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Abstract: Evaluating the performance of city construction not only helps optimize city functions
and improve city quality, but it also contributes to the development of sustainable cities. However,
most of the scoring rules for evaluating the performance of city construction are overly cumbersome
and demand very high data integrity. Moreover, the properties, change scale, and scope of different
evaluation indicators of city construction often lead to uncertain and ambiguous results. In this study,
a hybrid fuzzy method is proposed to conduct the performance evaluation of city construction in two
phases. Firstly, a city performance index (CPI) was developed by combining the means and standard
deviations of indicators of city construction to address the volatility of historical statistical data as well
as different types of data. Considering the sampling errors in data analysis, the parameter estimation
method was used to derive the 100% × (1 − α) confidence interval of the CPI. Buckley’s fuzzy
approach was then adopted to extend the statistical estimators from the CPI into fuzzy estimators,
after which a fuzzy CPI was proposed. To identify the specific improvement directions for city
construction, the fuzzy axiom design (fuzzy AD) method was applied to explore the relationship
between the targets set by city managers and actual performance. Finally, an example of six cities
in China is provided to illustrate the effectiveness and practicality of the proposed method. The
results show that the performance of Chongqing on several evaluation indicators is lower than
that of other cities. The proposed method takes into account the issues of uniformity and diversity
in the performance evaluation of city construction. It can enable a quantitative assessment of the
city construction level in all cities and provide theoretical support and a decision-making basis for
relevant government departments to optimize city construction planning and scientifically formulate
city construction policies.

Keywords: fuzzy method; parameter estimation; confidence interval; fuzzy axiom design; city;
performance evaluation

MSC: 60A86; 62P25; 62C86

1. Introduction

With the rapid development and progress of technology and the increasing demand
for high-quality living environments, planning and constructing various modern and
distinctive cities based on natural environments and socio-economic conditions have
become important directions for governments worldwide by which to promote sustainable
city development. However, the exponential growth in urbanization has exacerbated
issues such as environmental pollution, resource shortages, and traffic congestion, placing
enormous pressure on city governance [1,2]. To address this issue, many countries have
implemented various enhancement and improvement measures. For example, the UK
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has established an Ultra-Low Emission Zone in London [3]. South Korea designated the
Gyeongpo area in Gangwon Province as a pilot project site for low-carbon green city
construction [4]. Denmark implemented a set of policies and actions to promote low-carbon
city construction in Copenhagen [5]. China launched a low-carbon pilot city construction
program in 2010, with 6 provinces and 81 cities currently participating in the initiative [6].

Improving the level of city construction and governance can help to integrate city
land resources and remove abandoned facilities, houses, factories, and stations that are
detrimental to city development [7]. Inefficient city construction disrupts normal on-road
vehicle traffic flow and increases travel costs, as well as affects air pollution levels in
adjacent areas [8,9]. High-quality city construction plays an important role in sustainable
development [10]. Effective city planning and management are crucial for promoting the
economic growth of the city as well as mitigating the energy demand for cooling or heating
and improving carbon efficiency [11,12]. Several studies have employed various methods
to explore the performance of city construction. Li et al. [13] investigated the impact of
low-carbon city construction on public transportation using a progressive difference-in-
difference method based on data from 265 Chinese cities from 2004 to 2016. Yang et al. [14]
analyzed the effect of low-carbon city construction on air quality using difference-in-
difference and panel threshold models. Through the networked and intelligent upgrading
and transformation of city infrastructure, the transformation of city management can be
accelerated, thereby enhancing the level of city construction and operational efficiency.
Indeed, smart city construction promotes city informatization and the construction of
intelligent infrastructure in addition to facilitating city green development. Based on
their study of 15 smart cities in the UK, Yigitcanlar and Kamruzzaman [15] found that
the construction of smart cities can effectively reduce carbon emissions. Mao et al. [16]
constructed an evaluation index system for the level of smart city construction using
multivariate data and evaluated the efficiency of the construction of 37 Chinese smart cities
from 2016 to 2021 using the super-efficiency slack-based model considering undesired
output and the Malmquist index. Wang [17] used the heterogeneity-robust estimator in
a differences-in-differences model to investigate whether smart city construction could
expand green space. Zhang et al. [18] used a difference-in-differences model to evaluate
the impact of information consumption policies in demonstration cities on CO2 and SO2
emissions based on panel data from 204 Chinese cities from 2010 to 2019.

