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Abstract: This paper presents the topological derivative of the first eigenvalue for the free vibration
model of plane structures. We conduct a topological asymptotic analysis to account for perturbations
in the domain caused by inserting a small inclusion. The paper includes a rigorous derivation of the
topological derivative for the eigenvalue problem along with a proof of its existence. Additionally,
we provide numerical examples that illustrate the application of the proposed methodology for
maximizing the first eigenvalue in plane structures. The results demonstrate that multiple eigenvalues
were not encountered.
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1. Introduction

Some considerations such as dynamic response and loads are important for under-
standing the behavior and design of structures. Structures under dynamic analysis are
governed by linear differential equations, which involve solving an eigenvalue problem.
The eigenvalue problem is crucial in many real-world applications, particularly in struc-
tural optimization, as it significantly contributes to structural integrity. When the excitation
frequency matches one of the natural frequencies of vibration, the structure becomes highly
responsive, which can lead to damage or collapse. Structural behavior is affected when
variations in system parameters lead to changes in eigenvalues; eigenvectors; and, conse-
quently, the final response characteristics of the system. The magnitude of these variations
is reflected in the derivatives of the system’s eigenvalues and eigenvectors. One of the main
concerns of sensitivity analysis is the presence of multiple eigenvalues. During the topology
optimization process, only simple eigenvalues are present in the initial steps. However,
as the iterative process progresses and the geometry changes, multiple eigenvalues may
appear. The presence of multiple eigenvalues leads to convergence issues in optimization
algorithms because they are not differentiable in the common sense [1,2]. Since then, several
methods have been proposed to avoid the presence of multiple eigenvalues [3–6]. The
conventional notion of derivative is naturally extended to functionals through the concept
of the topological derivative (DT), where the variable is a geometric domain subject to
singular topology changes.

Concerning structural topology optimization, the DT provides the exact sensitivity of
the associated objective functionals due to perturbations such as the insertion of infinites-
imal voids, inclusions, or even cracks. In particular, for dynamic problems, the DT for
simple eigenvalues of the Laplacian was considered by [7], and for multiple eigenvalues in
elasticity problems by [8]. A similar work concerning the augmented Lagrangian method
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based on the concept of the topological derivative was also addressed by [9], where numer-
ical results considering compliance and eigenfrequency constraints were introduced by
the authors. More recently, the DT of L2 and energy norms associated with the solution to
plate bending, considering both Kirchhoff and Reissner–Mindlin theories, was introduced
by [10]. In addition to the maximization of the first eigenvalue, the sensitivities obtained
were adapted to the context of plate topology optimization for plates under elastic sup-
port and free vibration conditions. In [11], the DT was derived for membrane eigenvalue
maximization concerning the nucleation of inclusions endowed with different material
properties from the background. According to the numerical results, the presence of multi-
ple eigenvalues was not observed as the iterative process evolved, even as the geometry
became complex.

The field of eigenvalue topology optimization remains significant and requires the
development of new methodologies. These should incorporate classical techniques such as
sensitivity analysis, level set methods, and the bubble method, among others, to effectively
address various challenges. Ref. [12] introduced a phase field-based structural optimization
method that simplifies computation and improves efficiency compared to traditional level-
set methods. This method uses a phase field function and solves a time-dependent reaction–
diffusion equation but relies on the initial shape and requires careful management of
perimeter control effects. More recently, ref. [13] presented an enhanced phase field method
with multi-level correction, which improves accuracy and reduces computational costs
for eigenfrequency topology optimization, as demonstrated by numerical examples in 2D
and 3D.

As mentioned earlier, eigenfrequency optimization is a prominent research topic. The
present work revisits the subject discussed in [11] to incorporate the problem of plane
structures. The focus is on deriving the DT for maximizing the first eigenvalue. A closed
formula for the DT of the first eigenvalue for plane structures is obtained. The resulting for-
mula is used together with a level-set domain representation method to develop a topology
design algorithm, as implemented in [14]. The optimal topology for the plane structure
under prescribed boundary conditions is achieved by maximizing the first eigenvalue while
minimizing the volume. Several proposed numerical examples demonstrate the feasibility
of the present methodology in addressing topology optimizations. It is worth mentioning
that, to the authors’ knowledge, the concept of DT for the eigenvalue problem for plane
structures, considering mathematical rigor, has not been addressed elsewhere. Addition-
ally, several numerical examples are explored. This paper is organized as follows. The
topological derivative for plane structure problems is introduced in Section 2. In Section 3,
some numerical examples are presented, showing that the DT derived here successfully
solves eigenvalue problems for plane structures. Finally, the conclusions are summarized
in Section 4.

