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1. Introduction

In the context of differential geometry and statistics, a statistical manifold refers to a
semi-Riemannian manifold (see [1]) equipped with additional structures. Specifically, a
statistical manifold is defined as a pair (M, g), where M is a smooth manifold and g is a
semi-Riemannian metric on M.

The introduction of Riemannian submersions by Gray and O’Neill has had a sig-
nificant impact on the field of differential geometry. It has provided a powerful tool for
constructing and analyzing Riemannian manifolds with desired curvature properties, as
well as facilitating comparisons and investigations of geometric structures. The theory of
Riemannian submersions continues to be actively studied and utilized in various areas of
mathematics and physics. The theory of Riemannian submersions has been extended over
the last three decades by many geometers [2,3].

M. Noguchi [4] conducted a study on statistical manifolds. On a statistical manifold, an
alternative connection, referred to as the conjugate (or dual) connection, is established [5,6].
This notion has been extensively explored in information geometry [5,7]. The concept of
statistical submersions between statistical manifolds is a specialized topic in mathematical
statistics and differential geometry. By generalizing some of the foundational results of B.
O’Neill on Riemannian submersions and geodesics [8], Abe and Hasegawa [9] extended
the framework to the context of statistical manifolds. Since then, many geometers have con-
tributed to this area (see [10–12]). In recent years, various types of statistical submersions
have been explored, such as cosymplectic-like statistical submersions [13], quaternionic
Kähler-like statistical submersions [14], and para-Kähler-like statistical submersions [15].
Building on Takano’s work, M.D. Siddiqi et al. [16] presented and comprehensively dis-
cussed Kenmotsu-like statistical submersions. Recent research by S. Kazan et al. [17] investi-
gated holomorphic statistical submersions, unveiling anti-invariant statistical submersions
from holomorphic statistical manifolds. Additionally, a comprehensive exploration of
locally product-like statistical submersions was undertaken in [18]. Indeed, numerous
submersions are discussed in the survey article [19]. Also, the Chen–Ricci inequality has
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been established for the statistical submersion (see [20,21]). Moreover, other inequalities
have been derived for constant curvature submanifolds within statistical manifolds [22].

We observe that these structures hold immense significance not only in the field of
differential geometry but also across a diverse array of scientific and engineering domains.
For instance, in string theory, these structures play a crucial role in understanding the
fundamental nature of particles and their interactions. In integrable systems, they help
solve complex equations that describe physical phenomena. Quantum systems benefit
from these structures in modeling and analyzing the behavior of particles at the quantum
level. Additionally, in statistical mechanics, these structures aid in studying the behavior
of systems with a large number of particles, providing insights into phase transitions
and critical phenomena. In the field of motion planning, these structures are essential
for devising algorithms that enable autonomous agents, such as robots, to navigate and
perform tasks efficiently. In robotic control and sensing, they enhance the precision and
reliability of robotic movements and the interpretation of sensory data. Furthermore, in
sensor networks, these structures facilitate the efficient organization and communication of
data across multiple sensors, improving the overall performance of the network. Lastly, in
digital signal processing, they contribute to the development of advanced techniques for
filtering, compressing, and analyzing signals, leading to better performance in applications
such as audio and image processing.

In summary, the importance of these structures extends far beyond differential geome-
try, influencing a wide range of fields that are fundamental to both theoretical research and
practical applications in science and engineering.

Constructing Riemannian manifolds with positive or non-negative sectional curvature
is a fundamental and classic challenge in Riemannian geometry. Riemannian submersions
serve as one method for this, and they have also been instrumental in developing many
known Einstein manifolds. The versatility of Riemannian submersions is demonstrated by
their application in various fields, including Kaluza–Klein theory, statistical machine learn-
ing, medical imaging, statistical analysis on manifolds, and robotics theory. Additionally,
this research aims to establish a simple, optimal connection between statistical submersions
and minimal immersions, with a discussion of some related findings.

