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Abstract: Aiming at the problem of high failure rate and inconvenient maintenance of wind turbine
gearboxes, this paper establishes a stochastic differential equation model that can be used to fit the
change of gearbox oil temperature and adopts an iterative computational method and Markov-based
modified optimization to fit the prediction sequence in order to realize the accurate prediction of
gearbox oil temperature. The model divides the oil temperature change of the gearbox into two parts,
internal aging and external random perturbation, adopts the approximation theorem to establish the
internal aging model, and uses Brownian motion to simulate the external random perturbation. The
model parameters were calculated by the Newton–Raphson iterative method based on the gearbox oil
temperature monitoring data. Iterative calculations and Markov-based corrections were performed
on the model prediction data. The gearbox oil temperature variations were simulated in MATLAB,
and the fitting and testing errors were calculated before and after the iterations. By comparing
the fitting and testing errors with the ordinary differential equations and the stochastic differential
equations before iteration, the iterated model can better reflect the gear oil temperature trend and
predict the oil temperature at a specific time. The accuracy of the iterated model in terms of fitting
and prediction is important for the development of preventive maintenance.

Keywords: stochastic differential equation; iterative updating; Markov; wind turbine; oil temperature
prediction

MSC: 00A06

1. Introduction

As global climate change and environmental problems become more serious, more
attention is being paid to renewable energy sources that do not emit large amounts of
greenhouse gases and pollutants. Wind energy is one of the most important and cleanest
renewable energy sources, which has attracted much attention globally. Its advantages are
characterized by high efficiency and non-pollution, wide distribution, abundant reserves,
etc. It has good competitiveness in society and good commercialization prospects [1]. The
year-on-year increase in installed wind power capacity will lead to significant challenges in
the operation and maintenance of wind turbines. Wind turbines can be categorized into
horizontal-axis wind turbines and vertical-axis wind turbines. Wind turbine generators
(WTGs) are generally operated in sparsely populated remote areas and inevitably suffer
from wind and sunshine, high and low temperatures, sand, salt erosion, and some other
unique local climatic influences, and they also withstand the impact of random perturba-
tions arising from the uncertainty of wind energy. At the same time, in order to maximize
the capture of wind energy, horizontal-axis wind turbines are becoming larger and larger,
the diameter of the wind power blades is increasing, and most of the unit components are
lifted up to a hundred meters in the air, so the unit’s operation and maintenance costs are
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much higher than those of traditional power generation equipment [2]. When downtime
failure occurs, wind farms face huge losses and compensation, so it is necessary to carry
out preventive maintenance on wind turbines.

Preventive maintenance refers to maintenance activities carried out prior to equipment
failure and is categorized into planned maintenance and maintenance on a case-by-case
basis. Preventive maintenance is done through the monitoring of equipment operation
with monitoring indicators and finding fault signals before the failure of the equipment to
take the necessary maintenance activities, not only to avoid the occurrence of downtime
failure, but also to make the equipment work in a good condition for a long time. Planned
maintenance is based on a fixed period of time for equipment maintenance activities and
is done by arranging maintenance personnel and equipment in advance to save time and
temporary scheduling costs. However, the formulation of the maintenance cycle does not
take into account the actual state of the equipment for its subsequent operation, and often,
the occurring maintenance is not enough [3–5]. Zhou Jian [6] proposed a failure rate model
that takes into account the situation of “repair not new” and influences the formulation of
preventive maintenance cycles through the influence factor, so that the maintenance plan is
more in line with the failure pattern of the components and avoids the over-maintenance
and under-maintenance that may be encountered in traditional preventive maintenance. He
Xuehong [7] took into account the aging phenomenon of the equipment with the increase
of the operation time and the amount of maintenance, so he introduced the service age
regression factor and then formulated the indefinite cycle dimension strategy according
to the change of the reliability of the equipment in different maintenance cycles. Zhang
Guojun [8] proposed an improved service age regression factor, which greatly reduces the
maintenance cost per unit of time during the maintenance cycle through the correction
of the failure rate. Dependent maintenance evaluates the condition of the equipment by
collecting parameters and data from the equipment and repairs the equipment based on the
results of the condition evaluation [9–12]. Since visual maintenance can overcome many
of the shortcomings of planned maintenance, visual maintenance is attracting more and
more attention.

