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Abstract: The epidemic outbreaks of the last two decades have led governments to rely more on
computational tools for establishing protection policies. Computational approaches to modeling epi-
demics traditionally rely on compartmental models, network models, or agent-based models (ABMs);
however, each approach has its limitations, ranging from reduced realism to lack of tractability.
Furthermore, the recent literature emphasizes the importance of points of interest (POIs) as sources of
population mixing and potential outbreak hotspots. In response, this study proposes a novel urban
spatial ABM validated using our augmented SICARQD epidemic model. To replicate daily activities
more accurately, the urban area is divided into a matrix of points of interest (POIs) with agents
that have unique paths that only permit infectious transmission within POIs. Our results provide
a qualitative assessment of how urban characteristics and individual mobility patterns impact the
infected population during an outbreak. That is, we study how population density, the total number
of POIs (where the population concentrates), the average number of POIs visited by an agent, the
maximum travel distance from the home location, and the quarantine ratio impact the dynamics of
an outbreak. Our ABM simulation framework offers a valuable tool for investigating and controlling
infectious disease outbreaks in urban environments with direct applicability to global policy makers.

Keywords: computational epidemics; agent-based model; nonpharmaceutical interventions; urban
population
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1. Introduction

The dynamics of recent epidemics such as H1N1, SARS, and COVID-19 have been
a significant challenge and top public health priority for many governments around the
world [1–3]. Traditional epidemiological approaches employ compartmental models that
categorize the population based on economic and demographic factors, among others.
Despite the lack of complexity in individual behavior, these models have been shown to be
effective in the formation and shaping of public health policies [4–6].

Most approaches in computational epidemics use compartmental models (analytical
approach), complex network models, agent-based models (ABMs), or hybrid solutions. The
sole usage of compartmental models offers reduced realism and tractability since all agents
interact with other agents without any geo-spatial restrictions, omitting the complexity of
human organization [6–8]. Network models solve this problem, as nodes only interact with
their neighbors, but it is the infection that must spread to static node locations, instead of
allowing nodes to move as in the case of dense urban environments [9,10]. More recently,
agent-based models (ABMs) have become a powerful computational tool for the study of
infectious disease outbreaks [11–15].

Unlike traditional approaches, such as compartmental models or network models,
ABMs offer a high degree of realism by allowing agents to move freely and interact in a
dynamic environment. This makes ABMs especially useful in modeling complex urban
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environments, where populations are dense and mobility patterns play a critical role in
the spread of disease [16]. During the beginning of the COVID-19 pandemic, ABMs were
successfully used in exchange for simpler compartmental models, such as the SIR and
SIS [17,18].

Nevertheless, many ABMs also lack tractability, as agents are permitted to move
anywhere and interact anywhere in the system. To this end, the recent literature has shown
the increased importance of points of interest (POIs) as the main sources of population
mixing and therefore outbreak hotspots [19–21]. In other words, it turns out to be more
realistic to track human interaction inside POIs only and control the epidemic by limiting
access to, or entirely closing, POIs during outbreaks.

Authors Chang et al. [19] showed that a fraction of POIs account for the majority of
infections and that restricting POI occupancy is more effective than uniformly reducing
mobility. By contrast, the authors use an SEIR epidemic model that cannot account for quar-
antine and patient recurrence as our SICARQD (Susceptible− Incubating− Contagious−
Aware− Recovered− Quarantined− Dead) model [22]. The study in [11] by Hackl et al.
concentrated on the Zurich (CH) transport network and used a SIR model to explain the
dynamics of influenza. Conversely, our ABM provides a general framework for testing cus-
tomizable urban areas and makes use of a more detailed epidemic model. In [14], authors
Zhuge et al. created a hybrid ABM–social network model which establishes friendships
between agents based on similarity and geographic information; their model is general
purpose but lacks the mobility paradigm for agents. In [20], authors Li et al. provided a
statistical study on population flow for POIs for 16 US cities, and showed which categories
of POIs were more affected by quarantine. Authors Nian et al. [21] studied the relationship
between residents’ mobility, POIs, and social activities from the perspective of taxi travel
during COVID-19; their conclusions focused on the recovery of public transport in megaci-
ties during the post-epidemic period. Finally, we mention the study by Mao et al. [23], in
which the authors employed the SLIR epidemic model for H1N1 and created an ABM for
the Buffalo region (USA) with its local businesses (POIs); the authors concluded that certain
POIs are critical in spreading the disease.

In light of these recent developments, we propose an urban spatial ABM that replicates
the daily mobility of an average individual as much as possible. Specifically, the urban
area is divided into a matrix of equidistant POIs, and all agents will have a unique random
path of POIs to follow from and back to their home location. Agent interactions that trigger
infectious transmission will only be possible inside a POI. In other words, two agents need
to be at the same time and at the same POI to be able to transmit an airborne viral infection
between each other.

The main motivation of this study is to define a general purpose, customizable, and
computationally efficient urban spatial agent-based model which uses a points-of-interest
(POIs) matrix as relevant interaction points for the spread of infectious diseases, opinion,
innovation, rumors, etc. In terms of originality, agents move independently between a
controlled number of POIs in their daily routine and may be restricted to move inside a
variable area around their home location. Infection may only occur within POIs, reducing
computational complexity from O(A2) (Agents2) to O(AP) (Agents · POIs). Moreover, in
this study, we focus on epidemic outbreaks and how their dynamics can be influenced
by population density, the number of urban POIs, the average number of POIs visited
by an agent, the maximum travel distance from the home location, and the impact of
the quarantine ratio. To this end, we incorporate our previously validated SICARQD
epidemic model [22], which allows patient quarantine and relapse, and supports three
stages of infection.

In addition to detailing the urban spatial ABM, our study aims to answer the following
questions relevant to epidemic outbreaks:

1. How does population (density) in an urban environment affect outbreak dynamics?
2. How does the number of population accumulation points (POIs) scale with the impact

of an outbreak?
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3. How do mobility restrictions (reducing the maximum travel distance and the number
of visited POIs) reduce the outbreak intensity?

4. How does the quarantine policy for new cases reduce the impact of the outbreak?

By addressing these questions, we aim to prove the practicality of our ABM and
implicitly define a set of qualitative directives to enhance effective epidemic control with
both social and scientific impact in the ABM literature and in computational epidemics.