This research primarily employs the following lemma from [23] to demonstrate that a
statistical manifold, which admits a non-trivial statistical submersion with isometric fibers,
cannot be isometrically immersed as a doubly minimal manifold in any statistical manifold
of non-positive sectional curvature.

Lemma 1. Let A1, A2, · · · , Ap, C be p + 1 (p ≥ 2) real numbers such that(
∑

i
Ai

)2

= (p − 1)
(

∑
i

A2
i + C

)
,

where i runs from i to p. Then, we have 2A1 A2 ≥ C. The equality case holds if and only if
A1 + A2 = A3 = · · · = Ap.

This paper is structured as follows. Section 1 provides an introduction. In Section 2,
we present essential notions related to statistical submersions. In Section 3, we investigate
statistical submersions with isometric fibers. Section 4 explores the sharp relationship
between statistical submersions and doubly minimal immersions. This paper concludes
with some final remarks.

2. Statistical Submersions

Definition 1. Consider two semi-Riemannian manifolds (M, G) and (N, g). Then, a surjective
mapping ϑ : M → N is called a semi-Riemannian submersion if it satisfies the following conditions:

1. ϑ has maximal rank;
2. ϑ∗ preserves the lengths of horizontal vectors.
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Now, we take the dimensions of M and N as r > 0 and s > 0, respectively, with
r > s. For each point x ∈ N, the submanifold ϑ−1(x) of M, with the induced metric G̃ and
dimension r − s > 0, is called a fiber and symbolized by B. A vector field on M is either
tangent to fibers (called vertical) or orthogonal to fibers (called horizontal). Also, a vector
field X on M is called basic if it satisfies the following conditions:

1. It is ϑ-related to the vector field X∗ on N;
2. It is horizontal.

For each point y ∈ M, let the tangent space of the total space M be TyM and the vertical
and horizontal subspaces in TyM be Vy(M) and Hy(M), respectively. Let the tangent bundle
denoted by TM of M be expressed as

TM = V(M)⊕ H(M),

where V(M) and H(M) are the vertical and horizontal distributions, respectively. The
projection mappings are denoted as V : TM → V(M) and H : TM → H(M), respectively.

For a torsion-free affine connection D and a metric G on a (semi-)Riemannian manifold
(M, G), we say that (M, D, G) is a statistical manifold if DG is a symmetric (0, 3)-tensor.
Any torsion-free affine connection D always has a dual (or conjugate) connection given
by 2D0 = D + D′, where D′ denotes the conjugate connection of D on M and D0 is the
Levi–Civita connection on M.

Let us take a statistical manifold (M, D, G) and a semi-Riemannian submersion ϑ :
M → N. We denote the affine connections of B as ∇ and ∇′, which are torsion-free
and conjugate to each other for G̃. The triple (B,∇, G̃) is a statistical manifold and so
is (B,∇′, G̃).

Definition 2. Let (M, D, G) and (N,D, g) be two statistical manifolds, where D is the affine
connection on N. Then a semi-Riemannian submersion ϑ : (M, D, G) → (N,D, g) is said to be a
statistical submersion [11] if ϑ satisfies ϑ∗(DXY)y = (DX∗Y∗)ϑ(y) for basic vector fields X,Y.

In classical semi-Riemannian geometry, B. O’Neill defined two (1, 2) tensor fields T
and A in [8]. So, in statistical geometry, T and A on M with respect to D are defined by the
following formulas [11,12]:

TXY = HDVXVY + VDVX HY, (1)

AXY = VDHX HY + HDHXVY, (2)

for X, Y ∈ Γ(TM).
Similarly, the tensor fields T̃ and Ã on M can also be defined by replacing D with D′

in the above equations.
For vertical vector fields U,V,W,W′ and horizontal vector fields X,Y,Z,Z′, we have

the following formulas:

RU,V;W,W′ = RF
U,V;W,W′ + G(TUW, T̃VW′)− G(TVW, T̃UW′), (3)

RX,Y;Z,Z′ = RN
X,Y;Z,Z′ − G(AYZ, ÃXZ′) + G(AXZ, ÃYZ′)

