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Abstract: One of the major issues facing commercial airlines is the time that it takes to board
passengers. Further, most airlines wish to increase the number of trips that an aircraft can make
between two or more cities. Thus, reducing the overall boarding times by a few minutes will have a
significant impact on the number of trips made by an aircraft, as well as enabling improvements in
key measures such as the median and 75th and 95th percentiles. Looking at such measures other than
the mean is critical as it is well known that the mean can under- or overestimate the performance
of any model. While there is considerable literature on the study of strategies to decrease boarding
times, the same cannot be said about the study of the boarding time given a particular strategy for
boarding. Thus, the focus of this paper is to study analytically (using suitable stochastic models)
and numerically the impact of reducing the average time on the key measures to help the system to
plan accordingly. This is achieved using a well-known probability distribution, namely the phase
type distribution, to model various events involved in the boarding process. Illustrative numerical
results show a reduction in the percentile values when the average boarding times are decreased.
Understanding the percentiles of the boarding times, as opposed to relying only on the average
boarding times, will help management to adopt a better boarding strategy that in turn will lead to an
increase in the number of trips that an aircraft can make.

Keywords: phase type distribution; passenger load factor; computational probability; transportation
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1. Introduction

The motivation for this work arose from a recent article in the Wall Street Journal [1],
as well as personal experience in traveling to many cities, both within the USA and abroad,
over the years. In the article, which has the subtitle “Southwest Airlines is studying ways
to squeeze more flights per plane—a big focus is on passenger boarding bottlenecks”, there
is a quote from the airline’s COO that reads, “If you can collect up enough of these minutes
in each turn, then you can start to squeeze out some more flying”. Further, the article
mentions that boarding times are key to enabling more trips to be performed by the aircraft.
This is probably due to the significant variations present in boarding as compared to other
aspects, such as cleaning the aircraft before boarding the passengers and the flying time.

A number of articles and research works on this topic have mentioned the bottlenecks
involved in the boarding process. For example, in [2], the author mentions that American
Airlines uses a single aircraft to make about six or seven trips in a single day. Further,
the author lists the activities that occur during the turnaround time, which is the time
between the aircraft pulling into the gate with the passengers onboard and the aircraft
taking off with a new set of passengers. According to [3], the most significant delays
could occur in the boarding process, and the article points out that the boarding time has
increased by more than 30% since the 1970s. Moreover, the distribution of the boarding
time tends to have a longer tail due to events such as late arrivals of passengers, passengers
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needing assistance, and a few last-minute occurences. Thus, a clear understanding of
the tail probabilities, namely percentiles, will help the system manager to provide the
needed resources.

A number of publications (see, e.g., [4–14]) discuss boarding strategies, such as front-
to-back, back-to-front, WILMA (window seats board first, followed by middles and aisles),
outside-in, reverse pyramid, first-come-first-served, random, or other methods in which
boarding is performing by calling each passenger group individually, such as Steffen [12],
and changes in the Steffen boarding method. Such strategies may provide insights to
determine a strategy that will speed up the boarding process. We refer the reader to [11]
for the different boarding methods adopted by a few airlines. In recent times, most
airlines have adopted a strategy that ensures that their most loyal customers are treated
better compared to others. Loyal customers are the ones who travel frequently and thus
accumulate significant award miles to achieve premier status—silver, gold, or platinum
(the category name depends on the type of airline). As is known, in any strategy that an
airline adopts, there is always randomness involved in the actual boarding process.

Thus, airlines can reduce the time involved in carrying passengers from one city to
another by considering various boarding strategies, as well as the boarding times. While
there is research (as pointed out earlier) on boarding strategies, to our knowledge, there
is no literature on the use of stochastic models to study the effect of a reduction in the
average boarding time on the overall performance of the boarding process. The study of
such stochastic models is very timely in view of the recent article by the Southwest COO
in the Wall Street Journal [1]. By building such stochastic models, in this paper, we try
to answer questions such as “how much will a reduction in the boarding time result in
an increase in the average number of trips made by an aircraft?”. With such quantitative
descriptions of the reduction in the boarding times’ percentiles, management can adopt an
appropriate boarding strategy to arrive at a reduction in the average boarding time.

Hence, our aim in this paper is to model the de-boarding–cleaning–boarding–flying
sequence, from point A to point B to point A (for circular travel, as seen in many airlines
in both local and international flights), using phase type (PH) distributions and show the
impact of eliminating one minute or more from the average boarding time on key measures
involving percentiles. It also seeks to quantify the guaranteed boarding time with a certain
level of confidence. We also point out how such modeling can be generalized to include a
travel path consisting of more than two cities, which does not always need to be circular.
Overall, airline companies are interested in scheduling their flights to maximize the number
of trips that an aircraft can make (under ideal conditions), and having a stochastic model to
analyze the time will contribute to such planning.

