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Abstract: Moran’s I is a spatial autocorrelation measure of univariate spatial data. Therefore, even
if p spatial data exist, we can only obtain p values for Moran’s I. In other words, Moran’s I cannot
measure the degree of spatial autocorrelation of multivariate spatial data as a single value. This
paper addresses this issue. That is, we extend Moran’s I so that it can measure the degree of spatial
autocorrelation of multivariate spatial data as a single value. In addition, since the local version of
Moran’s I has the same problem, we extend it as well. Then, we establish their properties, which are
fundamental for applied work. Numerical illustrations of the theoretical results obtained in the paper
are also provided.
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1. Introduction

Spatial autocorrelation is a notion that describes the similarities/discrepancies between
data at different vertices/spatial units. It is fundamental to spatial science, which includes
spatial statistics, spatial econometrics, geographical analysis, and so on. Many measures of
it have been proposed. For a historical overview of spatial autocorrelation, see, e.g., Getis [1].
Among them, Moran’s I is the most prominent spatial autocorrelation measure and was
developed by Moran [2] and Cliff and Ord [3–6]. Roughly speaking, like Pearson’s sample
correlation coefficient, a positive (respectively, negative) Moran’s I indicates the presence
of positive (respectively, negative) spatial autocorrelation. (However, unlike Pearson’s
sample correlation coefficient, its range is not necessarily [−1, 1]. As will be shown later, it
depends on the spatial weight matrix. See also de Jong et al. [7] and Maruyama [8].) Later,
Anselin [9] developed a local version of Moran’s I: local Moran’s I. To distinguish them,
Moran’s I is sometimes referred to as global Moran’s I.

Moran’s I is designed to measure the spatial autocorrelation of univariate spatial data.
Therefore, even if p spatial data exist, we can only obtain p values of Moran’s I. In other
words, Moran’s I cannot measure the degree of spatial autocorrelation of multivariate
spatial data as a single value. In this paper: (i) We address this issue. That is, we extend
Moran’s I so that it can measure the degree of spatial autocorrelation of multivariate spatial
data as a single value. (ii) In addition, since the local version of Moran’s I has the same
problem, we extend it as well. (iii) Subsequently, we establish their properties, which are
fundamental for applied work. (iv) Numerical illustrations of the theoretical results are
also provided.

Here, we discuss existing research related to this study. In addition to the papers listed
above, the following papers are closely related to this paper: Wartenberg [10], Anselin [11],
Lin [12], and Yamada [13,14]. First, Yamada [13] presented several results on univariate
global Moran’s I. This paper depends on them. Second, Yamada [14] dealt with the
multivariate extension of Geary’s c, which was developed by Geary [15] and modified by
Cliff and Ord [3–6]. Thus, the present paper can be seen as a companion paper to it. It
should be noted that the multivariate local Geary’s c was developed by Anselin [11]. Third,
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the relevance of Wartenberg [10] as well as Lin [12] to this paper is discussed in the second
section from the end. This is mainly because we want to use our notations as following to
describe their studies.

The paper is organized as follows. In Section 2, we sketch how Moran’s I is extended
in this paper. In Section 3, we provide some preliminaries. More specifically, after stating
the multivariate spatial data that will be considered in the paper, we review global and
local Moran’s I for univariate spatial data. In Section 4, we define two new measures, i.e.,
multivariate global and local Moran’s I, and establish their properties. Section 5 provides
numerical illustrations of the theoretical results obtained in Section 4. Section 6 clarifies
the relationship between our multivariate global Moran’s I and Wartenberg’s [10] spatial
correlation matrix. Section 7 concludes the paper.

2. A Sketch of How Moran’s I is Extended

In this section, we sketch how Moran’s I is extended in this paper.
Let yi denote a realization of a single variable y at the vertex/spatial unit vi for

i = 1, . . . , n. Moran’s I uses the product given by(
yi − ȳ

s

)(yj − ȳ
s

)
, (1)

for i, j = 1, . . . , n, where ȳ = 1
n ∑n

i=1 yi, and s is the positive square root of 1
n ∑n

i=1(yi − ȳ)2.
Roughly speaking, like the sample correlation coefficient, a positive (respectively, negative)
global Moran’s I indicates the presence of positive (respectively, negative)
spatial autocorrelation.