2. Topological Derivative

Consider, for instance, an open and bounded domain Ω ⊂ R2 such that it is subject to
a nonsmooth perturbation confined in a small ball Bε(x̂) of radius ε and center at x̂ ∈ Ω,

ψ(χε(x̂)) = ψ(χ) + f (ε)DTψ(x̂) + o( f (ε)), (1)

where ψ(χ) is the shape functional associated with the unperturbed domain, f (ε) is
a positive first-order correction function of ψ, and o( f (ε)) is the remainder, such that
o( f (ε))/ f (ε) → 0 as ε → 0. The function χ is the characteristic function associated with the
unperturbed domain, and χε is the characteristic function associated with the perturbed
domain. The function x̂ 7→ DTψ(x̂) is termed the topological derivative of ψ at x̂. The
domain Ω is then divided into two subdomains, ω ⊂ Ω and its complement Ω \ ω. Finally,
a set of piecewise constant functions α, ρ, and β (which are the contrasts in the material
properties) is considered and introduced according to Table 1.



Mathematics 2024, 12, 2762 3 of 20

Table 1. Values of α, ρ, and β.

α ρ β

Ω \ ω α0 ρ0 β0
ω α1 ρ1 β1

The topological perturbation results from the nucleation of a small circular inclusion
of the form ωε(x̂) := Bε(x̂) = |x − x̂| < ε for x̂ ∈ Ω. In this specific case, the perturba-
tion is governed by a set of piecewise constant functions αε, ρε, and βε, as introduced in
Tables 2 and 3.

Table 2. Values of αε, ρε, and βε.

αε ρε βε

Ω \ Bε α ρ β
Bε γαα γρρ γββ

Table 3. Values of γα, γρ, and γβ.

γα γρ γβ

Ω \ ω α1/α0 ρ1/ρ0 β1/β0
ω α0/α1 ρ0/ρ1 β0/β1

2.1. Plane Structures

This section introduces the mathematical model for the plane structure problem and
the shape functionals previously introduced herein in relation to the eigenvalue problem,
for the sake of completeness. It also covers both the perturbed and unperturbed problems
and demonstrates the existence of the associated topological derivative.

The original unperturbed problem can be stated as follows: Find u ∈ V(Ω), such that∫
Ω

ασ(u) · ∇sv +
∫

Ω
ρku · v =

∫
Ω

β f · v ∀v ∈ V(Ω), (2)

where V(Ω) = H1
0(Ω; R2). The coefficients α, ρ, and β ∈ R+, are given in Table 1. In

addition, σ(u) = C∇su, u : Ω 7→ R2 is the displacement field and k is a positive function.
The symmetric part of the displacement gradient tensor ∇su and constitutive tensor C are
given by

∇su =
∇u + (∇u)T

2
and C =

E
1 + ν

(
I+ ν

1 − ν
I ⊗ I

)
, (3)

where the symbols I and I represent the second- and fourth-order identity tensors, re-
spectively. It is worth mentioning that only the homogeneous Dirichlet condition on the
boundary ∂Ω was considered. However, this could be replaced by any other boundary
condition, provided the problem of interest remains well-posed.

Additionally, ν is the Poisson ratio and E is the Young’s modulus. The L2 and energy
norm shape functionals we are dealing with are defined as follows:

G(u) =
∫

Ω
ρk∥u∥2 and J (u) =

∫
Ω

ασ(u) · ∇su. (4)

To simplify the expression of the topological derivatives, we introduce the adjoint
problems for displacements q and p as follows:

q ∈ V(Ω) :
∫

Ω
ασ(q) · ∇sv +

∫
Ω

ρkq · v = −2
∫

Ω
ρku · v, ∀v ∈ V(Ω), (5)
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p ∈ V(Ω) :
∫

Ω
ασ(p) · ∇sv +

∫
Ω

ρkp · v = −2
∫

Ω
ασ(u) · ∇sv, ∀v ∈ V(Ω). (6)

The topologically perturbed counterpart of problem (2) is expressed as follows: Find
uε ∈ V(Ω), such that∫

Ω
αεσ(uε) · ∇sv +

∫
Ω

ρεkuε · v =
∫

Ω
βε f · v ∀v ∈ V(Ω), (7)

where the coefficients αε, ρε, and βε are defined through Tables 2 and 3. The associated
shape functionals are then defined as

Gε(uε) =
∫

Ω
ρεk∥uε∥2 and Jε(uε) =

∫
Ω

αεσ(uε) · ∇suε. (8)

2.1.1. Existence of the Topological Derivative

Equations (2) and (7) introduce the shape functionals for the original and perturbed
domains. Based on these, the existence of the associated topological derivative can be
stated as follows:

Lemma 1. Let u and uε be solutions to the original (2) and perturbed (7) problems, respectively.
Then, the estimate ∥uε − u∥H1(Ω;R2) = O(ε) holds true.

