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Abstract: This work explores efficiency improvements in the copper flotation stage, a complex
nonlinear, multivariable process subject to numerous perturbations. The primary objective is to
design a fractional-order PID (FOPID) control strategy and a fractional-order model reference adaptive
control (FOMRAC) system. The parameters for these controllers are optimized using the particle
swarm optimization (PSO) algorithm with an objective function tailored to the control goals. This
study employs models of both a bank series of five flotation cells and a flotation column. Their
performance results are compared against traditional controllers, such as an integer-order PID
and MRAC. The findings reveal that fractional-order controllers offer notable advantages over
their integer-order counterparts, showing improved performance metrics with minimal changes to
the existing control framework. This research highlights the effectiveness of fractional control in
enhancing flotation processes and introduces a novel application of fractional control techniques in
this area.

Keywords: flotation process; fractional-order controllers; fractional-order adaptive control; PSO

MSC: 37M05; 37M10

1. Introduction

The first mention of fractional calculus dates back to 1695, where, in a conversation
between Leibniz and L’Hopital, who was looking for the meaning of Leibniz’s notation
dny
dxn (quite popular at the time) for the derivative of order n ∈ N0 := {0, 1, 2, . . .} when:
n = 1/2 (what if n = 1/2?), Leibniz replied “This is an apparent paradox from which, one
day, useful consequences will be drawn”. Later mentions of fractional derivatives were
made by Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822,
Liouville in 1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890 and Weyl
in 1917. The first text devoted to fractional calculus was by Oldham and Spanier [1] in
1974. Fractional calculus is a prominent area of research, as demonstrated in [2], where a
new fractional dimensional reproduction kernel space (RKS) based on Caputo’s fractional
derivative is introduced. Fractional calculus extends traditional calculus to non-integer
orders, providing a mathematical foundation for fractional controllers [3,4]. Due to their
unique advantages in managing complex and dynamic systems, fractional controllers
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are particularly compelling for applications in industries with intricate processes, such
as mining.

The main incomes of countries such as Australia, Bolivia, Chile and Peru come from
the mining industry. A critical component of mineral processing within the mining industry
is the flotation stage, which plays a pivotal role in separating valuable minerals from mine
tailings [5]. This process is especially crucial in the extraction of copper, where flotation is
used to concentrate the copper ore, allowing for the recovery of high-purity material.

Given the importance of this stage, improving the control of flotation, particularly the
level control, is of great significance. Enhanced control over the flotation process directly
contributes to the production of purer material, which not only boosts the quality of the
extracted minerals but also leads to economic benefits for the industry. By optimizing
flotation control, mining operations can achieve higher efficiency, reduce waste, and ulti-
mately increase profitability, making this a key area for technological advancements and
research in mineral processing. There are different ways flotation can be carried out, such
as by using a flotation cell bank or flotation column; this process has variable and very
dynamic behavior, as it depends on changes in the characteristics of the mineral or the
natural variation of a liquid when subjected to flow changes. The topics of flotation control,
modeling, and related issues have been the focus of active research in recent years [6–23].

Despite the application of advanced control techniques in many industries, PID con-
trollers are not commonly used in the mineral processing industry due to the difficulty in
their implementation and the lack of a comprehensive performance comparison between
different control strategies, leading to low motivation for their use in industry [24]. In the
academic literature, there are many works that have applied model predictive control
(MPC) and its variants, with promising results [7,11,16,17,22,25–34].

In the study presented in [25], an MPC problem was formulated to minimize the
tracking error of the gas holdup and bias rate while ensuring that the gas flow rate, wash-
water flow rate and bias rate remained within their operational limits. This work specifically
focuses on the error in the tracking of the gas holdup. The work in [26] explores the design
of an MPC system for a mineral column flotation process, which is modeled by a set of
nonlinear coupled heterodirectional hyperbolic partial differential equations and ordinary
differential equations. The results are demonstrated through simulations, with a complex
mathematical model utilized to capture the dynamics of the process. The research in [27]
presents a flotation column control system using an MPC applied to a three-phase system
(air–water–ore) with data sourced from an industrial environment. The validation results
showed a maximum accuracy of 75%, but the study did not include real-time optimization.
The investigation in [28] developed a model based on an Artificial Neural Network (ANN)
that uses two past values and one present value of the tailing valve opening, along with
the interface level, as inputs to predict the future interface level. This model was utilized
to design an MPC for controlling the interface level. The controller was tested on both
liquid–gas and liquid–gas–solid systems. However, this work does not address a MIMO
system, and the ANN requires a substantial amount of training data. The study in [35] aims
to regulate the bubble size distribution (BSD) to a desired set point. The BSD was measured
in real time using an image analysis method, and a dynamic nonlinear model (Wiener)
based on a log-normal distribution was built for estimating the BSD. A constrained model
predictive controller was then designed to control the BSD. This work was developed in an
experimental laboratory setting, and further implementation is needed in terms of its image
analysis component. The works in [30,34] design an MPC system using data extracted
from real industries in Peru and Chile. These studies developed models that achieved a
minimum accuracy of 70% for a cell bank flotation process and 83% for a flotation column
process. The results demonstrated that the MPC models outperformed those obtained using
PI controllers. The work in [16] is Part I and presents an exhaustive study on modeling
a flotation cell, while Part II in [17] proposes an MPC strategy based on the previously
developed model. The study in [22] conducted experimental laboratory tests to validate the
findings of the previous simulated studies presented in [11,36]. This experimental approach
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provided a crucial step in the verification of the theoretical models and simulation results,
offering practical insights and confirming the applicability of the proposed methods under
controlled conditions.