Let yi = [y(1),i, . . . , y(p),i]
⊤ denote a realization of a multivariate vector y = [y(1), . . . , y(p)]

⊤

at the vertex/spatial unit vi for i = 1, . . . , n. We ask how we can measure the similarity/dis-
crepancy between yi and yj, which are both p-dimensional column vectors. A natural
approach is to extend (1). That is, it can be measured with the inner product given by

(yi − ȳ)⊤S−1(yj − ȳ), (2)

for i, j = 1, . . . , n, where ȳ = [ȳ(1), . . . , ȳ(p)]
⊤, and S− 1

2 = diag(s−1
(1), . . . , s−1

(p)).

Here, ȳ(h) =
1
n ∑n

i=1 y(h),i, and s(h) is the positive square root of 1
n ∑n

i=1(y(h),i − ȳ(h))2 for
h = 1, . . . , p. We develop a spatial autocorrelation measure that uses (2).

3. Preliminaries

In this section, after clarifying the multivariate spatial data that will be considered in
the paper, we review global and local Moran’s I for univariate spatial data.

Before we do this, we introduce some notation. Let In be the identity matrix of order
n, and let ei be the i-th column of In. Let ι be the n-dimensional vector of ones, and let
Qι = In − ι(ι⊤ι)−1ι⊤. Note that Qι is a symmetric and idempotent matrix, i.e., Q⊤

ι = Qι

and Q2
ι = Qι.

3.1. Multivariate Spatial Data

Following de Jong et al. [7], we treat the problem of spatial autocorrelation in terms of
a graph. Let G = (V, E) denote a directed/undirected graph with n vertices. In addition,
denote its vertex set by V = {v1, . . . , vn}, where n ≥ 2. For i, j = 1, . . . , n, let{

wi,j > 0 if (vi, vj) ∈ E,
wi,j = 0 otherwise,

and W = [wi,j] ∈ Rn×n. We assume that wi,i = 0 for i = 1, . . . , n, and accordingly, W is
a hollow matrix by assumption. In addition, we assume that ∑n

i=1 ∑n
j=1 wi,j > 0. Then W
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is a nonzero matrix. For example, when V = {v1, v2, v3, v4} and E = {(v1, v2), (v1, v4),
(v2, v1), (v2, v3), (v3, v4), (v4, v2)}, its binary weight matrix (adjacency matrix) is

W =


0 1 0 1
1 0 1 0
0 0 0 1
0 1 0 0

.

(Note that the corresponding graph is shown in Figure 1. The edge between v1 and v2 is
undirected because both (v1, v2) and (v2, v1) belong to E.)

Figure 1. A graph consists of 4 vertices.

As illustrated above, W is not necessarily symmetric. However, for any x ∈ Rn, given
that x⊤Wx = (x⊤Wx)⊤ = x⊤W⊤x, it follows that x⊤Wx = x⊤Wx, where W = W+W⊤

2 .
Note that W is symmetric even though W is not symmetric. (If G = (V, E) is an undirected
graph, then W is identical to W . We provide such a W in Section 5.2) Accordingly, given
that ι⊤Wι = ∑n

i=1 ∑n
j=1 wi,j, it follows that ι⊤W ι = ∑n

i=1 ∑n
j=1 wi,j. Moreover, as wi,i = 0

for i = 1, . . . , n by assumption, tr(W) =
tr(W)+tr(W⊤)

2 = tr(W) = 0.
Let

Y =

y(1),1 · · · y(p),1
...

...
y(1),n · · · y(p),n

 =

y⊤
1
...

y⊤
n

 = [y(1), . . . , y(p)] ∈ Rn×p. (3)

Recall that y⊤
i = [y(1),i, . . . , y(p),i] in (3) denotes a realization of a multivariate vector

y⊤ = [y(1), . . . , y(p)] at the vertex/spatial unit vi for i = 1, . . . , n.
Let

Z =

z(1),1 · · · z(p),1
...