Proof. Let us subtract (2) from (7). By setting v = uε − u as the test function, after some
simple analytical work, there is

∫
Ω

αεσ(uε − u) · ∇s(uε − u) +
∫

Ω
ρεk∥uε − u∥2 =∫

Bε

(1 − γα)ασ(u) · ∇s(uε − u) +
∫

Bε

(1 − γρ)ρku · (uε − u)

−
∫

Bε

(1 − γβ)β f · (uε − u), (9)

where the contrasts introduced in Tables 2 and 3 are considered. The Cauchy–Schwarz
inequality yields∫

Ω
αεσ(uε − u) · ∇s(uε − u) +

∫
Ω

ρεk∥uε − u∥2 ⩽ C1ε∥uε − u∥H1(Ω;R2), (10)

where the elliptic regularity of function u is used. The coercivity of the bilinear form on the
left-hand side of Equation (10) results

c∥uε − u∥2
H1(Ω;R2) ⩽

∫
Ω

αεσ(uε − u) · ∇s(uε − u) +
∫

Ω
ρεk∥uε − u∥2 (11)

which leads to the result
∥uε − u∥H1(Ω;R2) ⩽ Cε, (12)

with the constant C = C1/c independent of the small parameter ε.

2.1.2. Topological Sensitivities

The following fourth-order polarization tensor associated with the elasticity model is
introduced as

P =
1
2

1 − γα

1 + γαδ2

(
(1 − δ2)I+

1
2
(δ1 − δ2)

1 − γα

1 + γαδ1
I ⊗ I

)
. (13)
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The constants δ1 and δ2 are given by

δ1 =
µl + λl

µl
, δ2 =

3µl + λl
µl + λl

, (14)

where µl and λl are Lame’s coefficients, both considered constants everywhere. In this case,
the plane stress assumption is applied as

µl =
E

2(1 + ν)
λl =

νE
1 − ν2 . (15)

The two main results of this section are stated here and are analogous to the work
of [11]. The proofs of Theorems 1 and 2 are in the Appendix A.

Theorem 1. Let G(u) be the shape functional defined by (4)-left; then, its associated topological
derivative is given by

DTG = αPσ(u) · ∇sq − (1 − γρ)ρku · (u + q)+ (1 − γβ)β f · q a.e. in Ω (16)

where q is the adjoint state solution of (5).

Theorem 2. Let J (u) be the shape functional presented in (4)-right; then, its topological derivative
is given by

DTJ = αPσ(u) · ∇s(u + p)− (1 − γρ)ρku · p + (1 − γβ)β f · p a.e. in Ω (17)

where p is the adjoint solution of problem (6).

2.2. Eigenvalue Problem

The eigenvalue problem for the plane structures model of clamped free vibration can
be stated as follows: Find u and λ, such that{

−div(ασ(u)) = λρu in Ω,
u = 0 on ∂Ω.

(18)

One can define the associated first eigenvalue as

λ1 = inf
u∈H1

0 (Ω;R2), u ̸=0

∫
Ω ασ(u) · ∇su∫

Ω ρ∥u∥2 , (19)

with u being the solution of (18).
Note that DT obeys the quotient rule for differentiation and uses the functions de-

scribed in Theorems 1 and 2. In particular, since the topological derivative obeys the
basic rules of the differential calculus (including the quotient rule for differentiation), the
rigorous justification for these kind of results can be found in the book by [15] (Ch 9). The
topological derivative of

J(D) := λ1, (20)

is given by

DT J =
−αPσ(u) · ∇su + (1 − γρ)ρλ1∥u∥2∫

Ω ρ∥u∥2 . (21)

3. Numerical Results

In this section, several numerical examples are presented to demonstrate the capability
of the topological derivative concept in delivering optimal topologies for the problems
addressed here. Based on the results from the numerical examples presented, the effec-
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tiveness of the proposed methodology for optimizing the first eigenvalue under various
boundary conditions and loading scenarios will be evaluated.

In all examples, the topological optimization problem focuses on maximizing the first
eigenvalue while adhering to a volume constraint. The convergence to a local minimum
is demonstrated through various numerical examples. We apply a topology optimization
algorithm that employs an evolution equation for the level-set function, based on DT (for
further details, see [14]).

First Eigenvalue Maximization

Three cases are presented: Cases A, B, and C. We introduce a hold-all domain D ⊂ R2

such that Ω ⊆ D. The hold-all domain is discretized using linear triangular finite elements,
resulting in an initial grid with uniform mesh spacing.

In Case A, the hold-all domain D is a rectangle (0, 3)× (0, 1), m2, clamped on the left
side along the contours ΓD1 = 0 × (0, 0.1) and ΓD2 = 0 × (0.9, 1.0), with a concentrated
mass m = 0.4 located at the point (3, 0.5), as depicted in Figure 1a. Figure 1b shows the
displacement in the initial domain.

In Case B, the hold-all domain D is a rectangle (0, 6)× (0, 1), m2, clamped at the point
(0, 0) and simply supported at the point (6, 0). The concentrated masses m = 0.7 are located
at the points (1, 1) and (5, 1), and an additional concentrated mass m1 = 1.4 is located at
the coordinate (3, 1), as depicted in Figure 2a. The displacement is shown in Figure 2b.

In Case C, the hold-all domain D is a rectangle (0, 4)× (0, 1), m2. Concentrated masses
m = mi, where i = 1, 2, . . . , 11 with ∑ mi = 70, are uniformly distributed along the upper
side of the rectangle (see Figure 3a). Figure 3b shows the displacement in the initial domain.

Linear triangular finite elements were employed for discretization in all the cases
presented.