2. The Urban Spatial Agent-Based Model

We further detail the reasoning and methodology for developing the urban spatial
agent-based model used to simulate epidemic outbreaks in a target population.

We set out to create an urban-like environment, where agents are distributed in a 2D
space and move freely to various points of interest (POIs) in their daily business. Regardless
of age and social status, these POIs represent common population accumulation points,
such as shops, schools, university campus, office buildings, hospitals, churches, train/metro
stations, hotels, administrative buildings, cinemas, etc.

As such, we start by defining a fixed rectangular area S = w · h, given by a width w
and a height h. This area is divided into a matrix of uniform square areas based on a fixed
distance parameter Pd between two adjacent POIs. Furthermore, urban POIs are placed
at each intersection of matrix cells, including along the margins of the urban area (see
illustration in Figure 1a). For simplicity, all POIs are treated the same; no distinction is
made in terms of maximum occupancy or time spent inside by an agent. In fact, future
developments of this model may include several distinct classes of POIs with specific
characteristics.

Given the constant orthogonal distance Pd between adjacent POIs, we express the total
number of POIs P, using the numbers Px and Py, and define the coordinate matrix POIs
(sized Px × Py) based on area S:

0 < Pd ≤ min{w, h}
Px = ⌊w/Pd⌋+ 1

Py = ⌊h/Pd⌋+ 1

P = Px · Py

(1)

POIs =


(0, 0) ( 1

Px−1 S, 0) ( 2
Px−1 S, 0) . . . ( Px−1

Px−1 S, 0)
(0, 1

Py−1 S) ( 1
Px−1 S, 1

Py−1 S) . . . . . . (S, 1
Py−1 S)

...
. . .

(0, Py−1
Py−1 S) ( 1

Px−1 S, S) . . . . . . (S, S)

 (2)

Within the urban area S a number of A agents are randomly placed and constitute the
fixed simulation population. All agents are considered equally and uniformly distributed
within the area S. To simulate changes in population density, which is considered an
important factor that influences the speed and impact of epidemics, we keep the urban area
fixed and alter the agent population A (where population density δ = A/S).

Each agent ai ∈ A receives a random home location (hi(hxi, hyi)), and a maximum
travel distance Td within the agent can move. Figure 1b exemplifies an agent ai (green dot)
and its allowed travel area (gray square). In this area, an agent will receive a number of Np
random POIs that the agent will visit repeatedly throughout the simulation process; each
of these POIs matches a public urban POI. To determine a new POI for an agent, a random
point (x, y) is generated, and the nearest urban POI—within the permitted area, i.e., closer
than Td—is chosen as the POI pj

i that the agent will visit.
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Figure 1. Schematic representation of the main defining properties of the urban ABM. (a) A rectangu-
lar (or square) space S is defined by width and height (S = w · h), which is divided as a matrix of
uniform square areas based on the fixed distance Pd between POIs. An urban POI is placed in each
intersection of the dotted lines, including along the margins of the area, e.g., 7× 7 POIs are placed
in the example model. The orange icons suggest possible urban POIs, such as shops, offices, train
stations, churches, hospitals, etc. (b) For each agent (green dot), a number of Np POIs are assigned
within the maximum travel distance Td. Each randomly placed POI (gray dot) is assigned as the
nearest urban POI (orange dot) within the permitted gray square area. (c) An agent (green dot) will
travel, independently of any other agent, along the designated green path through each POI (orange
dots) and return to its home position; then, after a timeout, the process of visiting the same list of
POIs repeats. Other agents (blue dot) have different paths to follow. The (infectious) interaction is
only possible if two agents are at the same simulation time t at the same POI.

The last ABM specific phase is the agent mobility which implies any type of agent–
agent interaction and transmission process (e.g., infection, opinion, rumor, innovation, and
trade). Figure 1c exemplifies how an agent ai (green dot) continuously moves between its
home and five POIs (numbered p0

i to p4
i ) along the green path. Once all POIs have been

visited, the agent returns to its home position and waits for a short delay period; then, the
same movement process repeats, i.e., the same agent POIs are visited in the order in which
they were initially added to the list. Other agents (such as the blue dot in Figure 1c) have
different POIs and thus different paths to follow. The interaction between two agents is
only possible if the agents are at the same simulation time t at the same POI (e.g., like p1

i
coinciding with p2

j ). The position of any agent ai at any time t is given by the coordinates
(xi(t), yi(t)). The first two described steps represent the urban initialization and the setup
phase before the simulation can begin. The pseudocode for the setup of each agent and its
POIs is described below.

Additional details on the speed, direction of movement, and interactions of each agent
are explained with the help of Figure 2. All agents have the same constant speed limit Av
and move in a straight line to their next destination (i.e., a POI or their home location). The
speed Av is used to move the agent in any direction using a horizontal vx and a vertical
vy speed. The two speeds are updated when an agent reaches a destination point and the
next point is set as the new destination; then, the distances to the next destination (dx, dy)
are measured along the Ox and Oy axes; the ratio dx/dy determines the new direction of
movement. The ratio between the speeds satisfies vx/vy ∝ dx/dy and vx2 + vy2 = A2

v (see
Figure 2a).
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Figure 2. Overview of the agent movement characteristics. (a) An agent (green dot) moves in a
straight line towards the next POI (orange dots), or returns home, with a constant speed of Av. Given
the 2D space, two components of the speed are calculated, vx, vy, based on the ratio between the
horizontal and vertical distances, dx, dy, towards the next POI; this ratio determines the direction
of movement. The sum of the two squared speeds equals the square of the agent speed Av; thus,
all agents move at the same speed, regardless of their direction. (b) Three agents (green, yellow,
and blue) move towards the central POI (orange). The state of being inside a POI translates to being
within δinteract/2 = 2 · Av of the POI itself. Once an agent enters the target area (gray square), a
new destination is immediately computed, and the agent changes its direction. In the example, all
three agents move iteratively with speed Av towards the POI, step by step, as suggested by the short
arrows and time steps (tk). Agents a1 and a2 enter the POI at time tk+3 and exit immediately at tk+4;
agent a3 enters the POI at tk+1, changes course, and exits at tk+4. In this sense, all three agents interact
with each other only for one iteration (tk+3), whereas agent a3 may interact with other agents for
three iterations as shown in the upper right panel.