In addition to focusing on low-carbon green and smart city construction, López-
Ruiz et al. [19] proposed a new methodology based on intellectual capital to measure the
growth capabilities of knowledge city construction by ranking 158 European cities using
73 different indicators. AlKheder et al. [20] evaluated 17 incidents of social disputes in city
construction projects and 12 factors of social risk in Kuwait using social risk analysis theory.
Zou et al. [21] studied the impact of China’s high-speed rail construction on the construction
of resource-based cities from both temporal and spatial dimensions using geographic
information system technology and spatial Durbin models. Chen et al. [22] explored
the effectiveness of China’s new energy demonstration city construction using a variety
of models, such as the synthetic control method, propensity score matching difference-
in-difference model, and spatial Durbin difference-in-difference model. Wu et al. [23]
proposed a novel evaluation model with 36 indicators following their study on city-scale
construction and the effectiveness of managing demolition waste in the Guangdong–Hong
Kong–Macao Greater Bay Area of China using an analytic hierarchy process.

Performance refers to the input–output relationship of an organization or system in
achieving its goals [24]. Performance evaluation aims to assess this relationship and provide
a basis for improving performance levels, in which good performance indicates achieving
higher output with lower inputs [25]. Performance evaluation has been widely applied
to assess city construction projects [26]. Evaluating and grading the performance of city
construction through quantitative indicators provides managers with crucial information
to understand the effectiveness of city construction projects. Therefore, the performance
evaluation of city construction refers to evaluating the “input–output” relationship during
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the city construction process and determining whether the construction outcomes achieve
the expected construction goals.

Although evaluating the performance of city construction is a very novel topic, it
is affected by multiple indications with diversity, multiplicity, and correlation [16]. First,
the properties, change scale, and scope of different indicators often lead to uncertain and
erroneous results [27]. Second, the performance evaluation of city construction is highly
comprehensive because of close interactions with environmental factors, thus limiting
the availability of reliable information [19]. Third, despite the fact that the field of city
construction has provided a range of, albeit limited, methods attempting to evaluate, mon-
itor, and measure the performance of city construction while effectively controlling the
decision-making process of city construction, most of the scoring rules are overly cumber-
some and demand very high data integrity [23]; this poses significant challenges for cities
with incomplete data [28]. Fourth, data for the indicators of city construction evaluation
typically come from cross-sectional or panel databases and exhibit high levels of uncer-
tainty and fuzziness, making them challenging to address with traditional mathematical
models [18,29]. Fifth, evaluating city construction performance is crucial for sustainable
city development. Scientifically and accurately assessing the level of construction perfor-
mance as well as understanding the gap between city construction performance and target
performance can assist in not only identifying shortcomings in city management but also
planning future improvement directions [26]. Sixth, no studies have combined fuzzy AD
for the performance evaluation of city construction.

Researchers have attempted to use traditional crisp measures to effectively convey
performance evaluations, but these approaches can be challenging [30]; therefore, the appli-
cation of fuzzy techniques is preferred to express preferences and/or evaluations in fuzzy
environments [31]. The contribution of this study lies in the two-phase pre-assessment,
which uses a hybrid fuzzy method for the performance evaluation of city construction.
First, we consider the fuzziness and uncertainty of data, extend crisp values into fuzzy
numbers, and propose a fuzzy CPI. By combining the fuzzy AD method, the fuzzy CPI
measures the performance of cities in various evaluation indicators against their targets
using probability ratios. This approach not only promotes a more scientific evaluation
of city construction performance but also simplifies and facilitates the decision-making
activities of city managers and policymakers. The main contributions are summarized
as follows:

• This study proposes a fuzzy CPI for conducting structured performance evaluations
of city construction based on limited data and fuzzy data, which helps government
departments take precise measures to address the shortcomings of city construction.

• This study considers various types of indicators involved in the performance evalu-
ation of city construction and discusses how changes in these indicators impact city
construction.

• Considering the limited resources and optimization, this study uses fuzzy AD to
conduct a computational analysis of city construction performance. This not only
provides a new perspective for evaluating city construction performance but also
extends and deepens the findings of previous research.