According to the different ways to detect the state, maintenance can be divided into
continuous-monitoring-state maintenance and non-continuous-monitoring-state main-
tenance. In continuous-monitoring-state maintenance, the monitoring equipment and
pre-investment costs are higher, as are the signal processing equipment requirements, so
generally it is installed in nuclear power plants and other systems high security require-
ments. In non-continuous monitoring state maintenance, faults are prone to occurring
between two consecutive state detections, so it is extremely important to predict the state
between two consecutive state detections. Zhu Wen [13] used the MSET method to estimate
the state of the gearbox bearing temperature of wind turbines, and the real-time trend of
the residual difference between the estimated and actual values of the bearing temperature
was used to judge whether the gearbox was operating normally or not. Zhang Wenjing [14]
decomposed the denoising-processed vibration signal into wavelet packets, took its energy
in each frequency band as a feature vector, and used a back-propagation (BP) neural net-
work for modelling and prediction, so as to achieve an intelligent diagnosis of wind turbine
faults. Rosmaini A [15] focused on issues such as identification and collection of required
condition monitoring data, data analysis, modelling, and decision making, and provided an
analytical comparison from the perspective of a practical application. Zhang Xiaohong [16]
defined the internal recession of the system as a Markov process, and based on the Markov
process, a minimization cost model was developed and solved for the optimal maintenance
intervals. Ding Peng [17] proposed a parameter estimation method for the Weibull distribu-
tion based on a small sample of fault data and the case of no fault data to provide ideas for
the development of initial preventive maintenance strategies. Luo Sensen [18] proposed an
improved failure prediction and health management (PHM) model, which in turn led to
the development of a state-introduced multi-component opportunistic maintenance model
for wind turbines. Zhang Lupeng [19] proposed an opportunity maintenance strategy to
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repair components that exceed the state maintenance threshold and those that enter the
state opportunity maintenance interval at the same time, which greatly reduces the total
maintenance cost. In summary, accurate prediction of equipment condition plays a crucial
role in finding the most maintenance cycles and developing optimal maintenance strategies.
However, when constructing state-change models, most studies do not take into account
the effects due to external random perturbations, which in turn do not allow for an accurate
estimation of the equipment state.

To address the above problems, this paper took the oil temperature of wind turbine
gearboxes as the research object, established a stochastic differential equation model for the
change of oil temperature of gearboxes, and used iterative updating and Markov-based
updating for the fitted and predicted sequences of the model, respectively. The updated
model could more accurately predict the oil temperature of the gearbox, providing a more
accurate basis for the development of contingent maintenance strategies.

The rest of the paper is organized as follows: Section 2 constructs a model of gearbox
oil temperature variation. Section 3 solves the drift and diffusion coefficients. Section 4
updates the model-fitted sequence and the predicted sequence. Section 5 verifies the fitting
and generalization ability of the model.

2. Stochastic Differential Equation (SDE) Modeling of Gearbox Oil
Temperature Variations

Definition 1. x(t) represents the oil temperature of the wind turbine gearbox at moment t.

Definition 2. The variation of the gearbox oil temperature is only related to the oil temperature
and operating time of the gearbox.

Definition 3. The oil temperature of the gearbox is spatially averaged.