Each agent updates its position (xi, yi) with (vx, vy) in every simulation iteration t,
and thus,

(xi(t + 1), yi(t + 1)) = (xi(t), yi(t)) + (vxi(t), vyi(t)) (3)

where each agent has its own movement speeds (vx, vy) updated after reaching a new POI.
The example in Figure 2b details the movement update of three agents (green, yellow,

and blue) that move to the same POI (orange). An agent is considered to have reached
the POI when its position is within δinteract/2 of the POI position. Consequently, when an
agent enters the target area (gray square), a new destination is automatically calculated,
and the agent updates its speed (vx, vy). The movement speed of all agents is Av as they
move iteratively along the suggested arrows at each iteration (from tk to tk+6). In Figure 2b,
agents a1 and a2 enter the POI at time tk+3 and exit the next iteration at tk+4; agent a3 enters
the POI at tk+1, updates course, and exits at tk+4. In this example, all three agents interact
with each other only for one iteration (tk+3), whereas agent a3 can interact with other agents
for three iterations as shown in the upper right panel.

Given the current position of an agent ai at a destination, say, pk
i , the movement

parameters towards the next destination, say, pk+1
i , are updated as follows:
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(dx, dy) = pk+1
i (x, y)− pk

i (x, y)

d = |dx/dy|

vx = sgn(dx) · d · Av√
d2 + 1

vy = sgn(dy) · Av√
d2 + 1

(4)

vx2 + vy2 =
sgn2(dx) · d2 · A2

v + sgn2(dy) · A2
v

d2 + 1
=

A2
v(d2 + 1)
d2 + 1

= A2
v (5)

where sgn is the sign function and is used to define the correct direction of each speed.
Equation (5) confirms that the two agent speed vectors add up to the Av vector.

The full movement algorithm—through all POIs back home, and repeated for each
agent—is detailed by the following pseudocode.

As a note on Algorithm 1, during the setup phase, each agent has their list of POIs
(ai.pois) initialized (see Algorithm 2), their next POI index initialized to poi_index = 0, and
destination to destination = pois[0].

Algorithm 1 Agent mobility update for agent ai during each iteration t.

Require: A > 0, δinteract > 0, Np > 0, Av > 0
if stayHome > 0 then ▷ Random timeout to stay home before leaving

stayHome← stayHome− 1
else

if dist((xi, yi), destination) < δinteract then ▷ Agent is within destination
if destination == hi(hxi, hyi) then ▷ Agent has returned home

(xi, yi)← (hxi, hyi) ▷ Reset position and path
stayHome← rand(5, 100)
poi_index ← 0
destination← ai.pois[poi_index]
updateAgentDestination(destination(x, y), ai(xi, yi), Av)

else ▷ Agent has reached another POI
poi_index ← poi_index + 1
if poi_index ≥ ai.pois.length then ▷ All POIs have been visited

destination← hi(hxi, hyi)
else ▷ The next POI on the path will be visited

destination← ai.pois[poi_index]
end if
updateAgentDestination(destination(x, y), ai(xi, yi), Av)

end if
else ▷ Update agent position

(xi, yi)← (xi, yi) + (vx, vy)
end if

end if

procedure UPDATEAGENTDESTINATION(destination(x, y), ai(xi, yi), Av)
dx = destination(x)− xi
dy = destination(y)− yi
d = abs(dx/dy)
vx = sgn(dx) ∗ d ∗ Av/sqrt(d ∗ d + 1)
vy = sgn(dy) ∗ Av/sqrt(d ∗ d + 1)

end procedure
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Algorithm 2 ABM setup phase.

Require: S > 0, 0 < Pd ≤ S, A > 0, Pd ≤ Td ≤ w, 0 < Np ≤ P
POIs[][]← int[Px + 1][Py + 1] ▷ According to Equation (2)
for ∀ai ∈ A do

hi(xi, yi)← (rand[0, S], rand[0, S]) ▷ Random placement of agents inside S
end for
for ∀ai ∈ A do

for j = 0 to Np − 1 do
Generate (x, y)← (hi(xi, yi)± rand[−Td/2, Td/2]) ▷ Random points inside Td

pj
i ← closest POIs to (x, y) inside (hi ± [−Td/2, Td/2])

add (pj
i) to ai.pois() ▷ Save to agent’s POI list

end for
end for

Theoretical and Practical Performance Analysis

The originality of this urban spatial ABM was motivated by the fact that agent interac-
tions do not happen everywhere all the time but are restricted to the areas inside urban POIs.
To this end, our simulator reduces the computational complexity and enables a speedup of
large simulations.

A standard ABM approach, in which any two agents ai, aj ∈ A can interact at every
iteration, would require the constant checking of all pairs of agents to determine whether
they are within the interaction distance δinteract, leading to a time complexity of O(A2). We
consider using only urban POIs as places of interaction also to improve the time complexity
of the simulation. In this sense, at each iteration t, each agent checks its proximity to each
urban POI; an agent may be outside of all POIs, or inside one at maximum (because POIs
are spatially nonoverlapping). If proximity to one POI is detected, the iteration suspends
and jumps to the next agent, reducing the check time for each agent. Furthermore, once
proximity to an agent ai is detected, a POI poik updates its list of currently visiting agents
poik(agents) ← ai. The final interaction step is the actual iteration over all POIs, and
checking all pairs of agents for the relevant properties (e.g., infection status and opinion).

The number of agents inside POIs, at a given time, is estimated using the ratio between
the area occupied by all POIs Sp and the total urban area S. Given that the interaction range
of a POI with an agent is δinteract = 4 · Av (see Figure 2b), the area occupied by all POIs is
Sp = (4 · Av)2 · P, and the ratio between the two area is

Sp

S
=

(4 · Av)2 · P
w · h (6)

To estimate the ratio between the areas in a real example, we exemplify two extreme
simulation settings: {S = 10002, Av = 2, P = 1} (small village) and {S = 10002, Av = 2,
P = 1000} (large city). The difference between the two settings is the number of POIs P
being ×1000 greater. In the first setting, we obtain Sp/S = 0.0064%; in the second setting,
we obtain Sp/S = 6.4%. This means that around 6% (or less) agents will be inside POIs at a
certain time t. Therefore, we estimate the number of interacting agents per iteration, in all
urban POIs, as A · Sp/S ≈ (0.006− 6)% · A (6% worst case). The pseudocode for the full
interaction algorithm (Algorithm 3) is given below.