+ G((AX + ÃX)Y, ÃZZ′),
(4)

RX,U;V,Y = G((DXT )UV,Y)− G((DUA)XV,Y)
+ G(AXU, ÃYV)− G(TUX, T̃VY),

(5)

RX,U;Y,V = G((DXT )UY,V)− G((DUA)XY,V)
− G(AXU,AYV) + G(TUX, TVY),

(6)
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where R, RF, and RN are the Riemannian curvature tensor of M, that of B with respect to
the induced affine connection ∇, and that of N with respect to D. Note that TUV is the
second fundamental form of each fiber. If TUV = 0 = T̃UV is satisfied for vertical vector
fields U and V, then ϑ is referred to as a statistical submersion with doubly isometric fibers.
But we use isometric fibers instead of doubly isometric fibers.

Lemma 2. The tensor fields T , A, T̃ , and Ã on M have the following properties:

1. TUV = TVU; T̃UV = T̃VU,
2. AXY = −ÃYX,
3. AXY−AYX = V[X,Y],
4. ÃXY− ÃYX = V[X,Y],
5. G(TUV,X) = −G(V, T̃UX),
6. G(AXY,U) = −G(Y, ÃXU).

3. Statistical Submersions with Isometric Fibers

Consider an isometric immersion (M, D, G) of dimension r into an m-dimensional
statistical manifold (M,∇, G). We denote the conjugate connection of ∇ on M as ∇′

. Then,
we have the following:

1. R and R′ are the Riemannian curvature tensors of M with respect to ∇ and ∇′
,

respectively;
2. S and S are the sectional curvature functions of M and M;
3. τ(y) and τ(TyM) are the scalar curvatures of M and M;
4. h and h̃ are the symmetric bilinear forms called the embedding curvature tensors of

M in M for ∇ and ∇′
, respectively;

5. H = 1
r trace(h) and H̃ = 1

r trace(h̃) are the mean curvature vector fields of M for ∇
and ∇′

, respectively;
6. h0 and H0 = 1

r trace(h0) are the second fundamental form and the mean curvature
vector field of M for the Levi–Civita connection ∇0 on M.

For an orthonormal basis {EI |I = 1, 2, 3, · · · , r} of TyM, y ∈ M, we define

τ(y) = ∑
I<J

S(EI , EJ) and τ(TyM) = ∑
I<J

S(EI , EJ). (7)

First, we prepare the following lemma.

Lemma 3. Let ϑ : (M, D, G) → (N,D, g) be a statistical submersion. The lemma states the following:

1. For the horizontal vector fields X and Y,

RX,Y;Y,X = RN
X,Y;Y,X − 2||AXY||2 − G(AYY, ÃXX)

−G(ÃXY,AXY).

2. For the horizontal vector field X and the vertical vector field U,

RX,U;U,X = G((DXT )UU,X)− G(ÃXX, TUU)
+G(ÃXU,AXU)− G(T̃UX, TUX),

and

RX,U;U,X = −R̃X,U;X,U

= −G((D′
XT̃ )UU,X)− G(ÃXX, TUU)

+G(ÃXU, ÃXU)− G(T̃UX, T̃UX),

where R̃ is the Riemannian curvature tensor of M with respect to D′.
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Proof. From formula (4), we have

RX,Y;Y,X = RN
X,Y;Y,X − G(AYY, ÃXX) + G(AXY, ÃYX)

+G((AX + ÃX)Y, ÃYX).

Since we know that AXY = −ÃYX holds for horizontal vector fields X and Y, we obtain

RX,Y;Y,X = RN
X,Y;Y,X − G(AYY, ÃXX)− G(AXY,AXY)

−G((AX + ÃX)Y,AXY)
= RN

X,Y;Y,X − 2||AXY||2 − G(AYY, ÃXX)
−G(ÃXY,AXY).