• Finally, based on empirical analysis, this study provides powerful recommendations
for city construction across different countries and regions.

The remainder of this paper is organized as follows: Section 2 elaborates on the fuzzy
CPI. Section 3 presents the evaluation level of city construction performance based on the
fuzzy AD and fuzzy CPI. Section 4 proposes a procedure for the performance evaluation of
city construction. Moreover, an example is provided for examining the applicability of our
approach. Conclusions and recommendations are drawn in Section 5.

2. Fuzzy City Performance Index

Most data on the evaluation indicators of city construction typically come from official
or industry institution statistical databases. To avoid the impact of the variability from the
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mean or average in the dataset for the performance evaluation of city construction, this
study employed the standard deviation as well as the mean, which took into account the
volatility and dispersion of the data, to reflect the dynamic changes in the city. Because
uncertainty and sample errors are inevitable when sampling from a population, fuzzy
numbers provide a more flexible and objective measurement method than crisp numbers
and can better reflect actual conditions. In this study, the proposed CPI was first classified
into cost data and benefit data based on the different types of data. A 100% × (1 − α)
confidence interval for CPI was then proposed using parameter estimations. Following the
combination of fuzzy parameter estimations, a fuzzy CPI was introduced.

2.1. City Performance Index and Its 100% × (1 − α) Confidence Interval

First, the CPI is defined as follows:

Tcpi =

〈 UCL−µ
σ , i = c for cost data

µ−LCL
σ , i = b for benefit data

(1)

where UCL and LCL, respectively, denote the upper and lower control limits of each
evaluation indicator of city construction performance, and µ and σ are, respectively, the
mean and standard deviation of historical statistical data of each evaluation indicator for
a city.

If µ + wσ = USL, the CPI for cost data is denoted as follows:

Tcpc =
UCL − µ

σ
=

(µ + wσ)− µ

σ
=

wσ

σ
= w (2)

Similarly, if µ − wσ = LSL, the CPI for benefit data is denoted as follows:

Tcpb =
µ − LCL

σ
=

µ − (µ − wσ)

σ
=

wσ

σ
= w (3)

Therefore, there is a one-to-one correspondence between CPI and standard deviation.
This means that when the CPI value is higher, data volatility is lower, indicating better
performance of the city with respect to the indicator.

Although CPI is powerful, it does not consider the biases and sampling errors that may
arise from estimations. As a result, we use a parameter estimation method to derive the
100% × (1 − α) confidence interval of CPI. Suppose that X1, . . . , Xj, . . . , Xn is a random sam-
ple from a normal of random variable X with mean µ and variance σ2, i.e., X ∼ N(µ, σ2),
then the maximum likelihood estimator (MLE) of mean µ and standard deviation σ are the
sample mean X and the sample standard deviation s, respectively. Hence, the MLE of CPI
with µ and σ can be represented as follows:

T̂cpi =

〈
UCL−X

s , i = c for cost data
X−LCL

s , i = b for benefit data
(4)

Considering that it is difficult to obtain complete data for various city construction
indicators, under the assumption of normality, let t follow a t distribution with n − 1
degrees of freedom (i.e., tn−1). Therefore, we obtain the following:

t =
X − µ

s/
√

n
∼ tn−1 (5)

By combining Equations (4) and (5), we have the following:

T̂cpi =

〈 √
n[(UCL−µ)−(UCL−X)]

s , i = c for cost data
√

n[(X−LCL)−(µ−LCL)]
s , i = b for benefit data

(6)
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The t-distribution is symmetric; therefore, we have the following [32]:

Pr(−tα′/2;n−1 ≤ t ≤ tα′/2;n−1) =
√

1 − α (7)

where tα′/2;n−1 is the upper α′/2 quantile of tn−1, α′ = 1 −
√

1 − α, and α is the signifi-
cance level.