...
z(1),n · · · z(p),n

 =

z⊤1
...

z⊤n

 = [z(1), . . . , z(p)] ∈ Rn×p, (4)

where

z(h),i =
y(h),i − ȳ(h)

s(h)
, i = 1, . . . , n, h = 1, . . . , p. (5)

Then, by construction, zi is related to yi as

zi =

z(1),i
...

z(p),i

 =


y(1),i−ȳ(1)

s(1)
...

y(p),i−ȳ(p)
s(p)

 = S− 1
2 (yi − ȳ), i = 1, . . . , n, (6)
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which appears in (2). Accordingly, it follows that

z⊤i zj = (yi − ȳ)⊤S−1(yj − ȳ). (7)

In addition, z(h) is related to y(h) as

z(h) =

z(h),1
...

z(h),n

 =


y(h),1−ȳ(h)

s(h)
...

y(h),n−ȳ(h)
s(h)

 =
1

s(h)
(y(h) − ȳ(h)ι) =

1
s(h)

Qιy(h), h = 1, . . . , p. (8)

3.2. Global Moran’s I for Univariate Spatial Data

Denote the global Moran’s I for a univariate spatial data, y(h) = [y(h),1, . . . , y(h),n]⊤,
by I(h):

I(h) =
n
q

∑n
i=1 ∑n

j=1 wi,j(y(h),i − ȳ(h))(y(h),j − ȳ(h))

∑n
k=1(y(h),k − ȳ(h))2 , h = 1, . . . , p, (9)

where q = ∑n
i=1 ∑n

j=1 wi,j.
Then, as shown in, e.g., de Jong et al. [7], Dray [16], Maruyama [8], Murakami and

Griffith [17], and Nishi et al. [18], I(h) can be expressed in matrix notation as

I(h) =
n
q

y⊤
(h)Q

⊤
ι WQιy(h)

y⊤
(h)Q

⊤
ι Qιy(h)

=
n
q

y⊤
(h)Q

⊤
ι WQιy(h)

y⊤
(h)Q

⊤
ι Qιy(h)

, h = 1, . . . , p. (10)

I(h) in (9) can also be represented by using z(h),1, . . . , z(h),n as

I(h) =
1
q

n

∑
i=1

n

∑
j=1

wi,j

(
y(h),i − ȳ(h)

s(h)

)(
y(h),j − ȳ(h)

s(h)

)

=
1
q

n

∑
i=1

n

∑
j=1

wi,jz(h),iz(h),j, h = 1, . . . , p. (11)

Accordingly, given that ∑n
i=1 ∑n

j=1 wi,jz(h),iz(h),j = z⊤(h)Wz(h) = z⊤(h)Wz(h), I(h) in (11) can
be expressed in matrix notation as follows.

I(h) =
1
q

z⊤(h)Wz(h) =
1
q

z⊤(h)Wz(h), h = 1, . . . , p. (12)

Incidentally, given that s2
(h) = 1

n y⊤
(h)Q

⊤
ι Qιy(h) and z(h) =

Qιy(h)
s(h)

, (12) can be obtained

directly from (10).
Denote a spectral decomposition of a real symmetric matrix Q⊤

ι WQι by

Q⊤
ι WQι = UΛU⊤, (13)

where U = [u1, . . . , un], and Λ = diag(λ1, . . . , λn). Then, given that Q⊤
ι WQιι = 0, we

can let (λn, un) =
(

0, 1√
n ι
)

. With respect to the other eigenvalues, let λ1, . . . , λn−1 be in
ascending order.

We document two known results with respect to I(h).

Proposition 1 (Equation (19) of de Jong et al. [7], Theorem 2.1 of Maruyama [8]). It follows
that I(h) ∈

[
n
q λ1, n

q λn−1

]
. I(h) =

n
q λ1 when y(h) = µι + γ(h)u1 such that γ(h) ̸= 0. Likewise,

I(h) =
n
q λn−1 when y(h) = µι + γ(h)un−1 such that γ(h) ̸= 0.
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Proof. Omitted.

Remark 1. (i) Although the range of Pearson’s sample correlation coefficient is [−1, 1], that of
Moran’s I is [ n

q λ1, n
q λn−1], which depends on W = W+W⊤

2 . (ii) From Poincaré’s separation
theorem Rao [19] (p. 64), Scott and Styan [20] (Theorem 1), Abadir and Magnus [21] (p. 347),
Seber [22] (p. 113), it follows that

ζ1 ≤ λ1 ≤ ζ2, ζn−1 ≤ λn−1 ≤ ζn, (14)

where ζ1, . . . , ζn are the eigenvalues of W in ascending order. Accordingly, it follows that

I(h) ∈
[

n
q

λ1,
n
q

λn−1

]
⊆
[

n
q

ζ1,
n
q

ζn

]
, h = 1, . . . , p. (15)

Incidentally, if G = (V, E) is an undirected bipartite graph whose weight matrix is binary, then
ζn = −ζ1. See, e.g., Bapat [23] (Lemma 3.13) and Estrada and Knight [24] (p. 68).