The process of change of x(t) can be expressed as follows:

dx(t) = α(x(t), t)dt (1)

where α(x(t), t) is the relative rate of change.
The variation of the oil temperature of the gearbox is related to the operating time on

the one hand, and to random environmental influences on the other hand, the magnitude
of which is related to the state in which the equipment is located. Random environmental
influences include the weather, wind speed, and routine daily inspections, patrols, and
maintenance. Therefore, the relative rate of change can be expressed by the sum of two
items, where the first item is the inevitable increase of the gearbox oil temperature with the
increase of the running time under the condition of not considering the effect of a random
perturbation, i.e., the recession of the gearbox oil temperature itself, and the second item
is the effect of a random perturbation on the change of the gearbox oil temperature. The
random perturbation is simulated by the Brownian motion here because the perturbation
is random. Thus, α(x(t), t) can be expressed as:

α(x(t), t) = β(x(t), t) + γ(x(t), t) · W (2)

where β(x(t), t) is the recession of the gearbox oil temperature itself, γ(x(t), t) · W is the
random perturbation received by the gearbox oil temperature, and W is a noise term. Then,
Equation (1) is:

dx(t) = β(x(t), t) · dt + γ(x(t), t) · W · dt (3)
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Let the expectation of the random perturbation suffered by the gearbox be 0, and the
random perturbation be independent and smooth. Then, the external random perturbation
can be described by Brownian motion B(t). Equation (3) can be expressed as follows:

dx(t) = β(x(t), t) · dt + γ(x(t), t) · dBt (4)

where β(x(t), t) is the drift coefficient, γ(x(t), t) is the diffusion coefficient, and Bt is
Brownian motion.

Suppose K is any constant, for all |x| and |y|, if satisfied:

|β(x, t)− β(y, t)|+ |γ(x, t)− γ(y, t)| ≤ K|x − y| (5)

|β(x, t)|+ |γ(y, t)| ≤ K(1 + |x|) (6)

Then it is shown that Equation (4) has a continuous unique solution.
If both Equations (5) and (6) are satisfied, Equation (4) can be expressed as:

x(t) = x(t0) +
∫ t

t0

β(x(t), t)dt +
∫ t

t0

γ(x(t), t)dBt (7)

where t0 is the initial time.

3. Drift and Diffusion Coefficient Solutions

The drift coefficient is:

β(x(t), t) = lim
h→0

E[(x(t + h)− x(t))|x(t) ]
h

(8)

From Equation (8), β(x(t), t) is the first-order average rate of change at time t.
Assuming that β(x(t), t) is a continuous function on [0, t], the drift coefficient β(x(t), t)

can be approximated by Weierstrass’ first approximation theorem:

β(x(t), t) =
n
∑

k=0

(
n
k

)
tn−kx(t)k

= (t + x(t))n

= tn(1 +
x(t)

t
)

n
(9)

Further calculations are available:

β(x(t), t) = tn
n
∑

k=0

(
n
k

)(
x(t)

t

)k

= tn
n
∑

k=0

n(n − 1) · · · (n − k + 1)
k!

(
x(t)

t
)k

(10)

When n = t and t → ∞ , there is:

β(x(t), t) = tn
n
∑

k=0

x(t)k

k!
= tn[a0 + a1x(t) + a2x2(t) + · · ·+ an−1xn−1(t) + anxn(t)

]
= tn[a1x(t) + a2x2(t) + · · ·+ an−1xn−1(t) + anxn(t)

]
(a0 = 0)

= tn[a1 + a2x(t) + · · ·+ an−1xn−2(t) + anxn−1(t)
]
· x(t)

(11)
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It is obtained from the Taylor expansion:

β(x(t), t) = tn
[

a1 − 1 + 1
1+a×x(t)

]
x(t)

= tn × 1
1+a×x(t) × x(t)(a1 = 1)

= λ0(t)× g(x(t))× x(t)
= λ(x(t), t)× x(t)

(12)

where λ0(t) is the baseline failure rate function and λ(x(t), t) is the monitoring value
change rate.

