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Abstract: This paper performs a detailed analysis and explores optimal control strategies for a
fractional-order SIV epidemic model, incorporating a nonmonotonic incidence rate. In this paper, the
population of vaccinated individuals is included in the disease dynamics model. After proving the
non-negative boundedness of the fractional-order SIV model, we focus on analyzing the equilibrium
point characteristics of the model, delving into its existence, uniqueness, and stability analysis. In ad-
dition, our research includes formulating optimal control strategies specifically aimed at minimizing
the number of infections while keeping costs as low as possible. To validate the theoretical findings
and uncover the practical efficacy and prospects of control measures in mitigating epidemic spread,
numerical simulations are performed.

Keywords: fractional-order SIV model; fractional optimal control; global stability; nonmonotonic
occurrence rate
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1. Introduction

Throughout the early 21st century, the globe has been beset by recurrent outbreaks
of novel infectious diseases, which constitute a formidable hazard to human well-being
and the very essence of life’s safety [1]. Instances include the severe acute respiratory
syndrome (SARS) epidemic in 2003 [2,3] and the recent novel coronavirus pneumonia
(COVID-19) outbreak towards the conclusion of 2019 [4–6], both of which underscore the
ongoing global challenge posed by infectious diseases. The outbreak and spread of these
epidemics have brought tremendous challenges to the global public health system and
prompted researchers to pay more attention to the study of infectious disease dynamics.
Among them, the epidemic research method based on mathematical models has received
widespread attention because it is capable of quantitatively portraying the transmission dy-
namics of diseases, enabling forecasts regarding the evolution and progression of epidemic
outbreaks [7].

Vaccination is crucial for eliminating infectious diseases, such as hepatitis B, measles,
smallpox, poliomyelitis, and so on [8,9]. Since the pioneering work on smallpox of Edward
Jenner (a doctor who worked in the UK and noticed that people infected with cowpox
rarely contracted smallpox) [10], the practice of safeguarding individuals against infections
via vaccination has evolved into a standard and routine procedure. However, achieving
full vaccination coverage among all susceptible individuals within a given community
remains a formidable challenge, particularly in nations where accessibility to such vaccines
is hindered [11]. Certain clinical findings suggest that vaccines may confer only a tempo-
rary degree of protection against certain diseases. Hence, when a vaccine’s effectiveness
diminishes within a vaccinated individual’s system, they once again become vulnerable
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to contracting the disease [12]. Consequently, identifying the optimal level of vaccination
needed to eliminate a disease becomes paramount.

The incidence rate of a disease, which signifies the quantity of fresh cases arising within
a specified time frame, holds significant weight in the realm of mathematical epidemiology
research. Conventional epidemic models often utilize standard and bilinear incidence
rates, like βSI (with β denoting the transmission rate) [7] and βSI

N (where N represents
the total population) [5], to depict the occurrence of new infections within a population.
However, it is increasingly acknowledged that the utilization of linear incidence rates may
fall short in precisely capturing the intricate progression patterns of infectious diseases
within a population. In order to overcome this limitation, scientists and investigators have
explored nonlinear incidence rates as a potential solution. For example, in their research of
cholera outbreaks in Paris, Capasso and Serio [13] first proposed a nonlinear incidence rate
with saturation effects. They further introduced the concept of saturated incidence rate
into infectious disease models, specifically in the form of g(I)S, where g is a non-negative
function with g(0) = 0 that ultimately tends to a saturation level. As research on infectious
disease models has progressed, the form of saturated incidence rates has also become more
complex. W. Liu et al. [14] proposed a general incidence rate in the form of βSIa

1+λIb , where a
and b are positive constants and λ is a positive parameter, used to consider the influence
of changes in the behavior of susceptible individuals. Furthermore, λ determines the
magnitude of psychological or inhibitory effects, while 1 + λIb represents how behavioral
changes slow disease spread by reducing effective transmission as infected cases I increase,
or what is known as the crowding effect of I.

Researchers have constructed and analyzed various mathematical models to investi-
gate the influence of vaccines on the transmission of infectious diseases. Ref. [15] explored
the SIS model in the context of partially effective vaccination, assuming that the vaccina-
tion strategy is primarily targeted at susceptible individuals while the total population
size remains constant and that the spread of disease adheres to a standard incidence rate.
In contrast, ref. [16] considered the same model in an environment where the overall
population size is subject to change and assumed that the vaccine is fully effective for all
susceptible individuals as well as newly arrived members of the population. Meanwhile,
refs. [17,18], respectively, studied similar models with differing assumptions regarding
incidence rates and population sizes. Ref. [19] presented a discrete-time SIS model that
includes a vaccination scheme, with disease transmission occurring at a saturated incidence
rate and the assumption that the population size fluctuates and that infected individuals
acquire temporary immunity upon recovery. A deterministic and stochastic SIS system
with continuous vaccination strategies is proposed in [20]. At the same time, it is assumed
that all vaccines are effective and the disease spreads with bilinear incidence.

In models formulated through ordinary differential equations, the velocity of varia-
tion exclusively relies on the instantaneous state, implying a localized influence [21,22].
In reality, however, changes in individual behavior also depend on historical states,
i.e., states prior to the current state. One method to simulate this phenomenon is through
fractional-order derivatives. Fractional calculus generalizes the integer-order deriva-
tive and integral to arbitrary orders. Compared to integer-order calculus, the nonlocal
characteristics of fractional calculus are more capable of accurately describing dynamic
systems with features such as time dependency, path dependency, memory, and hered-
ity [23,24]. This methodology offers a refined comprehension of the intricate interplay
among diverse factors in disease transmission, proving instrumental for researchers
across numerous physical contexts and facilitating successful implementations of Caputo
derivatives [25,26].