Denote I(h) in (10) by I(y(h)). Then, from Yamada [13] (Proposition 1(b)), it follows that

I(u1) ≤ · · · ≤ I(un−1). (16)

In addition, let ψ(h),i =
a2
(h),i

∑n−1
j=1 a2

(h),j
, where a(h),i = u⊤

i y(h) for i = 1, . . . , n − 1. Then, ψ(h),i ≥ 0

for i = 1, . . . , n − 1 and ∑n−1
i=1 ψ(h),i = 1.

Proposition 2 (Proposition 1(a) of Yamada [13]). I(h) in (9) is a weighted average of
I(u1), . . . , I(un−1) as follows.

I(h) =
n−1

∑
i=1

ψ(h),i I(ui). (17)

Proof. Omitted.

3.3. Local Moran’s I for Univariate Spatial Data

Denote the local Moran’s I of a univariate spatial data y(h) = [y(h),1, . . . , y(h),n]⊤

by I(h),i:

I(h),i =
n
q

(y(h),i − ȳ(h))∑n
j=1 wi,j(y(h),j − ȳ(h))

∑n
k=1(y(h),k − ȳ(h))2 , i = 1, . . . , n. (18)

Then, I(h),i in (18) can also be represented using z(h),1, . . . , z(h),n as

I(h),i =
1
q

z(h),i
n

∑
j=1

wi,jz(h),j, i = 1, . . . , n. (19)

Note that I(h),i is constructed so that

I(h) =
n

∑
i=1

I(h),i. (20)

We can confirm (20) as follows.

n

∑
i=1

I(h),i =
n

∑
i=1

1
q

z(h),i
n

∑
j=1

wi,jz(h),j =
1
q

n

∑
i=1

n

∑
j=1

wi,jz(h),iz(h),j = I(h).
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Given that z(h),i = z⊤(h)ei and ∑n
j=1 wi,jz(h),j = wi,1z(h),1 + · · ·+ wi,nz(h),n = e⊤i Wz(h),

I(h),i in (19) can be represented in matrix notation as

I(h),i =
1
q

z(h),i
n

∑
j=1

wi,jz(h),j =
1
q

e⊤i Wz(h)z
⊤
(h)ei = e⊤i

(
1
q

Wz(h)z
⊤
(h)

)
ei, i = 1, . . . , n. (21)

Incidentally, we can give another proof of I(h) = ∑n
i=1 I(h),i based on (21) as follows.

From (21), since I(h),i is the (i, i)-entry of 1
q Wz(h)z⊤(h), it follows that

n

∑
i=1

I(h),i = tr
(

1
q

Wz(h)z
⊤
(h)

)
=

1
q

tr
(

z⊤(h)Wz(h)
)
=

1
q

z⊤(h)Wz(h) = I(h). (22)

4. Moran’s I’s for Multivariate Spatial Data

In this section, we newly introduce multivariate global and local Moran’s I and
establish their properties.

4.1. Global Moran’s I for Multivariate Spatial Data

We define the following measure as the global Moran’s I for multivariate spatial data
y1, . . . , yn, which are p-dimensional column vectors:

I =
1
pq

n

∑
i=1

n

∑
j=1

wi,j(yi − ȳ)⊤S−1(yj − ȳ)

=
1
pq

n

∑
i=1

n

∑
j=1

wi,jz⊤i zj, (23)

which we refer to as “multivariate global Moran’s I” or simply “multivariate Moran’s I”.
Note that the second equality in (23) follows from (7). When p = 1, given that z⊤i reduces
to z(1),i for i = 1, . . . , n, it follows that I = 1

q ∑n
i=1 ∑n

j=1 wi,jz(1),iz(1),j = I(1). See (11). Thus,
the multivariate Moran’s I given by (23) is a generalization of the conventional Moran’s I
for univariate spatial data.

Let Ī = 1
p ∑

p
h=1 I(h), which is the simple average of the univariate global Moran’s I’s,

I(1), . . . , I(p). Then, I has the following property:

Proposition 3. I in (23) is equal to Ī.

Proof. Given that z⊤i = [z(1),i, . . . , z(p),i] for i = 1, . . . , n, z⊤i zj = ∑
p
h=1 z(h),iz(h),j. Accord-

ingly, it follows that

I =
1
pq

n

∑
i=1

n

∑
j=1

wi,jz⊤i zj =
1
pq

n

∑
i=1

n

∑
j=1

wi,j

p

∑
h=1

z(h),iz(h),j

=
1
p

p

∑
h=1

(
1
q

n

∑
i=1

n

∑
j=1

wi,jz(h),iz(h),j

)
=

1
p

p

∑
h=1

I(h) = Ī.

