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Abstract: Outliers are a common problem in applied statistics, together with multicollinearity. In this
paper, robust Liu estimators are introduced into a partially linear model to combat the presence of
multicollinearity and outlier challenges when the error terms are not independent and some linear
constraints are assumed to hold in the parameter space. The Liu estimator is used to address the
multicollinearity, while robust methods are used to handle the outlier problem. In the literature on the
Liu methodology, obtaining the best value for the biased parameter plays an important role in model
prediction and is still an unsolved problem. In this regard, some robust estimators of the biased
parameter are proposed based on the least trimmed squares (LTS) technique and its extensions using
a semidefinite programming approach. Based on a set of observations with a sample size of n, and
the integer trimming parameter h ≤ n, the LTS estimator computes the hyperplane that minimizes the
sum of the lowest h squared residuals. Even though the LTS estimator is statistically more effective
than the widely used least median squares (LMS) estimate, it is less complicated computationally
than LMS. It is shown that the proposed robust extended Liu estimators perform better than classical
estimators. As part of our proposal, using Monte Carlo simulation schemes and a real data example,
the performance of robust Liu estimators is compared with that of classical ones in restricted partially
linear models.

Keywords: generalized Liu estimator; least trimmed squares estimator; linear restriction;
multicollinearity; outlier; partially linear regression models

MSC: 62G08; 62G35; 62J05; 62J07

1. Introduction

When the nature of the relationship between the response variable and some of the
explanatory variables is unclear but the link function of the mean of the dependent variable
is expected to have a linear parametric relationship to certain other explanatory variables,
partially linear models (PLMs) are the suitable models to apply for predicting or modeling
the data set. Consider the set of observations denoted as (y 1, x ⊤

1 , t1
)
, . . ., (y n, x ⊤

n , tn
)
,

which conform to the partially linear model defined by

yi = x⊤i β + f (ti) + εi, i = 1, 2, . . . , n, (1)

where yi is the value of the response variable of the ith observation, x⊤i =
(
xi1, . . . , xip

)
represents a vector of the explanatory variables, β =

(
β1, . . . , βp)⊤ denotes a vector of the

unknown parameters, and the observed points that match the boundaries of the domain
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D ⊂ R are denoted by ti. It is generally assumed that the unknown function f (.) is a
smooth function, while εi represents random errors that are considered to be independent
of (xi, ti).

PLMs that combine both parametric and nonparametric components are more flexible
than a conventional multiple regression model in cases where the assumption of a linear
relationship between the dependent variable and some of its predictors (x) is made, while
its relationship to the other explanatory variables (t) has an unknown non-linear shape [1,2].
There have been several approaches to estimating the parameters in a PLM. Among the
most important approaches are those given by several researchers [1–11].

The presence of nearly linear dependency among the columns of the design matrix
X =

(
x1, . . . , xn)⊤ is known as multicollinearity, and it is a common issue that might arise

in a regression analysis. In this case, the matrix S = X⊤X contains one or more small eigen-
values, causing the regression coefficient estimations to be large in their absolute value. The
condition number is an effective measure for recognizing the presence of multicollinearity.
The matrix S is ill-conditioned under multicollinearity because its condition number tends
to an extremely large value. Multicollinearity makes the ordinary least-squares estimator
(OLSE) perform badly. Also, the existence of multicollinearity in the data may cause the
confidence intervals to be too large for either individual parameters or their linear mixes,
which may lead to inaccurate predictions. Applying shrinkage estimators is widely used as
an effective solution to address the issues arising from multicollinearity. In this study, the
shrinkage estimator suggested by Liu [12] is applied to solve the problem of multicollinear-
ity. Liu [12] combined the Stein estimator with the conventional ordinary ridge regression
estimator to derive the Liu estimator, as described in [13–15]. Other alternative approaches
to addressing the issue of multicollinearity can be found in the research papers [16–19].

Besides the multicollinearity problem, another typical issue that arises in regression
analyses is the existence of outliers, which are observations that do not follow the pattern
of the main bulk of the data. Outliers can cause problems like inflated sums of squares,
estimate bias, p-value confusion, and more. To combat these problems, robust regression
methods are used. The ordinary least-squares estimator is known to be extremely affected
by outliers, so the least trimmed squares approach is used to estimate both components of
the PLM used in this research.

The breakdown point of an estimator is the fundamental measurement that is used to
evaluate its robustness. This breakdown point concept refers to the percentage of outlying
observations (up to 50 percent) that can contaminate an estimation promiscuously. In
computational geometry, the investigation of effective algorithms for robust estimation
methods has been an important field of study. Several researchers have examined the
robust least median of squares (LMS) method, which is the hyperplane that minimizes the
squared residual median [20]. Although the LMS estimator has been the subject of most
publications on robust estimation in the field of linear models, Rousseeuw and Leroy [21]
have noted that the LMS is not the optimal option due to its statistical features. They
asserted that selecting the least trimmed squares is the better option because both the LTS
and LMS have the same breakdown point, approximately 50%, but the LTS offers some
advantages in comparison to the LMS. Compared to the LMS, the objective function of the
LTS is smoother. Also, since the LTS converges more quickly and is normally distributed
asymptotically [20], it has superior statistical efficiency. For these reasons, the LTS is a better
choice as a starting point for two-step robust estimators such as the MM estimator [22].

The main innovation of this paper is that it proposes novel robust Liu estimators for
the parameters of a restricted PLM and robust estimations for the biasing parameter of Liu
estimations based on the LTS approach and its extensions to solve multicollinearity and
outlier problems simultaneously. These proposed estimators are based on an improved
LTS produced using a semidefinite programming approach. The organization of this article
is as follows: Section 2 contains the classical estimator of a restricted partially linear model
based on the kernel method. After reviewing the concepts of Liu and the least trimmed
squares approach to a restricted partially linear model in Sections 3 and 4, respectively, our
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new robust Liu estimators for a restricted partially linear model are suggested based on
the semidefinite programming in Section 5, and their asymptotic biases and distributional
covariances are then derived. In Section 6, the efficiencies of the proposed estimators are
assessed through vast Monte Carlo simulation experiments and a real-world data example.
Lastly, some important findings are concluded in Section 7.

2. The Classical Estimators under Restriction

The estimators that conform to certain restrictions are called classical estimators. Let
us examine the following partially linear model:

y = Xβ + f (t) + ε, (2)

where y =
(
y1, . . . , yn)⊤, X =

(
x1, . . . , xn)⊤, f (t) =

(
f (t1), . . . , f (tn))⊤, ε =

(
ε1, . . . , εn)⊤.

Generally, we assume that ϵ is a vector of the disturbances that follows the distribution
of E(ε) = 0 and E

(
εε⊤

)
= σ2V, where σ2 is an unknown parameter and V is a known

matrix that is symmetric and positive definite.
To estimate the linear part of the model (2), we first remove the non-parametric effect

by detrending. Given the assumption that β is known, a natural non-parametric estimator
of f (.) is

f̂ (t) = k(t)(y − Xβ),

where k(.) is a kernel function. Following [4], by substituting f̂ (t) for f (t) in Equation (2),
the model may be reduced to

ỹ = X̃β + ε, (3)

where ỹ = (In − K)y, X̃ = (In − K)X, and K is the smoother matrix with the (i, j)-th
component Kω

(
ti, tj

)
, in which Kω(·) is a kernel function of order m with the bandwidth

parameter ω. Now, the estimation of β is performed using the generalized least-squares
estimator (GLSE), which is known to be the best unbiased linear estimator

β̂GLS = argminβ

(
ỹ − X̃β

)⊤V−1(ỹ − X̃β
)

= C−1X̃
⊤

V−1ỹ,
(4)

where C = X̃
⊤

V−1X̃.
Interestingly, another suitable method for handling strong and extremely strong

multicollinearity problems is to obtain the estimators under particular restrictions on
unknown parameters, which may be exact or stochastic (see [23–29] for more details).
Assume that we had prior knowledge regarding β in the sense of its non-stochastic exact
constraints, as follows:

Rβ = r

where R is a known matrix q × p of prior information of rank q < p and r is a known q × 1
vector. This restriction should come from an outside source (it might be determined, for
example, by an outside source of information or an expert). Thus, when the regression
parameters are restricted by a group of linear constraints non-stochastically represented by
independent prior information, we provide the instruments necessary to compute the risk
of the estimators. Next, the performances of the new constrained estimators and classical
estimators may be compared under certain conditions. We show that our innovative
constrained estimators outperform the classical ones in terms of the least risk functions,
assuming linear restrictions. In these circumstances, certain non-sample information (a
previous constraint on the parameters) may exist; it is often presented to the model as
constraints. Compared to typical estimators, the restricted estimator performs better, and
so, in this research work, the restricted partially linear model (RPLM) is fitted to the data set.
The selection of the complete row’s rank assumption is based on convenience and is backed
by the fact that every consistent linear equation may be transformed into an equivalent
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equation with a coefficient matrix that has a full row rank. The generalized least-squares
restricted estimator (GLSRE) is derived by imposing a linear restriction, as follows:

β̂GLSR = argminβ

(
ỹ − X̃β

)⊤V−1(ỹ − X̃β
)

s.t. Rβ = r

= β̂GLS − C−1R⊤(RC−1R⊤)−1(Rβ̂GLS − r
)
.