On the other hand, MPC strategies (and different variants of these) for flotation cell
banks were applied in [7,31–34]. Their simulation results were presented in [7,31,32,34] and
they were then applied to a real industry. MPC controllers have a high cost and complexity
to their implementation. Finally, in [37–40], other controllers (PI, steady-state control) were
applied to simulation cases.

However, controllers such as PI, output regulation and Adaptive Decoupling (among
others), have shown interesting results in [14,24,37–40]. Previous works have also dealt
with flotation columns [14,19,24–30,37] and flotation cell banks [7,16–18,22,31,32,34,38–40].

Since an MPC relies heavily on the accuracy of a mathematical model for effective
performance, even slight changes in the model, such as those with an ANN model, can
lead to suboptimal results. An alternative, and more robust, approach to handling model
variations is an adaptive control, such as an MRAC. This control has been used to control a
flotation column [24] and compared with MPC and PI controllers; this study involves the
design of an Adaptive Decoupling Controller (ADC) and compares its control performance
with that of MPC and SISO PID controllers. The results indicated that, due to the weak
coupling of variables in the studied case (as also reported by other researchers), the ADC
achieved satisfactory control of the column, even outperforming the MPC in terms of
various indices. This work was conducted on a pilot flotation column. In [24–26] an MPC
(and different variants) was used to control the gas holdup, bias rate and concentration
in a simulated flotation column. The development, implementation and evaluation of an
MPC for the control applied to a flotation column was presented in [24,27–30], while a pilot
flotation column was used in [24,27–30] before these were applied to a real industry.

All the mentioned works utilize mathematical models, except for [27,30,34], and present
results from simulations or laboratory experiments. However, they fall short in bridging
the gap to their real-world implementation. Furthermore, none of these studies specifically
focus on fractional controllers for this particular process.

Finally, this paper has the following novelties:

1. To optimize the process for both a series-connected flotation cell bank and a flotation
column, mathematical models have been derived from real operating plants [30,34].
The primary approach of this work is to utilize this relevant information to design
fractional controllers based on data from actual industrial processes.

2. The design of FOPID and FOMRAC controllers is proposed for both a flotation
cell bank and a flotation column. Unlike previous research, which has primarily
focused on traditional or model-based controllers, this work explores the application
of fractional controllers to these processes. The novelty of this approach lies in its
application of fractional-order control techniques to flotation systems, a domain
where such methods have not been previously implemented. By leveraging fractional
calculus, this research aims to enhance the control performance and robustness of
flotation processes, providing a new perspective on optimizing these complex systems.

3. A comparison of our fractional controllers, a FOPID controller and a FOMRAC, was
carried out, determining the gains of both controllers via particle swarm optimization
(PSO) and comparing these with that of their integer counterparts.

Therefore, after analyzing the results of comparisons based on the performance indexes
of two plants, it can be concluded that the fractional controllers generally offer significant
advantages over integer controllers. Notably, the fractional reference model controller
demonstrates exceptional performance in the flotation cell bank, showcasing a substantial
improvement over the other controllers. This advantage is reflected in various performance
metrics, highlighting the efficacy of fractional controllers in achieving better control and
stability in these processes.

We recommend several avenues for future research, including the real-world im-
plementation or laboratory testing of fractional calculus and controllers. Additionally,
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exploring the discretization of fractional calculus and controllers will be essential for their
practical application. Furthermore, we suggest investigating alternative optimization
techniques beyond PSO to enhance the design and performance of fractional controllers.

This paper begins with Section 2, which introduces the fundamental concepts of frac-
tional control, including fractional-order PID control and fractional-order model reference
adaptive control, and provides an overview of the flotation process. Section 3 details the
modeling of both the flotation cell bank and flotation column, outlining the methodologies
and parameters used. Section 4 presents a comparative analysis of different controllers,
including their tuning with PSO and the results from simulations using cell bank flota-
tion and column flotation. Finally, Section 5 summarizes the conclusions drawn from the
study, reflecting on the performance of fractional controllers and suggesting directions for
future research.

2. Preliminaries

This section presents the basic concepts of the fractional-order calculus which will
be used in this study. Following the main basic definitions of FO operators (FOOs),
the fractional-order PID (FOPID) and the fractional-order MRAC (FOMRAC) control strate-
gies are described.

2.1. Fractional Control Concepts

We will first review the basic definitions associated with fractional calculus. An exten-
sive review of the basic theoretical concepts of fractional calculus can be found in [41–44].
Fractional calculus is a generalization of classical calculus that extends the concept of
derivatives and integrals to non-integer (fractional) orders. It provides tools for describing
and analyzing processes that exhibit memory and hereditary properties which are not
adequately captured by traditional integer-order models [41].

The fundamental operators representing fractional-order differentiation (FOD) and
fractional-order integration (FOI) are denoted by Dα, where α ∈ R is the order of differenti-
ation or integration. Thus, the FO derivative and integral operators are denoted as

Dα =


dα

dtα , α > 0,

1, α = 1,∫
(dτ)α, α < 0.

(1)

There exist several alternative definitions of FOD, such as those given by Weyl, Fourier,
Cauchy, Abel, and Nishimoto, among others. However, the three most used definitions of
FOD are the Grunwald–Letnikov (GL), the Riemann–Liouville (RL), and the Caputo (C) FO
derivatives [44]. These last three definitions are equivalents under some conditions for a
large class of functions [41]. In this study we will make use the FO derivative according to
Caputo, since it is the most used in engineering applications.