Young’s modulus is set as E = 210 GPa and contrast parameters as γα = γρ = 10−3.
Information on the initial grid, number of elements and number of nodes in the initial
mesh, Poisson’s ratio ν, and penalty parameter µ are expressed in Table 4, for each case.

Table 4. Considered cases.

Cases Grid Elements Nodes ν µ

A 30 × 90 10,800 5521 0.25 1.4
B 30 × 180 21,600 11,011 0.3 0.7
C 10 × 40 1600 851 0.3 1.5

It should be noted that mesh refinement procedures were employed as part of the
optimization scheme to improve the boundary resolution of the final topology. Table 4
provides details on the final mesh resulting from the refinement process.

To enhance accuracy and achieve smoother topologies, four levels of uniform mesh
refinement were implemented during the iterative process for Cases A and B, and five
levels for Case C.

The mesh refinement levels resulted in 2,764,600 elements and 1,384,321 nodes for
Case A, 5,529,600 elements and 2,768,161 nodes for Case B, and 409,600 elements and
205,601 nodes for Case C.

The optimal topologies for Cases A, B, and C are illustrated in Figures 4–7, respec-
tively. The effect of mesh refinement on the optimized topology for Case A is evident (see
Figure 5). The final topology for Case B (Figure 6) exhibited asymmetry due to the boundary
conditions, which included clamping at point (0,0) and simple support at point (6,0). In this
example, the initial mesh comprises 19,200 elements (40 × 120 grid) and 9761 nodes, with
all other parameters and boundary conditions consistent with those described for Case A.

Figure 8 introduces the normalized first eigenvalue history λ1/λ0
1 as the iterative

process has evolved while Figure 9 depicts the normalized first eigenvalues’ history λ1/λ2.
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It can be observed that Case C achieved a higher ratio of λ1/λ2 compared to Cases A
and B.

However, during the optimization process, no coincident eigenvalues were observed.
Figures 10 and 11 illustrate the evolution of the shape functional and volume, respectively.

(a) Initial domain

(b) Displacement

Figure 1. Case A: initial domain (a) and displacement (b).

(a) Initial domain

(b) Displacement

Figure 2. Case B: initial domain (a) and displacement (b).
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(a) Initial domain

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.187

0

0.25

0.5

0.75

0.96

(b) Displacement

Figure 3. Case C: initial domain (a) and displacement (b).

Figure 4. Optimized topology for Case A.

Figure 5. Optimized topology.
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Figure 6. Optimized topology for Case B.

Figure 7. Optimized topology for Case C.

0 10 20 30 40 50 60 70 80 84

Iterations

0.7
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0.9
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1.1

1.2
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10

Case A

Case B

Case C

Figure 8. Normalized first eigenvalue λ1/λ0
1 history.
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Figure 9. Normalized second eigenvalue λ1/λ2 history.
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Figure 10. Shape function history.
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Figure 11. Volume fraction history.

To evaluate the influence of the parameter µ on the final design, a set of four cases is
considered. Variations in the parameter µ are detailed in Table 5.

Table 5. Penalty parameter.

Case D1 Case D2 Case D3 Case D4

µ 0.5 1.0 1.5 2.0

For Cases D1, D2, D3, and D4, the hold-all domain D is a unit square (0, 1)× (0, 1), m2,
clamped at the points (0, 0) and (0, 1). A concentrated mass m = 0.1 is applied at the point
(1, 1), as shown in Figure 12a, with the initial displacement depicted in Figure 12b.

The final topologies for each case are presented in Figure 13a–d. Figures 14 and 15
show the history of the shape functional and volume fraction, respectively.

The history of the normalized first eigenvalue, λ1/λ0
1 (where λ0

1 is its initial value), is
illustrated in Figure 16, showing the evolution until the process is halted.

Figure 17 depicts the history of the normalized first eigenvalue ratio, λ1/λ2. As before,
no presence of multiple eigenvalues was observed.
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(a) Inital domain

-0.03 0.2 0.4 0.6 0.8 1 1.11
-0.14

0

0.2

0.4

0.6

0.8

0.99

(b) Displacement

Figure 12. Cases D1, D2, D3, and D4: initial domain (a) and displacement (b).

(a) Case D1 (b) Case D2

(c) Case D3 (d) Case D4

Figure 13. Comparison of designs obtained for Cases D1, D2, D3, and D4.
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Figure 14. Cases D1, D2, D3, and D4: shape function history.
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Figure 15. Cases D1, D2, D3, and D4: volume fraction history.
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Figure 16. Cases D1, D2, D3, and D4: normalized first eigenvalue λ1/λ0
1 history.
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Figure 17. Cases D1, D2, D3, and D4: normalized second eigenvalue λ1/λ2 history.