Next, we utilize (5) to derive the second equation of this lemma. Consequently, we have

RX,U;U,X = G((DXT )UU,X)− G((DUA)XU,X)
+G(ÃXU,AXU)− G(T̃UX, TUX)

= G((DXT )UU,X)− G(DU(AXU),X)
+G(ADUXU,X) + G(AX(DUU),X)
+G(ÃXU,AXU)− G(T̃UX, TUX)

= G((DXT )UU,X)−UG(AXU,X) + G(AXU, D′
UX)

−G(U, ÃDUXX)− G(ÃXX, DUU)
+G(ÃXU,AXU)− G(T̃UX, TUX),

where we have applied the definition of the statistical manifold and G(AXY,U) = −G(Y, ÃXU)
(see Lemma 2).

Further, we have

RX,U;U,X = G((DXT )UU,X) +UG(U, ÃXX) + G(AXU, ÃXU)
+G(U,AXDUX)− G(ÃXX, DUU)
+G(ÃXU,AXU)− G(T̃UX, TUX)

= G((DXT )UU,X) + G(AXU, ÃXU)− G(ÃXU, DUX)
−G(ÃXX, DUU) + G(ÃXU,AXU)
−G(T̃UX, TUX)

= G((DXT )UU,X) + G(AXU, ÃXU)− G(ÃXU,AXU)
−G(ÃXX, TUU) + G(ÃXU,AXU)
−G(T̃UX, TUX)

= G((DXT )UU,X)− G(ÃXX, TUU)
+G(ÃXU,AXU)− G(T̃UX, TUX).

Similarly, it is worth noting that the last formula can be easily derived from Equation (6).

Proposition 1. Let (M, D, G) be a statistical manifold of non-positive sectional curvature. If
a statistical submersion ϑ : (M, D, G) → (N,D, g) has isometric fibers, then the following
results hold:

1. The horizontal distribution is integrable for D.
2. The total space (M, D, G) is a product space of the base space (N,D, g) and the fiber.
3. (N,D, g) has non-positive sectional curvature.
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Proof. Suppose that AXY ̸= 0 for the orthonormal horizontal vector fields X and Y. By
Lemma 2, we have

−G(Y, ÃXU) = G(AXY,U) ̸= 0,

for a unit vector U on M. Therefore, by Lemma 3, it follows that

S(X∧U) = G(ÃXU, ÃXU) > 0.

This contradicts our assumption, implying that A must vanish identically. Since A is
related to the integrability of the horizontal distribution, A is symmetric for horizontal
vectors if and only if the horizontal distribution is integrable for D. Hence, the second part
directly follows. The third part follows straightforwardly from Lemma 3 and the first part
of this corollary.

Example 1. Consider a statistical manifold M2r
r = {(x1, y1, · · · , xr, yr) ∈ R2r

r |yi ̸= 0 f or i =
1, 2, 3, · · · , r)} with the metric

G =

 2
y2

i
δij 0

0 1
y2

i
δij

,

and the affine connection D, defined by

D∂xi
∂xj = −D∂yi

∂yj =
4

3yi
δij∂yi,

D∂xi
∂yj = D∂yj

∂xi =
−4
3yi

δij∂xi.

We define the statistical submersion ϑ : (M2r
r , D, G) → (M2l

l , D, G) by

ϑ(x1, y1, · · · , xr, yr) = (x1, y1, · · · , xl , yl) (l < r).

Then, we find that ϑ has isometric fibers and A = 0. Consequently, M2r
r is a product space of M2l

l
and the fiber.

4. Sharp Relationship between Statistical Submersions and Doubly
Minimal Immersions

We use the Gauss equation for r-dimensional (M, D, G) in (M,∇, G) of dimension m,
and we find that

2τ(TyM) = 2τ(y)− r2G(H, H̃) +
m

∑
α=r+1

r

∑
I,J=1

G(h(EI , EJ), h̃(EI , EJ))

= 2τ(y)− r2G(H, H̃) +
m

∑
α=r+1

r

∑
I,J=1

hα
I J h̃

α
I J

for an orthonormal basis {E1, E2, E3, · · · , Er, Er+1, Er+2, · · · , Em}.
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On using 2H0 = H+ H̃ and 2h0 = h + h̃, our above equation is modified as

2τ(TyM) = 2τ(y)− r2

4
[(H+ H̃)2 − (H− H̃)2]

+
1
4
[(hα

I J + h̃α
I J)

2 − (hα
I J − h̃α

I J)
2].