PH-distributions were introduced by Neuts [15] and have been extensively studied
in the literature (see, e.g., [16–20]). Recall that a PH-distribution is obtained as the time
until absorption in an irreducible Markov chain with an absorbing state. In other words,
given an irreducible continuous-time Markov chain (CTMC) with m transient states and
one absorbing state with the generator Q̃ of the form

Q̃ =

(
D d0

0 0

)
, (1)

where D of dimension m governs the transitions corresponding to the transient states and
the column vector d0 governs the rates of absorption into the absorbing state. Note that this
column vector is such that the sum of this and the row sum of D will lead to a zero vector
due to the property of the generator of being a CTMC. Suppose that the initial probability
vector of this CTMC is taken as α of dimension m. If X denotes the time until absorption
in the CTMC starting in one of the m transient states, then the probability distribution of
X is said to be a PH-distribution with representation given by (α, D) of dimension m. We
denote this statement by displaying X∼PH(α, D) of dimension m.

Its use in stochastic modeling has been amply demonstrated in numerous publications
since the seminal paper by Neuts. Very briefly, PH-distributions are obtained as the time
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until absorption in a finite Markov chain with one absorbing state. These distributions are
defined in both discrete and continuous time, and, here, our focus is on the continuous-time
version. To completely describe a PH-distribution, one needs an initial probability vector
and a finite-dimensional matrix that governs the transitions among the transient states.
For more details, including properties, examples, and computational aspects, we refer the
reader to the above-mentioned references. In particular, we refer to the recent book by
Chakravarthy [18] for detailed descriptions with a number of illustrative examples.

This paper is organized as follows. In Section 2, the basic model under study is
described, along with its analysis. The analysis of the model in both steady state and a
transient one is presented in Section 3. Illustrative numerical examples of the basic model
are discussed in Section 4 and concluding remarks are presented in Section 5.

2. Model Description

In this paper, we study boarding times by looking at only two cities, e.g., C1 and C2,
such that the same aircraft with a capacity to carry N passengers will shuttle back and forth
between these two cities. If one is interested in extending this to include multiple-city trips,
such as from city C1 to city C2 and to city C3, or to reflect circular paths such as C1 to city
C2 to city C3 to city C1, the model studied here can easily be generalized but with more
states to describe the system, and the details are left to the reader.

Generally speaking, the process involved in flying a commercial aircraft is as fol-
lows. After landing in a city, the aircraft pulls into the gate and the passengers de-board.
The cleaning of the aircraft occurs before a new set of passengers boards the plane. Once
the gate closes, the flight is ready to take off, and, after landing in a new city, the process
continues. It should be pointed out that while the de-boarding, cleaning, and boarding
times depend on the number of passengers, the time from the gate closing to landing in
another city does not depend on the number of passengers.

We assume that the vector of the probability mass function (PMF) of the number of
passengers boarding in city C1 is given by p1 = (p1,1, · · · , p1,N) and that of the one in city
C2 is p2 = (p2,1, · · · , p2,N). Thus, with probability p1,j, the aircraft with a capacity N will
leave city C1 with j passengers onboard. Similarly, with probability p2,j, the same aircraft
will leave city C2 with j passengers onboard. In this paper, we place no restriction on the
nature of these two PMFs. They can be generally distributed (e.g., binomial, truncated
geometric, and truncated Poisson) with support on the set {1, 2, · · · , N}.

We use PH-distributions to model the eight sets of random variables. Generally, the de-
boarding, cleaning, and boarding times depend on the number of passengers on the plane;
hence, we will model these dependencies by enabling the underlying PH-distribution
to include another set of parameters. Our analysis here can be modified to model the
dependencies under a more general setup using different PH-distributions. However, this
will increase the number of input distributions significantly. To this end, we define the
following (column) vectors of rates.

θr =

 θr,1
...

θr,N

, 1 ≤ r ≤ 6. (2)

Once again, we place no restriction on the nature of the rate vector, θr, 1 ≤ r ≤ 6,
for our modeling purposes. The following sets of random variables are needed to study
the model.

• Define the random variables, X1(j), 1 ≤ j ≤ N, for de-boarding in city C1 and assume
that X1(j)∼PH(β1, θ1,jS1) of dimension m1.

• Define the random variables, X2(j), 1 ≤ j ≤ N, for the cleaning of the aircraft while
in city C1 and assume that X2(j)∼PH(β2, θ2,jS2) of dimension m2.

• Define the random variables, X3(j), 1 ≤ j ≤ N, for boarding in city C1 and assume
that X3(j)∼PH(β3, θ3,jS3) of dimension m3.
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• Define the random variable, X4, to represent the time required for the aircraft to leave
the gate in city C1 and arrive at the gate for de-boarding in city C2. Let X4∼PH(β4, S4)
of dimension m4.

• Define the random variables, X5(j), 1 ≤ j ≤ N, for de-boarding in city C2 and assume
that X5(j)∼PH(β5, θ4,jS5) of dimension m5.

• Define the random variables, X6(j), 1 ≤ j ≤ N, for the cleaning of the aircraft while
in city C2 and assume that X6(j)∼PH(β6, θ5,jS6) of dimension m6.

• Define the random variables, X7(j), 1 ≤ j ≤ N, for boarding in city C2 and assume
that X7(j)∼PH(β7, θ6,jS7) of dimension m7.

• Define the random variable, X8, to represent the time taken for the aircraft to leave the
gate in city C2 and arrive at the gate for de-boarding in city C1. Let X8∼PH(β8, S8) of
dimension m8.

In the following, we need the terms below.

• e is a column vector of 1s with appropriate dimensions, which should be clear from
the context. Where clarity is needed, the dimensions will be displayed.