(5)

As such, it is known that the covariance matrix of β̂GLS is equal to σ2C−1. Thus, the
GLSE and its covariance matrix are significantly influenced by the features of matrix C. The
GLS estimators become susceptible to various errors when C is ill conditioned. Also, some
of the estimations of the regression coefficients, for instance, might have incorrect signs or be
statistically insignificant; this could lead to unstable estimators, which are characterized by
the generation of large confidence intervals for specific parameters. Making valid statistical
inferences becomes challenging in the presence of these errors, and so a biased estimation
technique is introduced and utilized for an RPLM with a multicollinearity problem.

3. Restricted Liu Estimator in a Partially Linear Model

As was mentioned, multicollinearity leads to X⊤X being ill conditioned, with a large
condition number. When the condition number of X⊤X is large, the least-squares estimator
is more severely affected by multicollinearity. In this case, the high level of data noise is mag-
nified by

(
X⊤X

)−1, making the least-squares estimator highly unreliable. To combat this
drawback of the least-squares estimator, Hoerl and Kennard [30] proposed adding a ridge
estimator β̂k =

(
X⊤X + kI

)−1X⊤y to the standard linear regression model y = Xβ + ε,
with E

(
ε
)
= 0 and E

(
εε⊤

)
= σ2I, and it has become the most often used method for

solving the multicollinearity problem that causes the least-squares estimator to fail. Indeed,
the ridge method solves the multicollinearity problem by adding a small constant k to the
diagonal of X⊤X to decrease its condition number. In practical use, the shrinkage parameter
k in the ridge approach is often rather modest. It is obvious that the condition number of
X⊤X + kI is a decreasing function of k. Thus, high values of k are needed to achieve small-
scale control over the condition number of X⊤X + kI. Because of this, the small k selected
in practice may not be big enough to solve the severe ill-conditioning problem of X⊤X.
As such, the resultant ridge estimation may still be unstable since X⊤X + kI has remained
ill conditioned. Furthermore, despite its practical effectiveness, the ridge estimator is a

complicated function of k. Although the Stein-type estimator, β̂c = c
(
X⊤X

)−1
X⊤y, is a

linear function of c, the shrinkage of each element of β̂c is the same. To address these issues,
Liu [12] proposed a new biased estimator β̂d =

(
X⊤X + I

)−1
(X⊤y + dβ̂) by combining the

advantages of the ridge and Stein-type estimators, which effectively solved the problem of
ill conditioning in the standard regression model, where 0 < d < 1 is the biasing parameter
and β̂ =

(
X⊤X

)−1X⊤y. It is obvious that when d = 1, β̂d = β̂.
According to [12], the mean squared error (MSE) of the Liu estimator is obtained by

MSE
(

β̂d
)
= σ2∑p

j=1

(
λj + d

)2

λj
(
λj + 1

)2 + (d − 1)2∑p
j=1

α2
j(

λj + 1
)2 (6)

where α2
j corresponds to the jth element of α = Γ⊤β and Γ is an orthogonal matrix such

that C = ΓΛΓ⊤, in which Λ = diag
(
λ1, . . . , λp

)
contains the eigenvalues of matrix C.

Consequently, the biasing parameter d is chosen by minimizing the MSE of
(

β̂d
)

as follows:

d̂ = 1 − σ̂2
GLS

∑
p
j=1

1
λj(λj+1)

∑
p
j=1

α̂2
jGLS

(λj+1)
2

 (7)
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where σ̂2 and α̂2
jGLS are the unbiased estimators of σ2 and αj based on the GLSE, respectively,

i.e., σ̂2
GLS = 1

n−p

(
ỹ − X̃β̂GLS

)⊤
V−1

(
ỹ − X̃β̂GLS

)
and α̂GLS = Γ⊤ β̂GLS.

The generalized least-squares Liu estimator (GLSLE) investigated by [31] is defined
as follows:

β̂GLSL(d) =
(
X̃
⊤

V−1X̃ + I
)−1(X̃

⊤
V−1X̃ + dI

)
β̂GLS

=
(
C + I

)−1(C + dI
)

β̂GLS
= Fd β̂GLS, 0 ≤ d ≤ 1,

(8)

where Fd =
(
C + I)−1(C + dI) .

Based on the fact that Fd and C−1 are commutative, the generalized least-squares
restricted Liu estimator (GLSRLE) can be defined as follows for an RPLM [32–34]:

β̂GLSRL(d) = Fd β̂GLS − FdC−1R⊤(RC−1R⊤)−1(Rβ̂GLS − r
)
. (9)

Lemma 1. If β satisfies the linear restriction Rβ = r, then the bias vector, covariance matrix,
and mean squared error functions of proposed estimator can be evaluated by direct calculations,
as follows:

Bias
(

β̂GLSRL(d)
)
= −(I − Fd)β, (10)

Cov
(

β̂GLSRL(d)
)
= σ2tr

(
FdHF⊤

d
)
, (11)

MSE
(

β̂GLSRL(d)
)
= σ2tr

(
FdHF⊤

d
)
+ β⊤(Fd − I

)⊤
(Fd − I)β, (12)

where H = C−1(I − R⊤(RC−1R⊤)−1RC−1).

Theorem 1. The mean squared error of the GLSRLE under the linear restriction Rβ = r can be
given by

MSE
(

β̂GLSRL(d)
)
= σ2∑p

j=1

(
λj + d

)2(
λj + 1

)2 mjj + (d − 1)2∑p
j=1

α2
j(

λj + 1
)2 , (13)

where mjj is the jth diagonal element of the matrix M = Γ⊤HΓ.

Proof. Using
(
C + I

)−1
= Γ

(
Λ + I

)−1
Γ⊤ and (C + dI) = Γ(Λ + dI)Γ⊤, we can write

tr
(
FdHF⊤

d
)

= tr
((

C + I)−1(C + dI)H(C + dI)
(
C + I)−1 )

= tr
(
Γ
(
Λ + I

)−1
Γ⊤Γ

(
Λ + dI

)
Γ⊤HΓ(Λ + dI)Γ⊤Γ

(
Λ + I

)−1
Γ⊤)

= tr
((

Λ + I
)−2(

Λ + dI
)2

Γ⊤HΓ
)

= ∑
p
j=1

(λj+d)
2

(λj+1)
2 mjj.

Also, from
(
C + I

)−2
= Γ

(
Λ + I

)−2
Γ⊤, we have

β⊤(Fd − I)⊤(Fd − I)β = α⊤Γ⊤((C + I)−1(C + dI)− I
)⊤((C + I)−1(C + dI)− I

)
Γα

= α⊤Γ⊤((C + dI)− (C + I))
(
C + I)−2((C + dI)− (C + I))Γα

=
(
d − 1

)2
α
⊤

Γ⊤Γ
(
Λ + I

)−2
Γ⊤Γα

= (d − 1)2∑
p
j=1

α2
j

(λj+1)
2 .