For any A = [a1, . . . , ap] ∈ Rn×p, given that a⊤
k Wak = a⊤

k Wak, it follows that

tr
(

A⊤WA
)
= vec(A)⊤(Ip ⊗ W)vec(A) =

p

∑
k=1

a⊤
k Wak =

p

∑
k=1

a⊤
k Wak

= vec(A)⊤(Ip ⊗W)vec(A) = tr
(

A⊤WA
)

. (24)

We use (24) to derive the following results.
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Proposition 4. I in (23) can be represented compactly in matrix form as

I =
1
pq

tr
(

Z⊤WZ
)
=

1
pq

tr
(

Z⊤WZ
)

. (25)

Proof. Given that z⊤j is the j-th row of Z, z⊤j can be represented as e⊤j Z. Accordingly, it

follows that z⊤i zj = z⊤j zi = tr
(

z⊤j zi

)
= tr

(
ziz⊤j

)
= tr

(
Z⊤eie⊤j Z

)
, from which we have

n

∑
i=1

n

∑
j=1

wi,jz⊤i zj =
n

∑
i=1

n

∑
j=1

wi,jtr
(

Z⊤eie⊤j Z
)
= tr

{
Z⊤
(

n

∑
i=1

n

∑
j=1

wi,jeie⊤j

)
Z

}
= tr

(
Z⊤WZ

)
.

Thus, substituting this result into (23), we have I = 1
pq tr

(
Z⊤WZ

)
. Finally, the second

equality in (25) follows from (24).

Remark 2. Regarding Proposition 4, we make three remarks: (i) (25) is useful to calculate I.
(ii) Given (24), it immediately follows that

I =
1
pq

vec(Z)⊤(Ip ⊗ W)vec(Z) =
1
pq

vec(Z)⊤(Ip ⊗W)vec(Z), (26)

which are representations corresponding to those in (12). Using (26), we can give another proof of
Proposition 3 as follows.

I =
1
pq

vec(Z)⊤(Ip ⊗W)vec(Z) =
1
p

p

∑
h=1

(
1
q

z⊤(h)Wz(h)

)
=

1
p

p

∑
h=1

I(h) = Ī. (27)

(iii) A MATLAB/GNU Octave user-defined function for calculating I in (25) is as follows:

f u n c t i o n I = c a l c _ I (Y ,W)
p= s i z e (Y , 2 ) ; Z= z s c o r e (Y , 1 ) ; q=sum ( sum (W) ) ;
I = t r a c e (Z ’ *W*Z ) / ( p * q ) ;

end

Note that as I(1) is a special case of I, the function can also be used for obtaining I(1).

The following result shows the bounds of I.

Proposition 5. It follows that I ∈
[

n
q λ1, n

q λn−1

]
. I = n

q λ1 when y(h) = µι + γ(h)u1 such that
γ(h) ̸= 0. Likewise, I = n

q λn−1 when y(h) = µι + γ(h)un−1 such that γ(h) ̸= 0.

Proof. The proposition immediately follows from Propositions 1 and 3.

Remark 3. Regarding Proposition 5, we make two remarks: (i) As in the case of global Moran’s I
for univariate spatial data, the bounds of global Moran’s I for multivariate spatial data also depend
only on the structure of the graph represented by W . (ii) From Proposition 5 and Equation (15), it
follows that

I ∈
[

n
q

λ1,
n
q

λn−1

]
⊆
[

n
q

ζ1,
n
q

ζn

]
. (28)
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Proposition 6. I in (23) is a weighted average of I(u1), . . . , I(un−1) as follows.

I =
n−1

∑
i=1

ψ̄i I(ui), (29)

where ψ̄i =
1
p ∑

p
h=1 ψ(h),i for i = 1, . . . , n − 1.

Proof. From Propositions 2 and 3, it follows that

I =
1
p

p

∑
h=1

I(h) =
1
p

p

∑
h=1

n−1

∑
i=1

ψ(h),i I(ui) =
n−1

∑
i=1

(
1
p

p

∑
h=1

ψ(h),i

)
I(ui),=

n−1

∑
i=1

ψ̄i I(ui).