• I is an identity matrix of appropriate dimensions. Again, when clarity is needed, the
dimensions will be displayed.

• Suppose that a is a vector such that a = (a1, · · · , an). Then, ∆(a) denotes a diagonal
matrix of dimension n whose ith diagonal element is given by ai. The inverse, when it
exists, of this diagonal matrix will be denoted as ∆−1(a). In other words, ∆−1(a) =
[∆(a)]−1.

• The symbols ⊗ and ⊕, respectively, define the Kronecker product and sum of matrices.
A few key works on these can be found in [21–23].

We define a column vector S0
i of dimension mi to be such that

Sie + S0
i = 0, 1 ≤ i ≤ 8. (3)

For use in this work, we define the mean (µ′i), the variance (σ2
i ), and the invariant vector

(δi) of the PH-renewal process, namely Si + S0
i βi, associated with the PH-distribution

PH(βi, Si). These quantities are as given below (see, e.g., [18,20]).

µ′i = βi(−Si)
−1e, σ2

i = 2βi(−Si)
−2e− (µ′i)

2, δi =
1
µ′i

βi(−Si)
−1, 1 ≤ i ≤ 8. (4)

3. Analysis of the Model

In this section, we perform the analysis of the model both in time dependence and
steady state. The transient analysis will be focused on the boarding event. The reason that
we perform the steady-state analysis is that there are some airlines that operate regular
flights from city to city (due to constant demands in these sectors) and hence they would
be interested in determining how may trips can be made in the long run. With regard
to boarding, the transient analysis (i.e., time-dependent study) will shed light on the
performance of the boarding process by looking at key measures such as mean, median,
and some selected percentiles. Although we focus mainly on the boarding time and the total
time for the transient analysis, it is easy to consider other events involved in this process.

In order to study the model using the continuous-time Markov chain (CTMC), we
need to keep track of the state of the system under study. Before we display the state space
of the CTMC, we first define a few terms. By 1, 2, 3, 4, 5, 6, 7, and 8, we define the set of
states as

1 = {( ĵC1 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m1}, 2 = {( j̄C1 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m2},
3 = {( j̃C1 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m3}, 4 = {(jC1 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m4}
5 = {( ĵC2 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m5}, 6 = {( j̄C2 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m6},
7 = {( j̃C2 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m7}, 8 = {(jC2 , k) : 1 ≤ j ≤ N, 1 ≤ k ≤ m8},
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where, for 1 ≤ j ≤ N,

• ( ĵC1 , k) corresponds to the de-boarding process in city C1 (after the aircraft has landed
with j passengers onboard) and the phase is k;

• ( j̄C1 , k) corresponds to the aircraft (which originally had j passengers onboard) being
cleaned while in city C1 and the phase is in k;

• ( j̃C1 , k) corresponds to the boarding process in city C1 when the aircraft is to leave
with j passengers onboard and the phase is in k;

• (jC1 , k) corresponds to the state in which the aircraft is on its way to city C2 and the
phase is in k; note that we need to keep track of the number of passengers onboard
even though the traveling time is not dependent on the number onboard since the
de-boarding time in city C2 depends on this number;

• The other states, ( ĵC2 , k), ( j̄C2 , k), ( j̃C2 , k), and (jC2 , k), are similarly defined by replacing
city C1 with C2 and vice versa in the above definitions.

Noting that the system, at any given time, can only be in one of eight sets of states
(corresponding to the state of the aircraft, such as de-boarding/boarding/cleaning/leaving
city C1 or de-boarding/boarding/cleaning/leaving city C2), the state space, Ω, is given by

Ω = {1, 2, 3, 4, 5, 6, 7, 8}. (5)

The generator, Q, of the CTMC is given by

Q =

1 2 3 4 5 6 7 8



1 A1 A1,1
2 A2 A2,1
3 A3 A3,1
4 A4 A4,1
5 A5 A5,1
6 A6 A6,1
7 A7 A7,1
8 A8,1 A8

, (6)

where the entries of Q are as given below:

A1 = ∆(θ1)⊗ S1, A1,1 = ∆(θ1)⊗ S0
1 β2, A2 = ∆(θ2)⊗ S2, A2,1 = θ2 p1 ⊗ S0

2 β3,

A3 = ∆(θ3)⊗ S3, A3,1 = ∆(θ3)⊗ S0
3 β4, A4 = I ⊗ S4, A4,1 = I ⊗ S0

4 β5,

A5 = ∆(θ4)⊗ S5, A5,1 = ∆(θ4)⊗ S0
5 β6, A6 = ∆(θ5)⊗ S6, A6,1 = θ5 p2 ⊗ S0

6 β7,

A7 = ∆(θ6)⊗ S7, A7,1 = ∆(θ6)⊗ S0
7 β8, A8 = I ⊗ S8, A8,1 = I ⊗ S0

8 β1.