So, the proof is completed. □
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As an important result of Theorem 1, the optimal value of the biasing parameter d can
be obtained by differentiating the mean squared error function of the GLSRLE with respect
to d as follows:

d̂ = 1 − σ̂2
GLSR

 ∑
p
j=1

mjj

(λj+1)

∑
p
j=1

α̂2
jGLSR+σ̂2

GLSRmjj

(λj+1)
2

, (14)

where σ̂2
GLSR and α̂2

jGLSR are the unbiased estimators of σ2 and αj based on the GLSRE, re-

spectively, i.e., σ̂2
GLSR = 1

n−(p−q)

(
ỹ − X̃β̂GLSR

)⊤
V−1

(
ỹ − X̃β̂GLSR

)
and α̂GLSR = Γ⊤ β̂GLSR,

for which

β̂GLSR = β̂GLS − C−1R⊤
(

RC−1R⊤
)−1(

Rβ̂GLS − r
)

. (15)

4. Extension of the Least Trimmed Squares (LTS) Estimator Using Semidefinite
Programming in an RPLM

As is known, outliers have the potential to significantly corrupt the least-squares
estimator and all of the estimators based on it due to their significant impact on the
objective function. A robust regression approach is a broad term that encompasses various
estimating approaches. The least trimmed squares is a robust regression method introduced
by [35]. The LTS seeks to combat this issue by minimizing the sum of the lowest h squared
residuals following the removal of a specific percentage of extreme values. In this case,
h serves as a threshold, and the proportion of the outlying data are represented by the
ratio α = (n − h)/n. Typically, the value of h can be taken as h = [[n(1 − α)]], where [[x]]
stands for the ceiling of x. Some other authors suggest taking h = [n/2] + [(p + 1)/2],
h = [n(1 − α)] + [α(p + 1)] or h = [n(1 − α)] + 1 [36]. The LTS estimator is computed by

solving the
(

n
h

)
total least-squares fit combinations of the index set {1, . . ., n}. Thus, for

large sample sizes, finding the global minimum in the objective function of the LTS method
takes time and space. To accelerate the process of finding the solution (LTS fit), we use an
analog of the FAST-LTS algorithm extended by Rousseeuw and van Driessen [22].

Let zi represent the indicator variable that signifies whether or not observation i is
regarded as a normal observation. The objective function of the LTS in an RPLM will be
examined as follows:

minβ,zψ
(

β, z
)
=

(
ỹ − X̃β

)⊤V− 1
2 ZV− 1

2 (ỹ − X̃β)

s, t, Rβ = r,

e⊤z = h,

zi ∈ {0.1}. i = 1. . . . .n.

(16)

where Z is the diagonal matrix with diagonal elements z = (z1. . . . ., zn)
⊤, e = (1. . . . .1)⊤n×1

and h is the positive integer. The resultant estimator is the generalized least trimmed
squares-restricted estimator (GLTSRE), which is provided by

β̂GLTSR(z) = β̂GLTS(z)− C(z)−1R⊤(RC(z)−1R⊤)−1(Rβ̂GLTS(z)− r
)
, (17)

where C(z) = X̃
⊤

V−1/2ZV−1/2X̃ and β̂GLTS(z) = C(z)−1X̃
⊤

V−1/2ZV−1/2ỹ.
According to the research conducted in [37,38], we may define a relaxation problem in

the RPLM called a relaxed least trimmed squares (RLTS) problem as follows:
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minβ,z* ψ(β, z∗) =
(

ỹ − X̃β
)⊤

V− 1
2 Z∗V− 1

2 (ỹ − X̃β)

s, t, Rβ = r,

e⊤z* = h,

0 ≤ z∗i ≤ 1. i = 1. . . . .n,

(18)

where Z∗ is the diagonal matrix with diagonal elements z∗ =
(
z∗1 . . . . ., z∗n

)⊤. The resultant
estimator of the above optimization problem is the generalized relaxed least trimmed
squares-restricted estimator (GRLTSRE), which is given as follows:

β̂GRLTSR(z∗) = β̂GRLTS
(
z∗
)
− C

(
z*)−1

R⊤(RC
(
z*)−1

R⊤)−1(Rβ̂GRLTS
(
z∗
)
− r

)
(19)

where C
(
z*) = X̃

⊤
V−1/2Z*V−1/2X̃ and β̂GRLTS

(
z*) = C

(
z*)−1X̃

⊤
V−1/2Z*V−1/2ỹ.

Here, we propose an extension of the RLTS problem in RSRM, called ERLTS, based on
the optimization of the following objective function:

minβ,z∗∗ψ(β, z∗∗) =
(

ỹ − X̃β
)⊤

V− 1
2 Z∗∗V− 1

2 (ỹ − X̃β)

s, t, Rβ = r,

h1 ≤ e⊤z∗∗ ≤ h2,

0≤ z∗∗i ≤ 1. i = 1, . . . .n.

(20)

where Z∗∗ is the diagonal matrix with diagonal elements z∗∗ =
(
z∗∗1 . . . . ., z∗∗n

)⊤ and the
positive integers h1 and h2 are such that h1 ≤ h ≤ h2. The generalized extended relaxed
least trimmed squares-restricted estimator (GERLTSRE) is the solution to this optimization
problem, obtained by semidefinite programming as follows:

β̂GERLTSR(z∗∗) = β̂GERLTS(z∗∗)− C(z∗∗)−1R⊤(RC
(
z∗∗

)−1R⊤)−1(Rβ̂GERLTS (z∗∗)− r
)
, (21)

where C
(
z**) = X̃

⊤
V−1/2Z**V−1/2X̃ and β̂GERLTS

(
z**) = C

(
z**)−1X̃

⊤
V−1/2Z**V−1/2ỹ.

5. Extended LTS Liu Estimator in an RPLM

In this section, we try to implement the three types of LTS estimators introduced in
the previous section, based on Liu’s idea, to extract novel robust Liu estimators that are
resistant to the existence of multicollinearity and outliers in the data set. The robust form
of the Liu estimator based on the classical LTS estimator, considered by Kan et al. [39], can
be extended as follows:

β̂LTSL
(
d, z

)
=

(
X⊤ZX + I

)−1(X⊤ZX + dI
)

β̂LTS
(
z
)
. (22)

Now, we adopt and utilize this estimator within the proposed robust estimators previ-
ously defined for the RPLM to obtain two-stage estimators for the parameters, as follows:

1. Robust estimators for d and β based on the LTS approach to the RPLM (and subse-
quently the generalized least trimmed squares-restricted Liu, GLTSRL, method):

σ̂2
GLTSR =

1
n − (p − q)

(
ỹ − X̃β̂GLTSR(z)

)⊤
V−1/2ZV−1/2

(
ỹ − X̃β̂GLTSR(z)

)

d̂LTS = 1 − σ̂2
GLTSR

 ∑
p
j=1

mjj(z)

(λj(z)+1)

∑
p
j=1

α̂2
jGLTSR(z)+σ̂2

GLTSRmjj(z)

(λj(z)+1)
2
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β̂GLTSRL
(
d̂LTS.z

)
=

Fd̂LTS
(z) β̂GLTS(z)− Fd̂LTS

(z)C(z)−1R⊤(RC(z)−1R⊤)−1(Rβ̂GLTS(z)− r
) (23)

where λj(z) is the jth eigenvalue of matrix C(z) = Γ(z)Λ(z)Γ(z)⊤ and mjj(z) is

the jth diagonal element of the matrix M(z) = Γ(z)⊤H(z)Γ(z), in which H(z) =

C
(
z
)−1(I − R⊤(C

(
z
)−1R⊤)−1RC(z)−1), α̂2

jGLTSR(z) is the jth element of α̂GLTSR(z) =

Γ⊤ β̂GLTSR(z) and Fd̂LTS
(z) =

(
C
(
z
)
+ I

)−1(C
(
z
)
+ d̂LTSI

)
.

2. Robust estimators for d and β based on the RLTS approach to the RSRM (and
subsequently the generalized relaxed least trimmed squares-restricted Liu, GRLT-
SRL, method):

σ̂2
GRLTSR =

1
n − (p − q)

(
ỹ − X̃β̂GRLTSR

(
z*))⊤V−1/2Z*V

−1/2(
ỹ − X̃β̂GRLTSR

(
z*))

d̂RLTS = 1 − σ̂2
GRLTSR

 ∑
p
j=1

mjj(z*)
(λj(z*)+1)

∑
p
j=1

α̂2
jRGLTSR(z*)+σ̂2

GRLTSRmjj(z*)

(λj(z*)+1)
2


β̂GRLTSRL

(
d̂RLTS, z*) =

Fd̂RLTS

(
z*) β̂GRLTS

(
z*)− Fd̂RLTS

(
z*)C

(
z*)−1R⊤(RC

(
z*)−1R⊤)−1(Rβ̂GRLTS

(
z*)− r

) (24)

where λj
(
z*) is the jth eigenvalue of matrix C

(
z*) = Γ

(
z*)Λ

(
z*)Γ

(
z*)⊤ and mjj

(
z*)

is the jth diagonal element of the matrix M
(
z*) = Γ

(
z*)⊤H

(
z*)Γ

(
z*), in which

H
(
z*) = C

(
z*)−1(I − R⊤(C

(
z*)−1R⊤)−1RC

(
z*)−1), α̂2

jGRLTSR
(
z*) is the jth element

of α̂GRLTSR
(
z*) = Γ⊤ β̂GRLTSR

(
z*) and Fd̂RLTS

(
z*) = (

C
(
z*)+ I

)−1(C
(
z*)+ d̂RLTSI

)
.