A Caputo derivative of order α of a function f (t) with respect to time is defined by

aDα
t f (t) =

1
Γ(n− α)

∫ t

α

f (n)(τ)
(t− τ)α−n+1 dτ, (2)

with n− 1 ≤ α < n.
Caputo’s definition has the advantage of adequately dealing with the initial conditions

(ICs), since they are given in terms of IO derivatives of the function. This is one of the
reasons to use Caputo’s derivative in this study. In the following sections, we present the
main properties of the fractional-order PID (FOPID) control and its fractional order.

2.2. Fractional-Order PID Control

This section first describes the basis of the classical IOPID [44,45] and then states the
theory of FOPID controllers, the foundation of which was developed in [6,44]. Next, we
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present a controller design based on [46] and its corresponding stability analysis [47,48].
Discrete FOPID controllers [49] and the latest advances in FO control [35] are then presented.
Figure 1 presents a block diagram of the PID controller used in the system.

Figure 1. Diagram of the PI system.

The transfer function of the IOPID controller is given by

C1(s) = Kp +
Ki
s
+ Kds, (3)

where {Kp, Ki, Kd} are the controller’s gains.
The generalization that corresponds to the FOPID associated with the FO derivative

of order µ and the FO integral of order λ is given by

C2(s) = Kp +
Ki

sλ
+ Kdsµ, (4)

where {λ, µ} are positive real numbers, typically in the interval (0,2). For λ = 1 and µ = 1,
the FOPID controller’s structure reduces to that of the classic IOPID controller. Other
controller variants like FOPI or FOPD can also be obtained by making λ = 0 or µ = 0.

Thus, the control action in the time domain would be [41,44]

u(t) = Kpe(t) + KiD−λe(t) + KdDµe(t). (5)

Figure 2 ([44], pag. 50) shows the regions in the {λ, µ} plane associated with all
possible combinations of λ ∈ [0, 1] and µ ∈ [0, 1] for the IOPID and FOPID controllers.
It is evident that the IOP, IOPI, IOPD and IOPID controllers are only four points in the
{λ, µ} plane and that FOPID controllers can use any values inside the plane, offering
more alternatives for them to control the system than the standard IOPID controllers,
i.e., the FOPID controller can be seen as a generalization of the classic IOPID controller.
Therefore, with this approach the designer has infinite degrees of freedom to choose the
parameters of the controller. Note that classical IOPID controllers can only reach the
four corners of the square in Figure 1. This FO approach has been applied to model
ultracapacitors in the frequency domain [50], in the level control of conical tank [36] and in
the control of a position servo with a time delay [8], among other applications.

Figure 2. Schematic representation of the fractional-order PID controller compared to its integer-order
counterpart [44].
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2.3. Fractional-Order Model Reference Adaptive Control

This section briefly describes the FOMRAC technique that will be used to control a
copper flotation cell bank and a copper column flotation, due to the characteristics and
importance of these mining processes. The MRAC technique has been widely developed
and applied in MIMO systems [10,45,51], multivariable plants with delays [52], plants
with the partial feedback of their states or little information given [52,53], autoregressive
models [9], nonlinear systems [54], discrete multivariables [55], a multivariate MRAC
designed using generalized passivation [56], and second-order systems [57].

Let us consider a linear MIMO time-invariant plant (TI) with m inputs and m outputs,
defined as

y(t) = G0(s)u(t), (6)

where G0(s) is an unknown rational transfer matrix and y(t) ∈ Rm and u(t) ∈ Rm are the
vectors of the outputs and inputs of the plant, respectively.

The objective of the MRAC is to find a feedback control vector u(t) for a continuous-
time plant (6) with unknown plant parameters such that y(t) tracks a given reference
signal ym(t) as closely as possible and the resulting closed-loop system is globally stable
in the sense that all signals in the system are uniformly bounded for any bounded initial
conditions. The reference model is given by

ym(t) = Wm(s)r(t), (7)

where Wm(s) is a known given mxm strictly proper and stable transfer matrix and r(t) ∈ Rm

is any piecewise, continuous uniformly bounded known signal.
To achieve such an objective, the following standard assumptions are made about the

plant transfer function G0(s):

• G0(s) is any transfer function of a full-rank, stable and minimum phase (i.e. all zeros
of G0(s) are in the left half of the complex plane).

• The upper bound v̄ on the observability index v of G0(s) is known.
• The high-frequency gain matrix Kp of G0(s) is such that SKp is a symmetric and

positive definite matrix for some known matrix S.
• The modified left interactor matrix of G0(s) is a lower triangle polynomial matrix

denoted as ξ(s).

Figure 3 presents a block diagram of the MRAC controller.

Figure 3. Diagram of the MRAC used in the system.

The MRAC controller depicted in Figure 2 utilizes a reference model matrix, which is
selected as follows:

Wm(s) = ξ−1
m (s) (8)
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Considering that ξ(s) is not unique and r(t) can be realized through input dynamics,
there is a lot of flexibility in choosing the model’s dynamics.
The controller structure is chosen to be

u(t) = θT
1 ω1(t) + θT

2 ω2(t) + θT
20y(t) + θT

3 r(t) (9)

where ω1(t) =
A(s)
n(s) [u](t) and ω2(t) =

A(s)
n(s) [y](t).