(7)

3.1. Steady-State Analysis

Let u = (u1, · · · , u8) denote the steady-state probability vector of Q. In particular,
u satisfies

uQ = 0, ue = 1. (8)

For later use, we further partition ui, for 1 ≤ i ≤ 8, as ui = (ui,1, · · · , ui,N). Note that
the vector ui,j of dimension mi, for 1 ≤ j ≤ N, gives the steady-state probability vector of
the underling process to be in state (i, j). The following theorem gives an explicit expression
for the vector u.
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Theorem 1. The vector u is explicitly given by

u1 = dµ′1(p2∆−1(θ1)⊗ δ1), u2 = dµ′2(p2∆−1(θ2)⊗ δ2), u3 = dµ′3(p1∆−1(θ3)⊗ δ3),

u4 = dµ′4(p1 ⊗ δ4), u5 = dµ′5(p1∆−1(θ4)⊗ δ5), u6 = dµ′6(p1∆−1(θ5)⊗ δ6),

u7 = dµ′7(p2∆−1(θ6)⊗ δ7), u8 = dµ′8(p2 ⊗ δ8),

(9)

where the invariant vectors δi, 1 ≤ i ≤ 8, are as given in Equation (4) and the constant d is
given by

d =
[
µ′1 p2∆−1(θ1)e + µ′2 p2∆−1(θ2)e + µ′3 p1∆−1(θ3)e + µ′4

+µ′5 p1∆−1(θ4)e + µ′6 p1∆−1(θ5)e + µ′7 p2∆−1(θ6)e + µ′8

]−1
.

(10)

Proof. Using the properties of the Kronecker product (see, e.g., [18,21,23]) and the invariant
vectors given in Equation (4), the steady-state equations given in Equation (8) can be
written as

u1 = µ′1u8(∆−1(θ1)⊗ S0
8 δ1), u2 = µ′2u1(∆(θ1)∆−1(θ2)⊗ S0

1 δ2),

u3 = µ′3u2(θ2 p1∆−1(θ3)⊗ S0
2 δ3), u4 = µ′4u1(∆(θ3)⊗ S0

3 δ4),

u5 = µ′5u4(∆−1(θ4)⊗ S0
4 δ5), u6 = µ′6u5(∆(θ4)∆−1(θ5)⊗ S0

5 δ6),

u7 = µ′7u6(θ5 p2∆−1(θ6)⊗ S0
6 δ7), u8 = µ′8u7(∆(θ6)⊗ S0

7 δ8),
8
∑

i=1
uie = 1.

(11)

From the equations given in (11), it is easy to verify, for 1 ≤ j ≤ N, that

u1,j =
µ′1
θ1,j

u8,jS0
8 δ1, u2,j =

µ′2θ1,j

θ2,j
u1,jS0

1 δ2, u3,j =
µ′3 p1,j

θ3,j

N
∑

k=1
θ2,ku2,kS0

2 δ3,

u4,j = µ′4θ3,ju3,jS0
3 δ4, u5,j =

µ′5
θ4,j

, u4,jS0
4 δ5, u6,j =

µ′6θ4,j

θ5,j
u5,jS0

5 δ6,

u7,j =
µ′7 p2,j

θ6,j

N
∑

k=1
θ5,ku6,kS0

6 δ7, u8,j = µ′8θ6,ju7,jS0
7 δ8,

(12)

from which we obtain

θ1,ju1,jS0
1 = θ2,ju2,jS0

2 = u8,jS0
8,

θ3,ju3,jS0
3 = u4,jS0

4 = θ4,ju5,jS0
5 = θ5,ju6,jS0

6 = p1,j
N
∑

k=1
u8,kS0

8,

θ6,ju7,jS0
7 = u8,jS0

8 = p2,j
N
∑

k=1
u8,kS0

8.

(13)

The stated result follows from Equations (12) and (13) and the normalizing condition
given in (11).

Suppose that W1, W2, W3, and W4, respectively, denote the times spent in de-boarding
the plane, cleaning the plane, boarding the plane, and leaving city C1 given that the aircraft
starts in this particular mode. In other words, W1 is the random variable keeping track of
the time that it takes to de-board the plane in city C1 given that de-boarding has started.
Similarly, let W5, W6, W7, and W8, respectively, denote the time spent in de-boarding the



Mathematics 2024, 12, 2795 7 of 22

plane, cleaning the plane, boarding the plane, and leaving in city C2. Then, the following
result shows that these random variables are all of the PH type.

Theorem 2. The random variables, Wi, 1 ≤ i ≤ 8, follow PH-distributions with representations
given as

W1 ∼ (p2 ⊗ β1, A1), W2 ∼ (p2 ⊗ β2, A2), W3 ∼ (p1 ⊗ β3, A3), W4 ∼ (β4, S4),
W5 ∼ (p1 ⊗ β5, A5), W6 ∼ (p1 ⊗ β6, A6), W7 ∼ (p2 ⊗ β7, A7), W4 ∼ (β8, S8).

(14)

Proof. Let γ denote the conditional probability that de-boarding starts in city C1. This
conditional probability is obtained by looking at the sequence starting with the cleaning of
the aircraft at city C2, which is then followed by the boarding of the aircraft and then the
plane leaving the city at an arbitrary time. It is easy to verify that

γ = d1u6(−A6)
−1 A6,1(−A7)

−1 A7,1(−A8)
−1 A8,1 = d1dµ′6(p1∆−1(θ5)e)(p2 ⊗ β1), (15)

where d1 is the normalizing constant. Thus, the time spent in the de-boarding state in city
C1 is of the PH type with the representation given in Equation (14). In a similar manner,
we obtain the other representations. It is worth pointing out that the reason for the smaller-
dimension representation for W4 and W8 is due to the fact that the flying time does not
depend on the number of passengers onboard the aircraft, unlike the other times.