3. Robust estimators for d and β based on the ERLTS approach to the RSRM (and
subsequently the generalized extended relaxed least trimmed squares-restricted Liu,
GERLTSRL, method):

σ̂2
GERLTSR =

1
n − (p − q)

(
ỹ − X̃β̂GERLTSR

(
z**))⊤V−1/2Z**V

−1/2(
ỹ − X̃β̂GRLTSR

(
z**))

d̂ERLTS = 1 − σ̂2
GERLTSR

 ∑
p
j=1

mjj(z**)
(λj(z**)+1)

∑
p
j=1

α̂2
jGERLTSR(z**)+σ̂2

GERLTSRmjj(z**)

(λj(z**)+1)
2


β̂GLTSRL

(
d̂ERLTS, z**) =

Fd̂ERLTS

(
z**) β̂GERLTS

(
z**)− Fd̂ERLTS

(
z**)C

(
z**)−1R⊤(RC

(
z**)−1R⊤)−1(Rβ̂GERLTS

(
z**)− r

) (25)

where λj
(
z**) is the jth eigenvalue of matrix C

(
z**) = Γ

(
z**)Λ

(
z**)Γ

(
z**)⊤ and

mjj
(
z**) is the jth diagonal element of the matrix M

(
z**) = Γ

(
z**)⊤H

(
z**)Γ

(
z**),

in which H
(
z**) = C

(
z**)−1(I − R⊤(C

(
z**)−1R⊤)−1RC

(
z**)−1), α̂2

jGERLTSR
(
z**) is

the jth element of α̂GERLTSR
(
z**) = Γ⊤ β̂GERLTSR

(
z**) and Fd̂ERLTS

(
z**) =

(
C
(
z**) +

I
)−1(C

(
z**)+ d̂ERLTSI

)
.

Theorem 2. Themean squared error of the proposed estimators (23)–(25) under the linear restriction
Rβ = r can be given by
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MŜE
(

β̂GLTSRL
(
d̂LTS.z

))
= σ̂2

GLTSR∑p
j=1

(
λj
(
z
)
+ d̂LTS

)2(
λj(z) + 1

)2 mjj(z) +
(

d̂LTS − 1
)2

∑p
j=1

α̂2
jGLTSR(z)(

λj(z) + 1
)2 , (26)

MŜE
(

β̂GRLTSRL
(
d̂RLTS.z*)) = σ̂2

GRLTSR∑p
j=1

(
λj
(
z*)+ d̂RLTS

)2(
λj(z*) + 1

)2 mjj(z*) +
(

d̂RLTS − 1
)2

∑p
j=1

α̂2
jGRLTSR

(
z*)(

λj(z*) + 1
)2 , (27)

MŜE
(

β̂GERLTSRL
(
d̂LTS.z**)) = σ̂2

GERLTSR∑
p
j=1

(λj(z**)+d̂ERLTS)
2

(λj(z**)+1)
2 mjj(z**) +

(
d̂ERLTS−

1)2∑
p
j=1

α̂2
jGERLTSR(z**)

(λj(z**)+1)
2 .

(28)

Proof. The proof directly follows by mimicking the proof of Theorem 1. □

Remark 1. According to [40,41], because the variance matrix V is typically unknown in practice,
the suggested estimators are non-applicable because they rely on the unknown variance matrix of
the error terms. To address this issue, we must replace the unknown V with a consistent estimator of
it using feasible two-stage estimators, as follows:

V̂ =
1

n − (p − q)
(
ỹ − X̃β̂ERLTSR

(
z**))⊤(ỹ − X̃β̂ERLTSR

(
z**)), (29)

where

β̂ERLTSR
(
z**) = β̂ERLTS

(
z**)− (

X̃
⊤

Z**X̃
)−1R⊤(R

(
X̃
⊤

Z**X̃
)−1R⊤)−1(Rβ̂ERLTS

(
z**)− r

)
,

in which β̂ERLTS(z∗∗) =
(
X̃
⊤

Z**X̃
)−1X̃

⊤
Z**ỹ is an ordinary ERLTS estimator of the parameter β.

6. Illustrative Experiments

To illustrate the advantages of the improved techniques that have been proposed for
a restricted partially linear model in the presence of simultaneous multicollinearity and
outlier problems, we continue our examination with some numerical experiments in this
section. We evaluate the performance of the proposed techniques on both a real-world data
set and some Monte Carlo simulation schemes.

6.1. The Monte Carlo Simulation Schemes

We conducted a numerical analysis to evaluate the precision of our robust estimators
for an RSRM when dealing with contaminated data sets with outliers and multicollinearity.
In each replication, the regressors were randomly generated using the following structure.
Indeed, in order to reach different levels of multicollinearity, according to [42,43], explana-
tory variables were constructed using a device over 150 observations and 103 iterations,
based on the model described below:

xij =
(
1 − γ2)1/2zij + γzip , i = 1, . . . , n and j = 1, . . . , p,

where zij are independent standard normal pseudo-random variables and γ is chosen such
that the correlation between any two explanatory variables is equal to γ2. These variables
are subsequently normalized to ensure that X⊤X and X⊤y are in correlating forms. Four
distinct sets of correlation values are investigated, specifically γ = 0.25, 0.50, 0.75 and 0.95.
For the dependent variable, n observations are then calculated by

yi = ∑5
j=1 xijβ j + f (ti) + εi , i = 1, . . . , n, (30)
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where
β = (−1, 4, 2,−5,−3)⊤,

f (t) = exp
{

sin(t)cos (t) +
√

t
}

, t ∈ [0, 3],

ε(n×1) =
(
ε⊤1 , ε⊤2

)⊤
,

in which
ε⊤1 (h×1) ∼ Nh

(
0, σ2V

)
, σ2 = 1.64,

[
vij

]
= exp{−9|i − j|},

h = [0.25n], [0.33n], [0.50n]

and

ε⊤2 ((n−h)×1) ∼
i.i.d. χ2

1(15),

where χ2
m(δ) represents the m degree of a freedom non-central Chi-squared distribution

with the non-centrality parameter δ. The primary motivation behind selecting such a
structure for producing the error terms is to corrupt the data set and assess the resistance
of the suggested techniques. In fact, we made the last n − h error terms independent
non-central Chi-squared distributed random variables and the first h error terms dependent
normal random variables. The non-centrality parameter leads the outliers to lie on one side
of the real regression model and bias non-robust estimations. In terms of the restriction, we
consider the following stochastic linear restrictions:

R =


1 5 −3 −1 −1
−2 −1 0 −2 3
1 2 1 3 −2
4 −1 2 2 0

, r = Rβ.

For estimating the nonparametric part of the model (16), f (.), the weight proposed by
Priestley and Chao [44] with the Gaussian kernel, is used as follows:

Wω

(
tj
)
=

1
nω

K
( ti − tj

ω

)
=

1
nω

1√
2π

exp

{(
ti − tj

)2

2ω2

}
.

Also, the cross-validation (C.V.) approach is applied to obtain the optimum value of
the bandwidth ω, which minimizes the C.V. criterion.