Some auxiliary equations are given by

ζ(t) = h(s)I[ω](t) (10)

ε(t) = K̃(t)ξ(t) + K∗ θ̃T(t)ζ(t) (11)

such that the fractional-order adjustment laws are given by

Θ̇α(t) =
−STε(t)ζT(t)

1 + ζT(t)ζ(t) + ξT(t)ξ(t)
(12)

K̇α(t) =
−Γε(t)ξT(t)

1 + ζT(t)ζ(t) + ξT(t)ξ(t)
(13)

In a fractional MRAC system in a plant (6) subject to the previously described as-
sumptions, the model (7), the controller (9) with the fractional adaptive laws (12) and
(13), all uniformly bounded signals and the tracking error e(t) = y(t)− ym(t) go to zero
asymptotically with time.

The stability of the FOMRAC system, specifically in relation to the Caputo derivative,
has been rigorously demonstrated and proven in prior works [3,4,58]. These studies
present comprehensive theorems that establish the uniform stability of fractional-order
systems within the Lyapunov framework. The proofs provided in these references reinforce
the robustness of the FOMRAC, ensuring that the system maintains stability under the
influence of fractional dynamics, which is critical for the effective control of such systems
during their practical application.

2.4. Flotation Process

Copper mineral processing can be divided in two sectors; the mine and the con-
centrator plant. Inside the concentrator plant, the processes can vary, but they can be
summarized into the following steps [34]: primary crushing, grinding, flotation, thickness
filters and concentration.

The flotation stage is quite important since allows us to separate the copper from
the rock using its so-called aerophilic property [59]. This property allows some materials
to adhere more easily to air bubbles than others, so that the valuable material floats and
unusable materials remain at the bottom of the cell [60].

The basic unit used for this process is called a flotation cell or flotation column. This is
a tank or vessel of different dimensions depending on the amount of material that needs
to be processed. The so-called “pulp material”, which comes from the previous stage of
the process where the rock is ground and mixed with water, enters into this tank, cell
or column, which has two outputs; the first one is where the concentrate of the valuable
material (in this case, copper) comes out and the other one is where the remaining material
(poor-in-value material) is extracted.

To carry out this process, some chemicals (foaming agents and collectors) are added.
These greatly facilitate this process. In the units (tank or column), there is a scraper
connected to a motor that drives air and generates movement to generate bubbles. Thus,
the valuable material can rise and be removed due to overflow.

The objective is to control the pulp level so that the froth overflows the cell border in a
controlled way. This material moves to the next stage and the remaining material can be
passed to another cell or tank. Figure 4 presents the cell flotation process.
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Figure 4. Operating principle of flotation cell process.

3. Model Description

The methodology employed in this study utilizes data from a real process referenced
in previous research to design fractional-order controllers specifically tailored to operating
around the process’s operational point. The key advantage of this approach is that it
enables the development of controllers that are directly applicable to real-world scenarios,
enhancing their practical relevance. However, one of the main challenges of this method is
the difficulty in experimentally validating the proposed controllers.

The two controllers described in Sections 2.2 and 2.3 will be developed to carry out
this process in both a flotation cell bank and flotation column. Notably, the information
used for modeling was sourced from prior studies. The model of the flotation cells, based
on data from a real industrial process in Chile, was obtained from [34], while the model of
an industrial process in Peru was derived from [30].

3.1. Flotation Cell Bank Modeling

In this section, a linear mathematical model obtained from the identification system
in [34] is employed. The data were extracted from an operational mine, so this mathematical
model is a very useful approximation of real behavior. Although the mentioned project
works with two lines in parallel, in this work only line 1 will be considered. The simulated
plant has five flotation cells in series, each one of 3000 [ft3] capacity, as shown in Figure 5.

Figure 5. Configuration of a flotation cell bank.

For each cell, we determined the transfer functions and ended up with five linearized
SISO systems in series, which were expressed in the state space, forming a MIMO system.
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The representation of the five cells using state variables is given below:

Aa1 =


0 0 0 0
1 0 0 0
0 1 0.959 0
0 0 0 1

, Ba1 =


−0.3413 0
−0.1122 0
0.4876 0.063

0 0

,

[
Ca1 = 0 0 1 1

]
, Um1(t) =

[
y2(t)
u1(t)

]
, Xma1 =


x11(t)
x12(t)
x13(t)
d1(t)

.

(14)

Aa2 =

0 −0.7433 0
1 1.7069 0
0 0 1

,

Ba2 =

 0 −0.1812 0 0.0288
0.0339 0.2175 −0.0309 0.0292

0 0 0 0

,

Ca2 =
[
0 0.5 1

]
, Um2(t) =


y1(t)
y3(t)
u1(t)
u2(t)

, Xma2 =

x21(t)
x22(t)
d2(t)

.

(15)

Aa3 =


0 0 0.3316 0

0.5 0 −0.6909 0
0 2 2.0189 0
0 0 0 1

,

Ba3 =


0 0 0 0
0 −0.0366 0 0.0308

0.0677 0.1119 −0.0721 0.0578
0 0 0 0

,

Ca3 =
[
0 0 0.25 1

]
, Um3(t) =


y2(t)
y4(t)
u2(t)
u3(t)

, Xma3 =


x31(t)
x32(t)
x33(t)
d3(t)

.

(16)

Aa4 =

0 −0.5686 0
1 1.5151 0
0 0 1

,

Ba4 =

−0.2458 −0.091 0 0
0.3045 0.1243 −0.14 0.1662

0 0 0 0

,

Ca4 =
[
0 0.5 1

]
, Um4(t) =


y3(t)
y5(t)
u3(t)
u4(t)

, Xma4 =

x41(t)
x42(t)
d4(t)

.