Taking expectations for both the left and right sides of Equation (4) yields:

dEx(t) = β(Ex(t), t)dt = λ(Ex(t), t)× Ex(t) (13)

The desired value of the gearbox temperature is:

x(t) = exp(−
∫ t

0
λ(x(t), t)dt) = exp(−

∫ t

0

β

η
(

t
η
)

β−1
× 1

1 + a × x(t)
dt) (14)

Since the derivative of x(t) is the product of x(t) and λ(t), the constructed likelihood
function is:

L(β, η, a) =
r

∏
i=1

λ(x(ti), ti)
N
∏
j=1

x(tj)

=
r

∏
i=1

β

η
(

ti
η
)

β−1 1
1 + a × x(ti)

N
∏
j=1

exp(−(
tj

η
)

β−1 1
1 + a × x(tj)

)

(15)

where N is the total number of data and r is the fault data.
Setting:

H =
[

∂ ln L
∂β

∂ ln L
∂η

∂ ln L
∂a

]T
(16)

H′ =


∂2 ln L

∂β2
∂2 ln L
∂β∂η

∂2 ln L
∂β∂a

∂2 ln L
∂η∂β

∂2 ln L
∂η2

∂2 ln L
∂η∂a

∂2 ln L
∂a∂β

∂2 ln L
∂a∂η

∂2 ln L
∂a2

 (17)

The iterative formula is constructed as:[
β η a

]T
k+1 =

[
β η a

]T
k − H(k)

H′(k) (18)

The diffusion coefficient is:

γ2(x(t), t) = lim
h→0

E
[
(x(t + h)− x(t))2|x(t)

]
t

(19)

From Equation (9), γ(x(t), t) is the average second-order moment growth rate at time t.
It is assumed that the disturbance suffered by the gearbox is only related to the current

temperature of the gearbox and not the running time. Therefore, the diffusion coefficient
can be expressed as:

γ(x(t), t) = kx(t) (20)

In the (0, T) cycle, take the step ∆t, the step condition is satisfied:

0 ≤ n∆t ≤ T(n = 1, 2, . . . , N) (21)
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The change in the temperature of the gearbox during the time period ∆t is denoted as
∆x(t), then there is:

x(ti)− x(ti−1)− λ(Ex(ti−1), ti−1)Ex(ti−1)∆t = γ(x(ti−1), t)∆Bti (22)

Therefore, the parameter k can be expressed as:

ki =
x(ti)− x(ti−1)− λ(Ex(ti−1), ti−1)Ex(ti−1)∆t

γ(x(ti−1), t)
(23)

k =
1
n

n

∑
i=1

ki (24)

4. Gearbox Oil Temperature Iteration Update

Definition: σ(t) is the ratio of the actual value to the predicted value, then σ(t) can be
expressed as:

σ(t) =
∧

x(t)/x(t) (25)

where
∧

x(t) is the actual oil temperature of the gearbox at moment t and x(t) is the predicted
oil temperature of the stochastic differential equation model at moment t.

Based on the ratio of actual to predicted values, the state space is divided into n,
respectively:

⊗1 = [A1, A2),⊗2 = [B1, B2),⊗3 = [C1, C2), . . . ,
⊗n−1 = [M1, M2),⊗n = [N1, N2]

(26)

where, if
min(σ(t)) ≤ A2
max(σ(t)) ≥ N1

(27)

then
A1 = min(σ(t))
N2 = max(σ(t))

(28)

Otherwise:
A1 = A2
N1 = N2

(29)

If σ(ti) ∈ [L1, L2), then it means that at moment ti, the predicted value lies in state
space ⊗l .

The state transfer matrix is calculated based on the determined state space and the
state changes of the predicted sequence:

P(n) =


P(n)

11 P(n)
12 · · · P(n)

1N
P(n)

21 P(n)
22 · · · P(n)

2N
...

...
...