Given the continuous advancements in the field of epidemiological models, this study
focuses on analyzing the equilibrium point characteristics of the fractional-order SIV model
after proving its non-negative boundedness and delves into its existence, uniqueness, and
stability analysis. Additionally, we comprehensively consider core epidemiological factors
such as fractional derivatives, neonatal immunization coverage, vaccination rates among
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susceptible populations, vaccine efficacy, and public behavior effects to explore how vacci-
nation strategies impact the dynamics of disease transmission. By meticulously examining
the interactions between these parameters, we aim to uncover the actual effectiveness and
potential of control strategies in containing the spread of epidemics.

Furthermore, our research involves formulating optimal control strategies specifically
aimed at minimizing the number of infections while keeping costs as low as possible
through control measures such as modifying the behavior of susceptible populations, opti-
mizing vaccination rates, and enhancing treatment for infected individuals. This strategy
formulation process considers the practical constraints and desired goals of disease con-
trol, striving to achieve the most optimal allocation and efficient utilization of vaccination
resources under limited resources.

The organization of the rest of this paper is as follows: Section 2 introduces pertinent
definitions and lemmas essential for subsequent analyses. Section 4 delves into the dynamic
behaviors of model (10). Section 5 examines the stability of model (10) at its equilibrium
point. Section 6 formulates the fractional-order optimal control problem and outlines
the optimal control strategy’s architecture. Section 7 employs numerical simulations to
corroborate the theoretical findings. Lastly, Section 8 summarizes the conclusions and
outlines directions for future research.

2. Mathematical Preliminaries

Definition 1 ([27]). Given a function f (t) defined on the interval (a, b), with µ > 0 and n
being the smallest integer greater than µ, the Caputo fractional derivative of order µ for f (t) is
formulated as

C
a Dµ

t f (t) =

{
1

Γ(n−µ)

∫ t
a

f (n)(ζ)
(t−ζ)1+µ−n dζ, n− 1 < µ < n

dn

dtn f (t), µ = n.
(1)

In particular, when 0 < µ < 1, we can obtain

C
a Dµ

t f (t) =
1

Γ(1− α)

∫ t

a

f
′
(ζ)

(t− ζ)µ dζ. (2)

Definition 2 ([28]). The Mittag–Leffler function with two parameters is represented as

Eα,θ(u) =
∞

∑
i=0

ui

Γ(iα + θ)
, (3)

where α > 0, θ > 0, u ∈ C.

Definition 3 ([27,29]). The Laplace transform, when applied to the Caputo fractional differentia-
tion, can be expressed as follows:

L
{

C
0 Dµ

t f (t); s
}
= sµF(s)−

n−1

∑
i=0

sµ−i−1 f (i)(0), (4)

where n− 1 < µ ≤ n. In particular, when the initial value satisfies f i(0) = 0, i = 0, 1, ..., n− 1, it
can be obtained that

L
{

C
0 Dµ

t f (t); s
}
= sµF(s). (5)

Lemma 1 ([30]). Let h ∈ C1(a, b] and µ ∈ (0, 1):
(i) For ∀ t ∈ [a, b], if Dµh(t) > 0, then h(t) is monotonically increasing.
(ii) For ∀ t ∈ [a, b], if Dµh(t) < 0, then h(t) is monotonically decreasing.
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Lemma 2 ([31]). Suppose ψ : [t0, ∞)→ R is a continuous function, and satisfy{
Dµψ(t) + λψ(t) ≤ ν,
ψ(t0) = ψ0.

(6)

where µ ∈ (0, 1], λ, ν ∈ R, and the initial time is t0 ≥ 0. Then there is the following inequality:

ψ(t) ≤
(

ψ− ν

λ

)
Eµ(−λ(t− t0)

µ) +
ν

λ
. (7)

Lemma 3 ([32]). Assuming h(t) is a continuous and differentiable function defined on the positive
real numbers R+, then

C
a Dµ

t

(
h(t)− h∗ − h∗ln

h(t)
h∗

)
≤ (1− h(t)

h∗
)C

a Dµ
t h(t), (8)

where h∗ ∈ R+, ∀µ ∈ (0, 1].

3. Model Derivation

In this section, we present a fractional-order SIV epidemic model with a non-monotonic
incidence rate. This model explores the intricate interactions between susceptible, infected,
and vaccinated individuals.

We initially categorize the population into three distinct compartments. The first
compartment represents the susceptible individuals (S(t)) who are at risk of contracting
the disease. The second compartment comprises the infected individuals (I(t)) who have
already been infected and pose a risk of transmitting the disease. Lastly, the third com-
partment includes those who have been vaccinated and have gained immunity (V(t)).
However, it is important to note that vaccinated individuals may experience a loss of
immunity over time, which implies they may either become infected again or revert back to
the susceptible compartment. In reality, vaccines rarely offer one hundred percent efficacy.
As such, we incorporated the rate of immunity loss and the vaccine’s effectiveness into our
model to better understand their impact on the disease dynamics. The flowchart of SIV
prevalence is shown in Figure 1.

Figure 1. Disease transmission flow chart.

The SIV model incorporating vaccination strategies can be represented by the follow-
ing interconnected nonlinear differential equations:

S(t) = Λ(1− q) + εV + γI − ( βI
1+mI2 + p + d)S

I(t) = β(S+σV)
1+mI2 I − (γ + d + α)I

V(t) = Λq + pS− βσV
1+mI2 I − (d + ε)V

(9)
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The meanings of the other parameters within the model are detailed in Table 1 below.

Table 1. Model (10) parameter description.

