
Citation: Zhou, Z.; Wu, H.; Li, Y.;

Kang, C.; Wu, Y. Three-Layer Artificial

Neural Network for Pricing

Multi-Asset European Option.

Mathematics 2024, 12, 2770. https://

doi.org/10.3390/math12172770

Academic Editor: Andrea Scozzari

Received: 8 August 2024

Revised: 31 August 2024

Accepted: 5 September 2024

Published: 7 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Three-Layer Artificial Neural Network for Pricing Multi-Asset
European Option
Zhiqiang Zhou 1, Hongying Wu 2,*, Yuezhang Li 1, Caijuan Kang 1 and You Wu 1

1 School of Economics and Management, Xiangnan University, Chenzhou 423000, China;
zq.zhou@xnu.edu.cn (Z.Z.); nicolelyz@sina.com (Y.L.); kcj622@xnu.edu.cn (C.K.);
wuyou1996@xnu.edu.cn (Y.W.)

2 School of Mathematics and Information Science, Xiangnan University, Chenzhou 423000, China
* Correspondence: wuhongying@xnu.edu.cn

Abstract: This paper studies an artificial neural network (ANN) for multi-asset European options.
Firstly, a simple three-layer ANN-3 is established with undetermined weights and bias. Secondly, the
time–space discrete PDE of the multi-asset option is given and the corresponding discrete data are
fed into the ANN-3. Then, using least squares error as the objective function, the weights and bias of
ANN-3 are trained well. Numerical examples are carried out to confirm the stability, accuracy and
efficiency. Experiments show the ANN’s relative error is about 0.8%. This method can be extended
into multi-layer ANN-q(q > 3) and extended into American options.
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1. Introduction

In the last 30 years, there have been several methods for option pricing. For example,
the radial basis function (RBF) method for options with a few assets [1–11]; analytical and
semi-analytical methods for simple options [12,13]; finite difference method (FDM) for lower-
dimensional option PDEs [14–18]; Monte Carlo simulation for complex options [19–21]; and
Laplace transform or Mellin transform scheme [16,22–25] for classical options. Wu et al.
discuss option pricing by the willow tree (WT) method for generalized hyperbolic Lev́y
processes [26]. However, for RBF and FD methods, only lower-dimensional (d ≤ 2) problems
can be solved easily, and for the analytical or semi-analytical method, only some simple or
classical options can be determined. In addition, although the Monte Carlo (MC) algorithm
and the WT method are very simple and they have a wide application background, the MC
method has low computational efficiency (consumes a lot of CPU time) and the WT method
is of low convergence order, which limits their application.

In recent years, some of the literature starts to consider artificial neural networks
(ANN) to solve option problems. Anderson and Ulrych discuss an accelerated American
option pricing with deep neural networks [27]. Caverhill et al. give a neural network
approach for option pricing and hedging [28]. Gan and Liu discuss option pricing based
on the residual neural network [29]. Glau et al. discuss neural network expression rates
and applications of the deep parametric PDE method in counter-party credit risk [30]. He
and Guan study the parameter estimation method of the option pricing model based on
the convolutional neural network in high-frequency financial trading [31]. Kapllani and
Teng consider deep learning algorithms for solving high-dimensional nonlinear backward
stochastic differential equations [32]. Lee and Son propose predicting arbitrage-free Amer-
ican option prices using an artificial neural network with pseudo inputs [33]. Mary and
Salchenberger give a neural network model for estimating option prices [34]. Shvimer
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et al. discuss pricing options with a new hybrid neural network model [35]. Teng et al.
discuss the combination of the neural network and classical volatility prediction model [36].
Tung et al. use a self-organizing neural-fuzzy semantic network for financial volatility
trading [37]. Umeorah, Mashele and Agbaeze give barrier option pricing with neural
networks [38]. Wang proposes a neural network forecasting model for the stock index
option price [39]. However, none of the above literature is a neural network algorithm that
is based on partial differential equations.

Unlike applying ANN to simple fitting problems, option pricing does not have natural
samples, and we only know that the option satisfies a specific partial differential equation
(PDE). To apply the ANN to option pricing, a key procedure is to discretize PDE and therefore
make it a minimum optimization problem. To the best of our knowledge, this is the first time
that ANN has been considered for option pricing from a multi-dimensional PDE.

In this paper, we propose an ANN to price the multi-dimensional option. The PDEs
governed by the multi-asset option are discretized first, then a three-layer artificial neural
network (ANN-3) is established. By minimizing the target error, all parameters (weights
and bias) in ANN are trained well, then the neural network is applied. ANN-3 is easy
to implement and has a powerful ability for multi-asset option pricing. Additionally, we
propose some skills to accelerate the ANN training process.

The rest of this paper is formed as follows. In Section 2, the PDE governed by multi-
asset option valuing is stated. In Section 3, a computational frame of the artificial neural
network is proposed. We find out the computational formulas of derivatives for ANN
weights and bias, and then we give the update formulas for the weights and bias. Section 4
gives some numerical examples to confirm the efficiency, accuracy and convergence of
ANN. In Section 5, we give some conclusions and the future work. In Appendix A, some
appendices are given, including algorithms and computational results.

2. PDE of Multi-Asset Option Values

Let S = (S1(t), S2(t), . . . , Sd(t))′, with (·)′ denoting the transposition of (·), be d-asset
prices at time t. Let xI(t) = log SI(t), I = 1, 2, . . . , d be modeled by Brownian motion
together with a drift term under no-arbitrage assumption, i.e., xI(t) are controlled by
stochastic differential equations (SDEs),

dxI(t) = (r − qI)dt + σIdW(I)
t , I = 1, 2, . . . , d. (1)

In SDEs (1), r represents the risk-free interest, qI represents the dividend yield, and σI is
the volatility of asset I. W(I)

t , I = 1, 2, . . . , d, are d standard Brownian motions, and it is
assumed that E

(
dW(I)

t

)
= 0, Var

(
dW(I)

t

)
= dt, I = 1, 2, . . . , d,

Cov
(

dW(I)
t , dW(J)

t

)
= ρI Jdt, I, J = 1, 2, . . . , d, I ̸= J,

(2)

where ρI J is the coefficients of association between dW(I)
t and dW(J)

t .
Let u(τ, x) be the option with τ = T− t and d log underlying x = (x1(t), x2(t), . . . , xd(t))′ ∈

Ω = (− ∞,+∞)d. Using the risk-free hedging theorem (see [40]), one can obtain the multi-
dimensional PDE, named Black–Scholes equation, with the d-asset option value as

∂u
∂τ

(τ, x) = Au(τ, x), τ ∈ (0, T), x ∈ Ω, (3)

where the linear differential operator A is defined as

A :=
d

∑
I,J=1

aI J
∂2

∂xI∂xJ
+

d

∑
I=1

bI
∂

∂xI
− r, (4)
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with coefficients aI J := 1
2 ρI JσIσJ and bI := r − qI − 1

2 aI I .
For the European option, u(τ, x) has initial values (also known as terminal conditions,

or payoff function, for time τ = 0)

u(0, x) = Π(x). (5)

System (3)–(5) can be written as{
∂u
∂τ (τ, x)−Au(τ, x) = 0, τ ∈ (0, T], x ∈ Ω,
u(0, x) = Π(x), x ∈ Ω.

(6)

For put options and geometric mean payoff function Π(x), the initial values of u are
taken as

u(0, x) = Π(x) = max
(

0, K − e∑d
I=1 αI xI

)
, 0 < αI < 1,

d

∑
I=1

αI = 1, ∀x ∈ Ω, (7)

with strike price K. Ina general case, system (6) has no analytical solution, and a certain
numerical method is needed to find the option value u(τ, x) in domain (0, T]× Ω.

With geometric mean payoff function Π(x) defined by (7), the put option governed by
system (6) has the analytical solution (see [40]),

u(τ, x) = Ke−rτΦ(−d̂2)− e∑d
I=1 αI xI Φ(−d̂1), (8)

where Φ(·) is the cumulative normal distribution function and

d̂1 =
1

σ̂
√

τ

[
d

∑
I=1

αI xI − ln K + (r − q̂ + σ̂2/2)τ

]
, d̂2 = d̂1 − σ̂

√
τ, (9)

with

σ̂2 =
d

∑
I,J=1

aI JαIαJ , q̂ =
d

∑
I=1

αI(qI + aI I/2)− σ̂2/2. (10)

However, for the put option with arithmetic mean payoff function,

Π(x) = max

(
0, K −

d

∑
I=1

αIexI

)
, 0 < αI < 1,

d

∑
I

αI = 1, ∀x ∈ Ω, (11)

the option u(τ, x) has no analytical solution. So, the numerical scheme is not a feasible
method to price the multi-asset option governed by (6). The application of artificial neural
networks to option pricing is discussed in the next section.

3. Computational Frame of ANN

An artificial neural network (ANN) is defined as in Figure 1. In this figure, the ANN-3
includes an input layer, one hidden layer and an output layer. For example, the neural units
in the three layers are n1 = 3, n2 = 4, n3 = 1, and we see in Section 4 that this structure is
powerful for some examples.