...
P(n)

n1 P(n)
n2 · · · P(n)

nn

 (30)

where P(n) is the n-step state transfer matrix. Due to the specificity of the gearbox oil
temperature, only one step state transfer matrix P needs to be calculated.

Correction of the fitted value data: the predicted sequence is corrected according to
the state space to which the predicted sequence of stochastic differential equations belongs,
and the corrected fitted sequence is:

If
σ(t) ∈ [L1, L2) (31)
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then
x1(t) = (L1 + L2)/2 × x(t) (32)

Correction of prediction data: the probability that the predicted value is located in
each state at the prediction time is known from the one-step state transfer matrix, and the
corrected prediction sequence is:

If
σ(t − 1) ∈ [L1, L2)
PL1 = φ1, PL2 = φ2, . . . PLN = φn

(33)

then

x1(t) = (φ1 × (A1 + A2) + φ2 × (B1 + B2) + . . . × φn(N1 + N2))/2 × x(t) (34)

After the above calculations and a new machine temperature prediction sequence
x1(t), recalculate the ratio of the actual value to the predicted value σ(t) and the state
space boundaries A1 and N2, and determine whether the predicted value belongs to the
state space. According to the re-determination of the state space and the prediction of
the sequence of changes in the re-calculation of the state transfer matrix, the state transfer
matrix is calculated as follows:

1 =
1
2


P11 P12 · · · P1N
P21 P22 · · · P2N

...
...

...
...

PN1 PN2 · · · PNN

+
1
2


Q11 Q12 · · · Q1N
Q21 Q22 · · · Q2N

...
...

...
...

QN1 QN2 · · · QNN

 (35)

where Pkl is the probability that the predicted value changes from state k to state l before
correction, and Qkl is the probability that the predicted value changes from state k to state l
after correction.

The fitted and test sequences were calculated as above.
A new machine temperature prediction sequence x2(t) can be obtained after the

calculation, and the new machine temperature prediction sequence x3(t) can be obtained
again by re-computing σ(t), A1, N2, the state space, the new state transfer matrix, and so
on for the iterative calculation.

The fitting ability and generalization ability of the stochastic differential equation
model prediction sequence x(t) and the prediction sequence after iteration x1(t),
x2(t), . . . xn(t) are verified by calculating the fitting error η f and the testing error ηt. The
fitting error η f and the testing error ηt are calculated as:

η f =
n
∑

i=1

∣∣∣∣∣∣ xl(t)−
∧

x(i)
∧

x(i)

∣∣∣∣∣∣
ηt =

n+m
∑

i=n+1

∣∣∣∣∣∣ xl(t)−
∧

x(i)
∧

x(i)

∣∣∣∣∣∣
(36)

where xl(t) is the predicted sequence after the lth iteration, n is the number of model fitting
samples, and m is the number of model testing samples.

5. Example Analysis

In this paper, based on the wind turbine gearbox oil temperature monitoring data
of a wind farm in Jiuquan area, the stochastic differential equation model and iterative
computational method mentioned in previously were utilized to fit and predict the gearbox
oil temperature. The gearbox oil temperature monitoring data are shown in Table 1.
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Table 1. Oil temperature monitoring data of a wind turbine gearbox of a wind power plant in the
Jiuquan area.

Time/h Oil Temperature/◦C Time/h Oil Temperature/◦C

63 37.7 561 41.7
154 38.5 621 42.6
261 38.9 684 43.2
352 39.2 733 43.5
387 39.6 765 48.7
438 40.5 774 73.2
485 41.3 789 94.4

The independent variable is the equipment running time, and the dependent variable
is gearbox oil temperature. Model training and iterative calculations were performed using
the first 13 monitoring data to predict the 14th monitoring data, and the fitting error η f and
testing error ηt were calculated and analyzed for model accuracy.