4. Conclusions

In this work, the associated topological derivative of the first eigenvalue for plane
structure problems was used for topology optimization. The convergence to a local mini-
mum was achieved by combining the level set method with the analytical formula for the
topological derivative (DT). While coincident eigenvalues are often encountered in this
type of problem, they were not observed in the present work. The algorithm converged
successfully for all numerical examples, and no special methods were needed to handle
multiple eigenvalues. The results highlight the effectiveness of the DT concept in deriving
optimal topologies for eigenvalue problems in plane structures.
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Appendix A. Topological Asymptotic Analysis

Let us introduce an ansatz for the solution uε to the perturbed boundary value problem
(7) of the form

uε(x) = u(x) + wε(x) + ũε(x), (A1)

where u is the solution to the unperturbed boundary value problem (2), wε is the solution
to an exterior boundary value problem, and ũε is the remainder.

In particular, the exterior problem reads as follows: Find wε, such that
div(αεσ(wε)) = 0 in R2 ,

wε → 0 at ∞
(wε)

(αεσ(wε)) · n
=
=

0
g

}
on ∂Bε ,

(A2)

where g = (1 − γα)ασu(x̂) · n. The above boundary value problem admits an explicit
solution (see, for instance, the book by Novotny and Sokolowski [16]), which can be written
in a polar coordinate system (r, θ) with a center at x̂, as follows:

For r ≥ ε (outside the inclusion),

σrr(wε(r, θ)) = −φ1

(
1 − γα

1 + γαa1

ε2

r2

)
− φ2

(
4

1 − γα

1 + γαa2

ε2

r2 + 3
1 − γα

1 + γαa2

ε4

r4

)
cos 2θ, (A3)

σθθ(wε(r, θ)) = −φ1

(
1 − γα

1 + γαa1

ε2

r2

)
− φ2

(
3

1 − γα

1 + γαa2

ε4

r4

)
cos 2θ, (A4)

σrθ = −φ2

(
2

1 − γα

1 + γαa2

ε2

r2 − 3
1 − γα

1 + γαa2

ε4

r4

)
sin 2θ. (A5)

For 0 < r < ε (inside the inclusion),

σrr(wε(r, θ)) = φ1

(
a1γα

1 − γα

1 + γαa1

)
+ φ2

(
a2γα

1 − γα

1 + γαa2

)
cos 2θ, (A6)

σθθ(wε(r, θ)) = φ1

(
a1γα

1 − γα

1 + γαa1

)
− φ2

(
a2γα

1 − γα

1 + γαa2

)
cos 2θ, (A7)

σrθ(wε(r, θ)) = −φ2

(
a2γα

1 − γα

1 + γαa2

)
sin 2θ. (A8)

Some terms in the above formulae require explanations. The coefficients φ1 and φ2
are given by

φ1 =
1
2
(σ1(u(x̂)) + σ2(u(x̂))), φ1 =

1
2
(σ1(u(x̂))− σ2(u(x̂))), (A9)
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where σ1(u(x̂)) and σ2(u(x̂)) are the eigenvalues of tensor σ(u(x̂)), which can be ex-
pressed as

σ1,2(u(x̂)) =
1
2

(
tr σ(u(x̂))±

√
2σD(u(x̂)) · σD(u(x̂))

)
, (A10)

with σD(u(x̂)) standing for the deviatory part of the stress tensor σ(u(x̂)), namely,

σD(u(x̂)) = σ(u(x̂))− 1
2

tr σ(u(x̂))I. (A11)

In addition, the constants a1 and a2 are given by

a1 =
µ + λ

µ
,

3µ + λ

µ + λ
. (A12)

Finally, σrr(uε), σθθ(uε), and σrθ(uε) are the components of tensor σ(uε) in the polar
coordinate system, namely, σrr(uε) = er · σ(uε)er, σθθ(uε) = eθ · σ(uε)eθ , and σrθ(uε) =
er · σ(uε)eθ , with er and eθ used to denote the canonical basis associated with the polar
coordinate system (r, θ)), such that ∥er∥ = ∥eθ∥ = 1 and er · eθ = 0 (for more details,
see [16]).

Note that the remainder is constructed in order to compensate for the discrepancies
introduced by the boundary layers wε and by the higher-order terms of the Taylor series
expansion of σ(u) around the point x̂ ∈ Ω. It means that ũε has to be the solution to the
following boundary value problem: Find ũε, such that

−div[αεσ(ũε)(x)] + ρεkũε(x) = ρεkwε in Ω,
ũε = ε2g1 on ∂Ω,

(ũε)
(αεσ(ũε))n

=
=

0
εg2

}
on ∂Bε ,

(A13)

with functions g1 = −ε−2wε and g2 = (1 − γα)α[σ(wε]n · n independent of ε.

Lemma A1. Let ũε be the solution of (A13) or, equivalently, of the following variational problem

ũε ∈ Ũε :
∫

Ω
αεσ(ũε) · ∇v +

∫
Ω

ρεkũεv+ =
∫

Ω
ρεkwεv + ε

∫
∂Bε

g2v, ∀v ∈ H1
0(Ω), (A14)

where the set Ũε := {φ ∈ H1(Ω) : φ|∂Ω
= ε2g1}. Then, the estimate ∥ũε∥H1(Ω) = o(ε)

holds true.