Parameter Description
Λ Population supplement rate
p Vaccination rate of susceptible populations
ε Immune loss rate
γ Recovery rate of infected populations
β Contact rate
q Vaccination rate of newborns
d Natural mortality rate
α Mortality rate due to disease
σ Effectiveness of the vaccine

As we discussed earlier, compared to integer-order calculations, the nonlocal charac-
teristics of fractional-order differential equations are more suitable for accurately describing
dynamic systems with characteristics such as time dependence, path dependence, memory,
and heredity. Therefore, the aforementioned ordinary differential model (9) can be further
extended to the following θ-order fractional-order system. Using the definition of Caputo’s
fractional derivative, system (9) can be rewritten as

C
0 Dθ

t S(t) = Λ(1− q) + εV + γI − ( βI
1+mI2 + p + d)S

C
0 Dθ

t I(t) = β(S+σV)
1+mI2 I − (γ + d + α)I

C
0 Dθ

t V(t) = Λq + pS− βσV
1+mI2 I − (d + ε)V

(10)

4. Model Analysis
4.1. Non-Negativity and Boundedness of Solutions

Let A+ = {(S, I, V) ∈ A : S, I, V ∈ R+}, where R+ encompasses all positive
real numbers.

Theorem 1. Every vertex of system (10) lies within A+, maintains non-negativity, and is uniformly
bounded over t ≥ 0.

Proof of Theorem 1. Non-negativity: Suppose the system has an equilibrium at
X(ti) = (S(ti), I(ti), V(ti)) ∈ A+ at the initial time. From the system (10), we have

Dθ
S|St0=0 = Λ(1− q) + εV + γI > 0, (11)

Dθ
I |It0=0 = 0, (12)

Dθ
V |Vt0=0 = Λq + pS ≥ 0. (13)

By Lemma 1, for t ≥ t0, we obtain S(t), I(t), V(t) ≥ 0. Therefore, under the initial
conditions, all the vertices of the system are finally in A+.

Boundedness: View the overall population as the aggregated total of the three seg-
ments, i.e., N(t) = S(t) + I(t) + V(t). Then

Dθ N(t) = DθS(t) + Dθ I(t) + DθV(t)

= Λ− dN(t)− αI(t)

6 Λ− dN(t) (14)

=⇒ Dθ N(t) + dN(t) 6 Λ. (15)
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By Lemma 2, it follows that N(t) ≤
(

N(t0)− Λ
d

)
Eθ

(
−d(t− t0)

θ
)
+ Λ

d , when t −→ ∞,

N(t) ≥ Λ
d holds true. Thus, the proof of boundedness is complete. In conclusion, the proof

of non-negative boundedness is complete.

4.2. Existence and Uniqueness of Solutions

The subsequent lemma serves as the foundation for verifying the existence and unique-
ness of the solution.

Lemma 4 ([32]). Consider the fractional-order system presented below:

Dµh(t) = g(t, y), y(t0) = y0, and t0 > 0.

where µ ∈ (0, 1], g : [t0,+∞)×A→ Rn. If g(t, x) satisfies the Lipschitz condition with respect
to y, that is, there exists a constant L > 0 such that |g(t, y1)− g(t, y2)| 6 L|y1 − y2| for all
(t, y1), (t, y2) ∈ N , then for the system there exists a unique solution in [t0, ∞)×A.

Theorem 2. Given any initial condition Xt0 = (St0 , It0 , Vt0) within the positive space A+, the
system (10) possesses a unique solution X(t) = (S̄(t), Ī(t), V̄(t)) that persists within A+ for all
later times t > t0.

Proof of Theorem 2. Consider the region A+ × [t0, t1], where A+ = {(S, I, V) ∈ R3 :
max{|S|, |I|, |V|} ≤ k}. Let t1 be a finite number. Denote X(t) = (S(t), I(t), V(t)) and
X̄(t) = (S̄(t), Ī(t), V̄(t)), abbreviated as X(t) = X and X̄(t) = X̄.

Suppose P(X) = (P1(X), P2(X), P3(X)), where

P1(X) = Λ(1− q) + εV + γI − (
βI

1 + mI2 + p + d)S, (16)

P2(X) =
β(S + σV)

1 + mI2 I − (γ + d + α)I, (17)

P3(X) = Λq + pS− βσI
1 + mI2 V − (d + ε)V. (18)

For ∀X, X̄ ∈ A+,

‖P(X)− P(X̄)‖
= |P1(X)− P1(X̄)|+ |P2(X)− P2(X̄)|+ |P3(X)− P3(X̄)|

=

∣∣∣∣Λ(1− q) + εV + γI − (
βI

1 + mI2 + p + d)S

−
(

Λ(1− q) + εV̄ + γ Ī − (
β Ī

1 + mĪ2 + p + d)
)

S̄
∣∣∣∣

+

∣∣∣∣ β(S + σV)

1 + mI2 I − (γ + d + α)I −
(

β(S̄ + σV̄)

1 + mĪ2 Ī − (γ + d + α) Ī
)∣∣∣∣

+

∣∣∣∣Λq + pS− βσI
1 + mI2 V − (d + ε)V −

(
Λq + pS̄− βσ Ī

1 + mĪ2 V̄ − (d + ε)V̄
)∣∣∣∣

≤ |V − V̄|+ γ|I − Ī|+ (γ + d + α)|I − Ī|+ p
∣∣S− S̄

∣∣+ (d + ε)|V − V̄|

+ 2β

∣∣∣∣ SI
1 + mI2 −

S̄ Ī
1 + mĪ2

∣∣∣∣+ (p + d)
∣∣S− S̄

∣∣+ 2β

∣∣∣∣ σIV
1 + mI2 −

σ ĪV̄
1 + mĪ2

∣∣∣∣
≤ (2p + d + 2βk)

∣∣S− S̄
∣∣+ (2γ + d + α + 2βσk)|I − Ī|+ (2ε + d)|V − V̄|

≤ M1
∣∣S− S̄

∣∣+ M2|I − Ī|+ M3|V − V̄|
≤ M|X− X̄| (19)
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where

M = max{M1, M2, M3},
M1 = 2p + d + 2βk,

M2 = 2γ + d + α + 2βσk,

M3 = 2ε + d.

Hence, based on Lemma 4, the uniqueness of the system’s solution is made more
unique by the fact that P(X) satisfies Lipschitz’s condition.