(17)
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Aa5 =


0 0 0 0
1 0 −0.6925 0
0 1 1.6697 0
0 0 0 1

,

Ba5 =


0 0 0.0052
0 −0.1836 0.0711

0.0547 0.0072 0.0188
0 0 0

,

Ca5 =
[
0 0 0.25 1

]
, Um5(t) =

y4(t)
u4(t)
u5(t)

, Xma5 =


x51(t)
x52(t)
x53(t)
d4(t)

.

(18)

To identify the parameters of the system in [34], six experiments were performed.
In five of these experiments, five inputs were manipulated at a time and used to estimate
the linearized model of the level of each of the cells around the operating point.

The operating point at which the cells work in this plant corresponds to that of the
“Rougher” circuit, which is around 20 [cm]. In some cases, this operating point must be
modified to compensate for flow changes in the process’s input, which corresponds to a
practice allowed when identifying the system, as long as these changes are smaller than the
changes applied by the control signal. Disturbances are inevitable, since this information
was extracted from a real process that is carried out during production.

In this identification process, the mathematical models of each cell have an acceptable
degree of confidence, which is as follows: Cell 1 = 70%, Cell 2 = 90%, Cell 3 = 82%,
Cell 4 = 65% and Cell 5 = 55%.

As a consequence, we have obtained a reliable mathematical model for performing
tests and designing the parameters of the corresponding controllers that will be simulated
in MATLAB-Simulink.

The objective is to keep the level of the five flotation cells around their pre-specified levels
using the percentage of valve opening at the output of each tank as the manipulated variable.

It is important to mention that all simulations were performed on the same simulation
platform MATLAB Version 9.9.0.1467703 (R2020b). Moreover, a continuous-time simulation
was conducted in MATLAB, where the software internally manages discretization, allowing
all proposed controllers and fractional calculus components to be treated as part of a
continuous system.

3.2. Flotation Column Modeling

In this section, a linear mathematical model and an identification system based on
information extracted from an operating mine [30] are studied. In this case, a flotation
column model was first obtained, which is a multivariable system with four inputs and
two outputs, as observed in Table 1. A schematic diagram of the experimental set-up is
shown in Figure 6 and the meaning of the variables and their transfer functions are given
in Table 1.

These were transformed into state variables so that both models were managed similarly.
In [30], the identification procedure of a real flotation column was developed, as pre-

viously mentioned, using the input and output data, obtained in real time, of different
variables subject to natural perturbations of the system, which are complicated to eliminate
in real systems.

As a result, a multivariable dynamic behavior model with two outputs and four inputs
was obtained.

The validation results of the mathematical model are as follows: G11 = 85%, G21 = 83%,
G12 = 89%, G22 = 84%, G13 = 85%, G23 = 87%, G14 = 90%, G24 = 90%.
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Figure 6. Schematic diagram of the flotation column.

Table 1. Flotation column transfer functions.

Variable Interface Level (H)

Washing water (Qw) G11(z) = 0.002564z−4+0.001215z−5

1−0.3068z−1−0.6871z−2

Tailings (Qc) G12(z) = −0.006483z−4

1−0.9962z−1

Pulp feeding (Qa) G13(z) = 0.002875z−2

1−0.9989z−1

Air flux (Qg) G14(z) = 0.002204z−2

1−0.9925z−1

Air holdup (ε)

Washing water (Qw) G21(z) = −0.03902z−7+0.03806z−8

1−1.199z−1+0.2439z−2

Tailings (Qc) G22(z) = 0.004358z−9−0.005267z−10+0.003042z−11+0.0007577
1−0.8276z−1+0.6438z−2−0.7666z−3

Pulp feeding (Qa) G23(z) = −0.0000614z−6

1−0.9989z−1

Air flux (Qg) G24(z) = 0.0004991z−8

1−0.9965z−1

The acceptance grades exceed, in all cases, 80%, which is even better than those
obtained for the flotation cell bank. Therefore, this flotation column model can be used for
the design of controllers.

According to [30,61], this model can be reduced through its controllers, and they are
reduced in the following ways:

• When controlling the interface level (H), the main reference is the flow of the queues.
• When controlling the air holdup (ε), the main reference is the airflow.
• The other inputs can be kept constant.
• This system is still considered MIMO, because the constants and other signals still act,

although with a smaller impact than that of the main variable, according to the output.

According to these points, the model can be reduced to a MIMO one with two inputs
and two outputs using these reductions.

4. Case Studies and Comparative Analysis

The PID controller and the MRAC were applied to both a flotation column and flotation
cell bank. The IOPID controller (5), with λ = µ = 1; the FOPID controller (5); the IOMRAC
(9) to (13) controller, with α = 1; and the FOMRAC (9) to (13) controller were analyzed and
compared. In the next section, we explain how the gains of the IOPID, FOPID, IOMRAC
and FOMRAC controllers were adjusted.
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4.1. Controller Tuning

The particle swarm optimization (PSO) algorithm is briefly described in the theoretical
framework shown in Figure 7. This procedure determines the best values of the gains of
the different controllers.

Figure 7. PSO flowchart.