Here, ψ̄i ≥ 0 because ψ(h),i ≥ 0 for h = 1, . . . , p. In addition, since ∑n−1
i=1 ψ(h),i = 1, it

follows that

n−1

∑
i=1

ψ̄i =
n−1

∑
i=1

1
p

p

∑
h=1

ψ(h),i =
1
p

p

∑
h=1

n−1

∑
i=1

ψ(h),i = 1.

Remark 4. Regarding Proposition 6, we make two remarks. (i) Proposition 6 is a generalization
of Yamada [13] (Proposition 1(a)). (ii) Given (16), the distribution of ψ̄1, . . . , ψ̄n−1 represents the
spatial autocorrelation structure of the multivariate spatial data y1, . . . , yn.

4.2. Local Moran’s I for Multivariate Spatial Data

Then, as we defined I from I(h), we define the multivariate local Moran’s I from I(h),i
as follows.

Ii =
1
pq

z⊤i
n

∑
j=1

wi,jzj, i = 1, . . . , n, (30)

which we refer to as the “multivariate local Moran’s I”. When p = 1, given that zi = z(1),i
for i = 1, . . . , n, it follows that

Ii =
1
pq

z⊤i
n

∑
j=1

wi,jzj =
1
q

z(1),i
n

∑
j=1

wi,jz(1),j = I(1),i, i = 1, . . . , n. (31)

Thus, the multivariate local Moran’s I given by (30) is a generalization of the local Moran’s
I for univariate spatial data. In addition, it follows that

n

∑
i=1

Ii =
n

∑
i=1

(
1
pq

z⊤i
n

∑
j=1

wi,jzj

)
=

1
pq

n

∑
i=1

n

∑
j=1

wi,jz⊤i zj = I. (32)

Let Īi = 1
p ∑

p
h=1 I(h),i, which is the average of the univariate local Moran’s I’s,

I(1),i, . . . , I(p),i. Then, we have the following results.

Proposition 7. Ii in (31) is equal to Īi for i = 1, . . . , n.
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Proof. Given z⊤i = [z(1),i, . . . , z(p),i], it follows that

Ii =
1
pq

z⊤i
n

∑
j=1

wi,jzj =
1
pq

n

∑
j=1

wi,jz⊤i zj =
1
pq

n

∑
j=1

wi,j

p

∑
h=1

z(h),iz(h),j

=
1
p

p

∑
h=1

(
1
q

z(h),i
n

∑
j=1

wi,jz(h),j

)
=

1
p

p

∑
h=1

I(h),i = Īi, i = 1, . . . , n.

The following result is useful to calculate Ii.

Proposition 8. Ii in (31) can be represented compactly in matrix form as

Ii = e⊤i

(
1
pq

WZZ⊤
)

ei, i = 1, . . . , n. (33)

Proof. From Proposition 7, Equation (21), and ∑
p
h=1 z(h)z⊤(h) = ZZ⊤, it follows that

Ii =
1
p

p

∑
h=1

I(h),i =
1
p

p

∑
h=1

1
q

e⊤i Wz(h)z
⊤
(h)ei =

1
pq

e⊤i W

(
p

∑
h=1

z(h)z
⊤
(h)

)
ei

=
1
pq

e⊤i WZZ⊤ei = e⊤i

(
1
pq

WZZ⊤
)

ei, i = 1, . . . , n.

Remark 5. Regarding Proposition 8, we make two remarks: (i) We can give another proof of
∑n

i=1 Ii = I based on (33) as follows. From (33), since Ii is the (i, i)-entry of 1
pq WZZ⊤, it

follows that

n

∑
i=1

Ii = tr
(

1
pq

WZZ⊤
)
=

1
pq

tr
(

Z⊤WZ
)
= I. (34)

(ii) A MATLAB/GNU Octave user-defined function for calculating Ii in (33) is as follows:

f u n c t i o n I i = c a l c _ I i (Y ,W, i )
p= s i z e (Y , 2 ) ; Z= z s c o r e (Y , 1 ) ; q=sum ( sum (W) ) ;
I i =(W( i , : ) * Z*Z( i , : ) ’ ) / ( p * q ) ;

end

Note that as I(1),i is a special case of Ii, the function can also be used for obtaining I(1),i.

5. Numerical Illustrations

In this section, we provide numerical illustrations of the theoretical results obtained in
the previous section. Before showing these, we introduce a table of Moran’s I’s.