The evolution of the 3-layer artificial neural network is represented as matrix expressions,{
O(p) = ω(p−1)U(p−1) + θ(p), p = 2, 3,
U(p) = fp(O(p)), p = 2, 3,

(12)

where O(p) is the input data in the layer p, U(p) is the output in the layer p, and fp is the
transform function(or activation function). The algebraic expression is given by
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
O(p)

j =

np−1

∑
i=1

ω
(p−1)
ji U(p−1)

i + θ
(p)
j , p = 2, 3; j = 1, 2, . . . , np,

U(p)
j = fp(O

(p)
j ), p = 2, 3; j = 1, 2 . . . , np,

(13)

where U(1) is a (d + 1) input data column vector (x1, x2, . . . , xd, τ)′m and fp(·)(p = 2, 3)
are the transform functions, i.e.,

f2(x) =
1

1 + e−x ( sigmoid function ), f3(x) = x( linear function ). (14)

We see the derivatives of transform functions fp(·) are

∂ f2(x)
∂x

= f2(x)(1 − f2(x)),
∂ f3(x)

∂x
= 1. (15)

The weights and bias in ANN are defined as

ω(2) =
[

ω
(2)
11 ω

(2)
12 . . . ω

(2)
1n2

]
, ω(1) =


ω
(1)
11 ω

(1)
12 . . . ω

(1)
1n1

ω
(1)
21 ω

(1)
22 . . . ω

(1)
2n1

...
...

...
...

ω
(1)
n21 ω

(1)
n22 . . . ω

(1)
n2n1

, θ(p) =


θ
(p)
1

θ
(p)
2
...

θ
(p)
np

 (16)

for p = 2, 3. We call (12) or (13) an ANN-3 artificial neural network. Using the ANN-3
network has the following merits:

(1) It is relatively simple to compute the partial derivatives, ∆ω(i) and ∆θ(j), of ω(i) for
i = 1, 2 and θ(j) for j = 2, 3 in ANN-3. Then we can easily update the parameters
ω(i) = ω(i) − η∆ω(i) and θ(j) = θ(j) − η∆θ(j) with learning rate η.

(2) For deep learning network ANN-q, q > 3, it becomes very complicated to compute
the partial derivatives of ω(i) and θ(j). So, we use ANN-q for q = 3.

(3) For option pricing, we do not need deep learning networks. ANN-q(q > 3) and the
shallow artificial neural networks (ANN-3) are enough to solve the problem.

The output of the network is denoted by

U(3) := U(3)
1 (X), U(2) =

{
U(2)

1 (X), U(2)
2 (X), . . . , U(2)

n2 (X)
}

, U(1) = X, (17)

with input data X = [x1, x2, . . . , xd, τ]′. We denote by U(3)
1 (X) := net

(
ω(1), ω(2), θ(2), θ(3), X

)
the network output with input data X = (x1, x2, · · · , xd, τ)′ under parameters ω(1), ω(2), θ(2)

and θ(3). Furthermore, we denote by U(p,k) = U(p)(X(k)), p = 1, 2, 3 with N space and time
input data

X(k) =
[

x(k)1 , x(k)2 , . . . , x(k)d , τ(k)
]T

, k = 1, 2, . . . , N. (18)

The purpose of our ANN structure is to determine the optimal weights ω(1), ω(2) and
bias θ(2), θ(3). For this purpose, we use an iteration algorithm, i.e., we modify the values of
the parameters (

ω(1), ω(2), θ(2), θ(3)
)

until some objective function MSE is less than the pre-specified error ε.
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ω
(1)

11
ω

(1)
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ω
(1)

31

ω
(1)
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ω
(1)

12ω
(1)

22
ω

(1)

32

ω
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ω
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ω
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U
(1)
1

U
(1)
2

U
(1)
3

O
(2)
1

O
(2)
2

O
(2)
3

O
(2)
4

U
(2)
1

U
(2)
2

U
(2)
3

U
(2)
4

O
(3)
1

U
(3)
1

input layer
n1 = 3

hidden layer
n2 = 4
O

(2)
k =

∑n1

j=1 ω
(1)
kj U

(1)
j

U
(2)
k = f1(O

(2)
k )

k = 1, 2, . . . , n2.

output layer
n3 = 1
O

(3)
k =

∑n2

j=1 ω
(2)
kj U

(2)
j

U
(3)
k = f2(O

(3)
k )

k = 1, 2, . . . , n3.

Figure 1. Graphical depiction of the artificial neural network ANN-3 with an input layer, one hidden
layer and a output layer.

For the convenience, we list some of the symbols in this paper in Table 1.

Table 1. Some symbols for ANN.

Name Meaning

N′ The number of data that are the initial conditions
N The number of input data for the training of ANN

N − N′ The input number of data for discrete PDE
net(ω(1), ω(2), θ(2), θ(3)) ANN with weights (ω(1), ω(2)) and bias (θ(2), θ(3))

U3(X) = net
(

ω(1), ω(2), θ(2), θ(3), X
)

ANN output with input data X = (x1, x2, . . . , xd, τ)′

η Learning rate of ANN

O(p)
k Input data at the p layer (p = 2, q)

U(p)
k Output data at the p layer (p = 1, 2, q)

ERR(payo f f ) Error for initial values
ERR(PDE) Error for discrete PDE

∆θ(payo f f ,·), ∆θ(PDE,·) Partial derivatives for θ

∆ω(payo f f ,·), ∆ω(PDE,·) Partial derivatives for ω

D Partial derivatives for x with D = Dτ , D = DI and
D = DI J
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In the next paragraphs, we give the definition of objective function for the network,
the mean square error (MSE),

MSE = MSE(payo f f ) + MSE(PDE), (19)

with MSE(payo f f ) being the error at points X(k) =
(

x(k)1 , . . . , x(k)d , τ1

)
with k = 1, 2, . . . , N′

and τ1 = 0, and MSE(PDE) being the error of the PDE (6) with X(k) =
(

x(k)1 , . . . , x(k)d , τ(k)
)

and τ(k) being one of the values

τ(k) = ∆τ, . . . , τj, . . . , τM = T. (20)

Firstly, we consider the MSE(payo f f ) at τ1 = 0.
For the initial conditions, we have U(3)

1 (X(k)) = Π(x(k)) := y(k), k = 1, 2, . . . , N′. Then
the MSE(payo f f ) of ANN at τ1 = 0 is defined by

MSE(payo f f ) =
1

2N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)2

. (21)

The partial derivatives of MSE(payo f f ) with respect to ω(2) =
[
ω
(2)
11 , . . . , ω

(12)
1ℓ , . . . , ω

(2)
1n2

]
are

∂MSE(payo f f )

∂ω
(2)
1ℓ

=
∂MSE(payo f f )

∂U(3,k)
1

∂U(3,k)
1

∂O(3,k)
1

∂O(3,k)
1

∂ω
(2)
1ℓ

=
1

N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)

U(2,k)
ℓ , (22)

for ℓ = 1, 2, . . . , n2, and the partial derivative with respect to θ
(3)
1 is

∂MSE(payo f f )

∂θ
(3)
1

=
∂MSE(payo f f )

∂U(3,k)
1

∂U(3,k)
1

∂O(3,k)
1

∂O(3,k)
1

∂θ
(3)
1

=
1

N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)

. (23)

The partial derivatives of MSE(payo f f ) with respect to ω
(1)
jℓ are

∂MSE(payo f f )

∂ω
(1)
jℓ

=
∂MSE(payo f f )

∂U(3,k)
1

∂U(3,k)
1

∂O(3,k)
1

∂O(3,k)
1

∂U(2,k)
j

∂U(2,k)
j

∂O(2,k)
j

∂O(2,k)
j

∂ω
(1)
jℓ

=
1

N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)

ω
(2)
1j U(2,k)

j

(
1 − U(2,k)

j

)
U(1,k)
ℓ , (24)

for j = 1, 2, . . . , n2 and ℓ = 1, 2, . . . , n1. The partial derivatives of MSE(payo f f ) with respect
to θ

(2)
j are

∂MSE(payo f f )

∂θ
(2)
j

=
∂MSE(payo f f )

∂U(3,k)
1

∂U(3,k)
1

∂O(3,k)
1

∂O(3,k)
1

∂U(2,k)
j

∂U(2,k)
j

∂O(2,k)
j

∂O(2,k)
j

∂θ
(2)
j

=
1

N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)

ω
(2)
1j U(2,k)

j

(
1 − U(2,k)

j

)
, (25)

for j = 1, 2, . . . , n2. Let
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

∆ω(payo f f ,2) =

∂MSE(payo f f )

∂ω
(2)
1j


1×n2

,

∆ω(payo f f ,1) =

∂MSE(payo f f )

∂ω
(1)
jℓ


n2×n1

∆θ(payo f f ,3) =
1

N′

N

∑
k=1

(
U(3,k) − y(k)

)
,

∆θ(payo f f ,2) =

∂MSE(payo f f )

∂θ
(2)
j


n2×1

,

(26)

with the definition of partial derivatives (22)–(25).
Secondly, we discuss the MSE(PDE) at discrete points X(k), k = N′ + 1, 2, . . . , N.
The discrete error MSE(PDE) of PDE at X(k) for k = N′ + 1, . . . , N is defined by

MSE(PDE) :=
1

2(N − N′)

N

∑
k=N′+1

ERR2
k , (27)

where

ERRk :=
[

∂U(τ, x)
∂τ

−AU(τ, x)
]

X=X(k)
(28)

≈ DτU(3,k) −
d

∑
I=1

d

∑
J=1

aI J DI JU(3,k) −
d

∑
I=1

bI DIU(3,k) + rU(3,k),

for k = N′ + 1, . . . , N. Here, differential operators Dτ := ∂
∂τ , DI := ∂

∂xI
and DI J := ∂2

∂xI ∂xJ
.