= 2τ(y)− r2H02 +
r2

4
(H− H̃)2

+||h0||2 − 1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2,

that is,

2τ(y) = 2τ(TyM) + r2H02 − ||h0||2 − r2

4
(H− H̃)2

+
1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2. (8)

We define

λ = 2τ − 2τ(TyM)− r2

2
H02 +

r2

4
(H− H̃)2

−1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2. (9)

Then, Equation (8) simplifies to

r2H02 = 2λ + 2||h0||2. (10)

We now select a local orthonormal frame {E1, Es, Es+1, · · · , Er, · · · , Em} such that {E1 · · · , Es}
are horizontal vector fields of M, {Es+1, · · · , Er} are vertical vector fields of M, and Er+1 is
a unit normal vector field parallel to the mean curvature vector field of M. With this choice,
Equation (10) becomes( r

∑
I=1

h0r+1
I I

)2

= 2
[

λ +
r

∑
I=1

(h0r+1
I I )2 + ∑

I ̸=J
(h0r+1

I J )2 +
m

∑
α=r+2

r

∑
I,J=1

(h0α
I J )

2
]

. (11)

To use Lemma 1, we rewrite (11) as[
h0r+1

11 + (h0r+1
22 + h0r+1

33 + · · ·+ h0r+1
ss ) + (h0r+1

s+1 s+1 + · · ·+ h0r+1
rr )

]2

= 2
[

λ + (h0r+1
11 )2 + (h0r+1

22 + h0r+1
33 + · · ·+ h0r+1

ss )2 + (h0r+1
s+1 s+1 + · · ·+ h0r+1

rr )2

+2 ∑
1≤I<J≤r

(h0r+1
I J )2 +

m

∑
α=r+2

r

∑
I,J=1

(h0α
I J )

2 − 2 ∑
2≤J<K≤s

h0r+1
J J h0r+1

KK

−2 ∑
s+1≤i<j≤r

h0r+1
ii h0r+1

jj

]
. (12)



Mathematics 2024, 12, 2750 8 of 14

Then, we have

∑
1≤J<K≤s

h0r+1
J J h0r+1

KK + ∑
s+1≤i<j≤r

h0r+1
ii h0r+1

jj ≥ λ

2
+ ∑

1≤i<j≤r
(h0r+1

ij )2

+
1
2

m

∑
α=r+2

r

∑
i,j=1

(h0α
ij )

2. (13)

Additionally, the sectional curvature for the plane section defined by unit horizontal
and vertical vectors is given by

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei) = τ − ∑
1≤I<J≤s

S(EI , EJ)− ∑
s+1≤i<j≤r

S(Ei, Ej).

Then, by the Gauss equation for submersion, we arrive at

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei) = τ − ∑
1≤I<J≤s

S(EI , EJ)

−2
m

∑
α=r+1

∑
1≤I<J≤s

(
h0α

I I h0α
J J − (h0α

I J )
2
)

+
m

∑
α=r+1

∑
1≤I<J≤s

1
2

(
hα

I Ihα
J J + h̃α

I I h̃α
J J

−(hα
I J)

2 − (h̃α
I J)

2
)
− ∑

s+1≤i<j≤r
S(Ei, Ej)

−2
m

∑
α=r+1

∑
s+1≤i<j≤r

(
h0α

ii h0α
jj − (h0α

ij )
2
)

+
m

∑
α=r+1

∑
s+1≤i<j≤r

1
2

(
hα

iih
α
jj + h̃α

ii h̃
α
jj

−(hα
ij)

2 − (h̃α
ij)

2
)

. (14)