5.1. Table of Moran’s I’s

Table 1 tabulates Moran’s I’s. In the next subsection, we make a table from two sets of
generated multivariate spatial data. I1, . . . , In and I in the table are the measures that are
newly defined in the paper. Recall that Ii is the multivariate local Moran’s I at vertex vi and
I is the multivariate global Moran’s I. They are located in the last column of the table. In
this sense, the contribution of this paper can be expressed as the addition of a final column
to this table. Again, recall that I(h),i denotes the local Moran’s I for variable h at vertex vi
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and I(h) denotes the Moran’s I for variable h for h = 1, . . . , p and i = 1, . . . , n. As shown,
among the measures, there are the following relations:

Proposition 7: Ii =
1
p
(I(1),i + · · ·+ I(p),i), i = 1, . . . , n, (35)

Proposition 3: I =
1
p
(I(1) + · · ·+ I(p)), (36)

Equation (20): I(h) = I(h),1 + · · ·+ I(h),n, h = 1, . . . , p, (37)

Equation (32): I = I1 + · · ·+ In. (38)

Table 1. Table of Moran’s I’s.

h = 1 h = 2 · · · h = p

v1 I(1),1 I(2),1 · · · I(p),1 I1
v2 I(1),2 I(2),2 · · · I(p),2 I2
...

...
...

...
...

vn I(1),n I(2),n · · · I(p),n In

I(1) I(2) · · · I(p) I
Note: Among the values in this table, the relations in (35)–(38) hold.

5.2. Numerical Illustrations

For numerical illustrations of the theoretical results obtained in Section 4, consider the
undirected graph shown in Figure 2. It is a two-dimensional square lattice graph, which is
a Cartesian product of two path graphs. We suppose that it has a binary weight matrix,
and accordingly, its W is given by

W =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


∈ R9×9. (39)

In this case, q = ∑n
i=1 ∑n

j=1 wi,j is equal to 24. Note that since W in (39) is symmetric, it is

identical to W = W+W⊤
2 . Incidentally, Moran’s [2] r11 is a univariate global Moran’s I for

a two-dimensional square lattice graph. For details, see Yamada [25].

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 2. A two-dimensional square lattice graph.
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We generate Y = [y(1), . . . , y(p)] ∈ Rn×p by

y(h) = µι + γ(h)x + ε, h = 1, . . . , p, (40)

x = un−1, u1, ε ∼ i.i.d.N(0, σ2 In), (41)

where n = 9, p = 4, µ = 0, σ = 0.1, and [γ(1), γ(2), γ(3), γ(4)] = [0.5, 1, 2, 4]. Recall that
un−1 and u1 are eigenvectors of Q⊤

ι WQι. Note that when W is given by (39), both I(h) for
h = 1, . . . , p and I belong to [−1.0590, 0.5303]. In addition, given that Qιι = 0, µ in (40)
does not affect Moran’s I’s even though it does affect y(h).

Figure 3 (respectively, Figure 4) depicts the heatmaps of y(h) for h = 1, . . . , 4, which
are generated by (40) and (41) when x = un−1 (respectively, x = u1). In both figures, Panel
A plots y(1). Likewise, Panels B, C, and D respectively plot y(2), y(3), and y(4). As expected,
in both cases, the spatial autocorrelation structure of y(4) (respectively, y(1)) is (respectively,
not) the clearest.

Figure 3. Heatmaps of y(h) generated by (40) and (41) for h = 1, . . . , 4 when x = un−1. Panel A plots
y(1). Likewise, Panels B, C, and D respectively plot y(2), y(3), and y(4).
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Figure 4. Heatmaps of y(h) generated by (40)–(41) for h = 1, . . . , 4 when x = u1. Panel A plots y(1).
Likewise, Panels B, C, and D respectively plot y(2), y(3), and y(4).

Table 2 (respectively, Table 3) is the table of Moran’s I’s corresponding to the data
depicted in Figure 3 (respectively, Figure 4). From these tables, we can confirm that the rela-
tions in (35)–(38) hold. For example, in Table 2, I1 = 0.0373 is the average of I(1),1 = 0.0568,
I(2),1 = 0.0197, I(3),1 = 0.0316, and I(4),1 = 0.0413, and I = 0.3948 is the average of
I(1) = 0.1001, I(2) = 0.4324, I(3) = 0.5225, and I(4) = 0.5241. In addition, from the tables, it
is observable that I(h) for h = 1, . . . , 4 and I certainly belong to [−1.0590, 0.5303].