Cost functions are widely used in the literature because they consider, in their structure,
the different parameters or indexes that are to be minimized or maximized, as the case
may be. In addition, they account for restrictions regarding the λ-dimensional search
space. In order to quantify the best controller performance based on [62,63], among others,
the objective function used in this work is given by

OF = w1

∫ t

0
|e(t)|dt + w2

∫ t

0
t ∗ |e(t)|dt

+w3

∫ t

0
e(t)2dt + w4

∫ t

0
t ∗ e(t)2dt,

(19)

where e(t) = y(t)− r(t) is the control error. The elements in Equation (19) are derived
from [62]. The first term,

∫ t
0 |e(t)|dt, represents the Integral Absolute Error. The second term,∫ t

0 t ∗ |e(t)|dt, corresponds to the Integral Time Absolute Error. The third term,
∫ t

0 e(t)2dt,
is the Integral Square Error, and the fourth term,

∫ t
0 t ∗ e(t)2dt, represents the Integral Time

Square Error. The weights w1, w2, w3 and w4 assigned to these terms are based on the
method described in [63], where a simplified version of PSO is employed, with maximum
and minimum limits set for the weights. The weight factors wi establish the weighting of
each index, depending on the scales or which one is given the greatest importance; for this
function, the overpass or the stabilization time is not considered, because the problem in
both cell banks and flotation columns lies in their oscillations and around the reference
point more than how long it takes them to reach a stable state or the size of their overshoot.

When the gains of the integer and fractional PID controllers, Kp, Ki and Kd, and the
gains of the integer and fractional MRAC controller are within a range of −100, 100 and the
values of the fractional orders λ and µ are within the range of 0, 2, simulation times will
vary for both the flotation cell bank and the flotation column.
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In particular, for the PSO method, the specific parameter values utilized in this study
align with those defined in [64,65]:

• The initial population cannot be the same as the one chosen as in the literature, since
up to three times as many parameters are optimized in our study. As the number of
initial individuals is specific to each problem, in this study 150 particles were defined
for the search process.

• The variable inertia factor was chosen to be wmax = 1.9 and wmin = 0.4.
• The acceleration constants were chosen to be c1 = 2 and c2 = 2.
• The maximum number of interactions was set as itermax = 1000.

With these parameters and some variations for specific cases, and with wi = 1,
the gains and fractional orders of the controllers were determined. Their corresponding
simulation tests and an analysis of the results will be performed in the following section.

Therefore, it can be concluded that there are models of both the flotation cell bank and
flotation column that are quite close to reality and ready for the development of controllers,
with corresponding limitations. After this, the objective function was determined to
determine the gains of the controllers in both plants.

The resultant parameters for the IOPI, FOPID, IOMRAC and FOMRAC controllers
applied to the flotation cell bank and to the flotation column when there is a step change in
the reference signal are shown in the table below.

4.2. Flotation Cell Bank Behavior under Reference-Based Variations

For the flotation cell bank, a reference-based change from 20 to 25 cm was applied;
these values are within the operating range and align with the point around which the
mathematical model was identified. The simulation ran for 6000 s, with the reference’s
change applied at 2000 s, similar to the tests performed in [34]. These reference-based
changes are external inputs or adjustments made by technical supervisors, representing
the real changes and values extracted from [34]. Physically, these changes correspond to
maintaining a level close to the optimal extraction point of the valuable material. The control
system regulates this level to ensure the efficient extraction of the target material during
the flotation process. These reference-based changes are illustrated in Figure 8.

[Cell 1]

Figure 8. Cont.
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[Cell 2]

[Cell 3]

[Cell 4]

Figure 8. Cont.
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[Cell 5]

Figure 8. Response of the cells to a step change from 20 to 25 cm.

Table 2 shows the gains from the PSO algorithm and the performance indexes accord-
ing to the cells’ step response. The table details the control gains for each cell, including
those using the IOPI, FOPID, IOMRAC, and FOMRAC. Specifically, it includes information
on the proportional and integral gains of the IOPI, the fractional order and the gains of the
FOPID, the adaptive law gains of the IOMRAC, and the fractional order of the FOMRAC.

It was observed that several controllers do not stabilize if their response is ∞; this is
due to the constant oscillations maintained by their response that, being punctual, does not
reach a stabilization time with the 2% criterion.

In general and in most of the results, fractional controllers have an advantage over
their integer counterparts, but, in general, in most performance indexes, the FOMRAC
controller has an advantage over the others.

Figure 8 shows the behavior of cells when the reference is changed.
The most striking thing about the response in the first cell in Figure 8 is the 44.87%

overshoot of the entire PI controller; it can be seen that both the IOPI and FOPID maintain
constant oscillations, something that is solved by both the IOMRAC and FOMRAC.

In Figure 8, similarly to PI, cell 2 has a significant overshoot, in this case of 48.17%. Its
oscillations are increased with respect to those of cell 1, which is true for both the IOPI and
FOPID, and something totally solved by the IOMRAC and FOMRAC, in spite of the time
the oscillations persist for, and this is not something that is attenuated.

It is observed that in cell 3 in Figure 8, the PI’s oscillations are similar to its overshoot
and the IOMRAC shows oscillations that move closer to the reference point, while the
FOPID reduces the amplitude of its oscillations with respect to cell 2 and both the IOMRAC
and FOMRAC do not present oscillations after some simulation time.

In cell 4 in Figure 8, the PI’s results are very similar to those in the previous cell, where
the oscillations are equal to or greater than the overshoot; in this case the FOPID reduces
the oscillations even more, the IOMRAC presents a considerable negative overshoot, and
only the FOMRAC eliminates the oscillations after a period of settling.

In cell 5, in Figure 8, oscillations equal to or greater than the previous cells are ob-
served for the PI controller, while the FOPID manages to decrease the oscillations, the
IOMRAC has a notable negative overshoot and the IOMRAC and FOMRAC both eliminate
the oscillations.
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Table 2. Values and performance indexes with reference-based change from 20 to 25 cm.