By using the simple algebraic inequality, we derive

m

∑
α=r+1

∑
1≤I<J≤s

1
2

(
hα

I Ihα
J J − (hα

I J)
2 + h̃α

I I h̃α
J J − (h̃α

I J)
2
)

=
m

∑
α=r+1

[
∑

2≤J≤s

1
2
(hα

11hα
J J − (hα

1J)
2) + ∑

2≤I<J≤s

1
2
(hα

I Ihα
J J − (hα

I J)
2)

]

≤
m

∑
α=r+1

s

∑
J=2

1
2

hα
11hα

J J −
s

∑
J=2

1
2
(hr+1

1J )2 −
m

∑
α=r+2

s

∑
J=2

1
2
(hα

1J)
2

+
m

∑
α=r+1

s

∑
J=2

1
2

h̃α
11h̃α

J J −
s

∑
J=2

1
2
(h̃r+1

1J )2 −
m

∑
α=r+2

s

∑
J=2

1
2
(h̃α

1J)
2, (15)
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and

m

∑
α=r+1

∑
s+1≤i<j≤r

1
2

(
hα

iih
α
jj − (hα

ij)
2 + h̃α

ii h̃
α
jj − (h̃α

ij)
2
)

=
m

∑
α=r+1

[
∑

s+2≤j≤r

1
2
(hα

s+1 s+1hα
jj − (hα

s+1 J)
2) + ∑

s+2≤i<j≤s

1
2
(hα

iih
α
jj − (hα

ij)
2)

]

≤
m

∑
α=r+1

r

∑
j=s+2

1
2

hα
s+1 s+1hα

jj −
r

∑
j=s+2

1
2
(hr+1

s+1 j)
2 −

m

∑
α=s+2

r

∑
j=s+2

1
2
(hα

s+1 j)
2

+
m

∑
α=r+1

r

∑
j=s+2

1
2

h̃α
s+1 s+1h̃α

jj −
r

∑
j=s+2

1
2
(h̃r+1

s+1 j)
2 −

m

∑
α=r+2

r

∑
j=s+2

1
2
(h̃α

s+1 j)
2. (16)

On simplifying (14), together with the calculations from [24] and the obtained inequalities
(15) and (16), we obtain

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei) ≤ τ − ∑
1≤I<J≤s

S(EI , EJ)− ∑
s+1≤i<j≤r

S(Ei, Ej)

−2
m

∑
α=r+1

∑
1≤I<J≤s

(
h0α

I I h0α
J J − (h0α

I J )
2
)

−2
m

∑
α=r+1

∑
s+1≤i<j≤r

(
h0α

ii h0α
jj − (h0α

ij )
2
)

+
1
4

[ m

∑
α=r+1

s

∑
J=1

(
(hα

J J)
2 + (h̃α

J J)
2
)]

+
1
4

[ m

∑
α=r+1

r

∑
j=s+1

(
(hα

jj)
2 + (h̃α

jj)
2
)]

.

The mean curvature vectors HH and H̃H for dual affine connections on the horizontal and
vertical spaces are denoted by HV and H̃V . Thus, we have

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei) ≤ τ − ∑
1≤I<J≤s

S(EI , EJ)− ∑
s+1≤i<j≤r

S(Ei, Ej)

−2
m

∑
α=r+1

∑
1≤I<J≤s

(
h0α

I I h0α
J J − (h0α

I J )
2
)

−2
m

∑
α=r+1

∑
s+1≤i<j≤r

(
h0α

ii h0α
jj − (h0α

ij )
2
)

+
(s − 1)

4

(
H2

H + H̃2
H

)
+

(r − s − 1)
4

(
H2

V + H̃2
V

)
. (17)

Assuming the statistical submersion ϑ has isometric fibers, the submersion invariant A0(π)
for the Levi–Civita connection and those for the dual affine connections are denoted by
A(π) and Ã(π). For the plane section spanned by unit horizontal and vertical vectors,
these are given by

A0(π) =
s

∑
I=1

r

∑
i=s+1

||A0
EI
Ei||2,

A(π) =
s

∑
I=1

r

∑
i=s+1

||AEIEi||2,
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and

Ã(π) =
s

∑
I=1

r

∑
i=s+1

||ÃEIEi||2

From this definition and the last formula of Lemma 3, the sectional curvature can be
written as

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei) =
s

∑
I=1

r

∑
i=s+1

G(ÃEIEi, ÃEIEi)

=
s

∑
I=1

r

∑
i=s+1

||ÃEIEi||2.