Substitute Equation (6) into (7), we obtain the following:

Pr
{(

UCL − X
)
− tα′/2;n−1 ×

(
s√
n

)
≤ (UCL − µ) ≤

(
UCL − X

)
+ tα′/2;n−1 ×

(
s√
n

)}
=

√
1 − α (8)

On the assumption of normality, let K follow a chi-square distribution with n−1
degrees of freedom (i.e., χ2

(n−1)). Therefore, we obtain the following:

K =
(n − 1)s2

σ2 ∼ χ2
(n−1) (9)

and
Pr(χ2

α′/2;n−1 ≤ K ≤ χ2
1−α′/2;n−1) =

√
1 − α (10)

where χ2
α′/2;n−1 is the lower α′/2 quantile of χ2

(n−1).
Substitute Equation (9) into (10), we obtain the following:

Pr


√

χ2
α′/2;n−1

(n − 1)s2 ≤ 1
σ
≤

√
χ2

1−α′/2;n−1

(n − 1)s2

 =
√

1 − α (11)

Let Equations (8) and (11) be as follows:

Ω =

{(
UCL − X

)
− tα′/2;n−1 ×

(
s√
n

)
≤ (UCL − µ) ≤

(
UCL − X

)
+ tα′/2;n−1 ×

(
s√
n

)}
(12)

0 =


√

χ2
α′/2;n−1

(n − 1)s2 ≤ 1
σ
≤

√
χ2

1−α′/2;n−1

(n − 1)s2

 (13)

and Ω′ and 0′ denote the complement of sets Ω and 0, respectively.
Because Pr(Ω′ ∪0′) ≤ Pr(Ω′) + Pr(0′) = α and Pr(Ω ∩0) ≥ 1 − Pr(Ω′)− Pr(0′) =

1 − α, Equations (12) and (13) can be rewritten as follows:

Pr


√

χ2
α′/2;n−1

n − 1
×

(
T̂cpi −

tα′/2;n−1√
n

)
≤ Tcpi ≤

√
χ2

1−α′/2;n−1

n − 1
×

(
T̂cpi +

tα′/2;n−1√
n

) ≥ 1 − α (14)

Therefore, the 100% × (1 − α) confidence interval of CPI can be derived as follows:

T∗
cpi =

[
TLCL

cpi , TUCL
cpi

]
=

√χ2
α′/2;n−1

n − 1
×

(
T̂cpi −

tα′/2;n−1√
n

)
,

√
χ2

1−α′/2;n−1

n − 1
×

(
T̂cpi +

tα′/2;n−1√
n

) (15)

2.2. Fuzzy Estimator for City Performance Index

Previous studies on city construction have typically assumed that the data used for
evaluation indicators are precise. However, it is difficult to clearly quantify statistical
data [33,34]. Another possibility is that cross-sectional or panel databases contain some
ambiguities, which can lead to uncertainties and misjudgments in traditional city construc-
tion methods [34]. To address the fuzziness and uncertainty of statistical data, Buckley [35]
presented the use of the triangular fuzzy numbers (TFNs) generated by sets of confidence
intervals of parameters to construct the fuzzy parameter estimates [36]. Therefore, we
combine the proposed 100% × (1 − α) confidence interval of CPI in Section 2.1 with Buck-
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ley [35]’ fuzzy parameter estimations; we further propose a fuzzy CPI T̃cpi and its α − cut
as follows:

T̃cpi[α] =
[

T̂L
cpi(α), T̂R

cpi(α)
]
, 0.01 ≤ α ≤ 1 (16)

T̂L
cpi(α) =

(
T̂cpi −

tα/2;n−1√
n

)
×

√
χ2

α/2;n−1

n − 1
(17)

T̂R
cpi(α) =

(
T̂cpi +

tα/2;n−1√
n

)
×

√
χ2

1−α/2;n−1

n − 1
(18)

We can clearly see that T̂L
cpi(1) = T̂R

cpi(1) = T̂cpi ×
√

χ2
0.5;n−1
n−1 in the case when α = 1 [36].

Therefore, TFN of T̂cpi can be expressed as T̃cpi = ∆(T̃L
cpi, T̃M

cpi, T̃R
cpi), where

T̃L
cpi(α) = T̂L

cpi(0.01) =
(

T̂cpi −
t0.005;n−1√

n

)
×

√
χ2

0.005;n−1

n − 1
(19)

T̃M
cpi(α) = T̂cpi ×

√
χ2

0.5;n−1

n − 1
(20)

T̃R
cpi(α) = T̂R

cpi(0.01) =
(

T̂cpi +
t0.005;n−1√

n

)
×

√
χ2

0.995;n−1

n − 1
(21)

The membership function of fuzzy number T̃cpi is as follows:

ηT̃cpi
(x) =



0, i f x < T̃L
cpi

αL, i f T̃L
cpi ≤ x < T̃M

cpi

1, i f x = T̃M
cpi

αR, i f T̃M
cpi ≤ x ≤ T̃R

cpi

0, i f T̃R
cpi < x

(22)

where αL and αR are determined by T̃L
cpi(αL) = x and T̃R

cpi(αR) = x, respectively.