The function updateAgentsStatus() is given as an example for any placeholder func-
tion which checks the status between two agents (e.g., infection and opinion) and updates
one or both of the agents in O(1) time.

In conclusion, the time complexity for the agent interaction is summarized as follows:

• Reset agent lists in all urban POIs − O(P).
• Check the proximity of all agents in all POIs − O(A · P · (1− 0.06)) = O(A · P · 0.94)

(approximated as worst case).
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• Interaction between all pairs of agents in each POI−O(P · (A/P · Sp/S)2) ≈ O(A2/P ·
0.062) (worst case).

The full complexity is approximated as O(P + 0.96 · A · P + 0.0036 · A2/P) ≈ O(AP +
0.0036 · A2/P), which, given the real-world values of A ≤ 106 inhabitants and P ≤ 1000
POIs, can be further approximated to O(AP). Overall, we consider our model’s time
complexity an important improvement over the standard O(A2), where, in most real-
world scenarios, the number of individuals is much higher than the number of population
accumulation points (P≪ A) in an urban area.

The underlying simulation software is written in Java entirely by the authors. Cur-
rently, the code—without a GUI—is available on GitHub at https://github.com/deltaalex/
Urban_ABM_SICARQD (accessed on 1 September 2024).

Algorithm 3 Agent interactions inside POIs during each iteration t.

Require: A > 0, POIs > 0, δinteract > 0, updateAgentsStatus(ai, aj)
for ∀poik ∈ POIs do

poik(agents)← () ▷ Clear stored agents inside POI
end for
for ∀ai ∈ A do

for ∀poik ∈ POIs do
if dist(ai, poik) < δinteract then

poik(agents)← (ai) ▷ Add agent to this POI
break loop ▷ Jump to next agent

end if
end for

end for
for ∀poik ∈ POIs do

for ∀ pairs (ai, aj) ∈ poik(agents) do
updateAgentsStatus(ai, aj) ▷ O(1) method that checks for infection status

end for
end for

3. Materials and Methods

Given the multitude of possible parameters in an epidemic model, as well as an
ABM, we consider incorporating a straightforward and intuitive epidemic process on top
of the presented urban spatial ABM. Specifically, we employ the previously developed
SICARQD epidemic model [22] to showcase the practical utility of our ABM in the context
of evaluating tracking and control strategies for an infectious outbreak.

In particular, SICARQD (Susceptible− Incubating−Contagious− Aware− Recovered−
Quarantined−Dead) is an upgrade of our previous SICARS model [24] that was custom tailored
for the COVID-19 pandemic and is a generalization of the popular SIR/SEIR model [25,26],
explicitly aimed at the analysis of isolation strategies that were relevant to the early COVID-19
outbreak.

In this study, we employ discrete event simulation, a widely acknowledged approach
in the field of computational epidemiology, to model intricate systems characterized by the
interplay of multiple stochastic processes and the inherent structure of the system [27].

3.1. The SICARQD Epidemic Model

For the purpose of this study, we employ the complex epidemic model named
SICARQD [22], summarized in Figure 3, and which defines the seven possible infectious
states and particular transition rates. As such, an agent can be in one of the following states:
susceptible SUS, incubating INC, contagious CTG, aware AWR, quarantined QRT, recovered
REC, or dead DED. The transition from SUS → REC → SUS is determined by several
infection rates, the quarantine ratio, the quarantine policy, and the recurrence scenario. We
summarize the main epidemic parameters as follows:

https://github.com/deltaalex/Urban_ABM_SICARQD
https://github.com/deltaalex/Urban_ABM_SICARQD
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• rINC: The rate of susceptible agents becoming infected in the vicinity of an infectious
agent (which is in either of the two infectious states CTG or AWR). An agent in the INC
state will not infect other agents.

• rCTG: The rate of incubating agents becoming contagious CTG after a specific period
(depending on the modeled virus). In this state, an agent does not know that it is
infected (has no symptoms yet), but it infects others.

• rAWR: The rate of contagious agents becoming aware after a specific period. In this
state, an agent knows that it is infected (has symptoms) and infects other agents in
its vicinity.

• rREC: The rate of aware (or quarantined) agents recovering after an infectious period.
The transition determines whether an agent has fully recovered, becoming temporar-
ily immune (REC), or if the agent has died (DED) based on the death ratio rDED.
Recovered agents REC may not be infected.

• rRCR: The recurrence rate of recovered agents to become susceptible again after a specific
period of recovery from infection.

SUSceptible INCubating ConTaGious AWaRe

𝒓𝑰𝑵𝑪

𝒓𝑹𝑪𝑹

Infectious

QuaRanTined

RECovered

DEaD

𝒓𝑪𝑻𝑮 𝒓𝑨𝑾𝑹 𝒓𝑹𝑬𝑪

𝒓𝑫𝑬𝑫𝒓𝑹𝑬𝑪
𝒓𝑸𝑹𝑻

Proact-Q React-Q

Infected

𝒓𝑸𝑹𝑻

Figure 3. Schematic of the SICARQD epidemic model with its seven states and transmission dynamics
based on the infection ratios. The characteristic two-stage infectious process (CTG and AWR) enables
our model to differentiate between and early (proact-Q) and a late (react-Q) quarantine policies. The
ratio rQRT of agents moved to quarantine QRT will no longer infect other agents and will transit
directly to the recovered REC or dead DED states. Moreover, recovered REC agents may become
susceptible SUS again, in time, based on the imposed recurrence scenario.

In addition to the classical transition between susceptible, infected, and recovered
states (SIR), SICARQD offers several transitions that increase the realism of epidemic
modeling. First, a quarantine policy and a quarantine ratio rQRT will define when and
how many agents transition to the QRT state; in this state, agents are not be able to infect
others and will transition directly to the REC state (or, alternatively, to the DED state).
Second, our epidemic model adds a recurrence scenario, which determines whether or how
fast agents transition back to SUS.

Since the epidemic model is not the main focus of this study, we briefly explain the
quarantine and recurrence scenarios for agents. The quarantine policy is of three types:

1. Proactive quarantine (proact-Q)—agents may be quarantined immediately as they
become contagious CTG and require real-time contact tracing and detection before
symptoms appear).

2. Reactive quarantine (react-Q)—agents may be quarantined as they become aware
AWR, and require home isolation as symptoms appear.