The partial derivatives are defined as

DI JU
(3,k)
1 :=

∂2

∂xI∂xJ
U(3,k)

1 =
∂

∂xJ

(
∂

∂xI
U(3,k)

1

)
,

DIU
(3,k)
1 :=

∂

∂xI
U(3,k)

1 =
∂U(3,k)

1

∂O(3,k)
1

n2

∑
j=1

∂O(3,k)
1

∂U(2,k)
j

∂U(2,k)
j

∂O(2,k)
j

∂O(2,k)
j

∂U(1,k)
I

,

DτU(3,k)
1 :=

∂

∂τ
U(3,k)

1 =
∂U(3,k)

1

∂O(3,k)
1

n2

∑
j=1

∂O(3,k)
1

∂U(2,k)
j

∂U(2,k)
j

∂O(2,k)
j

∂O(2,k)
j

∂U(1,k)
d+1

,

(29)

for k = N′ + 1, 2, · · · , N, which induces

DI JU
(3,k)
1 =

n2

∑
j=1

ω
(2)
1j ω

(1)
jI ω

(1)
jJ U(2,k)

j

(
1 − U(2,k)

j

)(
1 − 2U(2,k)

j

)
,

DIU
(3,k)
1 =

n2

∑
j=1

ω
(2)
1j ω

(1)
jI U(2,k)

j

(
1 − U(2,k)

j

)
,

DτU(3,k)
1 =

n2

∑
j=1

ω
(2)
1j ω

(1)
j,d+1U(2,k)

j

(
1 − U(2,k)

j

)
,

(30)

for I, J = 1, 2, . . . , d.
Define the partial derivatives

∂MSE(PDE)

∂ω
(m)
jℓ

=
1

2(N − N′)

N

∑
k=N′+1

∂ERR2
k

∂ω
(m)
jℓ

, (31)
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for m = 2, 1, k = N′ + 1, . . . , N, j = 1, 2, . . . , nm+1 and ℓ = 1, 2, . . . , nm. Define the
partial derivatives

∂MSE(PDE)

∂θ
(m)
j

=
1

2(N − N′)

N

∑
k=N′+1

∂ERR2
k

∂θ
(m)
j

, (32)

for m = 3, 2, j = 1, 2, . . . , nm. The partial derivatives 1
2

∂ERR2
k

∂ω
(m)
jℓ

are found as

1
2

∂ERR2
k

∂ω
(m)
jℓ

= ERRk
∂ERRk

∂ω
(m)
jℓ

(33)

= ERRk

{
∂
(

DτU(3,k)
1

)
∂ω

(m)
jℓ

−
d

∑
I=1

d

∑
J=1

aI J

∂
(

DI JU
(3,k)
1

)
∂ω

(m)
jℓ

−
d

∑
I=1

bI
∂(DIU

(3,k)
1 )

∂ω
(m)
jℓ

+ r
∂U(3,k)

1

∂ω
(m)
jℓ

}
,

for m = 1, 2, for j = 1, 2, . . . , nm+1 and ℓ = 1, 2, . . . , nm. The partial derivatives 1
2

∂ERR2
k

∂θ
(m)
j

are

found as

1
2

∂ERR2
k

∂θ
(m)
j

= ERRk
∂ERRk

∂θ
(m)
j

(34)

= ERRk

{
∂DτU(3,k)

1

∂θ
(m)
j

−
d

∑
I=1

d

∑
J=1

aI J

∂
(

DI JU
(3,k)
1

)
∂θ

(m)
j

−
d

∑
I=1

bI
∂(DIU

(3,k)
1 )

∂θ
(m)
j

+ r
∂U(3,k)

1

∂θ
(m)
j

}
,

for j = 1, 2, . . . , nm and m = 2, 3.

In (33), the partial derivatives ∂(DU1)
(3,k)

∂ω
(m)
jℓ

with D = Dτ, D = DI J or D = DI are defined as



∂(DU1)
(3,k)

∂ω
(2)
1j

= (DU1)
(2,k)
j ,

∂(DU1)
(3,k)

∂ω
(1)
jℓ

= ω
(2)
1j (DUj)

(2,k)
(

1 − (DUj)
(2,k)

)
(DUℓ)

(1,k),

(35)

for j = 1, 2, · · · , n2 and ℓ = 1, 2, · · · , n1.

In (34), the partial derivatives ∂(DU1)
(3,k)

∂θ
(m)
j

with D = Dτ, D = DI J or D = DI are defined as



∂(DU1)
(3,k)

∂θ
(3)
1

= 1,

∂(DU1)
(3,k)

∂θ
(2)
j

= ω
(2)
1j (DUj)

(2,k)
(

1 − (DUj)
(2,k)

)
,

(36)

for j = 1, 2, · · · , n2.
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Define the increments of ω(PDE,i) and θ(PDE,i) as follows:

∆ω(PDE,2) =
1

2(N − N′)

N

∑
k=N′+1

∂ERR(2)
k

∂ω
(2)
1j


1×n2

,

∆ω(PDE,1) =
1

2(N − N′)

N

∑
k=N′+1

 ∂ERR(2)
k

∂ω
(1)
ij


n2×n1

,

∆θ(PDE,3) = 1,

∆θ(PDE,2) =
1

2(N − N′)

N

∑
k=N′+1

∂ERR(2)
k

∂θ
(2)
j


n2×1

,

(37)

with definitions (31) and (32).
Then, we update the network’s weights ω(2), ω(1), θ(3) and θ(2) as follows:

ω(2) = ω(2) − η
(

∆ω(payo f f ,2) + ∆ω(PDE,2)
)

,

ω(1) = ω(1) − η
(

∆ω(payo f f ,1) + ∆ω(PDE,1)
)

,

θ(3) = θ(3) − η(∆θ(payo f f ,3) + ∆θ(PDE,3)),

θ(2) = θ(2) − η(∆θ(payo f f ,2) + ∆θ(PDE,2)),

(38)

where η = constant is the learning rate and ∆ω(∗,j) and ∆θ(∗,j) are defined by (26) and (37).
Finally, define the total error as in (19) and

MSE(payo f f ) =
1

2N′

N′

∑
k=1

(
U(3,k)

1 − y(k)
)2

, (from the initial constrains),

MSE(PDE) =
1

2(N − N′)

N

∑
k=N′+1

(ERRk)
2, (from the discrete PDE),

(39)

with ERRk being defined by (28). To minimize the objective function MSE, we have{
ω(i), θ(j)

}
i=1,2;j=2,3

= argmin MSE = argmin
[

MSE(payo f f ) + MSE(PDE)
]
. (40)

and we obtain the trained network net
(

ω(1), ω(2), θ(2), θ(3), {U(1,k)}N
k=1

)
with input sam-

ples {U(1,k)}N
k=1 and optimal parameters (ω(1), ω(2), θ(2), θ(3)) by iterating algorithm (38).

Finally, we can compute

U(3)
1 (X) = net

(
ω(1), ω(2), θ(2), θ(3), X

)
, (41)

for any input data X = (x1, x2, · · · , xd, τ)′.
The Algorithm A1 in Appendix A.1 gives the detailed procedure of the artificial neural

network for option pricing.

4. Numerical Examples
4.1. Parameter Setting and Selection of Learning Rate

In computational experiments, we set parameters for the multi-asset option as follows.
The dimension of PDE is set as d = 2, 3, 4. The coefficients are set as ρij = 0.8(i ̸= j) and
ρii = 1 for i, j = 1, 2, . . . , d. The dividend yields are set as qi = 0.002, and risk-free interest
is set as r = 0.05. The volatilities are set as σi = 0.1 for i = 1, 2, . . . , d. Strike prices are set as
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K = 8, 10. Asset ratios are set as αi = 1/d for i = 1, 2, . . . , d. The maturity date is taken as
T = 0.4.

The discrete stock prices are taken as xi = log(0.02) + i
n [log(70)− log(0.02)] with

i = 1, 2, . . . , n and n = 5. The time to maturity τ is discretized as τj = j∆τ with
j = 0, 1, . . . , M − 1, M = T/∆τ and ∆τ = 0.1. The input data for network train-
ing are expressed by X = [x(k)1 , x(k)2 , . . . , x(k)d , τ(k)]′ with each x(k)i being one of xi and
each τ(k) being one of τj. So, the total number of training data is nd M. The input

data X = [x(k)1 , x(k)2 , . . . , x(k)d , 0]′, k = 1, 2, . . . , N′ are taken as the initial data with net-
work output being the payoff functions Π(X) (see (7) and (11)). The reminder data
X = [x(k)1 , x(k)2 , . . . , x(k)d , τ(k)]′, k = N′ + 1, . . . , N with τ(k) ̸= 0 are taken as the input
data corresponding to the discrete PDE.

