 14, 598. [CrossRef]

14. Miller, J.A.; Aldosari, M.; Saeed, F.; Barna, N.H.; Rana, S.; Arpinar, I.; Liu, N. A Survey of Deep Learning and Foundation Models
for Time Series Forecasting. arXiv 2024, arXiv:2401.13912.

15. Ramos, P.; Oliveira, J.M. Robust Sales forecasting Using Deep Learning with Static and Dynamic Covariates. Appl. Syst. Innov.
2023, 6, 85. [CrossRef]

16. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. R. Soc. 2021,
379, 20200209. [CrossRef]

17. Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [CrossRef]
18. Padhi, I.; Schiff, Y.; Melnyk, I.; Rigotti, M.; Mroueh, Y.; Dognin, P.; Ross, J.; Nair, R.; Altman, E. Tabular Transformers for Modeling

Multivariate Time Series. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 3565–3569. [CrossRef]

19. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [CrossRef]

20. Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting. Adv. Neural Inf. Process. Syst. 2021, 34, 22419–22430.

21. Lim, B.; Arık, S.Ö.; Loeff, N.; Pfister, T. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. Int.
J. Forecast. 2021, 37, 1748–1764. [CrossRef]

22. Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers.
In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023.

23. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. arXiv 2020, arXiv:1910.03771.

24. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data. arXiv 2020, arXiv:2003.06505.

25. Olivares, K.G.; Challú, C.; Garza, F.; Canseco, M.M.; Dubrawski, A. NeuralForecast: User Friendly State-of-the-Art Neural Forecasting
Models; PyCon: Salt Lake City, UT, USA, 2022.

26. Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-Complexity Pyramidal Attention for Long-Range
Time Series Modeling and Forecasting. In Proceedings of the International Conference on Learning Representations, Virtual,
25 April 2022.

27. Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term
Series Forecasting. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July
2022; Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S., Eds.; Proceedings of Machine Learning Research;
PMLR: Cambridge, MA, USA, 2022; Volume 162, pp. 27268–27286.

28. Liu, Y.; Wu, H.; Wang, J. Non-stationary transformers: Exploring the stationarity in time series forecasting. Adv. Neural Inf.
Process. Syst. 2022, 35, 9881–9893.

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Volume 30,
pp. 5998–6008.

30. Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T.Y. On layer normalization in the
transformer architecture. In Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020.

31. Oliveira, J.M.; Ramos, P. Assessing the Performance of Hierarchical Forecasting Methods on the Retail Sector. Entropy 2019,
21, 436. [CrossRef] [PubMed]

32. Ramos, P.; Santos, N.; Rebelo, R. Performance of state space and ARIMA models for consumer retail sales forecasting. Robot.
Comput.-Integr. Manuf. 2015, 34, 151–163. [CrossRef]

33. Ramos, P.; Oliveira, J.M. A procedure for identification of appropriate state space and ARIMA models based on time-series
cross-validation. Algorithms 2016, 9, 76. [CrossRef]

34. Garza, F.; Canseco, M.M.; Challú, C.; Olivares, K.G. StatsForecast: Lightning Fast Forecasting with Statistical and Econometric Models;
PyCon: Salt Lake City, UT, USA, 2022.

http://dx.doi.org/10.1007/978-3-030-59338-4_19
http://dx.doi.org/10.1145/3533382
http://dx.doi.org/10.3390/info14110598
http://dx.doi.org/10.3390/asi6050085
http://dx.doi.org/10.1098/rsta.2020.0209
http://dx.doi.org/10.1016/j.aiopen.2022.10.001
http://dx.doi.org/10.1109/ICASSP39728.2021.9414142
http://dx.doi.org/10.1609/aaai.v35i12.17325
http://dx.doi.org/10.1016/j.ijforecast.2021.03.012
http://dx.doi.org/10.3390/e21040436
http://www.ncbi.nlm.nih.gov/pubmed/33267150
http://dx.doi.org/10.1016/j.rcim.2014.12.015
http://dx.doi.org/10.3390/a9040076

Mathematics 2024, 12, 2728 28 of 28

35. Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, 1–22.
[CrossRef]

36. Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A state space framework for automatic forecasting using exponential
smoothing methods. Int. J. Forecast. 2002, 18, 439–454. [CrossRef]

37. Hyndman, R.J.; Koehler, A.B.; Ord, J.K.; Snyder, R.D. Forecasting with Exponential Smoothing: The State Space Approach; Springer
Series in Statistics; Springer: Berlin, Germany, 2008. [CrossRef]

38. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2021.
39. Ord, J.K.; Fildes, R.; Kourentzes, N. Principles of Business Forecasting, 2nd ed.; Wessex Press Publishing Co.: London, UK, 2017.
40. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M5 competition: Background, organization, and implementation. Int. J.

Forecast. 2022, 38, 1325–1336. [CrossRef]
41. Koenker, R. Quantile Regression; Econometric Society Monographs; Cambridge University Press: Cambridge, UK, 2005.
42. Eisenach, C.; Patel, Y.; Madeka, D. MQTransformer: Multi-Horizon Forecasts with Context Dependent and Feedback-Aware

Attention. arXiv 2022, arXiv:2009.14799.
43. Wen, R.; Torkkola, K.; Narayanaswamy, B.; Madeka, D. A Multi-Horizon Quantile Recurrent Forecaster. arXiv 2018, arXiv:1711.11053.
44. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK,
USA, 4–8 August 2019.

45. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
46. Gneiting, T.; Raftery, A.E. Strictly Proper Scoring Rules, Prediction, and Estimation. J. Am. Stat. Assoc. 2007, 102, 359–378.

[CrossRef]
47. Gasthaus, J.; Benidis, K.; Wang, Y.; Rangapuram, S.S.; Salinas, D.; Flunkert, V.; Januschowski, T. Probabilistic Forecasting with

Spline Quantile Function RNNs. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, Naha, Okinawa, Japan, 16–18 April 2019; Chaudhuri, K., Sugiyama, M., Eds.; Proceedings of Machine Learning
Research; PMLR: Cambridge, MA, USA, 2019; Volume 89, pp. 1901–1910.

48. Shchur, O.; Turkmen, C.; Erickson, N.; Shen, H.; Shirkov, A.; Hu, T.; Wang, Y. AutoGluon-TimeSeries: AutoML for Probabilistic
Time Series Forecasting. In Proceedings of the International Conference on Automated Machine Learning, Potsdam/Berlin,
Germany, 12–15 September 2023; PMLR: Cambridge, MA, USA, 2023; pp. 1–21.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.18637/jss.v027.i03
http://dx.doi.org/10.1016/S0169-2070(01)00110-8
http://dx.doi.org/10.1007/978-3-540-71918-2
http://dx.doi.org/10.1016/j.ijforecast.2021.07.007
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1198/016214506000001437

	Introduction
	Related Work
	Time Series Transformer Models
	Vanilla Transformer
	Adaptive Transformer Architectures for Time Series Forecasting

	Baselines
	ARIMA Models
	Exponential Smoothing Models
	Naïve
	Seasonal Naïve

	Empirical Evaluation
	Dataset
	Forecasting Design
	Point and Probabilistic Forecasting
	Hyperparameter Tuning
	Performance Measures
	Results and Discussion

	Conclusions
	Appendix A
	References