The non-parametric component of the model (30) is presented in Figure 1. This wave
function is challenging to predict and offers a useful example for testing the proposed
estimation techniques. All calculations were performed with R 4.3.1, the statistical software
program. Tables 1–14 present a summary of the results. After iterating the process for all
simulations, the minimum, maximum, mean, median, and standard deviation values of the
mean squared errors of the linear and non-linear estimators are reported in Tables 1 and 2,
respectively, where

mŝe
(

β̂
(m)
(i) , β

)
=

1
M ∑M

m=1

∥∥∥β̂
(m)
(i) − β

∥∥∥2

2
,

mŝe
(

f̂(i), f
)
=

1
nM ∑M

m=1

∥∥∥f̂(m)
(i) − f

∥∥∥2

2
, f̂(i) = K(y − Xβ̂

(m)
(i) ),

in which β̂
(m)
(i) and f̂ (m)

(i) are the ith estimators of the linear and non-linear parts (i = 1,
. . ., 8) obtained in the mth iteration of the model for all of the proposed approaches and
∥v∥2

2 = ∑
q
i=1 v2

i for v =
(
v1, . . . , vp)⊤ . Moreover, PCDO is the percentage of the data

contaminated with outliers (PCDO = 100 × n−h
n %).
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Figure 1. The non-linear function of the simulated model.

Table 1. Mean squared error estimations of the proposed estimators for the linear part of the simulated
data sets, with n = 150.

γ
0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95 0.25 0.5 0.75 0.95

PCDO = 25% PCDO = 33% PCDO = 50%

GLSRE

min 1.0300 1.4501 1.9507 8.4008 1.5712 4.9800 4.4346 10.09635 2.76 5.8985 8.4886 14.5415
max 3.0344 3.7254 7.1833 38.9501 4.1060 5.6992 6.3436 23.1795 4.8609 12.5527 11.9615 39.6976

mean 1.2606 2.2249 4.357 16.5846 1.9013 3.9258 5.4962 19.9989 3.2705 9.325 10.5542 26.3929
median 1.1228 1.9902 4.1577 15.6974 1.8818 3.14 5.2324 18.9837 3.1247 8.8504 10.2531 25.1407

S.D. 1.3633 2.9277 2.5325 8.5307 2.2494 2.4276 3.7169 9.9713 6.9775 6.4574 5.7781 12.4557

GLTSRE

min 7.00 × 10−2 1.1141 1.1376 5.8009 0.0937 1.65 2.3008 9.45506 0.075 1.0046 2.7407 12.98
max 2.0108 3.1206 5.8441 17.492 1.4185 4.0889 4.9014 18.203 3.8996 4.8417 6.2896 28.688

mean 0.1579 1.9061 3.164 13.6686 0.6468 3.1952 3.2871 12.0766 0.2389 2.2825 3.4733 15.1121
median 0.0644 1.8409 3.0672 12.2794 0.4776 3.0808 3.1337 11.8957 0.1002 2.1237 3.2014 14.8865

S.D. 0.6358 2.9805 2.2827 7.0157 1.1846 3.0649 3.4142 8.6359 1.3573 4.4232 3.6887 8.9685

GRLTSRE

min 1.68 × 10−2 1.0801 1.0411 5.9207 0.0924 1.4001 2.4216 9.2008 0.0478 1.0009 2.2008 12.975
max 2.4459 2.3196 5.78 17.0979 1.0422 4.0354 5.0202 19.7405 2.3377 3.901 4.9601 29.8601

mean 0.1909 1.6353 3.2186 13.8984 0.9112 3.237 3.383 12.5147 0.2552 2.313 3.5289 15.3241
median 0.0814 1.5541 3.089 12.3911 0.3803 3.1006 3.1606 11.9148 0.1238 2.142 3.2449 14.9558

S.D. 0.6859 2.7016 2.3204 7.3535 1.352 2.3558 3.5929 8.3451 1.347 4.532 3.7338 8.2607

GERLTSRE

min 0.168 1.0601 1.0009 5.3707 0.0468 1.6021 2.2019 9.5476 0.0409 1.0537 2.8286 11.9307
max 0.0675 2.2113 5.6578 17.7935 1.3463 4.0402 4.3671 22.228 2.7772 3.4363 5.7513 27.8879

mean 0.652 1.601 3.1542 13.6677 0.6243 3.2104 3.2984 12.1435 0.2313 2.2695 3.4561 15.1132
median 1.21 × 10−2 1.5381 3.0651 11.9635 0.335 3.0759 3.1266 11.4454 0.105 2.1204 3.201 14.0838

S.D. 1.8293 2.6617 2.2433 7.9852 1.0163 2.2913 3.4852 9.8424 1.3169 4.3761 3.6389 8.8768

GLSRLE

min 4.10 × 10−1 0.0491 0.0858 2.5456 1.068 2.0301 2.7207 4.1117 2.572 3.1352 3.2247 13.325
max 1.8972 2.8717 3.1734 7.6356 2.9482 4.8827 5.5675 12.1979 4.9784 7.1075 7.2553 24.1935

mean 0.2437 0.6099 1.3926 3.8501 1.7648 2.9027 3.5436 6.2565 3.1045 4.333 7.7663 17.4571
median 0.1147 0.6019 0.1821 3.9388 0.6456 2.7531 3.2622 6.1038 3.0753 4.2515 7.2732 17.155

S.D. 0.3457 1.3459 2.5714 4.719 2.4499 1.4511 2.7632 3.1329 6.8705 5.4671 3.7902 7.3125

GLTSRLE

min 4.33 × 10−3 0.0045 0.0037 0.0604 0.0345 0.0141 0.0109 0.6054 0.0017 0.157 0.0048 1.137
max 1.9089 2.2738 1.1269 4.6501 0.9583 1.2217 1.3226 6.8717 1.6645 0.8509 0.8867 12.1068

mean 0.1461 0.0992 0.1808 0.807 0.9593 0.2282 0.375 1.3672 0.2407 0.2941 0.4949 6.0419
median 0.0581 0.0434 0.0745 0.3423 0.3887 0.083 0.166 0.9254 0.1183 0.3212 0.2139 5.8904

S.D. 0.2205 1.1919 2.3091 3.1927 1.3874 1.2861 2.46 2.9477 1.3493 1.9637 2.7041 3.9317

GRLTSRLE

min 4.68 × 10−3 0.0038 0.0057 0.0564 0.0143 0.0181 0.0079 0.5208 0.0178 0.0908 0.0028 1.4756
max 2.0459 2.3196 0.78 5.0979 0.9422 2.0354 1.0202 6.7405 1.3377 0.851 0.7601 12.4909

mean 0.19 0.13 0.23 0.9417 0.8516 0.2361 0.3832 1.4642 0.2553 0.3128 0.5285 7.3356
median 0.0797 0.0585 0.1052 0.4345 0.2379 0.1001 0.1633 0.997 0.1238 0.142 0.2439 6.0558

S.D. 0.2856 1.205 2.3272 3.3762 1.3412 1.3557 2.5913 3.2963 1.3472 1.1317 2.7331 4.2272

GERLTSRLE

min 4.20 × 10−3 0.0034 0.0028 0.0155 0.01 0.0042 0.0067 0.605 0.0005 0.0309 0.0035 1.0607
max 1.7169 2.3475 0.7972 4.4159 0.9508 1.2151 1.1933 7.082 1.4948 0.7753 0.726 10.3495

mean 0.1513 0.0918 0.1475 0.7416 0.7909 0.177 0.3214 1.264 0.2204 0.2847 0.4853 5.9774
median 0.0583 0.0405 0.063 0.3076 0.244 0.0769 0.1461 0.8669 0.1021 0.124 0.2089 4.9675

S.D. 0.2326 1.1759 2.2753 3.2737 1.2888 1.3181 2.5431 3.219 1.3065 1.3905 2.6622 3.898
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Table 2. Mean squared error estimations of the proposed estimators for the non-linear part of the
simulated data sets with n = 150.