The network layers are taken as n1 = d + 1, n2 = 5 and n3 = 1, and the training
number is taken as L = 1000 in the ANN structure.

Throughout the training process, we use the following techniques:

(1) The learning rate η is set as η = 1 initially. When the objective function is not
decreasing, we set η = 0.95η. Throughout the training process, we use a factor of 0.95
to reduce the learning rate when the error does not decrease, repeatedly.

(2) To speed the training process, at each iteration, we only use partial training data to
update the weights ω(i) and the bias θ(i). Simply, at the ith iteration, we use the data
sequence labeled by mod(i, N′) : N′ : N as the input data of ANN.

(3) The simulation result is U3(X) = net
(

ω(1), ω(2), θ(1), θ(2), X
)

for any input data X

(see expression (41)) contained within the envelope of {X(k), k = 1, 2, · · · , N}, with
trained ω(i) and θ(j).

The Monte Carlo algorithm for arithmetic mean payoff function is described as in
Algorithm A2 in Appendix A.1. For geometric mean payoff function, we modify the

simulated option P(k) = max(0, K − ∑d
i=1 eαix

(k)
M−1,i ) at Step 3.

4.2. Numerical Results with Geometric Mean Payoff Function

With geometric mean payoff function (7), the multi-asset put option has analytical
solution (8). We use some numerical examples to illustrate the errors between ANN
numerical solutions and analytical options.

Tables A1–A3 list the ANN solutions (labeled with ‘ANN’) and the analytical solutions
(labeled with ‘Anal.’) with d = 2, 3, 4, time to expiry date τ = 0.4 and different strike
prices of K = 8, 10. In Tables A1–A3, the fourth column and the fifth column are the
absolute errors (labeled with ‘ERR’) and the relative errors (labeled with ‘RE’), respectively.
Figure A1 plots the analytical solutions and ANN solutions at different asset points with
parameters: T = 0.4, K = 8, 10 and d = 2.

From Tables A1–A3, we see the absolute errors are about 0.05 and the relative errors
are about 0.08% between ANN solutions and analytical solutions, which illustrate that our
ANN scheme is efficient and accurate. Moreover, the whole results of calculation are quite
stable, there is no unstable result.

The Figure A2 records the error evolution path with respect to training number L. We
see from this figure, the errors are decreasing quickly as the iteration number L increases.
As iteration number L increases, the Figure A3 records the learning rate path η. The learning
rate η decreases with the increase in L from 1 to 0.1.

Tables A1–A3 and Figures A1–A3 show that our ANN-3 is efficient, accurate and
computationally stable for option pricing for geometric mean payoff function.

Lastly, according to the results of numerical examples, we give a conjecture about the
errors between ANN solutions and analytical solutions of multi-asset options, which is the
following conjecture.
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Conjecture 1. Assume U(3)
1 (X) = net(ω(1), ω(2), θ(2), θ(3), X) is the network solution and

u(X) is the exact solution of multi-asset option. Then, the error between U(3)
1 (X) and u(X) can be

estimated by

|U(3)
1 (X)− u(X)| ≤ O

(
C
n2

)
, (42)

for any asset prices and any remainder time X = [x′, τ], where n2 is the number of neurons in
ANN hidden layer, and C is a certain constant.

Figure A4 plots the error vs. the number n2 of ANN, from which we see the ANN
error is about O( C

n2
) with C being a positive constant, which confirms Conjecture 1.

4.3. Numerical Results with Arithmetic Mean Payoff Function

In this subsection, we list some results of the put options with arithmetic mean payoff

function Π(x) = max

(
0,

d

∑
i=1

αiexi

)
. This type of option has no analytical solution. We

give the Monte Carlo simulation (the procedure can be seen in Algorithm A2) as the
compared results.

Tables A4–A6 list the compared results of ANN solutions (labeled with ‘ANN’) and
Monte Carlo simulation (labeled with ’MC’). From these tables, we see the absolute errors
(labeled with ‘ERR’) are less than 2 × 10−2 and the relative errors (labeled with ‘RE’) are
less than 0.8%, which illustrate that our ANN algorithm is effective and accurate. Figure A5
plots the compared solutions obtained by the ANN method and the Monte Carlo simulation
with d = 2, T = 0.4 and K = 8.

Figure A6 records the errors with respect to iteration number L. From this figure, we
see the errors are decreasing quickly as the iteration number L increases. Figure A7 records
the learning rate path as the iteration number L increases. From this figure, we see that as
the iteration number progresses, the learning rate decreases from 1 to 0.01.

Tables A4–A6 and Figures A5–A7 illustrate that our ANN-3 is efficient, accurate and
computationally stable for option pricing for arithmetic mean payoff function.

5. Conclusions

This paper gives an artificial neural network (ANN) with three layers to price the
European multi-asset options with the input data X from discrete PDE. By setting the
numbers (n1, n2, n3) of the ANN structure, the multi-asset options are simulated correctly.
The key technology is obtaining the discrete formula of PDE and then computing the partial
derivatives of the objective function with respect to weights ω

(k)
ij and bias θ

(k)
j . By setting

the learning parameter η, the ANN is trained well and the optimal parameters ω
(k)
ij and

bias θ
(k)
j are then obtained. Lastly, the option prices are simulated by inputting the asset

prices and remainder time into the trained ANN.
Numerical examples are carried for two options, geometric mean payoff functions

and arithmetic mean payoff functions. These examples show that the three-layer ANN
has powerful capability for multi-asset option pricing. The error and relative errors of
ANN options are very small. In these experiments, we use a variable learning rate η, which
ensures that our objective functions continue to decline. In addition, we use partial input
data to train the network, thereby reducing the amount of computation in ANN.

In future, we will establish a deep learning ANN with a multi-layer (i.e., p > 3)
structure for option pricing. The challenge is how to compute the partial derivatives with
respect to parameters ω

(k)
ij and θ

(k)
j . Moreover, we will consider the ANN to price multi-

asset complex options, such as American options, Asian options and barrier options, which
is a bit complicated.
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Appendix A

Appendix A.1. Algorithms

Algorithm A1 Artificial neural network for multi-asset option pricing

Step.1 Generate N samples of stock prices and time τ, i.e, X(k) =(
x(k)1 , x(k)2 , · · · , x(k)d , τ(k)

)′
for k = 1, 2, · · · , N. Assume the first N′ < N

data with time τ(k) = 0, k = 1, 2, · · · , N′.
Step.2 Generate randomly initial network weights ω(i) for i = 1, 2 and θ(j) for j = 2, 3.

Setting learning rate η, iteration number L and control error ε.
—— FOR i = 1 : L
Step.3 Input the first N′ samples into network, then compute error at τ = 0,

ERR(payo f f ) =
1

2N′

N′

∑
k=1

(U(3,k) − y(k))2.

Step.4 Input N′ + 1 ∼ N samples into network, then compute PDE error,

ERR(PDE) =
1

2(N − N′)

N

∑
k=N′+1

(ERRk)
2

with ERRk being defined by (28).
Step.5 According to (26) and (37), compute adjustment amount

∆ω(payo f f ,j),∆θ(payo f f ,j),∆ω(PDE,j) and ∆θ(PDE,j) .
Step.6 According to (38), update the network’s weights ω(i)(i = 1, 2) and θ(j)(j = 2, 3)

with learning rate η.
Step.7 If the error MSE (see expressions (19) and (39)) is less than the preset value ε, break.
—— END FOR

Step.8 Output the network net
(

ω(1), ω(2), θ(2), θ(3), {U(1,k)}N
k=1

)
with optimal ω(i) and

θ(j) and get the trained network.
Step.9 For any input data X = [x1, x2, · · · , xd, τ]′, the output network value is

U3(X) = net
(

ω(1), ω(2), θ(2), θ(3), X
)

.
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Algorithm A2 Monte Carlo algorithm for multi-asset option pricing with arithmetic mean
payoff function

Step.1 Generate N samples of stock prices x(k)j,i for asset i = 1, 2, . . . , d, price paths k =

1, 2, . . . , N and discrete time τj = j∆τ, j = 0, 1, . . . , M − 1 with ∆τ = T/(M − 1).

Step.2 Ensure the random numbers x(k)j,i has co-variance cov =
√

∆τρI JσIσJ at each time τj

and at each path k. We can use the Matlab command ‘mvnrnd(zeros(1,d), cov, M)’.

Step.3 Compute the payoff function P(k) = max

(
0, K −

d

∑
i=1

αie
x(k)M−1,i

)
for each path k =

1, 2, . . . , N at time T = τM−1.

Step.4 Compute the simulated option V(T, x; K, ρ, σ) =
1

NerT

N

∑
k=1

P(k).