Based on the modelling of the gearbox oil temperature variation in Section 2 and the
solution of the drift coefficient and diffusion coefficient in Section 3, the authors carried
out the modelling and simulation in MATLAB R2023a software by combining the built-in
functions and custom scripts and functions. The solution of the unknown parameters in
the drift parameters needed to be carried out by estimating the parameters according to the
Newton–Raphson iterative method described in Section 3 after choosing the initial values
of β, η, and α by the authors themselves. The diffusion coefficient was solved for k = 0.0012.
Ultimately, the simulation results of Equation (7) in MATLAB are plotted in Figure 1.
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Figure 1. Comparison of gearbox oil temperature monitoring data with predicted values from
stochastic differential equation models.

Due to the addition of Brownian motion to the modelling of gearbox oil temperature
changes in Section 2 and Brownian motion producing a different sequence of random
numbers each time it is run, there were differences in the results produced by each MATLAB
simulation run, but this just improved the realism and reliability of the simulation results.

The relative error versus time curve is shown in Figure 2.
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Figure 2. Relative error plot for stochastic differential equation model of gearbox oil temperature.

As can be seen from the simulation results (Figures 1 and 2):

1. With an increase in running time, gearbox oil temperature change showed a trend
of slow growth followed by accelerated growth. It can be assumed that there was
no significant change in the gearbox oil temperature in the first 733 h. This finding
indicates that the collection interval and maintenance interval of the gearbox oil
temperature should not be too small in the first 733 h. Setting a collection interval that
is too small will lead to an increase in the operating cost of the equipment on the one
hand and to the generation of a large amount of redundant data on the other hand,
which will increase the difficulty of storing and processing. The maintenance interval
being too small could easily lead to excessive maintenance, which would not only
increase the operating cost of the equipment, but also reduce its operating reliability.

2. The difference between the predicted value of the stochastic differential equation
model and the actual value of the oil temperature increased significantly after the
running time reached 733 h, a phenomenon that indicates that the effect of stochas-
tic perturbations on the gearbox oil temperature becomes more significant as oil
temperature increases.

The fitting and testing errors of the stochastic differential equation model were:

η f = 35.36%
ηt = 11.46%

(37)

The ordinary differential equation was modeled as:

dx(t) = β(x(t), t)dt (38)

where the drift parameters were solved similarly to Section 3.
The simulation results of the prediction curve of the gearbox oil temperature ordinary

differential equation model are shown in Figure 3.
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The fitting and testing errors of the ordinary differential equation model were:

η f = 39.33%
ηt = 22.05%

(39)

As can be seen from Figure 3, the fitting curve based on the ordinary differential
equation model produced an overall performance of a smooth curve. Although the general
trend changed in line with the trend of the gearbox oil temperature, it could not reflect
the impact of the random perturbation, while the stochastic differential equation model
with added Brownian motion had the nature of independent increments, which could be
used to make the predicted value approximated to any value of the time. It can also be
concluded by comparing the fitting error and testing error that the stochastic differential
equation model had better fitting and generalization ability than the ordinary differential
equation model.

According to the MATLAB simulation results, the first 13 predictions of the stochastic
differential equation model could be obtained, and the ratio was calculated according to
Equation (25). The first 13 predictions and ratio of the stochastic differential equation model
are shown in Table 2.

By comparing the national standards with other literature, this paper divides the state
space into five states, which are:

Overpredicted status ⊗1:
⊗1 = [A1, 0.989) (40)

where A1 is calculated as shown in Equations (27)–(29), with A1 = 0.9194 before iterative
calculations were performed.

Slightly larger state in the forecast ⊗2:

⊗2 = [0.989, 0.998) (41)

Predicted value accuracy status ⊗3:

⊗3 = [0.998, 1.002) (42)



Mathematics 2024, 12, 2783 11 of 14

Slightly smaller state in the forecast ⊗4:

⊗4 = [1.002, 1.011) (43)

Prediction understatement ⊗5:

⊗5 = [1.011, N2] (44)

where N2 is calculated as shown in Equations (27)–(29), with N2 = 1.1568 before iterative
calculations were performed.