3. Fuzzy AD Based on the Performance Evaluation Level of City Construction

The performance evaluation of city construction is a process of comprehensively
assessing and ranking cities based on a series of indicators. The purpose of evaluating
the performance of city construction is not simply to rank the results of city construction
but instead, more importantly, to understand the gap between the actual performance
and the target performance of the city with respect to each indicator. Unlike traditional
multiple attribute decision-making methods that select maximum, minimum, or average
values as reference points (such as a technique for order of preference by similarity to ideal
solution (TOPSIS), vlsekriterijumska pptimizacija i kompromisno resenje (VIKOR), and tomada
de decisão iterativa multicritério (TODIM)), fuzzy AD uses probability ratios, which can better
measure how well the output performance of the city meets the target performance [37]. In
recent years, fuzzy AD has been widely applied in various fields, for example, maintenance
strategy for public buildings [38], financial decision-making in supply chains with credit
risk assessments [39], sites of electric vehicle charging stations [40], blockchain deployment
projects [41], development of an instructional design model for maritime education and
training [42], and human–machine interface design [43].

AD mainly includes two axioms: the independence axiom and the information ax-
iom [44]. The independence axiom indicates that the mutual influence between various



Mathematics 2024, 12, 2792 7 of 13

evaluation indicators of the city is minimized, while the information axiom suggests that
the city with the least information content ICi is the best one under various evaluation
indicators. In this study, the system range (SR) in the AD represents the actual performance
of the CPI, the target range (TR) represents the target performance of the CPI, and the
coverage area (CA) indicates the extent to which the actual performance meets the target
performance of the CPI. Let gi represent the success probability of the city meeting the CPI;
thus, the ICi is defined as follows:

ICi = log2

(
1
gi

)
(23)

gi =
CA
SR

(24)

The success probability gi can be obtained by combining the SR and TR. Hence, the
ICi can be rewritten as follows:

ICi = log2

(
SR
CA

)
(25)

In the process of evaluating the performance of city construction, the evaluation indi-
cators are composite indicators (i.e., qualitative and quantitative indicators). To effectively
quantify the evaluation results and address uncertainty, the crisp values of the evaluation
indicators can be transformed into fuzzy numbers through fuzzy AD. First, the values of
the evaluation indicators are mapped to the corresponding TFNs to obtain the fuzzy target
range (FTR) and the fuzzy system range (FSR). The intersection of the FTR and FSR is then
defined as the fuzzy coverage area (FCA). Let a TFN be a =

(
aL, aM, aR), aL ≤ aM ≤ aR,

and its membership function is represented as follows:

µa(x) =


(
x − aL)/

(
aM − aL), aL ≤ x ≤ aM(

aR − x
)
/
(
aR − aM)

, aM ≤ x ≤ aR

0 , others

(26)

The fuzzy AD is shown in Figure 1. The fuzzy information content FICi is expressed
as follows:

FICi = log2

(
FSR
FCA

)
= log2

(
∆aLcaR

∆ALmaR

)
(27)
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In the performance evaluation of city construction, the FTR (i.e., target performance)
of cost-type or benefit-type indicators is determined based on the performance level of city
construction, as shown in Table 1.

Table 1. Performance level of city construction.

Level Tcpi TFN Achievement Rate (AR)

Excellent 6 > Tcpi (0, 6, 6) AR ≥ 99.9999998%
Very good 5 ≤ Tcpi < 6 (0, 5, 5) AR ≥ 99.9999426%

Good 4 ≤ Tcpi < 5 (0, 4, 4) AR ≥ 99.9936657%
Acceptable 3 ≤ Tcpi < 4 (0, 3, 3) AR ≥ 99.7300203%

Poor Tcpi < 3 <(0, 3, 3) AR < 99.7300203%

Figure 2 is the fuzzy AD based on the performance levels of city construction. As
shown in Figure 2, the FICi can be rewritten as follows:

FICi = log2

(
FSR
FCA

)
= log2

(
S∆aLcaR

S
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4. Results
4.1. Operational Procedure for Performance Evaluation of City Construction

The performance evaluation of city construction involves management, renovation,
and improvement, with each indicator corresponding to different evaluation standards.
To facilitate implementation, we standardized the operational procedure for the proposed
method as follows:

4.1.1. Phase 1: Pre–Assessment

Step 1: Determine the evaluation indicators and collect relevant data for the perfor-
mance evaluation of city construction.