Remark A1. For geometric mean payoff function, we modify the simulated option P(k) =

max(0, K − ∑d
i=1 eαix

(k)
M−1,i ) at Step 3.

Appendix A.2. Computational Results

Table A1. Computational results of ANN for geometric mean payoff function with d = 2. [x′, τ] is the
input data. ANN and Anal. are the ANN solution and analytical solution, respectively. ERR and RE
are the absolute error and relative error between ANN solution and analytical solution, respectively.
MSE is the error of training.

Input [x′, τ] ANN Anal. ERR RE

K = 8, MSE = 1.8 × 10−3

(−3.91,−3.91,+0.40) +7.8216 +7.7888 +0.0328 +0.0042
(−3.91,−1.87,+0.40) +7.7861 +7.9078 −0.1217 −0.0156
(−3.91,+0.17,+0.40) +7.6878 +7.7360 −0.0482 −0.0063
(−3.91,+2.21,+0.40) +7.4150 +7.4818 −0.0668 −0.0090
(−1.87,−3.91,+0.40) +7.7861 +7.7835 +0.0027 +0.0003
(+0.17,+0.17,+0.40) +6.6584 +6.6113 +0.0471 +0.0071
(+2.21,+0.17,+0.40) +4.5601 +4.5837 −0.0236 −0.0052

K = 10, MSE = 4.3 × 10−4

(−3.91,−1.87,+0.40) +9.7465 +9.7205 +0.0260 +0.0027
(−3.91,+0.17,+0.40) +9.6482 +9.6928 −0.0447 −0.0046
(−3.91,+2.21,+0.40) +9.3754 +9.3301 +0.0452 +0.0048
(−1.87,−3.91,+0.40) +9.7465 +9.7531 −0.0065 −0.0007
(−1.87,+0.17,+0.40) +9.3754 +9.4092 −0.0339 −0.0036
(−1.87,+2.21,+0.40) +8.6188 +8.6425 −0.0237 −0.0028
(+0.17,−3.91,+0.40) +9.6482 +9.6565 −0.0084 −0.0009
(+0.17,−1.87,+0.40) +9.3754 +9.3850 −0.0097 −0.0010
(+0.17,+0.17,+0.40) +8.6188 +8.6722 −0.0535 −0.0062
(+0.17,+2.21,+0.40) +6.5205 +6.5223 −0.0018 −0.0003
(+2.21,−3.91,+0.40) +9.3754 +9.3442 +0.0311 +0.0033
(+2.21,−1.87,+0.40) +8.6188 +8.6436 −0.0248 −0.0029
(+2.21,+0.17,+0.40) +6.5205 +6.5357 −0.0152 −0.0023
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Table A2. Computational results of ANN for geometric mean payoff function with d = 3.

Input [xT , τ] ANN Anal. ERR RE

K = 8, MSE = 8.1 × 10−4

(−3.91,−3.91,−3.91,+0.40) +7.8216 +7.8601 −0.0385 −0.0049
(−3.91,+0.17,+0.17,+0.40) +7.5379 +7.4850 +0.0529 +0.0070
(−3.91,+0.17,+2.21,+0.40) +7.2422 +7.2064 +0.0358 +0.0049
(−1.87,−3.91,−1.87,+0.40) +7.7637 +7.7131 +0.0505 +0.0065
(−1.87,−3.91,+0.17,+0.40) +7.6878 +7.6655 +0.0222 +0.0029
(−1.87,−1.87,−3.91,+0.40) +7.7637 +7.7690 −0.0053 −0.0007
(−1.87,−1.87,−1.87,+0.40) +7.6878 +7.7568 −0.0691 −0.0090
(−1.87,−1.87,+2.21,+0.40) +7.2422 +7.2045 +0.0377 +0.0052
(−1.87,+0.17,−1.87,+0.40) +7.5379 +7.5624 −0.0245 −0.0032
(−1.87,+0.17,+0.17,+0.40) +7.2422 +7.1991 +0.0431 +0.0060
(−1.87,+2.21,−1.87,+0.40) +7.2422 +7.2154 +0.0268 +0.0037
(+0.17,−3.91,−1.87,+0.40) +7.6878 +7.6450 +0.0427 +0.0056
(+0.17,−1.87,−3.91,+0.40) +7.6878 +7.6628 +0.0250 +0.0032
(+0.17,−1.87,+0.17,+0.40) +7.2422 +7.2991 −0.0569 −0.0079
(+0.17,−1.87,+2.21,+0.40) +6.6584 +6.6864 −0.0280 −0.0042
(+0.17,+2.21,−1.87,+0.40) +6.6584 +6.6696 −0.0112 −0.0017
(+2.21,−3.91,−1.87,+0.40) +7.5379 +7.5412 −0.0033 −0.0004
(+2.21,−3.91,+2.21,+0.40) +6.6584 +6.7058 −0.0474 −0.0071
(+2.21,−1.87,−3.91,+0.40) +7.5379 +7.6035 −0.0655 −0.0087
(+2.21,−1.87,+2.21,+0.40) +5.5060 +5.4715 +0.0345 +0.0063
(−3.91,−3.91,−1.87,+0.40) +9.7625 +9.8370 −0.0745 −0.0076
(−3.91,−3.91,+0.17,+0.40) +9.7241 +9.7084 +0.0157 +0.0016
(−3.91,−3.91,+2.21,+0.40) +9.6482 +9.5665 +0.0817 +0.0085
(−3.91,−1.87,−3.91,+0.40) +9.7625 +9.8223 −0.0598 −0.0061
(−3.91,−1.87,−1.87,+0.40) +9.7241 +9.6967 +0.0274 +0.0028
(−3.91,+0.17,−3.91,+0.40) +9.7241 +9.6769 +0.0471 +0.0048
(−3.91,+0.17,+2.21,+0.40) +9.2026 +9.1913 +0.0113 +0.0012
(−3.91,+2.21,+0.17,+0.40) +9.2026 +9.1926 +0.0099 +0.0011
(−1.87,−3.91,−3.91,+0.40) +9.7625 +9.7628 −0.0003 −0.0000
(−1.87,−3.91,+0.17,+0.40) +9.6482 +9.7135 −0.0654 −0.0068
(−1.87,−3.91,+2.21,+0.40) +9.4983 +9.5020 −0.0037 −0.0004
(−1.87,−1.87,−1.87,+0.40) +9.6482 +9.6656 −0.0175 −0.0018
(−1.87,−1.87,+0.17,+0.40) +9.4983 +9.5573 −0.0589 −0.0062
(−1.87,−1.87,+2.21,+0.40) +9.2026 +9.2010 +0.0016 +0.0002
(−1.87,+0.17,−1.87,+0.40) +9.4983 +9.4822 +0.0161 +0.0017
(−1.87,+0.17,+2.21,+0.40) +8.6188 +8.6905 −0.0717 −0.0083
(−1.87,+2.21,−1.87,+0.40) +9.2026 +9.2577 −0.0552 −0.0060
(−1.87,+2.21,+2.21,+0.40) +7.4664 +7.5078 −0.0415 −0.0056
(+0.17,−3.91,−3.91,+0.40) +9.7241 +9.7144 +0.0097 +0.0010
(+0.17,−3.91,−1.87,+0.40) +9.6482 +9.6062 +0.0419 +0.0043
(+0.17,−3.91,+0.17,+0.40) +9.4983 +9.5576 −0.0593 −0.0062
(+0.17,−1.87,−3.91,+0.40) +9.6482 +9.5883 +0.0599 +0.0062
(+0.17,−1.87,−1.87,+0.40) +9.4983 +9.4604 +0.0379 +0.0040
(+0.17,−1.87,+0.17,+0.40) +9.2026 +9.2699 −0.0674 −0.0073
(+0.17,−1.87,+2.21,+0.40) +8.6188 +8.5845 +0.0343 +0.0040
(+0.17,+0.17,−3.91,+0.40) +9.4983 +9.4349 +0.0635 +0.0067
(+0.17,+0.17,−1.87,+0.40) +9.2026 +9.2763 −0.0738 −0.0080
(+0.17,+2.21,−3.91,+0.40) +9.2026 +9.1713 +0.0313 +0.0034
(+2.21,−3.91,−3.91,+0.40) +9.6482 +9.7166 −0.0684 −0.0071
(+2.21,−3.91,−1.87,+0.40) +9.4983 +9.5741 −0.0758 −0.0080
(+2.21,−3.91,+2.21,+0.40) +8.6188 +8.5569 +0.0619 +0.0072
(+2.21,−1.87,−3.91,+0.40) +9.4983 +9.5719 −0.0735 −0.0077
(+2.21,+0.17,−3.91,+0.40) +9.2026 +9.2670 −0.0644 −0.0070
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Table A3. Computational results of ANN for geometric mean payoff function with d = 4. [x′, τ] are
the input data. ANN and Anal. are the ANN solution and analytical solution, respectively. ERR
and RE are the absolute error and relative error between ANN solution and analytical solution,
respectively. MSE is the error of training.