4.3. Existence of Equilibria

To ascertain the equilibrium state of system (10), we set the expressions on the right
side of the equations to null, effectively converting the system (10) into a form:

Λ(1− q) + εV + γI − ( β I
1+mI2 + p + d)S = 0

β(S+σV)
1+mI2 I − (γ + d + α)I = 0

Λq + pS− βσI
1+mI2 V − (d + ε)V = 0

(20)

After simplification and calculation, two equilibrium points are obtained: the disease-
free equilibrium point E0 = (Λ(ε+d(1−q))

d(d+p+ε)
, 0, Λ(dq+p)

d(d+p+ε)
) and the endemic equilibrium point

Ee = (Se, Ie, Ve), where

Se =
d(1 + mI2

e )(γ + d + α)− βσ(Λ− Ie(d + α))

βd(1− σ)
,

Ve =
β(Λ− Ie(d + α))− d(γ1 + d + α)(1 + mI2

e )

βd(1− σ)
,

and Ie can represent it with the equation

AIe
4 + BIe

3 + CIe
2 + DIe + E = 0, (21)

where

A =dm2(γ + d + α)(p + d + ε),

B =βm((d + α)(d + (p + d)σ + ε) + dγσ),

C =(d + α)
(

β2σ + 2dm(p + d + ε)
)
+ 2dγm(p + d + ε)

− βΛm((p + d)σ + d(1− q)(1− σ) + ε),

D =β((d + α)(d + (p + d)σ + ε)− βσΛ + dγσ),

E =d(γ + d + α)(p + d + ε)− βΛ((p + d)σ + d(1− q)(1− σ) + ε).

4.4. Basic Reproduction Number

The basic reproduction number is a parameter that describes the transmission ca-
pacity of a certain infectious disease within a susceptible population [33]. It signifies the
anticipated quantity of additional infections that can arise from a single infected person
throughout their contagious duration at the very beginning of a disease outbreak when all
members of the population are susceptible. This paper calculates the basic reproduction
number through the next-generation matrix method, drawing on the pioneering approach
established by Driessche and Watmough [34,35].
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In this system, F signifies the growth rate of secondary infections within the infected
compartment, and V represents the reduction rate due to disease progression, death, and
recovery within the infected compartment.

F =
β(S + σV)

1 + mI2 I,V = (γ + d + α)I.

Hence, the Jacobian matrices of F and V evaluated at the disease-free equilibrium
point E0 are presented as follows:

F = β

(
Λε + d(1− q)
d(d + ε + p)

+
σΛ(dq + p)
d(d + ε + p)

)
, V = γ + d + α.

Therefore,

R0 = ρ0(FV−1)

=
βΛ(ε + d− (1− σ)dq + σp)

d(d + ε + p)(γ + d + α)
. (22)

5. Stability Analysis of the Equilibria

This section delves into the stability analysis of both the disease-free equilibrium
and the endemic equilibrium, examining them from two distinct perspectives: locally
asymptotically stable and globally asymptotically stable. First, the Jacobian matrix of the
system (10) at an arbitrary point X = (S, I, V) is constructed as follows:

J(S, I, V) =


−( βI

1+mI2 + p + d) γ ε
βI

1+mI2
β(S+σV)(1−mI2)

(1+mI2)2 − (γ + d + α) βσI
1+mI2

p − βσV(1−mI2)
(1+mI2)2 − βσI

1+mI2 − d− ε


Theorem 3. If R0 < 1, then the disease-free equilibrium point E0 of the system (10) is locally
asymptotically stable.

Proof of Theorem 3. At the disease-free equilibrium E0 of the system (10), the Jacobian
matrix is

J(S0, I0, V0) =

−(p + d) γ ε
0 β(S0 + σV0)(−(γ + d + α) 0
p −βσV0 −d− ε



=


−(p + d) γ ε

0 βΛ[ε+d+σp−(1−σ)dq]
d(p+d+ε)

(−(γ + d + α) 0

p − βσΛ(dq+p)
d(p+d+ε)

−d− ε


The corresponding characteristic equation at E0 is

|λE− J(E0)| =
(

λ− βΛ(ε + d + σp− (1− σ)dq)
d(p + d + ε)

+ γ + d + α

)
((λ + p + d)(λ + d + ε)− εp) = 0. (23)
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Through observation of the characteristic equation, one can find that at E0, one of the
eigenvalues is

λ1 =
βΛ(ε + d + σp− (1− σ)dq)

d(p + d + ε)
− (γ + d + α)

= (γ + d + α)(R0 − 1). (24)

When R0 < 1, it is evident that λ1 < 0. It can be found that λ2 and λ3 satisfy the
equation:

(λ + p + d)(λ + d + ε)− εp = 0. (25)

After simplification, it becomes

λ2 + (p + 2d + ε)λ + pd + d2 + dε = 0. (26)

It is easy to know p + 2d + ε > 0 and pd + d2 + dε > 0; then the Routh–Hurwitz
conditions are satisfied, confirming that under the condition R0 < 1, the point E0 is locally
asymptotically stable.

Theorem 4. If R0 > 1, then the endemic equilibrium point Ee of the system (10) is locally
asymptotically stable if a2 > 0, a1 > 0, a0 > 0 and a2a1 − a0 > 0, where

a2 =γ + 3d + ε + p + α− (1−mI2
e )(γ + d + α)− βIe(σ− 1)

1 + mI2
e

,

a1 =(d + p +
βIe

1 + mI2
e
)(d + ε +

βIe

1 + mI2
e
)− εp +

(
d + α− βSe(1−mI2

e )

(1 + mI2
e )

2

)
(

2d + ε + p +
βIe(σ + 1)

1 + mI2
e

)
−
(

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ

)
(p + d + ε)

+
βσIe

1 + mI2
e

(
βVe(1−mI2

e )

(1 + mI2
e )

2 − γ

)
+

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ,

a0 =d + α− βSe(1−mI2
e )

(1−mI2
e )

2

(
(d + p +

βIe

1 + mI2
e
)(d + ε +

βσIe

1 + mI2
e
)− εp

)
−
(

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ

)
(p + d + ε)d− βσIe

1 + mI2
e

(
βVe(1−mI2

e )

(1 + mI2
e )

2 − γ

)
d.