3. No quarantine (no-Q)—all infected agents remain active in the population.

In this study, we maintain the react-Q policy in most simulation scenarios, except
when stated otherwise. We choose the reactive policy as the default because it is the most
realistic in terms of large-scale real-world applicability when human and financial resources
are limited, and quarantining is based largely on visible symptoms [28].
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The recurrence scenario is of three types:

1. Quick recurrence (quick-R)—short immunity duration of 3 months on average.
2. Slow recurrence (slow-R)—longer immunity duration of 12 months on average.
3. No recurrence (no-R)—meaning the rate rRCR = 0 and all recovered agents remain

permanently immune.

In addition, in this study, we adopt the slow-R scenario in all cases since a ‘yearly’ recur-
rence is highly realistic for many ongoing/seasonal airborne viral infections (influenza [29]
and COVID-19 [30]).

For additional details on the epidemic model, please refer to our previous study in [22].

3.2. Real-World Epidemic Parameters for SICARQD

The SICARQD allows customization for airborne infections, similar in complexity to
influenza and coronaviruses. Therefore, given the ongoing relevance of the COVID-19 pandemic,
in this study, we choose to parameterize our SICARQD model to the SARS-CoV-2 virus.

Table 1 details the values for each of the model’s parameters as found in the recent
COVID-19 literature; we enumerate all the parameters illustrated in Figure 3, whose values
are chosen based on an extensive literature review. In the situations where we find multiple
parameter estimations, we choose either the worst case scenario (marked with ∗∗) or the
average value (unmarked).

The impact of the last three parameters in Table 1 has been extensively studied in [22],
being outside the scope of this paper. Relevant studies identify various recurrence rates
for the SARS-CoV-2 virus, such as 3 months [31], 4–5 months [32], 6 months [33], and
1 year [34]. In this study, we adopt a slow-R scenario which translates to a fixed recurrence
rate rRCR that causes agents to relapse back to SUS, on average, in 12 months’ simulation
time. In terms of quarantine policy, we adopt a react-Q policy which means that agents
may be quarantined—with a rate rQRT—only once after in the AWR state, when symptoms
become visible. For all experiments, except one scenario, we assign the quarantine ratio to
a fixed value.

Table 1. Parameterization of the SICARQD epidemic model detailing the values reported in the
literature, the values selected in our model, and the relevant references. ** Assumed worst-case
scenario based on the literature.

Model Parameter Symbol Literature Values Assumed Value References

Incubation rate rINC 0–5% 5% ** [26,35]
Incubation period rCTG 3–7 days 5 days [36–38]
Contagion to symptoms onset rAWR 4–7 days 5.5 days [35,36]
Symptoms onset to recovery rREC 10–14 days–6 w 14 days [39–41]
Death ratio rDED 2–3.6% 3.6% ** [39,42]

Quarantine policy Qpolicy various react/proact-Q [22,28]
Quarantine ratio rQRT unknown 0–1 [22]
Recurrence scenario/rate rRCR 3–12 months 12 months [31,34]

All epidemic parameters are kept fixed (except for the Qpolicy in one simulation sce-
nario) because the focus of this study is not to analyze the SICARQD model but rather
to explore the realism and effectiveness of our urban spatial ABM. We note that in order
to adjust the SICARQD model to another virus, it suffices to redefine the seven ratios in
Table 1 according to the available epidemiological data.

3.3. Experimental Setup

In Table 2, we enumerate the input and output parameters which are investigated
during the simulation phase. The focus of this paper is to understand the influence of
all the ABM parameters on the dynamics of an epidemic outbreak. Note that in order to
reduce the complexity of the experiments, some of the parameters are kept fixed at all times,
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such as the urban area size S = 1000× 1000, the number of infectious seeds Ns = 1%A, the
agent movement speed Av = 2, and the interaction radius with POIs δinteract = 4 · Av = 8.

We define the peak infection ratio 0 ≤ ρ ≤ 1 as the maximum number of daily cases,
and it is expressed as a ratio of the total population A. To obtain ρ, we measure ρ(t) at
every time step t and keep the maximal value

ρ(t) =
In f ected(t)

A
=

INC(t) + CTG(t) + AWR(t) + QRT(t)
A

ρ = max{ρ(t)}
(7)

While ρ quantifies the magnitude of the epidemic, we also measure the total number
of cases τ, for all simulation times, to obtain a perspective on the ratio between the peak
and the duration of an outbreak. We define the ratio τ as the total number of susceptible
SUS agents who become incubating INC over all agents in the population:

τ =
∑t{new cases}

A
=

∑t{ai|state(ai(t)) = INC & state(ai(t− 1)) = SUS}
A

(8)

In some cases where high population mixing allows for rapid contagion, the total
cases ratio τ may be greater than 1; this means that agents are, on average, infected more
than once during the simulation.

Figure 4 summarizes the ABM and SICARQD model input parameters, the agent
setup phase, and the simulation steps with the end condition.

Input

SICARQD params: rINF, rCTG,

rAWR , rREC , rDED , rQRT , rRCR .

δinteract – agent interaction radius

Qpolicy – quarantine policy

Rscenario – recurrence scenario

Ns – number of infectious seeds

Epidemic

Input

S = w*h – urban area size

Pd – distance between POIs             

→ Px = w/Pd+1 (nr. horiz POIs)

→ Py = h/Pd+1 (nr. vert POIs)

P = Px*Py – number of urban POIs           

Urban area

Start

Input

A – number of agents → density

Np – number of agent POIs

Td – max. distance to POIs

ABM Setup

• Compute POI coordinates

• Randomly place A agents in S

• For each agent: compute its 

Np POIs (based on Td)

• Set all agents as SUS

• Set Ns random agents as INC

Agent Interaction

For each agent:

Check if within a POI

For each agent pair in POI:

Infect with (rINF, δinteract).