Input [xT , τ] ANN Anal. ERR RE

K = 8, MSE = 1.2 × 10−3

(−3.91,−3.91,+2.21,−1.87,+0.40) +7.6878 +7.6748 +0.0129 +0.0017
(−3.91,−3.91,+2.21,+0.17,+0.40) +7.5854 +7.6169 −0.0314 −0.0041
(−3.91,−3.91,+2.21,+2.21,+0.40) +7.4150 +7.4759 −0.0609 −0.0082
(−3.91,−1.87,−3.91,−3.91,+0.40) +7.8083 +7.7742 +0.0341 +0.0044
(−3.91,−1.87,−3.91,−1.87,+0.40) +7.7861 +7.7877 −0.0016 −0.0002
(−3.91,−1.87,−1.87,−1.87,+0.40) +7.7492 +7.7526 −0.0034 −0.0004
(−3.91,−1.87,−1.87,+0.17,+0.40) +7.6878 +7.7240 −0.0363 −0.0047
(−3.91,−1.87,−1.87,+2.21,+0.40) +7.5854 +7.5666 +0.0188 +0.0025
(−3.91,−1.87,+0.17,−3.91,+0.40) +7.7492 +7.7100 +0.0393 +0.0051
(−3.91,−1.87,+0.17,−1.87,+0.40) +7.6878 +7.6942 −0.0064 −0.0008
(−3.91,−1.87,+0.17,+0.17,+0.40) +7.5854 +7.6411 −0.0557 −0.0073
(−3.91,−1.87,+0.17,+2.21,+0.40) +7.4150 +7.4632 −0.0482 −0.0065
(−3.91,−1.87,+2.21,−3.91,+0.40) +7.6878 +7.6420 +0.0458 +0.0060
(−3.91,−1.87,+2.21,−1.87,+0.40) +7.5854 +7.5844 +0.0010 +0.0001
(−3.91,−1.87,+2.21,+0.17,+0.40) +7.4150 +7.4604 −0.0455 −0.0061
(−1.87,−1.87,−3.91,+0.17,+0.40) +7.6878 +7.6981 −0.0104 −0.0014
(−1.87,−1.87,−3.91,+2.21,+0.40) +7.5854 +7.4987 +0.0867 +0.0114
(−1.87,−1.87,−1.87,−3.91,+0.40) +7.7492 +7.7232 +0.0261 +0.0034
(−1.87,−1.87,−1.87,−1.87,+0.40) +7.6878 +7.7151 −0.0273 −0.0036
(−1.87,−1.87,−1.87,+0.17,+0.40) +7.5854 +7.6486 −0.0632 −0.0083
(−1.87,−1.87,−1.87,+2.21,+0.40) +7.4150 +7.4078 +0.0071 +0.0010
(−1.87,−1.87,+0.17,−3.91,+0.40) +7.6878 +7.6679 +0.0199 +0.0026
(−1.87,−1.87,+0.17,−1.87,+0.40) +7.5854 +7.6244 −0.0390 −0.0051
(−1.87,−1.87,+0.17,+0.17,+0.40) +7.4150 +7.5068 −0.0918 −0.0124
(−1.87,−1.87,+0.17,+2.21,+0.40) +7.1311 +7.1738 −0.0427 −0.0060
(−1.87,−1.87,+2.21,−3.91,+0.40) +7.5854 +7.5571 +0.0283 +0.0037
(−1.87,−1.87,+2.21,−1.87,+0.40) +7.4150 +7.4324 −0.0174 −0.0024
(−1.87,−1.87,+2.21,+0.17,+0.40) +7.1311 +7.1799 −0.0488 −0.0068
(−1.87,−1.87,+2.21,+2.21,+0.40) +6.6584 +6.6481 +0.0103 +0.0015
(−1.87,+0.17,−3.91,−3.91,+0.40) +7.7492 +7.7233 +0.0259 +0.0033
(−1.87,+0.17,−3.91,−1.87,+0.40) +7.6878 +7.6863 +0.0015 +0.0002
(+0.17,+0.17,−3.91,+0.17,+0.40) +7.4150 +7.3730 +0.0420 +0.0057
(+0.17,+0.17,−3.91,+2.21,+0.40) +7.1311 +7.1468 −0.0157 −0.0022
(+0.17,+0.17,−1.87,−3.91,+0.40) +7.5854 +7.6143 −0.0289 −0.0038
(+0.17,+0.17,−1.87,−1.87,+0.40) +7.4150 +7.5071 −0.0922 −0.0124
(+0.17,+0.17,−1.87,+0.17,+0.40) +7.1311 +7.1774 −0.0463 −0.0065
(+0.17,+0.17,−1.87,+2.21,+0.40) +6.6584 +6.6715 −0.0132 −0.0020
(+0.17,+0.17,+0.17,−3.91,+0.40) +7.4150 +7.4622 −0.0472 −0.0064
(+0.17,+0.17,+0.17,−1.87,+0.40) +7.1311 +7.2425 −0.1114 −0.0156
(+0.17,+0.17,+0.17,+0.17,+0.40) +6.6584 +6.6995 −0.0412 −0.0062
(+0.17,+0.17,+2.21,−3.91,+0.40) +7.1311 +7.1357 −0.0046 −0.0006
(+0.17,+2.21,+2.21,−1.87,+0.40) +5.8711 +5.7729 +0.0982 +0.0167
(+2.21,−3.91,+0.17,−1.87,+0.40) +7.4150 +7.4679 −0.0530 −0.0071
(+2.21,−3.91,+0.17,+0.17,+0.40) +7.1311 +7.2295 −0.0984 −0.0138
(+2.21,−3.91,+0.17,+2.21,+0.40) +6.6584 +6.6742 −0.0158 −0.0024
(+2.21,−3.91,+2.21,−3.91,+0.40) +7.4150 +7.3577 +0.0572 +0.0077
(+2.21,−3.91,+2.21,−1.87,+0.40) +7.1311 +7.0954 +0.0357 +0.0050
(+2.21,−3.91,+2.21,+0.17,+0.40) +6.6584 +6.6215 +0.0369 +0.0055
(+2.21,−3.91,+2.21,+2.21,+0.40) +5.8711 +5.7745 +0.0966 +0.0164
(+2.21,−1.87,−3.91,−3.91,+0.40) +7.6878 +7.6959 −0.0082 −0.0011
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Table A3. Cont.

Input [xT , τ] ANN Anal. ERR RE

K = 10, MSE = 2.2 × 10−3

(−3.91,−1.87,−1.87,+0.17,+0.40) +9.6482 +9.6399 +0.0082 +0.0009
(−3.91,−1.87,−1.87,+2.21,+0.40) +9.5458 +9.6132 −0.0674 −0.0071
(−3.91,−1.87,+0.17,−3.91,+0.40) +9.7096 +9.6602 +0.0494 +0.0051
(−3.91,+2.21,+0.17,+2.21,+0.40) +8.6188 +8.5567 +0.0620 +0.0072
(−3.91,+2.21,+2.21,−3.91,+0.40) +9.3754 +9.3482 +0.0271 +0.0029
(−3.91,+2.21,+2.21,−1.87,+0.40) +9.0915 +8.9321 +0.1594 +0.0175
(−3.91,+2.21,+2.21,+0.17,+0.40) +8.6188 +8.6074 +0.0114 +0.0013
(−1.87,+0.17,−3.91,−1.87,+0.40) +9.6482 +9.6558 −0.0076 −0.0008
(−1.87,+0.17,−3.91,+0.17,+0.40) +9.5458 +9.5892 −0.0434 −0.0045
(−1.87,+0.17,−3.91,+2.21,+0.40) +9.3754 +9.4482 −0.0729 −0.0078
(−1.87,+0.17,−1.87,−3.91,+0.40) +9.6482 +9.6601 −0.0119 −0.0012
(−1.87,+0.17,−1.87,−1.87,+0.40) +9.5458 +9.6054 −0.0596 −0.0062
(−1.87,+0.17,−1.87,+0.17,+0.40) +9.3754 +9.4869 −0.1116 −0.0119
(−1.87,+0.17,−1.87,+2.21,+0.40) +9.0915 +9.2449 −0.1534 −0.0169
(+0.17,−1.87,+0.17,−3.91,+0.40) +9.5458 +9.6244 −0.0786 −0.0082
(+0.17,−1.87,+0.17,+2.21,+0.40) +8.6188 +8.5543 +0.0645 +0.0075
(+0.17,+0.17,−3.91,−3.91,+0.40) +9.6482 +9.6409 +0.0073 +0.0008
(+0.17,+0.17,−3.91,−1.87,+0.40) +9.5458 +9.5239 +0.0219 +0.0023
(+0.17,+0.17,−3.91,+0.17,+0.40) +9.3754 +9.3272 +0.0481 +0.0051
(+0.17,+0.17,−3.91,+2.21,+0.40) +9.0915 +9.1138 −0.0224 −0.0025
(+2.21,−3.91,+2.21,−1.87,+0.40) +9.0915 +9.0316 +0.0599 +0.0066
(+2.21,−3.91,+2.21,+0.17,+0.40) +8.6188 +8.7206 −0.1018 −0.0118
(+2.21,−3.91,+2.21,+2.21,+0.40) +7.8315 +7.9283 −0.0968 −0.0124
(+2.21,−1.87,−3.91,−3.91,+0.40) +9.6482 +9.6509 −0.0028 −0.0003
(+2.21,−1.87,−3.91,−1.87,+0.40) +9.5458 +9.5469 −0.0011 −0.0001
(+2.21,−1.87,−3.91,+0.17,+0.40) +9.3754 +9.3579 +0.0175 +0.0019
(+2.21,−1.87,−1.87,−3.91,+0.40) +9.5458 +9.5765 −0.0307 −0.0032
(+2.21,−1.87,−1.87,−1.87,+0.40) +9.3754 +9.4073 −0.0320 −0.0034
(+2.21,−1.87,+0.17,−3.91,+0.40) +9.3754 +9.4532 −0.0778 −0.0083
(+2.21,−1.87,+0.17,−1.87,+0.40) +9.0915 +9.0265 +0.0649 +0.0071
(+2.21,−1.87,+0.17,+0.17,+0.40) +8.6188 +8.5463 +0.0725 +0.0084