γ
0.25 0.50 0.75 0.95 0.25 0.50 0.75 0.95 0.25 0.50 0.75 0.95

PCDO = 25% PCDO = 33% PCDO = 50%

GLSRE

min 0.0374 0.3994 3.0404 5.0481 0.0449 0.8437 3.0321 6.0326 0.9591 1.0215 5.5270 10.11928
max 6.2170 4.8515 5.4275 10.3723 2.7879 5.8039 4.4065 13.1375 9.6363 9.6595 7.6221 28.3078

mean 0.6183 1.4321 3.4064 7.3234 0.3497 1.7602 3.5049 11.3692 1.6280 2.5842 5.5436 18.4228
median 0.3508 1.2565 3.2481 7.2132 0.2345 1.3185 3.2925 11.2302 1.3582 2.3344 6.3158 16.2578

S.D. 0.7293 1.9897 3.4365 3.3594 0.3291 2.6560 2.5909 4.4043 3.9471 5.6909 3.6291 9.4677

GLTSRE

min 0.0287 0.4223 2.0463 4.0252 0.0343 0.6355 2.0375 3.0287 0.0215 0.6205 3.5196 7.0279
max 4.0802 4.8972 4.5401 9.8426 2.5455 3.7042 2.6508 8.7396 6.3417 5.3711 5.4789 23.3797

mean 0.4200 1.2698 2.2545 5.2060 0.2251 1.6775 2.3414 6.2519 0.5627 1.5171 3.4784 12.3705
median 0.2451 1.1965 2.1852 4.9608 0.1736 1.2286 2.2140 6.1749 0.2998 1.2809 4.2729 11.2342

S.D. 0.4864 2.7594 3.2296 3.1450 0.1909 2.4193 2.3521 4.2299 0.7026 1.6265 2.5539 7.3965

GRLTSRE

min 0.0240 0.3670 2.0519 4.0360 0.0332 0.5453 2.0242 3.0242 0.0306 0.6308 3.5312 7.0221
max 5.4595 4.1415 4.9134 9.7839 2.5251 5.1927 2.5555 8.0322 5.5357 4.1633 5.4292 23.3308

mean 0.4834 1.3173 2.2997 5.2344 0.2503 1.7619 2.4152 6.3061 0.6057 1.5726 3.5296 12.4126
median 0.2703 1.2140 2.2041 4.9715 0.1908 1.2534 2.2389 6.1972 0.3364 1.3213 4.3018 11.2465

S.D. 0.5791 2.8124 3.2748 3.1874 0.1944 2.5513 2.4929 4.3212 0.6974 1.6619 2.6000 7.4440

GERLTSRE

min 0.0334 0.3976 2.0415 4.0255 0.0471 0.6224 2.0297 3.0262 0.8227 0.6209 3.5229 7.0202
max 3.8208 4.9542 4.6089 9.7576 2.5110 4.4394 2.6821 8.9765 4.5546 3.5910 5.1143 23.1862

mean 0.4353 1.2627 2.2505 5.2062 0.2374 1.5857 2.3452 6.2557 0.5574 1.5074 3.4712 12.3650
median 0.2510 1.1923 2.1858 4.9607 0.1768 1.2293 2.2099 5.1798 0.3178 1.2860 4.2724 11.2312

S.D. 0.4995 2.7534 3.2167 3.1454 0.1903 2.4407 2.3909 4.2392 0.6332 2.5743 2.5192 7.3882

GLSRLE

min 0.0281 0.0475 0.2469 1.0435 0.03421 0.5787 2.0245 2.9891 0.9282 0.9250 5.1206 8.0220
max 5.9483 3.0696 3.9557 3.4799 2.5126 6.0783 2.5968 6.2644 9.0662 7.4303 6.9023 21.3871

mean 0.5849 0.4537 0.9337 1.3566 0.3184 1.5949 2.5431 4.4030 1.6164 2.2959 5.1532 14.4144
median 0.3256 0.2654 0.7635 1.1312 0.2174 1.3489 2.3237 4.2665 1.3497 2.0034 5.9194 14.2567

S.D. 0.6946 0.5153 2.4658 2.3829 0.3070 2.6909 1.9268 4.4213 3.7313 2.7059 1.6403 6.4495

GLTSRLE

min 0.0244 0.0450 0.0470 0.0259 0.0325 0.0369 0.0385 0.0340 0.0207 0.0253 0.0270 1.1271
max 3.8884 3.0961 0.7341 1.0003 2.3036 3.9890 0.9417 1.6739 6.7319 1.9403 1.0525 5.0367

mean 0.3968 0.2801 0.2675 0.7239 0.2173 0.4027 0.3713 0.5898 0.5475 0.5839 0.5652 3.3780
median 0.2340 0.1993 0.1929 0.5678 0.1742 0.2428 0.2340 0.3023 0.3232 0.3432 0.3836 3.2335

S.D. 0.4563 0.2756 2.2493 2.1681 0.1671 1.4512 1.3876 3.2692 0.6847 0.6430 1.5663 4.3896

GRLTSRLE

min 0.0243 0.0387 0.0477 0.0360 0.0332 0.0248 0.0242 0.0242 0.0306 0.0308 0.0312 1.1252
max 5.4595 2.7415 0.9134 0.9839 2.5251 3.1927 0.5555 1.5322 5.5357 1.1633 1.0092 5.3308

mean 0.4815 0.3250 0.3085 0.7399 0.2446 0.4634 0.4155 0.5997 0.6058 0.5724 0.5293 3.4111
median 0.2697 0.2193 0.2117 0.5791 0.1790 0.2594 0.2417 0.2933 0.3370 0.3213 0.3018 3.2465

S.D. 0.5784 0.3178 2.2802 2.1918 0.1959 1.5513 1.4915 3.3142 0.6976 0.6615 0.5996 4.4402

GERLTSRLE

min 0.0319 0.0412 0.0420 0.0260 0.0333 0.0316 0.0305 0.0340 0.0199 0.0214 0.0226 1.1241
max 3.6001 2.7898 0.8330 0.9889 2.2619 3.6611 0.9160 1.1491 4.8652 1.0579 0.9669 4.9801

mean 0.4030 0.2760 0.2616 0.7361 0.2094 0.4001 0.2877 0.5106 0.5357 0.5301 0.4937 3.3124
median 0.2375 0.1943 0.1927 0.5737 0.1663 0.2142 0.2022 0.2926 0.3028 0.3061 0.2925 3.1817

S.D. 0.4617 0.2738 2.2417 2.1835 0.1577 2.4814 1.4375 3.2898 0.6099 0.5975 0.5406 4.3932

Table 3. Evaluation of the parameters of the proposed estimation method when γ = 0.25 and PCDO = 25%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.0025 −1.0022 −1.0020 −1.0023 −1.0021 −1.0019 −1.0019 −1.0019

β̂2 3.9439 3.9519 3.9561 3.9489 3.9547 3.9586 3.9577 3.9581

β̂3 1.8317 1.8558 1.8682 1.8466 1.8640 1.8757 1.8732 1.8744

β̂4 −4.8547 −4.8754 −4.8861 −4.8675 −4.8825 −4.8926 −4.8905 −4.8916

β̂5 −2.9235 −2.9344 −2.9401 −2.9303 −2.9382 −2.9435 −2.9423 −2.9429

d̂ 1.0000 1.0000 1.0000 1.0000 0.0002 0.4316 0.1179 0.3106

e⊤z 150.00 116.00 108.3896 109.8749 150.00 116.00 108.3896 109.8749
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Table 4. Evaluation of the parameters of the proposed estimation method when γ = 0.50 and PCDO = 25%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.1020 −1.0916 −1.0817 −1.0816 −1.0014 −1.0014 −1.0014 −1.0013

β̂2 3.9059 3.9052 3.9220 3.9244 3.9693 3.9700 3.9683 3.9714

β̂3 1.8176 1.8957 1.8859 1.8932 1.9079 1.9101 1.9048 1.9141

β̂4 −4.8057 −4.8599 −4.8814 −4.8877 −4.9204 −4.9224 −4.9178 −4.9258

β̂5 −2.8398 −2.8526 −2.8481 −2.8514 −2.9581 −2.9591 −2.9567 −2.9610

d̂ 1.000 1.000 1.000 1.000 0.0078 0.6775 0.3618 0.5881

e⊤z 150 131 108.3894 110.1718 150 131 108.3894 110.1718

Table 5. Evaluation of the parameters of the proposed estimation method when γ = 0.75 and PCDO = 25%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.7530 −1.4123 −1.4125 −1.4124 −1.1520 −1.0019 −1.0020 −1.0018

β̂2 3.1342 3.5500 3.5456 3.5475 3.8571 3.9585 3.9555 3.9600

β̂3 1.1027 1.3500 1.3369 1.3425 1.2712 1.8755 1.8665 1.8799

β̂4 −4.2296 −4.6705 −4.6592 −4.6640 −4.7888 −4.8925 −4.8847 −4.8963

β̂5 −2.1103 −2.5318 −2.5259 −2.5284 −2.7415 −2.9434 −2.9393 −2.9454

d̂ 1.000 1.000 1.000 1.000 0.0054 0.6639 0.3307 0.5648

e⊤z 150 128 108.392 110.461 150 128 108.392 110.461

Table 6. Evaluation of the parameters of the proposed estimation method when γ = 0.95 and PCDO = 25%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −2.5080 −2.0052 −2.0053 −2.0061 −1.2354 −1.0036 −1.0035 −1.0036