(SUS → INC)

Agent Mobility

For each agent:

If(home) → reset path

If within(POI)  next POI

Compute new (vx, vy)

Else update position(x, y) +       

(vx, vy)

SICARQD Update

For each agent:

If (REC) → SUS with rRCR

If (AWR | QRT) → REC with rREC

→ DED with rDED

If (CTG) → AWR with rAWR

→ QRT with rQRT (React-Q)

If (INC) → CTG with rCTG

→ QRT with rQRT (Proact-Q)

t > 

SIM_TIME 

End

Yes

No t  t+1
Simulation iteration

Figure 4. Flow diagram of the experimental setup, from Start to End. The specific input parameters are
fixed for the urban area, the ABM, and the epidemic model. Next, the ABM is created by designating
the urban POIs inside the area S, placing all A agents and assigning their own POIs to visit within
the distance Td; also, all agents are set as susceptible, except a number of Ns agents who are infected
to trigger the epidemic outbreak. The simulation phase (gray area) consists of three repeated steps:
updating the epidemic state of each agent, updating the position of each agent, and checking the
agent interaction (whether inside POI, and transmitting infection to other agents). The process repeats
as long as the simulation time t ≤ SIM_TIME.
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Table 2. Input (upper panel) and output (lower panel) parameters for the ABM-SICARQD experi-
mental setup, alongside the model symbols, default value in the model, and range of investigated
values through simulation.

Model Parameter Symbol Default Range

Agent population A 1000 100–10,000 agents
Urban (total) POIs P 100 1–1000 POIs
Agent POIs Np 10 1–50 POIs
Max. travel distance Td 500 100–1000
Quarantine ratio rQRT 0.5 0–1

Peak infection ratio ρ output 0–1
Total cases ratio τ output 0. . . >1

4. Simulation Results

In this section, we present the simulation results according to the experimental flow
described in Figure 4 using the variable ABM input parameters from Table 2 and the
epidemic parameters from Table 1. To this end, we investigate 6 values for the agent
population A ∈ {100, . . . 10, 000}, 6 values for the number of urban POIs P ∈ {1 . . . 1000}, 6
values for the number of agent POIs Np ∈ {1 . . . 50}, 6 values of maximum travel distances
Td ∈ {100 . . . 1000}, and 11 values for the quarantine ratio rQRT ∈ {0, 0.1 . . . 1}. The pairs
of simulations are (A, P, rQRT = 0.5), (A, Np, rQRT = 0.5), (A, rQRT), (A, Td, rQRT = 0.5),
leading to 174 different scenarios. Each scenario is repeated 100 times and averaged,
resulting in 17,400 simulations.

Since the number of numerical results is very high, we summarize all experiments by
presenting only the peak infection ratio ρ and the total cases ratio τ using intuitive plots
instead of long tables. An example simulation using our SICARQD epidemic model, with
slow-R and a quarantine ratio of rQRT = 0.2, is depicted in Figure 5.

The specific SICARQD infection recurrence is visible in Figure 5a as the number of
susceptible SUS agents increases slowly in time after the initial infection wave; similarly,
the number of recovered REC agents decreases after having reached a maximum right
after the first wave. Furthermore, the three SICARQD specific infectious states and the
quarantine state are visible in Figure 5b. Here, the total number of infected agents (red line)
is the sum of all agents in either infected state, including QRT. The peak infection ratio ρ is
the maximum number of infected, namely, the peak of the infection wave; if more waves
follow in time, then ρ could be updated with a higher value. The three states INC, CTG,
and AWR follow quickly one after another as suggested by the vertical dotted lines through
the peaks of each wave. Agents in the QRT state become visible at the same time with
AWR because, due to the react-Q policy, an agent may only be quarantined after reaching
the AWR state and not sooner. Finally, the relatively small quarantine ratio rQRT = 0.2
determines the ratio between AWR/QRT = (1− rQRT)/rQRT = 0.8/0.2 = 4.

We start by measuring the two output epidemic measures defined in Table 2, namely,
the peak infection ratio ρ and the total cases ratio τ for an increasing agent population
A. To put the results into perspective, Figure 6 plots the epidemic measures for different
number of urban POIs P. In Figure 6a, we notice a linear increase from ρ ≈ 0–0.6 as the
population increases, and are able to differentiate the impact of the total urban POIs P.
Namely, for very few POIs P = 1–25 the epidemic reaches a higher peak sooner. As the
population (density) increases, the results pinpoint towards a strong initial wave (i.e., a peak
of ρ = 0.5–0.6). In Figure 6b, we observe an accelerated increase in τ up to A = 500–1000,
then a slower increase towards 100% of the population becoming infected. In the case of
very few POIs, we report more than one new case per person on average due to the slow
recurrence scenario.

In Figure 7, we highlight the importance of POIs in the urban area. Namely, both ρ and
τ drop abruptly as the number of urban POIs increases from P = 1–100 and then remain
approximately constant regardless of the fact the P increases up to 1000 POIs. The initial
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drops are plotted in Figure 7a as percentages, and increase in magnitude, from 6% to 65%,
as the population A decreases. This means that for a larger population density, the number
of POIs is less impactful on the epidemic intensity. Here, we highlight the results only for a
maximum population up to A = 2500 (instead of A = 10,000) because the differences above
A = 2500 are insignificant in this plot. In panel Figure 7b, the total cases ratio τ follows a
very similar trajectory. We note that for P = 1000 POIs, the larger population results in ×21
more cases than the lowest population.
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Figure 5. The dynamics of an epidemic outbreak using the SICARQD model with slow infection
recurrence (slow-R) and a reactive quarantine policy (react-Q). (a) The total cases ratio τ increases
steadily and becomes > 1, meaning that agents become infected more than once, on average; the
similar drop in REC and increase in SUS is caused by the recurrent infection scenario. (b) Detail
of the dynamics of the infected states, highlighting the maximum of the total infected as the peak
infection rate ρ. A quarantine ratio of rQRT = 0.2 is used, which means that 20% of agents who
become AWR will be quarantined (i.e., the ratio AWR/QRT = 4).
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Figure 6. Impact of the agent population A in terms of (a) peak infection ratio ρ and (b) total cases
ratio τ for different values of number of urban POIs P. In several points, we highlight the percentage
difference (%) between the highest and lowest ρ. Both plotted epidemic measures show particular
linear increases. The highest infection rate is achieved for one single POI per system (blue line),
suggesting that very high population concentration favors faster epidemic spreading.
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Figure 7. Impact of the number of urban POIs P on the (a) peak infection ratio ρ and the (b) total
cases ratio τ, for increasing population sizes A = 100 . . . 2500. The drops from P = 1 to P = 100 are
expressed as percentages from the maximum value ρ.