By setting v = ũε − φε ∈ H1
0(Ω) as the test function in (A14), where φε ∈ Ũε is the

lifting of the Dirichlet data ε2g1 on ∂Ω, we have

∫
Ω

αεσ(ũε) · ∇sũε +
∫

Ω
ρεk|ũε|2 = ε2

∫
∂Ω

g1α∂nũε︸ ︷︷ ︸
E1

+ ε
∫

∂Bε

g2ũε︸ ︷︷ ︸
E2

−
∫

Ω
ρεkwεũε︸ ︷︷ ︸

E3

. (A15)

Therefore, from the Cauchy–Schwarz inequality, there are

|E1| = ε2
∣∣∣∣∫

∂Ω
g1α∂nũε

∣∣∣∣ ⩽ ε2∥g1∥L2(∂Ω)∥∂nũε∥L2(∂Ω) ⩽ C1ε2∥ũε∥H1(Ω), (A16)

|E2| = ε

∣∣∣∣∫
∂Bε

g2ũε

∣∣∣∣ ⩽ ε∥g2∥L2(∂Bε)
∥ũε∥L2(∂Bε)

⩽ C2ε3/2∥ũε∥H1(Ω), (A17)

|E3| =

∣∣∣∣∫Ω
ρεkwεũε

∣∣∣∣ ⩽ ∥wε∥L2(Ω)∥ũε∥L2(Ω) ⩽ C3ε2
√
| ln(ε)|∥ũε∥H1(Ω). (A18)
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From these last results, we obtain∫
Ω

ρεσ(ũε) · ∇sũε +
∫

Ω
ρεk|ũε|2 ⩽ C5(ε

2 + ε3/2 + ε2
√
| ln(ε)|)∥ũε∥H1(Ω). (A19)

By taking into account the coercivity of the bilinear form on the left-hand side of the above
inequality, there is

c∥ũε∥2
H1(Ω) ⩽

∫
Ω

ρεσ(ũε) · ∇sũε +
∫

Ω
ρεk|ũε|2, (A20)

which leads to the result with constants c and C5 independent of ε.

Corollary A1. Let u and uε be solutions of problems (2) and (7), respectively. Then,

∥uε − u∥L2(Ω) = o(ε). (A21)

By taking into account the ansatz (A1) and the triangular inequality, it follows that

∥uε − u∥L2(Ω) = ∥wε + ũε∥L2(Ω)

⩽ ∥wε∥L2(Ω) + ∥ũε∥L2(Ω)

⩽ ∥wε∥L2(Ω) + ∥ũε∥H1(Ω) = o(ε). (A22)

where we have used Lemma A1.
Before proceeding, let us subtract (2) from (7). After a simple manipulation by taking

into account the contrasts (Tables 2 and 3), one can obtain∫
Ω

ασ(uε − u) · ∇sv +
∫

Ω
ρk(uε − u)v =

∫
Bε

(1 − γα)ασ(uε) · ∇sv+∫
Bε

(1 − γρ)ρkuεv −
∫

Bε

(1 − γβ)β f v. (A23)

Appendix A.1. Proof of Theorem 1

By subtracting G(u) from Gε(uε), there is

Gε(uε)− G(u) = 2
∫

Ω
ρk(uε − u)u︸ ︷︷ ︸

A1

−
∫

Bε

(1 − γρ)ρk|uε|2︸ ︷︷ ︸
A2

+
∫

Ω
ρk|uε − u|2︸ ︷︷ ︸

E1(ε)

, (A24)

with the remainder E1(ε) bounded as follows:

|E1(ε)| ⩽ C1∥uε − u∥2
L2(Ω) = o(ε2), (A25)

where we have used Corollary A1. The integral A2 can be trivially expanded as follows:

A2 = πε2(1 − γρ)ρk|u|2(x̂) +
∫

Bε

(1 − γρ)ρk|uε − u|2︸ ︷︷ ︸
E2(ε)

+ 2
∫

Bε

(1 − γρ)ρk(uε − u)u︸ ︷︷ ︸
E3(ε)

+
∫

Bε

(1 − γρ)ρk[|u|2 − |u(x̂)|2]︸ ︷︷ ︸
E4(ε)

. (A26)
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with remainders E2(ε), E3(ε), and E4(ε) bounded as follows:

|E2(ε)| ⩽ C2∥uε − u∥2
L2(Ω) = o(ε2), (A27)

|E3(ε)| ⩽ C3ε∥uε − u∥L2(Ω) = o(ε2), (A28)

|E4(ε)| ⩽ C4∥x − x̂∥2
L2(Bε)

= o(ε2). (A29)

where we have used Corollary A1 together with the interior elliptic regularity of function u.
Now, let us set v = q in (A23) and v = uε − u in the adjoint Equation (5). After comparing
the obtained results, the integral A1 can be rewritten as

A1 = −
∫

Bε

(1 − γα)ασ(uε) · ∇sq︸ ︷︷ ︸
A3

−
∫

Bε

(1 − γρ)ρkuεq︸ ︷︷ ︸
A4

+
∫

Bε

(1 − γβ)β f q︸ ︷︷ ︸
A5

. (A30)