β̂2 2.8241 3.0851 3.0845 3.0656 3.8306 3.9207 3.9228 3.9203

β̂3 0.4724 1.1554 1.1534 1.1967 1.3618 1.7622 1.7684 1.7610

β̂4 −3.7103 −4.1024 −4.1006 −4.1517 −4.7447 −4.7946 −4.8000 −4.7936

β̂5 −2.0002 −2.0134 −2.0024 −2.0167 −2.7917 −2.8919 −2.8947 −2.8914

d̂ 1.000 1.000 1.000 1.000 0.0052 0.6488 0.2912 0.5223

e⊤z 150 122 108.392 109.5919 150 122 108.392 109.5919

Table 7. Evaluation of the parameters of the proposed estimation method when γ = 0. 25 and PCDO = 33%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.0035 −1.0034 −1.0038 −1.0033 −1.0079 −1.0059 −1.0055 −1.0051

β̂2 3.9222 3.9244 3.9168 3.9265 3.8259 3.8707 3.8789 3.8881

β̂3 1.7667 1.7732 1.7504 1.7795 1.4776 1.6122 1.6366 1.6643

β̂4 −4.7985 −4.8042 −4.7844 −4.8095 −4.5488 −4.6651 −4.6862 −4.7101

β̂5 −2.8939 −2.8969 −2.8865 −2.8998 −2.7625 −2.8237 −2.8348 −2.8474

d̂ 1.0000 1.0000 1.0000 1.0000 0.0067 0.6464 0.2873 0.5200

e⊤z 150 129 108.392 109.981 150 129 108.392 109.981
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Table 8. Evaluation of the parameters of the proposed estimation method when γ = 0.50 and PCDO = 33%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.1029 −1.1025 −1.1022 −1.1026 −1.1023 −1.0021 −1.0021 −1.0021

β̂2 3.9065 3.9150 3.9212 3.9123 3.9199 3.9533 3.9533 3.9539

β̂3 1.8096 1.8109 1.8237 1.8108 1.8298 1.8599 1.8599 1.8618

β̂4 −4.6355 −4.7574 −4.7737 −4.7504 −4.7703 −4.8790 −4.8790 −4.8806

β̂5 −2.5134 −2.7250 −2.7335 −2.7213 −2.8017 −2.9363 −2.9363 −2.9372

d̂ 1.0000 1.0000 1.0000 1.0000 0.0002 0.4261 0.1148 0.3031

e⊤z 150 130 108.3896 109.8711 150 130 108.3896 109.8711

Table 9. Evaluation of the parameters of the proposed estimation method when γ = 0.75 and PCDO = 33%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.9438 −1.4133 −1.4127 −1.4135 −1.6228 −1.0026 −1.0026 −1.0026

β̂2 2.9157 3.6282 3.6400 3.6226 3.5385 3.9429 3.9429 3.9433

β̂3 1.0472 1.3847 1.3200 1.3677 1.3156 1.8287 1.8286 1.8298

β̂4 −3.7816 −4.7140 −4.7446 −4.7994 −4.6407 −4.8521 −4.8520 −4.8530

β̂5 −2.0051 −2.6021 −2.6182 −2.6944 −2.5162 −2.9221 −2.9221 −2.9226

d̂ 1.000 1.000 1.000 1.000 0.0001 0.4026 0.0932 0.2683

e⊤z 150 130 108.3896 109.8729 150 130 108.3896 109.8729

Table 10. Evaluation of the parameters of the proposed estimation method when γ = 0.95 and PCDO = 33%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −2.8086 −2.0067 −2.0043 −2.0079 −1.7142 −1.0038 −1.0038 −1.0038

β̂2 2.2198 3.0528 3.0049 3.0262 3.5466 3.9168 3.9158 3.9171

β̂3 0.4293 1.2685 1.2648 1.2186 1.1197 1.7505 1.7474 1.7512

β̂4 −3.5071 −4.0187 −4.1537 −4.0497 −4.3579 −4.7845 −4.7819 −4.7851

β̂5 −1.7406 −2.1003 −2.1104 −2.1630 −2.5726 −2.8866 −2.8852 −2.8869

d̂ 1.000 1.000 1.000 1.000 0.0008 0.3654 0.0722 0.2141

e⊤z 150 118 108.3896 109.8748 150 118 108.3896 109.8748

Table 11. Evaluation of the parameters of the proposed estimation method when γ = 0.25 and PCDO = 50%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.8514 −1.0015 −1.0010 −1.0016 −1.8709 −1.0010 −1.0010 −1.0010

β̂2 3.9029 3.9678 3.9783 3.9647 3.8807 3.9790 3.9783 3.9781

β̂3 1.6097 1.9034 1.9350 1.8940 1.7422 1.9371 1.9350 1.9343

β̂4 −4.1220 −4.9166 −4.9439 −4.9085 −4.2501 −4.9457 −4.9439 −4.9432

β̂5 −2.4590 −2.9561 −2.9705 −2.9518 −2.4737 −2.9714 −2.9705 −2.9701

d̂ 1.000 1.000 1.000 1.000 0.0013 0.0217 0.0009 0.0121

e⊤z 150 127 108.3898 109.5876 150 127 108.3898 109.5876
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Table 12. Evaluation of the parameters of the proposed estimation method when γ = 0.50 and PCDO = 50%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.9411 −1.3117 −1.3111 −1.3119 −1.6436 −1.0011 −1.0011 −1.0010

β̂2 3.1654 3.4623 3.4761 3.4590 3.2789 3.9763 3.9761 3.9758

β̂3 0.8961 1.5868 1.6282 1.6771 1.0367 1.9289 1.9283 1.9274

β̂4 −3.7103 −4.7022 −4.7380 −4.7939 −4.0454 −4.9386 −4.9380 −4.9373

β̂5 −2.0528 −2.3485 −2.4674 −2.4642 −2.1512 −2.9677 −2.9674 −2.9670

d̂ 1.000 1.000 1.000 1.000 0.0250 0.0203 0.0011 0.0122

e⊤z 150 123 108.3898 109.5875 150 123 108.3898 109.5875

Table 13. Evaluation of the parameters of the proposed estimation method when γ = 0.75 and PCDO = 50%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −1.0021 −1.0023 −1.0012 −1.0026 −1.0011 −1.0012 −1.0012 −1.0013

β̂2 3.9535 3.9485 3.9731 3.9435 3.9767 3.9726 3.9732 3.9721

β̂3 1.8606 1.8456 1.9194 1.8306 1.9300 1.9178 1.9195 1.9164

β̂4 −4.8796 −4.8667 −4.9304 −4.8537 −4.9395 −4.9290 −4.9304 −4.9278

β̂5 −2.9366 −2.9298 −2.9634 −2.9230 −2.9682 −2.9626 −2.9634 −2.9620

d̂ 1.000 1.000 1.000 1.000 0.0018 0.0168 0.0008 0.0089

e⊤z 150 125 108.3898 109.5875 150 125 108.3898 109.5875

Table 14. Evaluation of the parameters of the proposed estimation method when γ = 0.95 and PCDO = 50%.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

β̂1 −3.1056 −2.1161 −2.1115 −2.1171 −2.6811 −1.0016 −1.0015 −1.0014

β̂2 3.0766 3.1668 3.1671 3.1436 3.0995 3.9690 3.9676 3.9692

β̂3 0.3197 1.1703 1.1701 1.1708 1.0297 1.9072 1.9028 1.9085

β̂4 −2.6802 −3.6548 −3.9149 −3.8948 −3.1793 −4.9165 −4.9161 −4.9168

β̂5 −1.1117 −2.0683 −2.0552 −2.0867 −1.9681 −2.9567 −2.9558 −2.9577

d̂ 1.000 1.000 1.000 1.000 0.0003 0.0205 0.0022 0.0122

e⊤z 150 127 108.3898 109.5876 150 127 108.3898 109.5876

Figure 2 shows the estimations of the non-linear part of model (30) using the proposed
methods. In this figure, the nonparametric function is estimated via the kernel method after
the estimation of the linear part of the model (30) using all of the eight proposed methods.
To save space, the results have been only reported for n = 150 with a PCDO = 25%, 33% and
50%, and γ = 0.95. From Figure 2, it is evident that the non-robust methods are completely
corrupted by the outliers, especially for large values of PCDO.
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The results from the Monte Carlo simulations for n = 150, p = 5 and γ = 0.25, 0.50, 0.75
and 0.95 are presented in Tables 1–14 and Figure 2. From these tables, it can be seen that
the factors affecting the performance of the estimators are the degree of correlation (γ)
between the explanatory variables and the percentage of the data contaminated with
outliers (PCDO). From these tables and Figure 2, it is clearly concluded that if the levels of
PCDO and multicollinearity increased, then the mean squared error estimations for both
the linear and non-linear parts of the GLSRE would be highly increased. Also, increasing
the level of the PCDO increases the mean squared error estimations for both the linear and
non-linear parts of non-robust estimators, while increasing the level of multicollinearity
increases the mean squared error estimations for both the linear and non-linear parts of
non-Liu estimators. From Tables 1–14 and Figure 2, it can be seen that the GERLTSRLE
often performs better than the other methods since it offers the smallest mean squared error
estimations (bold values) for both the linear and non-linear parts of the models in most of
the simulated schemes.
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6.2. Real-World Data Example