Next, we provide a summary of how the epidemic measures are impacted by the
maximum travel distance Td. In Figure 8, we express the distance traveled Td%S relative
to the area S (in our case width w = height h). The results prove that Td has a significant
impact on the increase in both ρ and τ. In Figure 8a, the increase in ρ starts with Td = 200,
or Td%S = 0.2 for the larger population densities, and with 0.4 for the smaller ones. After-
wards, the increase in the peak infection ratio remains linear up to Td%S = 1. In Figure 8b,
the increase in τ is more specific, with an accelerated increase between Td%S = 0.2–0.4
followed by a stabilization around τ = 0.8–1 for higher values of Td.
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Figure 8. Impact of the maximum travel distance Td (expressed relative to the urban area size S) on
the (a) peak infection ratio ρ and the (b) total cases ratio τ, for different population sizes A. Both
epidemic measures increase linearly after Td ≥ 0.2 (for larger populations), or after Td ≥ 0.4 (for
smaller populations). The highest differences in terms of epidemic measures are calculated around
Td = 0.4, where higher populations achieve an ≈×4–5 higher infection count.

We further analyze how the number of agent POIs Np influences the epidemic outbreak
measures (Figure 9). To this end, we find a significant increase in both epidemic measures
but especially in the peak ρ as the number of POIs increases from Np = 1–5. The results
in Figure 9 can be corroborated by the results in Figure 7, where the epidemic intensity
correlates with how well the population is distributed in multiple POIs. Here, when agents
have a single POI on their path, the population mixing is highly reduced compared to when
agents have five or more POIs to travel to. The increases in ρ as Np increases are depicted
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in Figure 9a and range from 157% to 165% (depending on A). The total cases ratio τ also
increases rapidly with the number of agent POIs, as shown in Figure 9b, and ranges from
97% to 105%.
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Figure 9. Impact of the number of agent POIs Np of each agent Td on the (a) peak infection ratio
ρ and the (b) total cases ratio τ, for different population sizes A. In both panels, we notice a rapid
increase from Np = 1 to Np = 5, which translates to an agent visiting more than one place on its
travel routine, thus rapidly increasing the population mixing. The peak infection ratio ρ increases by
over 150% from the initial increase in Np, while the total cases ratio τ increases by ≈100%.

Since we use the react-Q quarantine policy and the slow-R recurrence scenario in all
presented results so far, we further explain the impact of the Qpolicy and the quarantine
rate rQRT on the experimental setup. Figure 10 compares the epidemic dynamics from
the perspective of react-Q and proact-Q policies. In Figure 10a, we show the drop in ρ as
the quarantine ratio increases and highlight the area rQRT = 0.6–1, where a rapid drop is
noticeable. The measured drop in ρ is more significant for a higher population (53%) than
for a smaller population (8%).
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Figure 10. Impact of the (a) proactive and (b) reactive quarantine policies given an increasing
quarantine ratio rQRT on the agent populations A. The red vertical bars delimit a visible phase
transition area between rQRT = 0.6–1 (react-Q), respectively rQRT = 0.4–0.8 (proact-Q). The percentages
in each panel represent relative decreases in rQRT between the vertical bars. The decrease in peak
infection ratio ρ is significantly more abrupt, as rQRT increases, for the proact-Q policy (79–92%).

In Figure 10b, the proact-Q underlines the importance of early quarantine, as the peak
infection ratio drops sooner and more abruptly than for react-Q. We measure drops in ρ
of 79–92% for all populations starting with rQRT = 0.4. Nevertheless, while proact-Q is
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a more effective epidemic control policy, the real-world effort and costs are much higher
than for adopting react-Q. For a full analysis aimed at the impact of patient quarantine and
recurrence, please consult our previous study [22].

Please note that we do not plot the 95% CI for Figures 6–10 (or similar statistic) in
the results section because it would overload the already detailed plots, and make near
lines hard to discern. Nevertheless, all results in Figures 6–10 present the averages over
100 repeated simulations.

5. Discussion and Conclusions

Agent-based modeling is a powerful tool in computational epidemics for monitoring
and managing infectious outbreaks. Unlike similar approaches, such as compartmental
models or complex network-based approaches, ABMs can take into account the stochas-
tic nature of human behavior and mobility, producing highly realistic computer-based
simulations in dense urban environments [12–14,43].

Classic analytical modeling approaches employed in epidemics [5,44,45] include a
time-dependent transmission rate to model changes in the infection rate caused by viral
strain evolution, seasonality, social interactions, or governmental policies. By contrast to
the differential equations of the compartmental models applied on the recent COVID-19
pandemic [5,44,45], ABMs study models of global mobility mechanisms based on emergent
transmission dynamics. In this study, instead of a variable transmission rate, we use
simulation on the ABM, resulting in a complex emergent population mixing instead of the
compartmental models based on random uniform contact networks that are typically used
to study epidemics spreading. Thus, modeling and quantifying human mobility is critical
for studying the large-scale spatial transmission of infectious diseases [11,13,14].

In this study, we introduce a novel urban spatial agent-based model (ABM) based
on the idea that urban points-of-interest (POIs) are hotspots for agent interaction (e.g.,
transmission of infection, opinion, and innovation) [19–21]. Therefore, we implement an
agent’s travel routine as an independent random path from its home location through a
number of Np POIs and back home. To this end, we only verify interaction within POIs and
are able to reduce computational complexity considerably, from O(A2) to approximately
O(AP + 0.0036A2) ≈ O(AP).

In addition, we incorporate the SICARQD epidemic model [22] to reproduce, analyze,
and explain the parameters that affect the dynamics of an infectious outbreak in an urban
setting. To showcase the efficiency of our ABM, we employ numerical simulation to
measure the influence of urban-demographic parameters on the epidemic spreading based
on complex and realistic agent mobility patterns.

We find that the agent population A (also interpreted as the population density given
the fixed area S = 1000× 1000[m]) plays a crucial role in the development of an outbreak.
Both the peak infection ratio ρ and the total cases ratio τ increase linearly with A. Moreover,
the number of total cases increases more rapidly up to A = 500–1000 then converges linearly
towards τ → 1. If we relate to the real-world context, most metropolises have population
densities between 4500 and 8000 inhabitants per km2 [46]. By correlation, the density in
our ABM is A/S2 = A/(1000[m]x× 1000[m]) = A[/km2]. Therefore, for large and dense
cities, we notice that the impact of the number of urban POIs P is less important than the
population A (see Figure 6).