Based on the above division of the state space, the states to which the predicted values
belong are shown in Table 3.

Table 2. Predicted and actual gearbox oil temperatures.

Time/h Oil Temperature/◦C Oil Temperature
Prediction/◦C Ratio

63 37.7 37.72 0.9995
154 38.5 38.87 0.9905
261 38.9 38.28 1.0162
352 39.2 39.22 0.9995
387 39.6 39.82 0.9950
438 40.5 40.78 0.9931
485 41.3 41.70 0.9904
561 41.7 41.10 1.0146
621 42.6 42.23 1.0088
684 43.2 43.03 1.0040
733 43.5 41.10 1.0584
765 48.7 52.97 0.9194
774 73.2 63.28 1.1568

Table 3. Gearbox oil temperature prediction value and their states.

Time/h Oil Temperature/◦C Oil Temperature
Prediction/◦C State of Affairs

63 37.7 37.72 3
154 38.5 38.87 2
261 38.9 38.28 5
352 39.2 39.22 3
387 39.6 39.82 2
438 40.5 40.78 2
485 41.3 41.70 2
561 41.7 41.10 5
621 42.6 42.23 4
684 43.2 43.03 4
733 43.5 41.10 5
765 48.7 52.97 1
774 73.2 63.28 5

From Table 3, the one-step state transfer matrix P is:

P =


0 0 0 0 1
0 1/2 0 0 1/2
0 1 0 0 0
0 0 0 1/2 1/2

1/3 0 1/3 1/3 0

 (45)
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Markov-corrected predicted values are:

X = 105.22 × 1/3 × 1/2 × (0.9194 + 0.989 + 0.998 + 1.001 + 1.002 + 1.011)
= 103.83

(46)

The fitted and test data were corrected, and the fitting and test errors were calculated
according to the iterative calculation method described in Section 4. The variation of the
fitting and test errors are plotted in Figures 4 and 5.
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As can be seen in Figures 4 and 5, as the number of iterations increased, both the
fitting error and the test error stabilized and were smaller than before the iterations. The
fitting error eventually stabilized at around 2%, and the testing error eventually stabilized
at around 8%, which optimized both the fitting and generalization effects after the iteration,
compared to 35.36% and 11.46% before the iteration. It can also be seen that the fitting error
tended to stabilize around eight iterations and had a tendency to disperse as the number of
iterations increased, and the test error gradually became smaller as the number of iterations
increased. However, after the fifteenth iteration, the degree of reduction in the test error
with the increase in the number of iterations was no longer significant. The results of the
above analysis show that having a higher number of iterations was not necessarily better,
and the number of iterations may be too high, which may result in the dispersion of the
data and waste of resources.

6. Conclusions

For the wind turbine gearbox oil temperature change problem, this paper establishes
a stochastic differential equation model of gearbox oil temperature change and uses an
iterative calculation method to optimize the established model. The optimized model
could accurately fit the trend of gearbox oil temperature change and predict the gearbox oil
temperature. Weierstrass’ first approximation theorem was used in the model to solve the
drift coefficients, Brownian motion was used to simulate the external random perturbations,
and iterative calculations and Markov chain-based corrections were performed on the
predicted values generated by the model, which greatly improved the model’s fitting
and generalization capabilities. Meanwhile, when comparing with those of the ordinary
differential equation model, the fitting error and test error changed from the previous
39.33% and 22.05% to 35.36% and 11.46%, respectively, which verified the necessity of
considering the external stochastic perturbation. In the example analysis, by comparing
the fitting error and test error before and after the iteration, it was found that the fitting
error and test error changed from the previous 35.36% and 11.46% to about 2.5% and 8%,
respectively, which further verified the validity of the iterative update. Obviously, this
method of accurately predicting the transmission oil temperature is very important for the
development of preventive maintenance.
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