Step 2: Calculate the value of CPI Tcpi. First, identify the evaluation indicator type
and then compute the Tcpi values for each city with respect to each evaluation indicator
using Equation (1). A negative Tcpi value indicates that the performance of the evaluation
indicator is inadequate and should be prioritized for improvement. In other words, a larger
negative value equates to a higher priority for improvement.
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4.1.2. Phase 2: Rank

Step 3: Compute the value of fuzzy CPI T̃cpi. By using Equations (19)–(22), the
remaining Tcpi of each city with respect to each evaluation indicator can be transformed into
TFNs. The T̃cpi (i.e., FSR) for each city with respect to each indicator can then be obtained.

Step 4: Calculate the value of FICi. First, determine the performance level of city
construction (i.e., FTR) for each evaluation indicator based on Table 1 and convert them
into TFNs. Then, calculate the value of FICi for each city with respect to each evaluation
indicator using Equation (28).

Step 5: Rank all cities with respect to each evaluation indicator according to the
ascending order of FICi. Determine the improvement priority for all cities with respect to
each evaluation indicator based on the value of FICi. The smaller the value of FICi, the
higher priority the indicator for each city has for improvement.

4.2. An Application Example

To demonstrate the effectiveness of the proposed method in this study, the performance
evaluation of low-carbon city construction in China is used in the following as an example.
In recent years, rapid population growth, urbanization, and high-intensity human activities
have caused many severe environmental problems in China. As a result, China has been
implementing the first batch of low-carbon city pilot projects since 2010. The first batch of
low-carbon pilots in China includes five provinces and eight cities. As the implementation
of this policy has been in place for over a decade, the data are relatively comprehensive and
complete. In addition, based on comparability and data completeness, we selected six cities
for comparison: Tianjin, Chongqing, Shenzhen, Xiamen, Hangzhou, and Guiyang. In the
following, the method proposed in Section 4 was used to perform performance evaluations
of these cities.

Step 1: Six indicators were selected to evaluate the performance of low-carbon city
construction (see Table 2). The data for these evaluation indicators were sourced from
the statistical yearbooks of each city, the National Economic and Social Development
Statistical Bulletin (2015–2019), the Bureau of Landscape Architecture and Forestry Bulletin
(2015–2019), and the China Urban Rail Transit Yearbook (2015–2019).

Table 2. Performance evaluation indicator system of low-carbon city construction.

Indicator Calculation Formula Unit Type Benchmark Value

CO2 emissions per capita (X1) CO2 emissions/total population Ton/person Cost <7.28
Proportion of tertiary

industry (X2)
Tertiary sector output/total gross

domestic product (GDP) % Benefit >52.6%

Electricity consumption per
capita (X3)

Total electricity
consumption/total population KWh/person Cost <7500 KWh

Proportion of coal consumption
in total primary energy

consumption (X4)

Coal consumption/primary
energy consumption % Cost <27%

Public buses per capita (X5) Buses/total population Buses/10,000 people Benefit >12 buses
Rail length per capita (X6) Rail length/total population mm Benefit >17 mm

Step 2: Table 3 shows the values of Tcpi for each city with respect to each indicator.
Negative values indicate inadequate performance for a city in that indicator, which should
be prioritized for improvement in the first phase. For example, Tianjin, Shenzhen, and
Xiamen exhibited poor performance in CO2 emissions per capita (X1), with Shenzhen being
the worst performer among them.

Step 3: Table 4 shows the values of T̃cpi.
Step 4: Considering that low-carbon pilot cities in China have been in operation for

more than a decade and that these pilot cities should perform to an excellent level on all
indicators, we used “Excellent” as the standard for each indicator. According to Table 1, the
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FTR was determined as (0, 6, 6). Table 5 shows the values of ICi for each city with respect
to each indicator.