Corollary 1. The mean (µ′Wi
) and the standard deviation (σ′Wi

) of Wi, 1 ≤ i ≤ 8, are obtained
explicitly as follows. In the following, we use the notation ξi for the second moment of Xi, 1 ≤ i ≤ 8.
In other words, ξi = 2βie(−Si)

−2e, 1 ≤ i ≤ 8.

µ′W1
= µ′1 p2∆−1(θ1)e, σ′W1

= ξ1 p2∆−2(θ1)e− (µ′W1
)2,

µ′W2
= µ′2 p2∆−1(θ2)e, σ′W2

= ξ2 p2∆−2(θ2)e− (µ′W2
)2,

µ′W3
= µ′3 p1∆−1(θ3)e, σ′W3

= ξ3 p1∆−3(θ3)e− (µ′W3
)2, µ′W4

= µ′4, σ′W4
= (σ′W4

)2,

µ′W5
= µ′5 p1∆−1(θ4)e, σ′W5

= ξ5 p1∆−2(θ4)e− (µ′W5
)2,

µ′W6
= µ′6 p1∆−1(θ5)e, σ′W6

= ξ6 p1∆−2(θ5)e− (µ′W6
)2,

µ′W7
= µ′7 p2∆−1(θ6)e, σ′W7

= ξ7 p2∆−2(θ6)e− (µ′W7
)2, µ′W8

= µ′8, σ′W8
= (σ′W8

)2.

(16)

Note 1. It is worth pointing out that the means of Wi are related to the probabilities ui, for 1 ≤ i ≤ 8,
as µ′Wi

= duie, where d is as given in Equation (10).

Suppose that T is the total time starting from city C1 until returning to city C1. Then,
we have the following result.

Theorem 3. The random variable, T, follows a PH-distribution with representation ((p2 ⊗

β1, 0), A) of order m8 + N
7
∑

i=1
mi, where A is given by

A =



A1 A1,1
A2 A2,1

A3 A3,1
A4 A4,1

A5 A5,1
A6 A6,1

A7 (θ6 ⊗ S0
7 β8)

S8


, (17)
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and the matrices appearing in A are as given in Equation (7). Further, the mean and the variance of
T are given by

µ′T =
1
d

,

σ2
T = µ′1ξ1 p2∆−2(θ1)e + µ′2

[
ξ2 p2∆−2(θ2)e + µ′1∆−1(θ1)∆−1(θ2)e

]
+µ′3

[
ξ3 p1∆−2(θ3)e + p1∆−1(θ3)e(µ′W1

+ µ′W2
)
]
+ µ′4

[
ξ4 +

3
∑

r=1
µ′Wr

]
+µ′5

[
ξ5 p1∆−2(θ4)e + µ′4 p1∆−1(θ4)e + µ′3∆−1(θ3)∆−1(θ4)e

]
+µ′5(µ

′
W1

+ µ′W2
)p1∆−1(θ4)e + µ′6

[
ξ6 p1∆−2(θ5)e + µ′5 p1∆−1(θ4)∆−1(θ5)e

]
+µ′6

[
µ′4 p1∆−1(θ5)e + µ′3 p1∆−1(θ3)∆−1(θ5)e + p1∆−1(θ5)e(µ′W1

+ µ′W2
)
]

+µ′7

[
ξ7 p2∆−2(θ6)e + p2∆−1(θ6)e

6
∑

i=1
µ′Wi

]
+ µ′8

[
ξ8 +

7
∑

i=1
µ′Wi

]
−

(1
d

)2
.

(18)

Proof. First, we define two vectors, a and b, as

a = (p2 ⊗ β1, 0)(−A)−1, b = a(−A)−1, (19)

so that
µ′T = a(−A)−1e, σ2

T = 2b(−A)−1e− (µ′T)
2. (20)

It should be pointed out that while we can obtain µ′T as µ′T =
8
∑

i=1
µ′Wi

, one needs to

exploit the structure of A to obtain σ2
T . The latter is due to the fact that the variance of

T cannot be obtained as the sum of the variances of Wi, 1 ≤ i ≤ 8, due to the possible
dependencies of these random variables within themselves. In order to obtain this variance,
we need to obtain the vector b, which depends on a. Moreover, one can use the vector a as
part of an internal accuracy check. Partitioning

a = (a1, · · · , aN), b = (b1, · · · , bN), (21)

and rewriting the equation a = (p2 ⊗ β1, 0)(−A)−1 as

a(−A) = (p2 ⊗ β1, 0), (22)

it is easy to verify, by exploiting the sparsity of the coefficient matrices, the following
expressions for the vector a.

a1 = µ′1(p2∆−1(θ1)⊗ δ1), a2 = µ′2(p2∆−1(θ2)⊗ δ2), a3 = µ′3(p1∆−1(θ3)⊗ δ3),

a4 = µ′4(p1 ⊗ δ4), a5 = µ′5(p1∆−1(θ4)⊗ δ5), a6 = µ′6(p1∆−1(θ5)⊗ δ6),

a7 = µ′7(p2∆−1(θ6)⊗ δ7), a8 = µ′8δ8,

(23)

where the invariant vectors δi, 1 ≤ i ≤ 8, are as given in Equation (4). Thus, we see