Thus, we have

Ã(π) =
s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei). (18)

In order to derive the desired inequality, we use (9), (13), (17) and (18), and we find that

Ã(π) ≤ τ − τ(TyM)− λ

2
+

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei)

+
(s − 1)

4

(
H2

H + H̃2
H

)
+

(r − s − 1)
4

(
H2

V + H̃2
V

)
=

r2

4
H02 − r2

8
(H− H̃)2 +

1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2

+
(s − 1)

4

(
H2

H + H̃2
H

)
+

(r − s − 1)
4

(
H2

V + H̃2
V

)
+

s

∑
I=1

r

∑
i=s+1

S(EI ∧ Ei).

Hence, we have the following key inequality to prove the main relationship.

Proposition 2. If a statistical submersion ϑ : (M, D, G) → (N,D, g) has isometric fibers, then
for any isometric immersion of M into a statistical manifold (M,∇, G), the submersion invariant
on M satisfies

Ã(π)− r2

4
H02 − s(r − s)max S(y) ≤ − r2

8
(H− H̃)2

+
1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2

+
(s − 1)

4

(
H2

H + H̃2
H

)
+
(r − s − 1)

4

(
H2

V + H̃2
V

)
. (19)

where max S(y) denotes the maximum value of the sectional curvature function of M when restricted
to 2-plane sections of the tangent space TyM.
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Corollary 1. Let ϑ : (M, D, G) → (N,D, g) be a statistical submersion with isometric fibers.
Then, for any isometric immersion of M into a statistical manifold (M(c),∇, G) of constant
sectional curvature c, the submersion invariant on M satisfies

Ã(π)− r2

4
H02 − s(r − s)c ≤ − r2

8
(H− H̃)2

+
1
4

m

∑
α=r+1

r

∑
I,J=1

(hα
I J − h̃α

I J)
2

+
(s − 1)

4

(
H2

H + H̃2
H

)
+
(r − s − 1)

4

(
H2

V + H̃2
V

)
.

Definition 3. A statistical submanifold (M, D, G) of (M,∇, G) is said to be doubly totally geodesic
if h = h̃ = 0 and doubly minimal if H = H̃ = 0 [25].

It is also noteworthy that the submersion invariant A0(π) for the Levi–Civita connec-
tion can be expressed as A0(π) = 1

2 (A(π) + Ã(π)). Therefore, we have the main result of
this article.

Theorem 1. Let (M, D, G) be a statistical manifold. If M has a non-trivial statistical submersion
with isometric fibers, then it cannot be isometrically immersed as a doubly minimal submanifold
into any statistical manifold of non-positive sectional curvature, provided h = h̃.

Proof. As the given statistical immersion is doubly minimal with h = h̃ and M has non-
positive sectional curvature, we derive from Proposition 2 that Ã(π) = 0. For any horizon-
tal vector field X and vertical vector field U on (M, D, D′, G), it follows that ÃXU = 0. This
implies that D′

XU is vertical. Therefore, D′
XY is horizontal, for horizontal vector fields X,Y.

Additionally, we observe that G(AXY,U) = −G(Y, ÃXU) = 0, which leads to the
conclusion that DXY is horizontal. Consequently, we say that H(M) is a doubly totally
geodesic distribution, meaning that H(M) is completely integrable and its leaves are doubly
totally geodesic. This contradicts the notion that neither the horizontal nor the vertical
distributions of the non-trivial submersion are totally geodesic distributions.

The following result can be obtained directly from Proposition 2.