Proof of Theorem 4. At the endemic equilibrium point Ee of the system (10), the Jacobian
matrix is

J(Se, Ie, Ve) =


−( βIe

1+mI2
e
+ p + d) γ ε

βIe
1+mI2

e

β(Se+σVe)(1−mI2
e )

(1+mI2
e )2 − (γ + d + α) βσIe

1+mI2
e

p − βσVe(1−mI2
e )

(1+mI2
e )2 − βσI

1+mI2
e
− d− ε

.

Subsequently, the characteristic equation of the aforementioned matrix is expressed as

λ3 + a2λ2 + a1λ + a0 = 0, (27)
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where

a2 =γ + 3d + ε + p + α− (1−mI2
e )(γ + d + α)− βIe(σ− 1)

1 + mI2
e

;

a1 =(d + p +
βIe

1 + mI2
e
)(d + ε +

βIe

1 + mI2
e
)− εp +

(
d + α− βSe(1−mI2

e )

(1 + mI2
e )

2

)
(

2d + ε + p +
βIe(σ + 1)

1 + mI2
e

)
−
(

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ

)
(p + d + ε)

+
βσIe

1 + mI2
e

(
βVe(1−mI2

e )

(1 + mI2
e )

2 − γ

)
+

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ;

a0 =d + α− βSe(1−mI2
e )

(1−mI2
e )

2

(
(d + p +

βIe

1 + mI2
e
)(d + ε +

βσIe

1 + mI2
e
)− εp

)
−
(

βσVe(1−mI2
e )

(1 + mI2
e )

2 − γ

)
(p + d + ε)d− βσIe

1 + mI2
e

(
βVe(1−mI2

e )

(1 + mI2
e )

2 − γ

)
d.

According to the Routh–Hurwitz stability criteria, if a2 > 0, a1 > 0, a0 > 0 and
a2a1 − a0 > 0, the endemic equilibrium point Ee is locally asymptotically stable.

Theorem 5. If R0 < 1, d
ε > dq+p

εd(1−q) , and d
p > εd(1−q)

dq+p , then the disease-free equilibrium point E0

of the system (10) is globally asymptotically stable.

Proof of Theorem 5. Let us consider the Lyapunov function as

L1(S, I, V) = S− S0 − S0ln
S
S0

+ I + V −V0 −V0ln
V
V0

.

Then, by Lemma 3, we have

Dθ L1 ≤(1−
S0

S
)DθS + Dθ I + (1− V0

V
)DθV

=(1− S
S0

)

(
Λ(1− q) + εV + γI − (

βI
1 + mI2 + p + d)S

)
+

β(S + σV)

1 + mI2 I − (γ + d + α)I

+ (1− V
V0

)

(
Λq + pS− βσI

1 + mI2 V − (d + ε)V
)

=Λ− d(S + I + V)− αI − S0

S

(
Λ(1− q) + εV + γI − (

βI
1 + mI2 + p + d)S

)
− V0

V

(
Λq + pS− βσI

1 + mI2 V − (d + ε)V
)

(28)

For R0 < 1, the steady-state equation at the equilibrium point is

Λ(1− q) = (p + d)S0 − εV0, (29)

Λq = (d + ε)V0 − pS0, (30)
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Then

Dθ L1 ≤dS0 + dV0 − d(S + I + V)− αI − S0

S
γI

+
βI

1 + mI2 S0 +
βσI

1 + mI2 V0 −
S0

S
εV + (p + d)S0 −

V0

V
pS

+ (d + ε)V0 − (p + d)
S2

0
S

+ ε
S0V0

S
(d + ε)

V2
0

V
+ p

S0V0

V

≤(dS0 − εV0)(2−
S
S0
− S0

S
) + (dV0 − pS0)(2−

V
V0
− V0

V
)

+ pS0(3−
S0

S
− V

V0
− V0S

VS0
) + εV0(3−

S
S0
− V0

V
− VS0

V0S
) (31)

Since the arithmetic mean consistently exceeds the geometric mean, then Dθ L1 ≤ 0
holds if and only if dS0 − εV0 > 0 and dV0 − pS0 > 0, i.e., d

ε > dq+p
εd(1−q)and d

p > εd(1−q)
dq+p ,

where Dθ L1 = 0 if and only if S = S0, I = I0, V = V0. In line with the Lyapunov–LaSalle
asymptotic stability theorem [36,37], E0 is globally asymptotically stable.

Theorem 6. If R0 > 1, dSe − εVe > 0 and dVe − pSe > 0, then the endemic equilibrium point
Ee of the system (10) is globally asymptotically stable.

Proof of Theorem 6. Let us consider the Lyapunov function as

L2(S, I, V) = S− Se − Seln
S
Se

+ I − Ie − Ieln
I
Ie
+ V −Ve −Veln

V
Ve

.

Then, by Lemma 3, we have

Dθ L2 ≤(1−
Se

S
)DθS + (1− Ie

I
)Dθ I + (1− Ve

V
)DθV

=Λ− d(S + I + V)− αI − Se

S

(
Λ(1− q) + εV + γI − (

βI
1 + mI2 + p + d)S

)
− Ie

I

(
β(S + σV)

1 + mI2 I − (γ + d + α)I
)
− Ve

V

(
Λq + pS− βσI

1 + mI2 V − (d + ε)V
)

(32)

For R0 > 1, the steady-state equation at the equilibrium point is

Λ(1− q) = (
βIe

1 + mI2
e
+ p + d)Se − εVe − γIe, (33)

γ =
β(Se + σVe)

1 + mI2
e
− (d + α), (34)

Λq =
βσIe

1 + mI2
e

Ve + (d + ε)Ve − pSe. (35)
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Then