µ′T =
8

∑
i=1

aie, (24)

and, upon using Equations (23) and (10), we obtain the stated result for µ′T .
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Having obtained the expressions for a, we once again exploit the structure of the
matrix A to obtain the expressions for b. It is easy to verify that, for 1 ≤ j ≤ N, we have

b1,j =
1

θ1,j
a1,j(−S1)

−1, b2,j =
1

θ2,j

[
a2,j + a1,je β2

]
(−S2)

−1,

b3,j =
1

θ3,j

[
a3,j + p1,j(a1e + a2e)β3

]
(−S3)

−1,

b4,j =
[

a4,j +
(
a3,je + p1,j[a1e + a2e]

)
β4

]
(−S4)

−1,

b5,j =
1

θ4,j

[
a5,j +

(
a4,je + a3,je + p1,j[a1e + a2e]

)
β5

]
(−S5)

−1,

b6,j =
1

θ5,j

[
a6,j +

(
a5,je + a4,je + a3,je + p1,j[a1e + a2e]

)
β6

]
(−S6)

−1,

b7,j =
1

θ6,j

[
a7,j + p2,j

( 6
∑

i=1
aie

)
β7

]
(−S7)

−1, b8 =
[

a8 +
( 7

∑
i=1

aie
)

β8

]
(−S8)

−1,

(25)

from which the stated result follows immediately.

Note 2. Suppose that one is interested in looking at the time, V, that it takes to travel from city
C1 (from the instant that de-boarding starts) to city C2 (reaching the gate). Similarly to Theorem
3, it is easy to see that V follows a PH-distribution with representation ((p2 ⊗ β1, 0), B) of order

m4 + N
3
∑

i=1
mi, where B is given by

B =


A1 A1,1

A2 A2,1
A3 (θ3 ⊗ S0

3)β4
S4

, (26)

and the entries of B are as given in Equation (7). The mean and the standard deviation of V can be
obtained similarly and the details are omitted.

3.2. Transient Analysis

In this section, we perform a transient analysis with the main focus on the board-
ing time. However, we will briefly outline the analysis of the other events for the sake
of completeness.

From Theorem 2, it is easy to verify (see, e.g., [18–20]) that the PDF, e.g., fi(t), and the
cumulative probability distribution function (CDF), e.g., Fi(t), for the random variable Wi,
for 1 ≤ i ≤ 8, are given as

f1(t) =
N
∑

j=1
p2,jθ1,jβ1eθ1,jS1tS0

1, F1(t) = 1−
N
∑

j=1
p2,jβ1eθ1,jS1te, t ≥ 0,

f2(t) =
N
∑

j=1
p2,jθ2,jβ2eθ2,jS2tS0

2, F2(t) = 1−
N
∑

j=1
p2,jβ2eθ2,jS2te, t ≥ 0,

f3(t) =
N
∑

j=1
p1,jθ3,jβ3eθ3,jS3tS0

3, F3(t) = 1−
N
∑

j=1
p1,jβ3eθ3,jS3te, t ≥ 0,

f4(t) = β4eS4tS0
4, F4(t) = 1− β4eS4te, t ≥ 0,

f5(t) =
N
∑

j=1
p1,jθ4,jβ5eθ4,jS5tS0

5, F5(t) = 1−
N
∑

j=1
p1,jβ5eθ5,jS1te, t ≥ 0,

f6(t) =
N
∑

j=1
p1,jθ5,jβ6eθ5,jS6tS0

6, F6(t) = 1−
N
∑

j=1
p1,jβ6eθ5,jS6te, t ≥ 0,

f7(t) =
N
∑

j=1
p2,jθ6,jβ7eθ2,jS7tS0

7, F7(t) = 1−
N
∑

j=1
p1,jβ7eθ6,jS7te, t ≥ 0,

f8(t) = β8eS8tS0
8, F8(t) = 1− β8eS8te, t ≥ 0.

(27)
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The above functions can be computed easily using the algorithmic procedures pub-
lished in the literature (see, e.g., [18,19]). Moreover, for any special cases of PH-distributions,
such as Erlang or hyperexponential, the calculations can further be simplified.

While implementing the algorithm to compute the CDF, we can also compute various
quartiles to supplement the mean and the standard deviation of the random variables,
Wi, 1 ≤ i ≤ 8. Specifically, we discuss these measures for the boarding times in Section 4.

Using Theorem 3, we can compute the PDF and CDF of T and V as

fT(t) = (p2 ⊗ β1, 0)eA t A0, FT(t) = 1− (p2 ⊗ β1, 0)eA te, t ≥ 0, (28)

and
fV(t) = (p2 ⊗ β1, 0)eV tV0, FV(t) = 1− (p2 ⊗ β1, 0)eV te, t ≥ 0, (29)

where A0 and V0 are such that Ae + A0 = 0 and Ve + V0 = 0.
Note that when using a general PH-distribution to compute the exponential matrix

needed in the PDF and CDF, one can use the uniformization method (see, e.g., [18]).
Here, we will briefly list the steps involved in the computation of the PDF and CDF of V
(Algorithm 1).