Controller Gains Mp (%) tr (s) ts (s) ISE ITSE IAE ITAE

Cell 1

IOPI
Kp = 24.99

44.87 2020 ∞ 1.83 × 104 4.33 × 107 5599 1.62 × 107

Ki = 0.0033

FOPID

Kp = 1.99

18.93 2080 ∞ 4032 1.04 × 107 3090 9.06 × 106

Ki = 2.17

Kd = 2.2

λ = 0.12

µ = 0.26

IOMRAC Γ = 0.0066 3.86 2170 3270 2677 5.81 × 106 1327 3.43 × 106

FOMRAC
Γ = 0.123

3.84 2290 2580 2949 6.21 × 106 1488 3.67 × 106

α = 0.8

Cell 2

IOPI
Kp = 24.99

48.17 2040 ∞ 2.96 × 104 7.74 × 107 8858 2.65 × 107

Ki = 0.0033

FOPID

Kp = 1.02

16.5 2090 ∞ 8311 2.32 × 107 5137 1.54 × 107

Ki = 0.9

Kd = 0.5

λ = 0.2

µ = 0.04

IOMRAC Γ = 6.35× 10−5 2.68 2150 2840 2289 4.81 × 106 1030 2.54 × 106

FOMRAC
Γ = 0.104

2.58 2370 2600 3619 7.68 × 106 1799 4.59 × 106

α = 0.543

Cell 3

IOPI
Kp = 39.99

34.56 2040 ∞ 3.28 × 104 1.04 × 108 1.03 × 104 3.24 × 107

Ki = 0.0033

FOPID

Kp = 1.178

0.032 2090 ∞ 5649 1.71 × 107 4784 1.48 × 107

Ki = 1.9

Kd = 1.33

λ = 0.1

µ = 0.08

IOMRAC Γ = 0.757 20.04 2080 3290 3356 7.44 × 106 1663 4.31 × 106

FOMRAC
Γ = 0.742

0.19 2370 2270 1921 4.25 × 106 1736 4.9 × 106

α = 0.318

Cell 4

IOPI
Kp = 39.99

29.29 2050 ∞ 4.3 × 104 1.03 × 108 1.2 × 104 3.23 × 107

Ki = 0.0033

FOPID

Kp = 1.07

5.84 2050 ∞ 1834 5.25 × 106 2565 7.86 × 106

Ki = 2.4

Kd = 2.87

λ = 0.37

µ = 0.1

IOMRAC Γ = 0.04 35.31 2190 3590 2.91 × 104 6.34 × 107 4181 1.02 × 107

FOMRAC
Γ = 0.032

7.75 2250 2480 8011 1.68 × 107 2075 4.93 × 106

α = 1.142



Mathematics 2024, 12, 2789 17 of 23

Table 2. Cont.

Controller Gains Mp (%) tr (s) ts (s) ISE ITSE IAE ITAE

Cell 5

IOPI
Kp = 39.99

54.86 2110 ∞ 1.42 × 105 4 × 108 2.35 × 104 6.95 × 107

Ki = 0.01533

FOPID

Kp = 1.6

8.55 2100 ∞ 1.56 × 104 4.85 × 107 8191 2.54 × 107

Ki = 2.07

Kd = 2.58

λ = 0.4

µ = 0.29

IOMRAC Γ = 4.06× 10−4 2.49 3060 3790 3.58 × 104 8.13 × 107 5704 1.42 × 107

FOMRAC
Γ = 0.172

6.47 2220 2590 2963 6.22 × 106 1105 2.51 × 106

α = 1.152

Where Mp is the maximum (percentage) overshoot; tr is the rise time, which is the time required for the response
to go from 0% to 100% of its final value; and ts is the settling time, which is the time required for the response
curve to reach its final value range (usually 2 or 5%), in this case 2% was considered the final value. All this
information was extracted from [66], and this applies to both the flotation cell bank and flotation column.

4.3. Flotation Column Behavior against Reference-Based Variations

For the flotation column, different reference-based changes were applied: a step
change in the level (H) from 240 to 290 cm and a step change in the air holdup from 24% to
29%. The simulation lasted 250 s, with the referenced changes applied at 50 s, similar to the
tests carried out in [30]. Since the column has a greater height, the values for its level are
naturally higher. The specific process of column flotation allows for the control of additional
variables; in this case, air holdup is considered, while other variables are kept constant.
As with the flotation cell, the level changes are external references set by other programs
or technical supervisors to ensure the optimal extraction of valuable material. The control
of air holdup pertains to managing the air content within the column to maintain a stable
flotation process performance, as in [30]. These reference-based changes are illustrated in
Figure 9.

[Level]

Figure 9. Cont.
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[Air Holdup]

Figure 9. Float column level with reference-based changes.

Table 3 shows the gains from the PSO algorithm and the performance indexes of
the controllers according to the step response of the flotation column. The table details
the control gains for column flotation, including when using the IOPI, FOPID, IOMRAC
and FOMRAC. Specifically, it provides information on the proportional and integral gains
of the IOPI, the fractional order and associated gains of the FOPID, the adaptive law gains
of the IOMRAC, and the fractional order of the FOMRAC.

It can be seen that, in terms of level control, the FOMRAC controller has an advantage
in terms of overshoot; in terms of rise time (tr), the FOPID controller responds best; in terms
of settling time (ts), the FOMRAC controller has a clear advantage, as shown in Figure 9.

While in Figure 9 it can be observed that there is no marked difference in the controllers
in the case of the flotation cell bank, Table 3 quantitatively details the advantages of
fractional controllers over integer-based ones. Although small in proportion, this advantage
can be highlighted in the output curve corresponding to the FOMRAC controller, which
arrives smoothly at the control level.