Dθ L2 ≤d(Se + Ie + Ve) + αIe − d(S + I + V)− αI

− (p + d)
S2

e
S

+ ε
SeVe

S
+

βσVe Ie

1m I2
e

Se

S
− (d + α)

Se Ie

S
− εV

Se

S

−
(

β(Se + σVe)

1 + mI2
e − (d + α)

)
Se I
S

+ (
βI

1 + mI2 )Se

− β(S + σV)

1 + mI2 Ie +
β(Se + σVe)

1 + mI2
e

Ie

− (
βσIe

1 + mI2 + d + ε)
V2

e
V

+ p
VeSe

V
− p

VeS
V

+ (
βσI

1 + mI2 + p + d)Ve

≤(dSe − εVe)(2−
S
Se
− Se

S
) + (dVe − pSe)(2−

V
Ve
− Ve

V
)

+ pSe(3−
Se

S
− V

Ve
− VeS

VSe
) + εVe(3−

S
Se
− Ve

V
− VSe

VeS
) (36)

Since the arithmetic mean consistently exceeds the geometric mean, then Dθ L2 ≤ 0
holds if and only if dSe − εVe > 0 and dVe − pSe > 0, where Dθ L2 = 0 if and only if S =
Se, I = Ie, V = Ve. In line with the Lyapunov–LaSalle asymptotic stability theorem [36,37],
Ee is globally asymptotically stable.

6. Fractional Optimal Control

In this section, a comprehensive control strategy is proposed for the aforementioned
infectious disease model, striving to reduce the disease’s effects while also maintaining
control expenditures at a minimum. The goal of these control measures is to lower the
incidence of infections within the population, which necessitates the creation of an optimal
control problem to realize the desired outcome. During the epidemic transmission process,
by changing the behaviors of susceptible individuals, such as maintaining social distance,
improving awareness, and prevention of the disease, the rate at which susceptible individ-
uals become infected can be decreased, which is represented by the control variable u1(t).
By increasing the vaccination rate among susceptible individuals, for instance, through
promoting vaccination campaigns, offering vaccine subsidies, or expanding vaccine supply,
we can significantly reduce their risk of contracting the disease. This is represented by the
control variable u2(t). u3(t), on the other hand, signifies the extent of therapeutic measures
undertaken for infected individuals (those who have already contracted the disease) at
time t. These measures may encompass pharmacological interventions (such as medication
and vaccine therapy) and physical segregation practices (like isolation wards and home
quarantine). Upon enhancing the aforementioned three control strategies, System (10)
undergoes the following modification:

C
0 Dθ

t S(t) =Λ(1− q) + εV + (γ + u3(t))I − (1− u1(t))
βSI

1 + mI2 − (p + u2(t) + d)S

C
0 Dθ

t I(t) =(1− u1(t))
βSI

1 + mI2 +
βσVI

1 + mI2 − (γ + u3(t) + d + α)I

C
0 Dθ

t V(t) =Λq + (p + u2(t))S−
βσV

1 + mI2 I − (d + ε)V

(37)

In this scenario, the initial conditions, which are non-negative, are provided as

S(0) = S0, I(0) = I0, V(0) = V0.

The designated control set is clearly outlined as

U = {(u1, u2, u3)|ui is Lebesgue measurable on [0, 1], i = 1, 2, 3}.
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Our overarching control objective involves minimizing both the proportion of infected
individuals within the population and the associated expenses incurred through the utiliza-
tion of control variables ui(t) (where i = 1, 2, 3). Therefore, we define the objective function

J(u1, u2, u3) =
∫ T

0
(B1 I +

1
2

C1u2
1 +

1
2

C2u2
2 +

1
2

C3u2
3)dt (38)

subject to the model (37) with initial conditions, where T represents the control period,
B1 denotes the weight for infected individuals, and C1, C2, and C3 serve as the weighting
constants, each corresponding to the financial burden associated with implementing the
respective control measures. 1

2 C1u2
1, 1

2 C2u2
2, and 1

2 C3u2
3 are the implementation costs for

these three measures, respectively. Our main objective is to determine the optimal control
U∗ = (u∗1 , u∗2 , u∗3) ∈ U for the system, guaranteeing that the objective function reaches its
minimal value, that is,

J(u∗1 , u∗2 , u∗3) = min
u∈U

J(u1, u2, u3)

Next, we apply Pontryagin’s maximum principle [38] to solve the optimal control
problem. First of all, we need to prove that the optimal solution exists for the system (37).

Theorem 7. There exists an optimal control solution (u∗1 , u∗2 , u∗3) such that

J(u∗1 , u∗2 , u∗3) = min
u∈U

J(u1, u2, u3),

subject to the fractional system (37).

Proof of Theorem 7. From the aforementioned analysis of the model (10) and the results
in [39], the existence of the optimal control U∗ is contingent upon the fulfillment of the
following conditions:

(i) The set of control U and the corresponding set of state variables are non-empty;
(ii) U is closed and convex;
(iii) The right side of the system (37) is bounded by a linear function with the control

and state variables;
(iv) The integrand of the objective function

L(I, u1, u2, u3) = B1 I +
1
2

C1u2
1 +

1
2

C2u2
2 +

1
2

C3u2
3

exhibits convexity within the set U;
(v) There exist constants K1, K2 > 0 and Q > 1 such that the integrand L(I, u1, u2, u3)

satisfies
L(I, u1, u2, u3) ≥ K1(|u1|2 + |u2|2 + |u3|2)

Q
2 − K2.