The integrals A5 and A6 are trivially expanded as

A4 = πε2(1 − γρ)ρkuq(x̂) +
∫

Bε

(1 − γρ)ρk(uε − u)q︸ ︷︷ ︸
E5(ε)

+
∫

Bε

(1 − γρ)ρk[uq − uq(x̂)]︸ ︷︷ ︸
E6(ε)

, (A31)

A5 = πε2(1 − γβ)β f q(x̂) +
∫

Bε

(1 − γβ)β f [q − q(x̂)]︸ ︷︷ ︸
E7(ε)

. (A32)

with the remainders E5(ε), E6(ε), and E7(ε) bounded as follows:

|E5(ε)| ⩽ ε∥uε − u∥L2(Ω) = o(ε2), (A33)

|E6(ε)| ⩽ ε∥x − x̂∥L2(Bε)
= o(ε2), (A34)

|E7(ε)| ⩽ ε∥x − x̂∥L2(Bε)
= o(ε2), (A35)

where we have used Corollary A1 and the interior elliptic regularity of functions u and q.
The integrals A3 and A4 can be developed in the following way,

A3 + A4 =
∫

Bε

(1 − γα)ασ(u) · ∇sq︸ ︷︷ ︸
A6

+
∫

Bε

(1 − γα)ασ(wε) · ∇sq︸ ︷︷ ︸
A7

+
∫

Bε

(1 − γα)ασ(ũε) · ∇sq︸ ︷︷ ︸
E8(ε)

, (A36)

where we have introduced the ansatz (A1). Therefore,

A6 = πε2(1 − γα)ασ(u) · ∇sq(x̂) +
∫

Bε

(1 − γα)α[σ(u) · ∇sq − σ(u) · ∇sq(x̂)]︸ ︷︷ ︸
E9(ε)

, (A37)

with remainders E8(ε) and E9(ε) bounded as follows:

|E8(ε)| ⩽ ε∥ũε∥H1(Ω) = o(ε2), (A38)

|E9(ε)| ⩽ ε∥ũε∥H1(Ω) = o(ε2). (A39)
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where we have used Lemma A1 together with the interior elliptic regularity of functions u
and q. The last two integral A7 can be rewritten as

A7 = πε2(1 − γα)αPσ(u) · ∇sq(x̂) +
∫

Bε

(1 − γα)ασ(wε) · ∇s(q − q(x̂))︸ ︷︷ ︸
E10(ε)

, (A40)

where we have used the explicit solution (A6)–(A8). The remainder E10(ε) can be bounded
as follows:

|E10(ε)| ⩽ C5∥∇swε∥L2(Bε)
∥x − x̂∥L2(Bε)

= o(ε2). (A41)

Finally, after collecting the obtained results, we have

Gε(uε)− G(u) = −πε2[2αPσ(u) · ∇sq(x̂)+

(1 − γρ)ρku(u + q)(x̂)− (1 − γβ)β f q(x̂)] +
10

∑
i=1

Ei(ε), (A42)

where the remainders Ei(ε) = o(ε2) for i = 1 · · · 10. □

Appendix A.2. Proof of Theorem 2

Let us subtract J (u) from Jε(uε) to obtain

Jε(uε)−J (u) = 2
∫

Ω
ασ(uε − u) · ∇su −

∫
Bε

(1 − γα)ασ(uε) · ∇suε+∫
Ω

ασ(uε − u) · ∇s(uε − u)︸ ︷︷ ︸
B1

. (A43)

By setting v = uε − u as the test function in (A23), the integral B1 can be rewritten,
after some manipulations, as

B1 =
∫

Bε

(1 − γα)ασ(uε) · ∇s(uε − u) + E11(ε). (A44)

The remainder E11(ε) is defined as

E11(ε) =
∫

Bε

(1 − γρ)ρk|uε − u|2 +
∫

Bε

(1 − γρ)ρku(uε − u)−
∫

Bε

(1 − γβ)β f (uε − u)−∫
Ω

ρk|uε − u|2, (A45)

which can be bounded as follows:

|E11(ε)| ⩽ C1(ε + ∥uε − u∥L2(Bε)
+ ∥∇s(uε − u)∥L2(Bε)

)∥uε − u∥L2(Bε)

+ C2(∥uε − u∥L2(Ω) + ∥∇s(uε − u)∥L2(Ω))∥uε − u∥L2(Ω)

⩽ C3∥uε − u∥L2(Ω)∥uε − u∥H1(Ω) = o(ε2), (A46)

where we have used the Cauchy–Schwarz inequality together with Lemma 1 and
Corollary A1. Therefore, equation (A43) becomes

Jε(uε)−J (u) = 2
∫

Ω
ασ(uε − u) · ∇su︸ ︷︷ ︸

B2

−
∫

Bε

(1 − γα)ασ(uε) · ∇su︸ ︷︷ ︸
B3

+E11(ε). (A47)
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From the ansatz (A1), integral B3 can be written as