0 10 20 30 40 50 60 70 80

Nodes k

0

1

2

3

4

5

6

7

O
p
t
io
n
v
a
lu
e
s
u
k

Options comparing between analytical solutions

and network solutions with K = 8.

τ = 0.00 τ = 0.10 τ = 0.20 τ = 0.30 τ = 0.40

Analytical solution

Network solution

0 10 20 30 40 50 60 70 80

Nodes k

0

1

2

3

4

5

6

7

8

9

O
p
t
io
n
v
a
lu
e
s
u
k

Options comparing between analytical solutions

and network solutions with K = 10.

τ = 0.00 τ = 0.10 τ = 0.20 τ = 0.30 τ = 0.40

Analytical solution

Network solution

Figure A1. ANN computational options and analytical solutions for geometric mean payoff function.
Parameters: T = 0.4, d = 2 for K = 8 (left) and K = 10 (right). The analytical solution can be seen
in (8).
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Figure A2. Errors of ANN options vs. training number L with T = 0.4 for K = 8 (left) and K = 10
(right). The analytical solution can be seen in (8). From this graph, we can see that the error decreases
rapidly with the increase in training times.
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Figure A3. Learning rates vs. training number L with T = 0.4, d = 2 for K = 8 (left) and K = 10
(right). As can be seen from the figure, the learning rate decreases with the increase in training times.
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with constant C > 0.
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Table A4. Computational results of ANN for arithmetic mean payoff function with d = 2. [x′, τ] are
the input data. ANN and Anal. are the ANN solution and analytical solution, respectively. ERR
and RE are the absolute error and relative error between ANN solution and analytical solution,
respectively. MSE is the error of training.

Input [xT , τ] ANN Anal. ERR RE

K = 8, MSE = 3.14 × 10−4

(−3.91,−1.87,+0.40) +7.7546 +7.8076 −0.0530 −0.0068
(−1.87,−3.91,+0.40) +7.7546 +7.7609 −0.0063 −0.0008
(−1.87,+0.17,+0.40) +7.1722 +7.1619 +0.0103 +0.0014
(+0.17,−1.87,+0.40) +7.1725 +7.2073 −0.0348 −0.0049
(+2.21,+0.17,+0.40) +2.6955 +2.6926 +0.0029 +0.0011

K = 10, MSE = 2.85 × 10−4

(−3.91,+0.17,+0.40) +9.1994 +9.1818 +0.0176 +0.0019
(+0.17,−3.91,+0.40) +9.1997 +9.1792 +0.0205 +0.0022
(+0.17,−1.87,+0.40) +9.1325 +9.1688 −0.0363 −0.0040
(+0.17,+0.17,+0.40) +8.6171 +8.5883 +0.0288 +0.0033
(+2.21,−3.91,+0.40) +5.2365 +5.2662 −0.0297 −0.0057

Table A5. Computational results of ANN for arithmetic mean payoff function with d = 3. [x′, τ] are
the input data. ANN and Anal. are the ANN solution and analytical solution, respectively. ERR
and RE are the absolute error and relative error between ANN solution and analytical solution,
respectively. MSE is the error of training.

Input [xT , τ] ANN MC ERR RE

K = 8, MSE = 4.8 × 10−4

(−3.91,−3.91,−1.87,+0.40) +7.7769 +7.8250 −0.0481 −0.0062
(−3.91,−3.91,+0.17,+0.40) +7.4334 +7.4477 −0.0143 −0.0019
(−3.91,−1.87,−3.91,+0.40) +7.7769 +7.7968 −0.0199 −0.0026
(−3.91,+0.17,−3.91,+0.40) +7.4333 +7.3982 +0.0351 +0.0047
(−3.91,+0.17,+0.17,+0.40) +7.0453 +7.0257 +0.0196 +0.0028
(−3.91,+0.17,+2.21,+0.40) +4.4034 +4.4039 −0.0005 −0.0001
(−1.87,−3.91,−1.87,+0.40) +7.7323 +7.7277 +0.0045 +0.0006
(−1.87,−3.91,+0.17,+0.40) +7.3887 +7.3561 +0.0326 +0.0044
(−1.87,−1.87,−3.91,+0.40) +7.7323 +7.7070 +0.0253 +0.0033
(−1.87,−1.87,+0.17,+0.40) +7.3441 +7.3741 −0.0300 −0.0041
(−1.87,+0.17,−3.91,+0.40) +7.3886 +7.3410 +0.0476 +0.0064
(−1.87,+2.21,+0.17,+0.40) +4.3591 +4.3728 −0.0137 −0.0031
(+0.17,−3.91,−1.87,+0.40) +7.3887 +7.3364 +0.0522 +0.0071
(+0.17,−3.91,+2.21,+0.40) +4.4034 +4.3813 +0.0220 +0.0050
(+0.17,−1.87,−3.91,+0.40) +7.3887 +7.3382 +0.0505 +0.0068
(+0.17,−1.87,−1.87,+0.40) +7.3443 +7.3378 +0.0065 +0.0009

K = 10, MSE = 1.1 × 10−3

(−3.91,−1.87,+2.21,+0.40) +6.7066 +6.6975 +0.0092 +0.0014
(−3.91,+0.17,−3.91,+0.40) +9.3938 +9.3207 +0.0731 +0.0078
(−3.91,+2.21,+0.17,+0.40) +6.3626 +6.4076 −0.0450 −0.0071
(−3.91,+2.21,+2.21,+0.40) +3.7206 +3.6841 +0.0365 +0.0098
(−1.87,+0.17,+0.17,+0.40) +8.9609 +9.0426 −0.0816 −0.0091
(+0.17,−3.91,−1.87,+0.40) +9.3489 +9.3431 +0.0058 +0.0006
(+0.17,−3.91,+0.17,+0.40) +9.0053 +8.9258 +0.0795 +0.0088
(+0.17,−3.91,+2.21,+0.40) +6.3624 +6.4253 −0.0629 −0.0099
(+0.17,−1.87,−3.91,+0.40) +9.3492 +9.3104 +0.0387 +0.0041
(+0.17,−1.87,+0.17,+0.40) +8.9609 +8.9799 −0.0190 −0.0021
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Table A5. Cont.

Input [xT , τ] ANN MC ERR RE

K = 10, MSE = 1.1 × 10−3

(+0.17,+0.17,−1.87,+0.40) +8.9606 +8.9319 +0.0287 +0.0032
(+0.17,+0.17,+2.21,+0.40) +5.9758 +5.9343 +0.0415 +0.0069
(+0.17,+2.21,−3.91,+0.40) +6.3625 +6.4112 −0.0487 −0.0077
(+0.17,+2.21,+0.17,+0.40) +5.9747 +6.0245 −0.0498 −0.0083
(+2.21,−3.91,+0.17,+0.40) +6.3634 +6.3904 −0.0270 −0.0043
(+2.21,−1.87,+0.17,+0.40) +6.3175 +6.3166 +0.0009 +0.0001
(+2.21,+0.17,−3.91,+0.40) +6.3621 +6.3359 +0.0262 +0.0041
(+2.21,+0.17,−1.87,+0.40) +6.3182 +6.2769 +0.0413 +0.0065

Table A6. Computational results of ANN for arithmetic mean payoff function with d = 4.