A city having a very small number of urban POIs (P ≤ 25) can considerably increase
the infection ratio (by 5–65%) as supported by the results in Figure 7. Nevertheless, most
real-world mid- to large-size cities will have hundreds of POIs [19,20] so that the population
concentration is more evenly distributed.

The maximum travel distance Td determines a delayed linear increase of the infec-
tion ratio, as shown in Figure 8. For very reduced mobility (Td < 0.2 of the available
city area), the outbreak is mostly inhibited; as the permitted travel distance increases to
Td = 0.2–0.4, we notice a rapid increase in the outbreak, proportional to the agent popu-
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lation A. Moreover, the total cases ratio τ presents a phase transition increase between
Td = 0.2–0.6, earlier for the larger populations and later for the smaller ones.

The number of agent POIs Np are used to describe the number and diversity of the
agent’s path. In this sense, we find that if agents are restricted to only one POI (except their
home location), the outbreak is significantly reduced, compared to when agents may travel
to Np ≥ 5 POIs (see Figure 9). We believe that more agent POIs translate to proportionally
higher population mixing, which, in turn, increases the infection ratio. The increases in the
peak infection ratio ρ, when increasing Np from 1 to 5, are between 149 and 165%; for the
total cases ratio τ, the increases are ≈100% (i.e., double the number of infections).

Our last analyzed scenario is supported by the mechanics of the SICARQD epidemic
model, namely, a comparison between the impact of a reactive (react-Q) and a proactive
(proact-Q) quarantine policy. In this sense, Figure 10 pinpoints that late quarantine react-
Q (i.e., based on quarantining patients after they become aware of their symptoms) is
much less effective than early quarantine proact-Q (i.e., based on quarantining patients
preemptively, using contact tracing, and before their symptoms may appear). For react-Q,
we measure a slow drop in the infection ratio, more pronounced between rQRT = 0.6–1, of
8–53%. Conversely, for proact-Q, we measure an abrupt drop in the infection ratio between
rQRT = 0.4–0.8 of 79–92%. Thus, proact-Q can be 1.7–10× more effective (depending on
population density) in reducing the peak infection ratio ρ. Nevertheless, the proact-Q
scenario, with a high quarantine ratio, is very difficult to implement in a real context due to
the high resource cost.

Overall, we summarize the findings validated through the usage of our urban spatial
ABM and the SICARQD epidemic model as follows.
Urban/policy factors which increase the peak infection ratio ρ and the total cases ratio τ:

• Agent population (A)/density (A/S)—linear increase.
• Maximum permitted travel distance for agents (Td)—linear increase but only above

Td > 0.2%S.
• Number of agent POIs (Np)—logarithmic increase for Np = 1–5, then negligible in-

crease after Np > 5.

Urban/policy factors which decrease the peak infection ratio ρ and the total cases ratio τ:

• Number of urban POIs (P)—logarithmic decrease for P = 1–100, then negligible
decrease after P ≥ 100.

• Ratio of quarantined infected individuals (rQRT)—logarithmic decrease, pronounced
after rQRT > 0.4.

Additionally, the nature of the virus will determine the immunization period, modeled
as the recurrence scenario in our SICARQD model. A quick-R scenario will increase the
infected ratio in time compared to a no-R or slow-R scenario. Also, a proactive quarantine
policy will significantly decrease the infection count compared to a reactive policy, for
quarantine ratios of rQRT > 0.4, by 1.7–10×, depending on the agent density.

Compared to other classic ABM approaches, such as [11,12], which do not employ
POIs, our study is able to point out two important aspects of infectious dynamics:

1. The epidemic recurrence phenomenon is induced by the emergent agent mobility
modeled in our system. More specifically, recovered agents lose their immunity in
time (based on either slow-R or quick-R) and may travel to infected POIs again, and
thus, infectious hotspots will be maintained for a very long duration, replicating the
residual waves seen after the COVID-19 pandemic started.

2. The proactive quarantine (proact-Q) in correlation to a higher quarantine ratio (rQRT)
triggers a phase transition, reducing the total infected population by over 90%
(Figure 10b) compared to the reactive quarantine (Figure 10a). Therefore, a proactive
quarantine associated with a strict quarantine ratio can almost completely inhibit
infectious spread.

Several limitations of this study are enumerated below. First, the agent model pre-
sented is confined to a closed area S = w · h in order to replicate an urban setting. However,
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we plan to extend the ABM so that it can represent multiple independent cities, by running
parallel simulations, or interdependent cities, by allowing a fraction of agents to travel be-
tween cities [47]. Second, all POIs are considered equal and are placed equidistant. The
present agent redirection algorithm can use any mapping of POIs, so one can initialize
POIs using any spatial distribution. In terms of equal POIs, our model can be augmented
by defining specific classes of POIs, with their own maximum occupancy and time spent
per agent. Third, we consider all agents identical: they have the same speed, the same
number of POIs (Np), and they do not belong to demographic groups (e.g., age and gender).
However, our study maintains a generic focus on POIs rather than specific demographic
aspects. Nevertheless, the ABM can be further improved to incorporate different individual
traits, with different types of POI requirements.

An underestimated element in the adoption of quarantine policies during epidemics
is the psychological human factor. We note as possible development directions in our
methodology the consideration of the harmful mental effects caused by quarantine proto-
cols [48], as well as the natural intervention fatigue of maintaining quarantine strictness
over a longer period [49].

In addition to the scientific potential of our proposed general purpose, customiz-
able, and computationally efficient ABM framework, our observations find immediate
applicability in the ongoing COVID-19 pandemic, as well as foreseeable epidemics with
similar airborne transmission. We validate our ABM in the context of epidemic outbreaks,
but this model can be further adopted in social physics, or political and environmental
sciences. For instance, our ABM can be used to analyze opinion injection strategies and
competing influence dynamics [50–52], additional vaccination/immunization strategies for
viral outbreaks [53,54], or political polarization and fake-news dynamics [55,56].

We believe that this study has great potential to have a consistent impact in the fields
of computational epidemics, mathematical modeling, computer science, and public health
by addressing major social and scientific challenges [2,3,57,58].

Future research directions may include (i) extending the ABM to a multi-urban model
with interdependent cities, (ii) defining POI classes with unique characteristics and require-
ments, (iii) introducing multiple agent categories with unique mobility patterns and needs,
and (iv) updating SICARQD to also model vaccination and tuning the epidemic parameters
to custom regions and viruses of scientific interest.
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