Algorithm 1: Algorithmic Steps to Compute fV(t) and FV(t) Using
Uniformization Method.

Step 0: Compute η = maxi |Vi,i|. That is, η is the maximum of the diagonal
elements of the matrix V. Note that η is required for the computation of the PDF

and CDF over a specified set of values, e.g., {t1, · · · , tn}. Let P = I +
1
η

V. Let ϵ be

a small positive number.

Step 1: For a given t, compute ζr = e−ηt (ηt)r

r!
, 0 ≤ r ≤ r∗, where r∗ = r∗(t) is

such that
r∗

∑
r=0

ζr > 1− ϵ. Let i = 0, h(0) = (p2 ⊗ β1, 0), φ(0) = 1− ζ0,

and g(0) = ζ0 h(0)V0.
Step 2: i← i + 1, h(i) = h(i−1)P, φ(i) = φ(i−1) − ζih(i) e, and
g(i) = g(i−1) + ζi h(i)V0.
Step 3: If i < r∗, go to Step 2.
Step 4: fV(t) = g(r

∗) and FV(t) = φ(r∗).

Note 3. It is worth pointing out that the unique structure of V and hence P should be exploited in
the steps mentioned above. This is very important, especially when N is large, as well as when the
orders of the underlying PH-representations are large. The key steps are outlined below.

Observing that h(0) = (p2 ⊗ β1, 0) and partitioning h(i) as

h(i) = (h(i)
1 , · · · , h(i)

N ), 1 ≤ i ≤ 3, i ≥ 0, (30)

we proceed as follows. Given the current iterate value h(k) for k = i− 1, the next iterate value for
k = i is obtained as

h(i)
1,j = h(i−1)

1,j +
1
η

θ1,jh
(i−1)
1,j S1, 1 ≤ j ≤ N, (31)

h(i)
2,j = h(i−1)

2,j +
1
η

[
θ1,jh

(i−1)
1,j S0

1β2 + θ2,jh
(i−1)
2,j S2

]
, 1 ≤ j ≤ N, (32)

h(i)
3,j = h(i−1)

3,j +
1
η

[
p1,j

N

∑
k=1

θ2,kh(i−1)
2,k S0

2β3 + θ3,jh
(i−1)
3,j S3

]
, 1 ≤ j ≤ N, (33)
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h(i)
4 = h(i−1)

4 +
1
η

[ N

∑
k=1

θ3,kh(i−1)
3,k S0

3β4 + h(i−1)
4 S4

]
. (34)

One can further exploit any unique structure for the matrices Si, 1 ≤ i ≤ 4. For example, when
dealing with a hyperexponential distribution, the corresponding matrix in the PH-representation is
a diagonal matrix and this will help to further exploit this structure. The details are omitted.

3.3. Extension to More than Two Cities

The approach taken for two cities can easily be extended to more than two cities.
However, the dimensions of the problem increase. For example, if there are K cities
involved, then, instead of using 8 random variables to describe the process for the two-city
case, we need 4K random variables. The results that are true for the two-city case will also
hold but with larger-dimension representations for the underlying random variables.

4. Illustrative Numerical Examples

In this section, we illustrate the key concepts with two sets of numerical examples.
The time units, unless otherwise specified, are hours. The input parameters for the illus-
trative examples are chosen as follows. In the airline industry, the passenger load factor
(PLF) [24] is defined as the ratio of the number of actual passengers to the number of
available seats. We will denote this fraction as p in the following. Based on the data
provided in [24], we note that this fraction (for domestic flights) ranges from 0.55 to 0.85
approximately. Thus, we conduct our analysis by taking PLF to be in this range. However,
here, we discuss the examples by fixing p at 0.55 and 0.85.

It would be ideal to perform analyses with all practical data for the model studied
here. However, except for PLF, to our knowledge, there are no data on boarding times
available to use here. It is possible that these data are protected by each airline and are not
available to the public. When these data are made available or when an airline wishes to
explore the use of the model proposed here, one can fit the data to a PH-distribution (see,
e.g., [25–32]). For the PMF of the number of passengers, we consider truncated binomial,
truncated (reverse) geometric, and truncated Poisson forms. In particular, we take p1 and
p2 to be one of the following three discrete distributions.

Truncated binomial (B): This is a binomial distribution that is truncated so that the mass is
within {1, · · · , N}. Specifically, the PMF is of the form

1[
1− (1− pb)N

](N
n

)
pn

b (1− pb)
N−n, n = 1, · · · , N. (35)

Truncated geometric (G): This is a (reversed) geometric distribution that is truncated so
that the mass is within {1, · · · , N}. Specifically, the PMF is of the form

1[
1− (1− pg)N

]pg(1− pg)
N−n, n = 1, · · · , N. (36)

Truncated Poisson (P): This is a Poisson distribution that is truncated so that the mass is
within {1, · · · , N}. Specifically, the PMF is of the form

c e−λ λn

n!
, n = 1, · · · , N, (37)

where c is the normalizing constant to ensure a legitimate PMF.
In order to compare the various scenarios (when varying the type of PMF), we have to

choose the parameters of the above-mentioned PMF in such a way that the mean number of
passengers will always be the same. For example, if N = 100 and p = 0.55, then the mean
number of passengers onboard will be 55. Thus, to arrive at this mean for the truncated
binomial, one has to choose pb = p, pg = 0.0054, and λ = 55. It is worth mentioning
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that, due to the size of N and the values of p considered for the illustrative examples,
the truncated binomial reduces to the binomial one since (1− pb)

N ≃ 0.
It should be pointed out that when computing the binomial probabilities, one can en-

counter overflow or underflow issues, especially when N is large. To avoid this, one should
find the mode of the binomial distribution and then compute the rest of the probabilities
recursively. To facilitate such computation, we provide the mode values for the binomial
case. For the set of parameters considered in this section, Table 1 lists the corresponding
parameter values.