Finally, we make a remark. From Propositions 1 and 5, I(h) for h = 1, . . . , 4 and I
of γ(h)un−1 (respectively, γ(h)u1) equal 0.5303 (respectively, −1.0590), which is the upper
(respectively, lower) bound, regardless of γ(h) if γ(h) ̸= 0. Nevertheless, the values corre-
sponding to y(1) are far from these values, whereas those of y(4) are close to these values.
This is due to the fact that y(1) is more highly contaminated by noise than y(4) is.
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Table 2. Table of Moran’s I’s: x = un−1 in (40) and (41).

h = 1 h = 2 h = 3 h = 4

v1 0.0568 0.0197 0.0316 0.0413 0.0373
v2 0.0347 0.0764 0.1277 0.1209 0.0899
v3 −0.0146 0.0668 0.0973 0.0896 0.0598
v4 0.0013 0.0045 0.0103 0.0049 0.0053
v5 −0.0001 0.0071 0.0000 0.0001 0.0018
v6 −0.0146 0.0106 0.0080 0.0064 0.0026
v7 0.0761 0.0979 0.1030 0.0962 0.0933
v8 0.0286 0.1247 0.1152 0.1298 0.0996
v9 −0.0681 0.0247 0.0293 0.0348 0.0052

0.1001 0.4324 0.5225 0.5241 0.3948
Note: See Table 1 for what is tabulated in this table.

Table 3. Table of Moran’s I’s: x = u1 in (40) and (41).

h = 1 h = 2 h = 3 h = 4

v1 −0.0439 −0.0091 −0.0509 −0.0691 −0.0432
v2 −0.1839 −0.0428 −0.1400 −0.1436 −0.1276
v3 −0.0986 −0.0030 −0.0729 −0.0681 −0.0606
v4 −0.0974 −0.1543 −0.0944 −0.1492 −0.1238
v5 −0.1439 −0.2973 −0.2681 −0.2770 −0.2466
v6 −0.0040 −0.1223 −0.1489 −0.1251 −0.1001
v7 −0.0621 −0.0958 −0.0604 −0.0652 −0.0709
v8 −0.0344 −0.1334 −0.1393 −0.1083 −0.1038
v9 0.0287 −0.0475 −0.0703 −0.0468 −0.0340

−0.6395 −0.9054 −1.0452 −1.0523 −0.9106
Note: See Table 1 for what is tabulated in this table.

6. Discussion

In this section, we clarify the relationship between our multivariate global Moran’s
I in (23) and Wartenberg’s [10] spatial correlation matrix M. Wartenberg [10] defined the
following p × p matrix in our notation:

M =
1
q

Z⊤WZ (42)

and the analysis based on its spectral decomposition is called Moran component analysis
(MCA) (Lin [12]). When p = 1, given that Z = z(1), M reduces to I(1) in (12) as

M =
1
q

Z⊤WZ =
1
q

z⊤(1)Wz(1) = I(1).

From Proposition 4, our multivariate global Moran’s I in (23) is related to the eigenvalues
of M as follows:

I =
1
pq

tr
(

Z⊤WZ
)
=

1
p

tr(M) =
1
p

p

∑
k=1

θk, (43)

where θk for k = 1, . . . , p are the eigenvalues of M. Hence, I is identical to the average of
the eigenvalues of M. In this sense, our multivariate global Moran’s I can be regarded
as a value obtained from the spatial correlation matrix, M. Nevertheless, it should be
emphasized that M is a matrix and not a single measure of spatial autocorrelation of
multivariate spatial data.
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7. Concluding Remarks

Conventional Moran’s I cannot measure the degree of spatial autocorrelation of
multivariate spatial data as a single value. To address this issue, we developed Moran’s I
for multivariate spatial data. It can describe the similarity/discrepancy between vectors of
data at different vertices/spatial units. In addition, since the local version of Moran’s I has
the same problem, we extended it as well. Subsequently, we established their properties,
which are fundamental for applied work. They are summarized in Propositions 3–8. We
have also illustrated them numerically.

Finally, we make a remark. In this paper, we developed Moran’s I’s for multivariate
spatial data y1, . . . , yn. Although we did not impose a stochastic model on y1, . . . , yn, it
is of course an interesting research topic to investigate the distribution of multivariate
Moran’s I’s when such an assumption is made. Such investigations could be done using
Imhof’s [26] method. However, this is beyond the scope of this paper.
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