To derive the optimal control solution, we introduce Lagrangian function

L(I, u1, u2, u3) = B1 I +
1
2

C1u2
1 +

1
2

C2u2
2 +

1
2

C3u2
3 (39)

and Hamiltonian function

H(S, I, V, u, λ) = L(I, u1, u2, u3) + λ1
C
0 Dθ

t S(t) + λ2
C
0 Dθ

t I(t) + λ3
C
0 Dθ

t V(t), (40)



Mathematics 2024, 12, 2735 14 of 21

where λi(t) for i = 1, 2, 3 are the adjoint variables. By applying Pontryagin’s maxi-
mum principle, we derive the adjoint variable equation and the transversal condition
as indicated below:

Dθλ1(t) =−
∂H
∂S

= −
(
(1− u1(t))βI

1 + mI2 + (p + u2(t) + d)
)

λ2

− (1− u1(t))βI
1 + mI2 λ2 − (p + u2(t))λ3

Dθλ2(t) =−
∂H
∂I

= −B1 −
(

γ + u3(t)−
(1− u1(t))βS(1−mI2)

(1 + mI2)2

)
λ1

−
(
(1− u1(t))βS + βσV(1−mI2)

(1 + mI2)2 − (γ + u3(t) + d + α)

)
λ2

+
βσV(1−mI2)

(1 + mI2)2 λ3

Dθλ3(t) =−
∂H
∂V

= −ελ1 −
βσI

1 + mI2 λ2 + (
βσI

1 + mI2 − d− ε)λ3 (41)

satisfying transversality conditions

λi(T) = 0, i = 1, 2, 3.

To proceed, let us designate S̄, Ī,V̄ as the optimal values corresponding to the variables
S, I, V. Additionally, let us acknowledge λ̄1, λ̄2, λ̄3 as the solutions to Equation (41). With
these clarifications in mind, we are now poised to present the subsequent theorem.

Theorem 8. Consider U∗ as the optimal value for the control parameter U; hence, U∗ can be
expressed as the equations: 

u∗1 = max{0, min{ βS̄ Ī(λ̄2−λ̄1)
c1(1+mĪ2)

, 1}}

u∗2 = max{0, min{ S̄(λ̄1−λ̄3)
c2

, 1}}
u∗3 = max{0, min{ Ī(λ̄2−λ̄1)

c3
, 1}}

(42)

Proof of Theorem 8. To derive the characteristic equation of optimal control U∗, proceed
by solving the equations:

∂H
∂u1

= c1u∗1 +
βS̄ Ī

1+mĪ2 λ̄1 − βS̄ Ī
1+mĪ2 λ̄2 = 0

∂H
∂u2

= c2u∗2 − S̄λ̄1 + S̄λ̄3 = 0
∂H
∂u3

= c3u∗3 + Īλ̄1 − Īλ̄2 = 0

Therefore,

u∗1 =
βS̄ Ī(λ̄2 − λ̄1)

c1(1 + mĪ2)
; u∗2 =

S̄(λ̄1 − λ̄3)

c2
; u∗3 =

Ī(λ̄2 − λ̄1)

c3
.
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The optimal control solution U∗ can be expressed as

u∗1 =


0, βS̄ Ī(λ̄2−λ̄1)

c1(1+mĪ2)
≤ 0,

βS̄ Ī(λ̄2−λ̄1)
c1(1+mĪ2)

, 0 < βS̄ Ī(λ̄2−λ̄1)
c1(1+mĪ2)

< 1,

1, βS̄ Ī(λ̄2−λ̄1)
c1(1+mĪ2)

≥ 1.

u∗2 =


0, S̄(λ̄1−λ̄3)

c2
≤ 0,

S̄(λ̄1−λ̄3)
c2

, 0 < S̄(λ̄1−λ̄3)
c2

< 1,

1, S̄(λ̄1−λ̄3)
c2

≥ 1.

u∗3 =


0, Ī(λ̄2−λ̄1)

c3
≤ 0,

Ī(λ̄2−λ̄1)
c3

, 0 < Ī(λ̄2−λ̄1)
c3

< 1,

1, Ī(λ̄2−λ̄1)
c3

≥ 1.

given that the control variable (U) is bounded. This concludes the demonstration of
Theorem 8.

7. Numerical Simulation

Given the intricacy of obtaining analytical solutions, the use of numerical methods be-
comes essential. This section utilizes the fractional Adams–Bashforth–Moulton method [40]
and particle swarm optimization [41] for numerical experimentation via MATLAB R2023(b),
aiming to validate some of the theoretical findings discussed earlier in the paper. Addi-
tionally, numerous numerical simulations have been carried out, encompassing a wide
range of biologically feasible parameter spaces, yielding a comprehensive array of dy-
namic outcomes across various scenarios. With the scale for population set at 1 million
individuals and the time scale at one day, the model’s parameters are defined as follows:
α = 0.15, β = 0.45, d = 0.15, γ = 0.25, p = 0.2, q = 0.4, σ = 0.06, Λ = 0.35, ε = 0.05,
m = 0.3, and the initial populations in each compartment are set as S(0) = 4.5, I(0) = 0.2,
V(0) = 0.3.

7.1. Numerical Simulation without Control Measures

In this subsection, we present numerical results for a fractional system. Figures 2 and
3 showcase the dynamic behavior of the susceptible, infected, and vaccinated classes across
various fractional orders θ. Figure 2 demonstrates that when the parameter takes the afore-
mentioned value, which corresponds to R0 = 0.7426, the disease-free equilibrium point E0
is locally asymptotically stable, validating Theorem 3. Additionally, it is evident that the
fractional order θ holds a pivotal position in governing the dynamics of these three distinct
compartments and influences the duration required for each to attain stability. Within the
community, an augmentation in the value of θ is observed to be directly proportional to an
elevation in the population of both susceptible and vaccinated individuals.
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Figure 2. (a–c) Effects of θ on S, I, and V when R0 < 1.
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Figure 3. (a–c) Effects of θ on S, I, and V when R0 > 1.