Step 5: Table 6 shows the ranking results of each city with respect to each indicator
using the proposed two-phase method. Note that a larger Tcpi value only suggests that the
city performs relatively well on that specific evaluation indicator. In fact, city construction
should be considered from an overall perspective, with a rational allocation of resources.
Furthermore, emphasizing overly high-performing indicators should be reduced, and
improving underperforming indicators should be a priority. For example, the performance
of Chongqing in electricity consumption per capita (X3) was the best among all cities;
however, after applying Fuzzy AD, its improvement priority dropped to fifth place.

Table 3. Values of Tcpi.

Indicator
City

Tianjin Chongqing Shenzhen Xiamen Hangzhou Guiyang

X1 −0.872 11.571 −4.566 −1.132 0.480 7.710
X2 1.391 −1.125 7.331 3.433 3.645 5.638
X3 −2.734 21.702 −15.365 −23.021 −11.276 3.772
X4 −13.291 −42.391 5.436 6.892 0.738 −2.192
X5 −4.029 −32.056 7.138 3.398 2.261 −22.807
X6 1.265 −10.378 12.158 0.118 −1.790 −4.517

Table 4. Values of T̃cpi.

Indicator
City

Tianjin Chongqing Shenzhen Xiamen Hangzhou Guiyang

X1 − (2.63, 10.6, 22.31) − − (0.11, 0.47, 0.93) (1.75, 7.06, 14.87)
X2 (0.32, 1.27, 2.69) − (1.67, 6.72, 14.14) (0.78, 3.14, 6.62) (0.83, 3.34, 7.03) (1.28, 5.16, 10.87)
X3 − (1.54, 18.07, 49.96) − − − (0.27, 3.14, 8.69)
X4 − − (0.38, 4.53, 12.52) (0.49, 5.74, 15.87) (0.05, 0.61, 1.71) −
X5 − − (0.51, 5.94, 16.44) (0.24, 2.83, 7.83) (0.16, 1.88, 5.21) −
X6 (0.09, 1.05, 2.92) − (0.86, 10.12, 27.99) (0.01, 0.1, 0.28) − −

Table 5. Values of ICi.

Indicator
City

Tianjin Chongqing Shenzhen Xiamen Hangzhou Guiyang

X1 − 1.79 − − 2.53 0.63
X2 1.21 − 0.50 0.32 0.09 0.01
X3 − 2.99 − − − 0.24
X4 − − 0.03 0.27 1.79 −
X5 − − 0.34 0.32 0.64 −
X6 1.19 − 1.52 4.09 − −

Table 6. Final ranking of the cities.

Indicator
City

Tianjin Chongqing Shenzhen Xiamen Hangzhou Guiyang

X1 3 5 1 2 4 6
X2 2 1 3 4 5 6
X3 4 5 2 1 3 6
X4 2 1 6 5 4 3
X5 3 1 5 6 4 2
X6 6 1 5 4 3 2
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5. Conclusions

This study proposes a two-phase fuzzy hybrid method that integrates fuzzy CPI and
fuzzy AD by which to leverage the advantages of each method. Specifically, the second
phase considers target performance to make the evaluation process more insightful, which
is the most significant aspect of the proposed method. The results of the case application
demonstrate the practical feasibility of this method, enabling city managers to accurately
identify the indicators that need the most immediate improvement and to coordinate
suitable resource allocation among them.

Although this study provides some reference and enlightenment for researchers to
study the performance of city construction in the future, it also faces some limitations. First,
this study presents the fuzzy CPI to address the volatility of historical statistical data as
well as different types of data. Due to the limitation of fuzzy CPI, future research could
incorporate qualitative data to gain deeper insights into the underlying motivations and
values of the population, providing a valuable supplement to quantitative results and
supporting city managers in making scientific decisions. Second, this study only uses TFNs
in the analysis. Further investigation into the nature of fuzzy preference degrees between
two fuzzy numbers or the inclusion of different fuzzy numbers, such as trapezoidal fuzzy
numbers, LR-type fuzzy numbers, and pentagonal fuzzy numbers, can also open up a
new research field. The proposed method only uses Chinese as an example; therefore,
future research could expand to address issues in the performance evaluation of other city
construction in other countries or regions.
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