To evaluate the proposed estimation approaches using the partially linear model, we
examine the hedonic pricing of house features [45]. The data consist of 92 detached homes
in the Ottawa area that were sold in 1987. Here is how the variables are defined: the
predictor variable is the sale price (SP); the explanatory variables are lot size (lot area = LT),
the square footage of housing (SFH), average neighborhood income (ANI), distance to the
highway (DHW), the presence of a garage (GAR), and a fireplace (FP). We first consider the
pure parametric model

(SP)i = β0 + β1(LT)i + β2(SFH)i + β3(FP)i + β4(DHW)i + β5(GAR)i + β6(ANI)i + εi .

We use added-variable charts to intuitively determine the parametric and nonpara-
metric components of the model (see [46] for more details). Added-variable plots allow
us to examine each predictor’s influence graphically after adjusting for the effects of the
other explanatory variables. Based on the analysis of its added-variable plot (Figure 3),
we identify ANI as a nonparametric component. Therefore, the partially linear model is
specified as follows:

(SP)i = β0 + β1(LT)i + β2(SFH)i + β3(FP)i + β4(DHW)i + β5(GAR)i + f (ANI)i + εi (31)

The “mctest” package in R is used to detect multicollinearity in the design matrix,
producing the following results. The Farrar–Glauber test and other pertinent tests for
multicollinearity are provided.

Overall Multicollinearity Diagnostics

MC Results detection
Determinant |X′X|: 0.005618 1
Farrar Chi-Square: 50.8378 1

Red Indicator: 0.2065 0
Sum of Lambda Inverse: 700.2104 1

Theil’s Method: −0.7320 0
Condition Number: 200.4021 1

1 --> COLLINEARITY is detected by the test. 0 --> COLLINEARITY is not detected by the test.
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Figure 3. Added-variable plots of individual explanatory variables vs. dependent variable, using
linear fit (blue solid line) and kernel fit (red dashed line). “*” symbol shows the outlier points for the
linear scheme.

The correlation graphs of the real data set are displayed in Figure 4. It is evident from
the findings above and Figure 4 that the independent variables in the real data set under
investigation exhibit substantial multicollinearity. So, to address this multicollinearity issue,
the suggested estimating techniques must be used.

The restriction Rβ = r may be identified as follows, based on a basic investigation of
the partially linear model (31) using a robust Liu estimator:

R =

−1 0 −1 −1 1
1 0 −1 2 0
0 −1 0 −2 8

, r =

0
0
0
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Now, the linear hypothesis Rβ = r is examined within the framework of the restricted
partially linear model (31). The test statistic is computed as follows under Rβ = r:

χ2
rank(R) =

(
Rβ̂GLS − r

)⊤(RΣ̂
β̂

R⊤)−1(Rβ̂GLS − r
)
= 0.4781,

where Σ̂
β̂
= ŝ2(X̃

⊤
V̂
−1

X̃
)−1, in which ŝ2 = 1

n−p
(
ỹ − X̃β̂GLS

)⊤V̂
−1(

ỹ − X̃β̂GLS
)
.

Consequently, the null hypothesis H0 is not rejected. Table 15 shows a brief evaluation
of the proposed estimators. Compared to the other estimators, the GERLTSRLE seems to
be effective based on the results that were obtained. Following the estimate of the linear
component of the model using the suggested estimators for model (31), the function fitted
by kernel smoothing is shown in Figure 5.
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Table 15. The evaluation of the proposed estimators using the hedonic prices of house attributes.

Coefficients
Method

GLSRE GLTSRE GRLTSRE GERLTSRE GLSRLE GLTSRLE GRLTSRLE GERLTSRLE

LT 0.7018 1.0509 0.1522 0.1507 0.8514 1.1235 0.2569 0.2550
SFH 46.7515 33.5686 30.9487 30.2085 38.9154 26.3747 25.0010 24.1247
FP 3.9311 2.5740 2.7443 2.6777 3.5210 1.9568 2.1235 2.0474

DHW −1.6147 −0.7616 −1.2961 −1.2635 −0.9952 −0.4125 −0.9389 −0.9541
GAR 6.2476 4.3865 4.1926 4.0919 5.2015 2.9958 3.3021 3.2354

e⊤ (z ∨ z* ∨ z**) 92.0000 86.0000 71.7541 74.1542 92.0000 86.0000 71.7541 74.1542
d̂ 1.0000 1.0000 1.0000 1.0000 0.1542 0.6741 0.6857 0.7154

MŜE 926.80 456.41 386.63 301.63 809.59 335.17 279.25 198.09
R2 0.2346 0.6156 0.6956 0.7509 0.3354 0.7325 0.7801 0.8409

Table 15 shows a brief evaluation of the proposed estimators. In this table, the values
of MŜE and R2 are calculated, in which R2 = 1 − RSS

SYY
is the coefficient of determination of

the model, where RSS = ∑n
i=1(yi − ŷi)

2 is the residual sum of squares and ŷi = xi β̂ + f̂
(
ti
)
,

both of which were calculated for the eight suggested approaches. For the estimation of the
nonparametric effect, we first estimated the parametric effects using one of the proposed
methods and then a kernel smoother was applied to fit SPi − x⊤i β̂ onto ANIi , i = 1, . . . . ., n
for all proposed linear estimators, where x⊤i = (LTi , SFHi , FPi , DHWi , GARi).

As can be seen from Table 15 and Figure 5, because of the existence of multicollinearity
between the explanatory variables, the LTS–Liu and Liu estimators perform better than
the non-Liu ones in both the parametric and nonparametric fittings. Furthermore, since
there are some outliers in the real data set that were detected in Figure 3, robust estima-
tors outperform non-robust ones in terms of the goodness-of-fit of their models. Hence,
developing efficient robust Liu estimation strategies is required for data modeling. From
Table 15 and Figure 5, it can be concluded that the GERLTSRLE performs better than the
other methods since it offers the smallest MŜE and biggest R2 values (bold values) in the
presence of both multicollinearity and outlier difficulties, while the performances of the
non-Liu or non-robust types of estimators are quite poor.

7. Conclusions

In this paper, we suggested Liu and non-Liu types of generalized restricted robust
estimators of a partially linear model with dependent errors and some additional linear
constraints on the whole parameter space. In the presence of multicollinearity and outliers,
an extended robust Liu estimator was introduced based on semidefinite programming to
improve the classical least trimmed squares approach used in the partially linear model.
Also, we proposed some robust estimations of the biasing parameter of the Liu estimator,
which plays an important role in model prediction. In both our simulation studies and
a real-life example, it can be found that Liu estimators (both robust and non-robust)
perform better than non-Liu ones in both parametric and nonparametric fittings under
intense multicollinearity. Moreover, since there are some outliers in the real data set,
robust estimators are more efficient than non-robust estimators during model fitting. The
GERLTSRLE outperforms the others in terms of the mean squared error and R2 criteria,
making it the most reliable method. Also, it can be deduced that the GERLTSRLE performs
effectively in predicting the dependent variable of restricted PLMs without being affected
by the corruptive impacts of multicollinearity and outlier observations. As was mentioned
earlier, the proposed estimators for the Liu parameter d are not the best and thus a good
topic for future research could be obtaining alternative estimators for this parameter
based on other suitable criteria, such as cross-validation [47], instead of the mean squared
error criterion.
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