Figure 3 confirms that when β = 1.05, d = 0.1, p = 0.15, which corresponds to
R0 = 2.9743, the endemic equilibrium point Ee is locally asymptotically stable. For the
infected compartment, especially in the endemic state, as depicted in Figure 3b, a reduction
in the value of θ leads to an enhancement in the system’s memory capacity, subsequently
causing a deceleration in the rate of convergence. This means that it takes longer to
eliminate the disease. Figure 4 illustrates the impact of the vaccination ratio q for newborns
on the model. Here comes an interesting finding: the change in q significantly affects the
variations in S and V. When the vaccination ratio escalates, the quantity of S diminishes,
whereas the count of V augments. However, the change in q has a minor effect on I. This
is because by analyzing the expression of R0, we can see that a higher q leads to a lower
value of R0, making the disease more controllable.
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Figure 4. (a–c) Effect of q on S, I, and V.

Figure 5 demonstrates the influence of the vaccination ratio p among the susceptible
population on the model. Clearly, when the p value decreases, infections accumulate at a
gradual pace, eventually contributing to the widespread dissemination of the disease and
its evolution into an endemic state. Figure 6 shows the effect of vaccine effectiveness σ on
the model. A higher value of σ indicates lower vaccine effectiveness. It can be observed that
the level of vaccine effectiveness has a significant impact on both the infected population
and the vaccinated population. Higher effectiveness leads to a lower peak of infection, and
the disease eventually subsides, along with a reduction in the number of vaccinations, thus
saving on vaccination costs.

When considering a model that does not include vaccination, we set the parame-
ters related to vaccination to zero, p = q = ε = 0, and σ = 1. In this case, the basic
reproduction number of the model without vaccination is Rwv

0 = βΛ
d(d+α+γ)

. We observe

that R0 = ε+d+σp−(1−σ)dq
d+ε+p Rwv

0 , thus R0 < Rwv
0 . This correlation highlights the influence

that vaccination has on diminishing the basic reproduction number, making the disease
more controllable.
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Figure 5. (a–c) Effect of p on S, I, and V.
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Figure 6. (a–c) Effect of σ on S, I, and V.

It should be noted that R0 is independent of m, so it does not alter the stability at the
equilibrium point, which is evident in Figure 7. Although m changes the peak value of I, it
does not alter its equilibrium state.
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Figure 7. Effect of m on I.

7.2. Numerical Simulation with Control Measures

In this subsection, we introduce the numerical results of the model after the introduc-
tion of control measures. To more effectively manage the dissemination of diseases and
mitigate the expenses associated with implementing preventive measures, four distinct
control strategies were devised to combat the dissemination of the disease:
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Strategy A: Using isolation, vaccination, and treatment control (i.e., u1, u2, u3 6= 0).
Strategy B: Using vaccination and treatment control (i.e., u2, u3 6= 0 and u1 = 0).
Strategy C: Using isolation and treatment control control (i.e., u1, u3 6= 0 and u2 = 0).
Strategy D: Using isolation and vaccination control (i.e., u1, u2 6= 0 and u3 = 0).
Figure 8 illustrates the variation in the objective function J(u) in the four strategies.

It is evident that strategy A yields the most effective control outcome. Figure 9 depicts
the curves of the control variables ui, i = 1, 2, 3. varying with time under different control
strategies. Moreover, as seen in Figure 9a, for control strategy A, control measure u1 should
be implemented on a large scale in the initial days and then stopped after 13 days. Control
measure u2 needs to maintain the control intensity at around 0.213 after the 22nd day, while
control measure u3 should maintain the control intensity at approximately 0.096 after the
37th day. Figure 9b illustrates that when contrasted with control strategy A, although the
final control intensities are not significantly different, the peak intensity of control measure
u3 in strategy B lasts for approximately 13 days. As seen in Figure 9c, in comparison to
strategy A, the control measures u1 and u3 in strategy C have both increased in terms
of time and control intensity. Figure 9d indicates that the control measures u1 and u2 in
strategy D have also increased in terms of duration and the strength of control applied;
however, the rise is not as significant as in control strategy C. As a result, the influence of
the control measure u2 surpasses that of u3 in terms of effectiveness.
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Figure 8. Changes in the objective function under different strategies (θ = 0.95).

Figure 10 illustrates the variations in three variables, S, I, and V, in the model over
time when there is no control and when different control strategies are used. Specifically,
Figure 10b shows that after the introduction of control measures, the disease will eventually
disappear, and when control strategy A is applied, the disease disappears first. Moreover,
as the control measure u3 of strategy C maintains the highest control intensity, Figure 10a
reveals that strategy C has the largest susceptible population. Similarly, the control measure
u2 maintains the highest intensity in strategy D, and Figure 10c indicates that when strategy
D is used, the vaccinated population reaches the highest level compared to other strategies.
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Figure 9. Time series plot of control variables under different strategies.
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Figure 10. (a–c) The impact of different strategies on S, I, and V.

8. Conclusions

In this paper, we propose a fractional-order SIV epidemic model featuring a non-
monotonic incidence rate and a continuous vaccination strategy. Initially, to maintain
this study’s relevance in biology, we examine the model’s dynamic characteristics from
a fractional-order perspective, which involves verifying the existence and uniqueness of
solutions as well as confirming their non-negativity and boundedness.Then, we identify
two equilibrium points in the model, namely, the disease-free equilibrium E0 and the
endemic equilibrium Ee, and calculate the basic reproduction number R0. Furthermore,
we investigate the necessary conditions for ensuring the local and global stability of both
E0 and Ee. We demonstrate the critical role of vaccination in disease elimination by in-
vestigating its influence on R0. Additionally, we develop an optimal control strategy to
reduce the spread of the disease. In the model, we introduce three control variables, u1,
u2, and u3, representing isolation, vaccination, and treatment, respectively. Drawing upon
Pontryagin’s maximum principle, we formulate the necessary optimality conditions for
the fractional-order optimal control problem and introduce particle swarm optimization to
enhance the effectiveness of disease control. Finally, the results of numerical simulations
indicate that strategy A is superior in terms of curbing the spread of disease.
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In future work, our model can take the isolation compartment into consideration,
which may be an interesting extension. Bifurcation analysis can also be included in the
subsequent model analysis. It is also a good choice to build a model in a stochastic system.
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