Theorem 2. Let (M, D, G) be a statistical manifold. If M has a non-trivial statistical submersion
with isometric fibers, then it cannot be isometrically immersed into any statistical manifold of
non-positive sectional curvature as a doubly totally geodesic submanifold.

5. Concluding Remarks

In 1987 Lauritzen defined the concept of a statistical manifold as a generalization
of a statistical model equipped with the Fisher metric and the Amari–Chenstov tensor.
The notion of a dual connection in statistical inference is equivalent to the concept of
a conjugate connection in affine geometry. The idea of the existence of non-conjugate
symmetric statistical manifolds was also given by Lauritzen.

Remark 1. In [26,27], Chen established a new inequality for Riemannian submersions and identi-
fied a significant finding about the non-existence of certain immersions on the same total space.
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Theorem 3. Let ϑ : M → N be a Riemannian submersion with totally geodesic fibers. Then, for
any isometric immersion of M into a Riemannian manifold of non-positive sectional curvature, the
submersion invariant A0(π) on M satisfies

A0(π)− r2

4
H02 − s(r − s)max S0

(y) ≤ 0. (20)

Building on this theorem, Chen proved that if a manifold M admits a non-trivial
Riemannian submersion ϑ with totally geodesic fibers, then M cannot be isometrically
immersed as a minimal submanifold in any Riemannian manifold with non-positive sec-
tional curvature. Inspired by Chen’s result, we have successfully discovered a significant
relationship between statistical submersions and doubly minimal immersions. These find-
ings are applicable to numerous extensive families of statistical manifolds, reflecting the
widespread occurrence of statistical submersions with isometric fibers in geometry.

Remark 2. Let us review a few examples that illustrate the validity of Theorem 1. To begin, we
examine the following examples of non-trivial statistical submersions with isometric fibers:

1. In [18], a statistical manifold (R3 = {(y, z, w)|y, z, w ∈ R},D, g) with

g = e−x((dy)2 + (dw)2) + ex(dz)2

and a locally product-like statistical manifold (M+ = {(x, y, z, w)|x > 0}, D, G,F) (respec-
tively, (M− = {(x, y, z, w)|x < 0}, D, G,F)) with

G = (ex − 1)(dx)2e−x((dy)2 + (dw)2) + ex(dz)2

and

F =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.

are proved. Then, a locally product-like statistical submersion

ϑ : (M±, D, G,F) → (R3,D, g)

is defined by
ϑ(x, y, z, w) = (y, z, w).

It is noted that each fiber is an anti-invariant of M±. This submersion has isometric fibers,
with T = 0.

2. In [28], a generalized Kähler-like statistical submersion

ϑ : (R4
1, D, G, J) → (R3,D, g)

defined by
ϑ(x, y, z, w) = (x, y, z),

has isometric fibers. Here, (R3 = {(x, y, z)|x, y, z ∈ R},D, g) with

g = −e2y(dx)2 + e2y(dz)2

is a statistical manifold, and R4
1 = {(x, y, z, w)|x, y, z, w ∈ R}, D, G, J) is a K ähler-like

statistical manifold with

G = −e2y(dx)2 + (dy)2 + e2y(dz)2 + (dw)2
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and

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

. (21)

Additionally, it is worth recalling examples of doubly minimal statistical immersions as
discussed in [25]:

1. The map θ : S1 × S1 → S5 given by

θ(u, v) =
1√
3
(cos u, sin u, cos v, sin v, cos(u + v),− sin(u + v)) ∈ S5

defines an immersion of the torus S1 ×S1 into the Sasakian statistical manifold (S5,∇, G, ϕ, ξ).
This immersion is minimal and C-totally real, meaning that the torus is a doubly minimal
submanifold of the above statistical manifold.

Remark 3. In [27], Chen examined isometric immersions that satisfy the equality case of inequal-
ity (20). It would be valuable to extend this analysis to the statistical setting. This involves adapting
inequality (19) and constructing a statistical version of Chen’s investigation to address cases where
the equality in (19) is achieved.
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