B3 =
∫

Bε

(1 − γα)ασ(u) · ∇su︸ ︷︷ ︸
B4

+
∫

Bε

(1 − γα)ασ(wε) · ∇su︸ ︷︷ ︸
B5

+
∫

Bε

(1 − γα)ασ(u) · ∇sũε︸ ︷︷ ︸
E12(ε)

, (A48)

with the remainder E12(ε) bounded as follows:

|E12(ε)| ⩽ C1ε∥∇sũε∥L2(Bε)
⩽ C2ε∥ũε∥H1(Ω) = o(ε2) (A49)

where we have used Lemma A1. The integrals B4 and B5 can be trivially expanded
as follows:

B4 = πε2(1 − γα)ασ(u(x̂)) · ∇su(x̂) +
∫

Bε

(1 − γα)α(σ(u) · ∇su − σ(u(x̂)) · ∇su(x̂)︸ ︷︷ ︸
E13(ε)

, (A50)

B5 = πε2(1 − γα)αPσ(u) · ∇su(x̂) +
∫

Bε

(1 − γα)ασ(wε) · (∇su −∇su(x̂))︸ ︷︷ ︸
E14(ε)

, (A51)

where we have used the explicit solution (A6)–(A8). The remainders E13(ε) and E14(ε) can
be bounded as follows:

|E13(ε)| ⩽ C1ε∥x − x̂∥L2(Bε)
= o(ε2), (A52)

|E14(ε)| ⩽ C2∥σ(wε)∥L2(Bε)
∥x − x̂∥L2(Bε)

= o(ε2). (A53)

Now, let us set v = p in (A23) and v = uε − u in the adjoint Equation (6). After
comparing the obtained results, the integral B2 can be rewritten as

B2 = −
∫

Bε

(1 − γα)ασ(uε) · ∇s p︸ ︷︷ ︸
B6

−
∫

Bε

(1 − γρ)ρkuε p︸ ︷︷ ︸
B7

+
∫

Bε

(1 − γβ)β f p︸ ︷︷ ︸
B8

. (A54)

The integrals B7 and B8 are trivially expanded as

B7 = πε2(1 − γρ)ρkup(x̂) +
∫

Bε

(1 − γρ)ρk(uε − u)p︸ ︷︷ ︸
E15(ε)

+
∫

Bε

(1 − γρ)ρk[up − up(x̂)]︸ ︷︷ ︸
E16(ε)

, (A55)

B8 = πε2(1 − γβ)β f p(x̂) +
∫

Bε

(1 − γβ)β f [p − p(x̂)]︸ ︷︷ ︸
E17(ε)

. (A56)

with remainders E15(ε), E16(ε), and E17(ε) bounded as follows:

|E15(ε)| ⩽ ε∥uε − u∥L2(Ω) = o(ε2), (A57)

|E16(ε)| ⩽ ε∥x − x̂∥L2(Bε)
= o(ε2), (A58)

|E17(ε)| ⩽ ε∥x − x̂∥L2(Bε)
= o(ε2), (A59)

where we have used Corollary A1 and the interior elliptic regularity of functions u and p.
The integrals B6 and B7 can be developed in the following way,

B6 + B7 =
∫

Bε

(1 − γα)ασ(u) · ∇s p︸ ︷︷ ︸
B9

+
∫

Bε

(1 − γα)ασ(wε) · ∇s p︸ ︷︷ ︸
B10

+
∫

Bε

(1 − γα)ασ(ũε) · ∇s p︸ ︷︷ ︸
E18(ε)

, (A60)
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where we have introduced the ansatz (A1). Therefore,

B9 = πε2(1 − γα)ασ(u) · ∇s p(x̂) +
∫

Bε

(1 − γα)α[σ(u) · ∇s p − σ(u) · ∇s p(x̂)]︸ ︷︷ ︸
E19(ε)

. (A61)

with remainders E18(ε) and E19(ε), bounded as follows:

|E18(ε)| ⩽ ε∥ũε∥H1(Ω) = o(ε2), (A62)

|E19(ε)| ⩽ ε∥ũε∥H1(Ω) = o(ε2), (A63)

where we have used Lemma A1 together with the interior elliptic regularity of functions u
and p. The last integral B11 can be rewritten as

B11 = πε2(1 − γα)αPσ(u) · ∇s p(x̂) +
∫

Bε

(1 − γα)ασ(wε) · ∇s(p − p(x̂))︸ ︷︷ ︸
E20(ε)

, (A64)

where we have used the explicit solution (A6)–(A8). The remainders E20(ε) can be bounded
as follows:

|E20(ε)| ⩽ C1∥σ(wε)∥L2(Bε)
∥x − x̂∥L2(Bε)

= o(ε2). (A65)

Finally, after collecting the obtained results, we have

Jε(uε)−J (u) = −πε2[2αPσ(u) · ∇s(u + p)(x̂) + (1 − γρ)ρkup(x̂)−

(1 − γβ)β f p(x̂)] +
20

∑
i=11

Ei(ε), (A66)

where the remainders Ei(ε) = o(ε2), for i = 11 · · · 20. □
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