In Table 3, in terms of air holdup control, it can be observed that, in terms of the
percentage of overpass, the PI controller has better results, while, for the rise time, the
FOPID controller has an advantage and, in terms of other indicators, the FOPID controller
has better results. This is graphically evidenced in Figure 9.

It is observed that all the controllers reach a steady state, with the FOPID controller
having a slight advantage over the others here and in its rise time. Generally, in most
performance indexes, fractional controllers have an advantage, with a few exceptions.

In conclusion, after designing IOPI, FOPID, IOMRAC and FOMRAC controllers for a
flotation cell bank and a flotation column, their simulation show adequate results; in all
cases the error is eliminated asymptotically, except for in the flotation cell bank with a PI
controller, which is the same problem exhibited in [34].

Comparative evaluations of the controllers were carried out in both plants, in different
scenarios and with the proposed performance indexes; the results are quantitatively pre-
sented in Tables 2 and 3, with different controllers having advantages in different indexes,
but, in general, the fractional controllers having the advantage.
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Table 3. Values and performance indexes with reference-based level change from 240 to 290 cm and
air holdup change from 24 to 29%.

Controller Gains Mp (%) tr (s) ts (s) ISE ITSE IAE ITAE

Level

IOPI
Kp = −6.79

0.75 62 139.5 1101 5.85 × 104 144.9 9797
Ki = −0.05

FOPID

Kp = −8.98

2.29 59.5 148.5 1046 5.75 × 104 190.8 16,530

Ki = −0.92

Kd = 4.118

λ = 0.726

µ = 0.15

IOMRAC
Γ1 = 0.09

0.76 88 141 1328 7.25 × 104 180.4 13,180
Γ2 = 2.14

FOMRAC

Γ1 = 0.32

0.13 92.5 83 1169 6.24 × 104 156.6 9302
Γ2 = 2.9

α1 = 1.25

α2 = 0.94

Air Holdup

IOPI
Kp = −140.41

2.04 67 78 2721 1.53 × 105 288 2.48 × 104

Ki = 0.52

FOPID

Kp = 160.55

5.2 54.5 99.5 2367 1.32 × 105 261.3 2.07 × 104

Ki = 6.73

Kd = 15.92

λ = 0.873

µ = 0.13

IOMRAC
Γ1 = 3.72

3.77 61.5 148.5 2068 1.16 × 105 248.7 1.87 × 104

Γ2 = 0.46

FOMRAC

Γ1 = 0.32

5.74 60 126 2113 1.24 × 105 312.7 2.43 × 104
Γ2 = 0.16

α1 = 0.54

α2 = 1.43

5. Conclusions

Starting with our motivation to study the topic presented, the application of fractional
calculus concepts to control systems was proposed as our objective. In this sense, this work
allows us to conceptualize the fact that fractional calculus presents viable and interesting
alternatives that can be applied to engineering processes, particularly in automation,
through the extension of control schemes that traditionally use integer-order integration
and derivation to the those of fractional orders, whether in terms of integration, derivation
or both.

It is concluded that these mathematical models respond in a way that is very similar
to a real flotation cell bank and a real flotation column. Therefore, it is inferred that the
results of these simulations could be considered suitable for direct implementation, with the
corresponding adaptation of both sensors and actuators.

The level and air holdup variables affecting the efficiency of the process were selected
as control targets. In this research, the other variables were considered constant. IOPID,
IOMRAC, FOPID and FOMRAC controllers were designed using the PSO algorithm and
simulated. Regarding the interaction between system variables, the performance of the
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IOPID control loop was not desirable, especially in the flotation cell bank. In the flotation
cells, the FOMRAC controller in particular exhibited almost no oscillations, while all other
controllers showed characteristic process oscillations. Comparing the IOPID with the
FOPID, the fractional controller significantly reduced these oscillations. Considering level
control in the flotation column, the IOPID and FOPID exhibited notable overshoot, with the
FOPID showing a lower overshoot. However, the FOMRAC did not exhibit this overshoot,
indicating its superior performance. The performance of the FOPID and FOMRAC were
better in terms of the ISE, ITSE, IAE and ITAE indices.

This suggests that the integer controllers used for some industrial flotation processes
could be replaced by fractional controllers, which are of low cost and low implementa-
tion complexity compared to MPC controllers and result in a better performance than
integer controllers.

A significant limitation of this work lies in its simulation aspect, even though the mod-
els used are based on real processes. Another limitation is that fractional calculus requires
more processing capacity. It is important to address the discretization of fractional calculus
and controllers for their implementation outside of MATLAB, such as in microcontrollers
or systems with only discrete programming, which could be a direction for future work.

Our future work will include real-world experimentation with fractional controllers,
either through their practical implementation in industrial settings or through controlled
laboratory experiments. Additionally, efforts will be made to explore a discretization
design for fractional calculus, enhancing the applicability of these controllers in digital
systems. Other optimization techniques beyond PSO will be investigated for adaptive
controllers, with a particular focus on methods that do not rely on specific models, lever-
aging the inherent flexibility of adaptive control strategies. Comparisons will be made
between various fractional controllers and different adaptive configurations to assess their
relative performances. Furthermore, future research will address the process as a non-
linear system, moving beyond the viewpoint of operation around a single point. It is
also essential to explore alternative methods for calculating fractional calculus, such as
fractional dimensional reproducing kernel spaces [2], to fully capitalize on the benefits of
these advanced techniques.

In brief, fractional controllers demonstrate superior behavior compared to integer
controllers, requiring minimal changes in their design or implementation but necessitating
greater computational processing.
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