Input [xT , τ] ANN MC ERR RE

K = 8, MSE = 5.84 × 10−4

(−3.91,−3.91,−3.91,−3.91,+0.40) +7.8216 +7.8081 +0.0135 +0.0017
(−3.91,−3.91,−3.91,+0.17,+0.40) +7.5304 +7.5918 −0.0614 −0.0082
(−3.91,−3.91,−1.87,−1.87,+0.40) +7.7546 +7.7980 −0.0434 −0.0056
(−3.91,−3.91,−1.87,+0.17,+0.40) +7.4970 +7.5068 −0.0098 −0.0013
(−3.91,−3.91,+0.17,+2.21,+0.40) +5.2569 +5.2893 −0.0324 −0.0062
(−3.91,−3.91,+2.21,−3.91,+0.40) +5.5484 +5.5281 +0.0204 +0.0037
(−3.91,−3.91,+2.21,−1.87,+0.40) +5.5154 +5.5128 +0.0026 +0.0005
(−3.91,−3.91,+2.21,+2.21,+0.40) +3.2779 +3.2645 +0.0134 +0.0041
(−3.91,−1.87,−3.91,−3.91,+0.40) +7.7881 +7.8140 −0.0259 −0.0033
(−1.87,−3.91,−3.91,−3.91,+0.40) +7.7881 +7.7979 −0.0098 −0.0013
(−1.87,−3.91,−1.87,−3.91,+0.40) +7.7546 +7.7171 +0.0375 +0.0048
(−1.87,−3.91,−1.87,+0.17,+0.40) +7.4633 +7.5152 −0.0519 −0.0070
(−1.87,−3.91,+0.17,−3.91,+0.40) +7.4970 +7.4455 +0.0515 +0.0069
(−1.87,−3.91,+0.17,−1.87,+0.40) +7.4634 +7.4627 +0.0007 +0.0001
(−1.87,−3.91,+0.17,+0.17,+0.40) +7.2058 +7.1455 +0.0603 +0.0084
(−1.87,−3.91,+2.21,+0.17,+0.40) +5.2245 +5.2417 −0.0172 −0.0033
(−1.87,−1.87,−3.91,−3.91,+0.40) +7.7546 +7.8123 −0.0577 −0.0074
(−1.87,−1.87,−1.87,−3.91,+0.40) +7.7211 +7.7554 −0.0343 −0.0044
(−1.87,−1.87,+0.17,−3.91,+0.40) +7.4635 +7.5239 −0.0604 −0.0081
(−1.87,−1.87,+0.17,+0.17,+0.40) +7.1722 +7.2123 −0.0401 −0.0056
(+0.17,−1.87,−1.87,+0.17,+0.40) +7.1721 +7.2436 −0.0716 −0.0100
(+0.17,−1.87,+0.17,+0.17,+0.40) +6.9147 +6.9364 −0.0217 −0.0031
(+0.17,−1.87,+2.21,+0.17,+0.40) +4.9332 +4.9557 −0.0224 −0.0045
(+0.17,+0.17,−3.91,−3.91,+0.40) +7.2391 +7.2214 +0.0176 +0.0024
(+0.17,+0.17,−3.91,+0.17,+0.40) +6.9485 +6.9426 +0.0058 +0.0008
(+0.17,+0.17,−3.91,+2.21,+0.40) +4.9672 +4.9248 +0.0424 +0.0085
(+0.17,+0.17,−1.87,−3.91,+0.40) +7.2057 +7.2566 −0.0509 −0.0071
(+0.17,+0.17,−1.87,+0.17,+0.40) +6.9147 +6.9308 −0.0161 −0.0023
(+0.17,+0.17,−1.87,+2.21,+0.40) +4.9327 +4.9307 +0.0019 +0.0004
(+0.17,+0.17,+0.17,−3.91,+0.40) +6.9483 +6.9758 −0.0276 −0.0040
(+0.17,+0.17,+0.17,−1.87,+0.40) +6.9144 +6.9505 −0.0361 −0.0052
(+0.17,+0.17,+0.17,+0.17,+0.40) +6.6572 +6.6243 +0.0329 +0.0049
(+0.17,+0.17,+0.17,+2.21,+0.40) +4.6761 +4.7129 −0.0368 −0.0079
(+0.17,+0.17,+2.21,−3.91,+0.40) +4.9654 +4.9871 −0.0217 −0.0044
(+0.17,+0.17,+2.21,−1.87,+0.40) +4.9319 +4.9594 −0.0275 −0.0056
(+2.21,+0.17,−3.91,+0.17,+0.40) +4.9657 +4.9267 +0.0390 +0.0079
(+2.21,+0.17,+0.17,−3.91,+0.40) +4.9660 +4.9243 +0.0418 +0.0084
(+2.21,+0.17,+0.17,−1.87,+0.40) +4.9321 +4.9334 −0.0012 −0.0003
(+2.21,+0.17,+0.17,+0.17,+0.40) +4.6752 +4.6722 +0.0030 +0.0006
(+2.21,+0.17,+2.21,−1.87,+0.40) +2.9518 +2.9571 −0.0053 −0.0018
(+2.21,+0.17,+2.21,+0.17,+0.40) +2.6944 +2.6819 +0.0126 +0.0047
(+2.21,+2.21,−3.91,+0.17,+0.40) +2.9846 +2.9906 −0.0060 −0.0020
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Table A6. Cont.

Input [xT , τ] ANN MC ERR RE

K = 10, MSE = 8.3 × 10−4

(−3.91,+0.17,−1.87,−1.87,+0.40) +9.4237 +9.4729 −0.0492 −0.0052
(−3.91,+0.17,−1.87,+0.17,+0.40) +9.1661 +9.0905 +0.0756 +0.0082
(−3.91,+0.17,+0.17,−1.87,+0.40) +9.1663 +9.1235 +0.0428 +0.0047
(−3.91,+0.17,+0.17,+2.21,+0.40) +6.9271 +6.9686 −0.0415 −0.0060
(−3.91,+0.17,+2.21,+0.17,+0.40) +6.9274 +6.9813 −0.0539 −0.0078
(−3.91,+2.21,−3.91,+0.17,+0.40) +7.2174 +7.2644 −0.0470 −0.0065
(−3.91,+2.21,+0.17,+0.17,+0.40) +6.9261 +6.8745 +0.0516 +0.0074
(−1.87,−3.91,−3.91,−3.91,+0.40) +9.7485 +9.6798 +0.0687 +0.0070
(−1.87,+0.17,−3.91,−1.87,+0.40) +9.4238 +9.4567 −0.0329 −0.0035
(−1.87,+0.17,−3.91,+2.21,+0.40) +7.1845 +7.2401 −0.0556 −0.0077
(−1.87,+0.17,−1.87,−3.91,+0.40) +9.4237 +9.4359 −0.0121 −0.0013
(−1.87,+0.17,−1.87,+0.17,+0.40) +9.1326 +9.1322 +0.0004 +0.0000
(−1.87,+0.17,+0.17,−1.87,+0.40) +9.1326 +9.1468 −0.0142 −0.0016
(−1.87,+0.17,+2.21,−3.91,+0.40) +7.1845 +7.1557 +0.0287 +0.0040
(−1.87,+2.21,+0.17,+0.17,+0.40) +6.8937 +6.8708 +0.0229 +0.0033
(+0.17,−3.91,−3.91,−3.91,+0.40) +9.4908 +9.4429 +0.0479 +0.0050
(+0.17,−3.91,−3.91,−1.87,+0.40) +9.4573 +9.5198 −0.0625 −0.0066
(+0.17,−3.91,−1.87,−3.91,+0.40) +9.4574 +9.4519 +0.0055 +0.0006
(+0.17,−3.91,−1.87,+0.17,+0.40) +9.1662 +9.1604 +0.0058 +0.0006
(+0.17,−3.91,+0.17,−3.91,+0.40) +9.1998 +9.1222 +0.0776 +0.0084
(+0.17,−3.91,+2.21,−3.91,+0.40) +7.2180 +7.2115 +0.0065 +0.0009
(+2.21,−1.87,−3.91,+0.17,+0.40) +7.1853 +7.2001 −0.0149 −0.0021
(+2.21,−1.87,+0.17,−3.91,+0.40) +7.1846 +7.1990 −0.0144 −0.0020
(+2.21,−1.87,+0.17,+0.17,+0.40) +6.8925 +6.9404 −0.0479 −0.0069
(+2.21,−1.87,+2.21,−3.91,+0.40) +5.2034 +5.2511 −0.0477 −0.0092
(+2.21,+0.17,−3.91,+0.17,+0.40) +6.9269 +6.9182 +0.0087 +0.0013
(+2.21,+0.17,+0.17,−3.91,+0.40) +6.9265 +6.9487 −0.0222 −0.0032
(+2.21,+0.17,+0.17,+0.17,+0.40) +6.6357 +6.5998 +0.0359 +0.0054
(+2.21,+2.21,+0.17,+0.17,+0.40) +4.6533 +4.6242 +0.0291 +0.0063
(+2.21,+2.21,+0.17,+2.21,+0.40) +2.6712 +2.6801 −0.0089 −0.0033
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Figure A5. ANN computational options vs. Monte Carlo solutions for arithmetic mean payoff
function. Parameters: T = 0.4, d = 2 for K = 8 (left) and K = 10 (right).
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Figure A6. ANN absolute error vs. iteration number L for arithmetic mean payoff function. Parame-
ters: T = 0.4, d = 2 for K = 8 (left) and K = 10 (right). From this graph, we can see that the error
decreases rapidly with the increase in training times.
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Figure A7. The learning rate vs. iteration number L. Parameters: T = 0.4, d = 2 for K = 8 (left)
and K = 10 (right). As can be seen from the figure, the learning rate decreases with the increase in
training times.
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