Table 1. Parameter values for PMF.

p N Binomial (Mode) Geometric Poisson

0.55

50 0.1119 0.0096 27.5010
100 0.0800 0.0054 55.0000
150 0.0652 0.0037 82.5000
200 0.0566 0.0029 110.0000
250 0.0506 0.0023 137.5000
300 0.0463 0.0019 165.0000
350 0.0428 0.0017 192.5000
400 0.0401 0.0015 220.0000

0.85

50 0.1575 0.1162 44.8805
100 0.1111 0.0618 86.3125
150 0.0911 0.0421 128.2467
200 0.0788 0.0319 170.4290
250 0.0706 0.0257 212.7465
300 0.0644 0.0215 255.1412
350 0.0597 0.0185 297.5806
400 0.0558 0.0162 340.0457

While, for the truncated binomial and the truncated Poisson, the choice of the values
for the parameters N and p to guarantee that the probability of the number of passengers
onboard is less than, e.g., 10, is insignificant (i.e., close to zero), this is not the case with
the truncated geometric. This is due to the choice of the geometric parameter required to
guarantee a given mean. However, it is easy to modify this by ensuring that the mass of
this geometric distribution has a positive value beyond a specific number, such as 10.

For the rate vector, θr, 1 ≤ r ≤ 6, given the starting value, e.g., ϑ1 (at 1), and the
ending value, e.g., ϑN (at N), we consider four possible scenarios consisting of (a) linearly
decreasing rates (LD); (b) quadratically decreasing rates (QD); (c) decreasing rates in a
square root manner (SD); and (d) decreasing rates in a logarithmic manner (LG). Note that
ϑ1 and ϑN are, respectively, the rates when one passenger and N passengers are onboard.
Naturally, we impose a restriction in which ϑ1 > ϑN . Thus, we have the following.

LD: Here, we have (note that we suppress the suffix r in θr)

θj = ϑ1 −
ϑ1 − ϑN

N − 1
(j− 1), j = 1, · · · , N. (38)

QD: Here, we have

θj = ϑ1 −
ϑ1 − ϑN

(N − 1)2(j− 1)2, j = 1, · · · , N. (39)

SD: Here, we have

θj = ϑ1 −
ϑ1 − ϑN√

N − 1

√
j− 1, j = 1, · · · , N. (40)

LG: Here, we have

θj = ϑ1 −
ϑ1 − ϑN

log(N)
log(j), j = 1, · · · , N. (41)
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Since the main goal of this work is to determine the impact of reducing the average
boarding time on the other measures, we fix the average values of the times spent in various
events, such as de-boarding, cleaning, boarding, and leaving a particular city for another
city. In order to do this, we need to accordingly fix the means of the eight PH-distributions.
To this end, we use Equation (16), which relates the means µ′Wi

to µ′i, for 1 ≤ i ≤ 8. Thus,
given a specific probability vector pr, the rate vector, θr, and the mean, µ′Wr

, we can find
the value of µ′r that will give the set value for µ′Wr

.
For the following two examples, we fix the input parameters as follows. The unit is

the number of hours, unless otherwise indicated.

µ′W1
= µ′W2

= µ′W5
= µ′W6

=
1
3

, µ′W4
= µ′W8

= 2.

We take the probability vectors p1 and p2 to be identical, but we vary the common one
to be one of the three, namely B, G, and P as listed above. Moreover, for the rate vectors, we
take θ1 = θ2 = θ4 = θ5, and θ3 = θ6. The parameter values of (ϑ1, ϑN) for these two sets,
namely for θ1 and θ3, will be (12, 3) and (12, 1.5). However, we vary the type of decreasing
to be one of the four listed above. In Figure 1, we display a sample plot of the values of θj
under the four scenarios: LD, QD, SD, and LG.

Figure 1. A sample plot of the rate vector under four scenarios.

The means, µ′W3
and µ′W7

, are varied from
25
60

to
30
60

in increments of 1 min, i.e., in incre-

ments of
1

60
h. The capacity of the aircraft, N, is varied from 50 to 400 in increments of 50.

To consider how, under the values chosen, the mean of the underlying random variable X3
(and hence others), which can be controlled by the system providing the needed resources,
behaves as we vary N, the type of probability vector, and the type of rate vector, we can
consult the plots in Figures 2–4. Before we consider these (spider) figures, a few details
are provided for explanation. The two-tuple values displayed at the perimeter of the
outermost circle correspond to N and the mean times (in minutes). Thus, the two-tuple
value 50 25 corresponds to N = 50 and the mean boarding time is 25 min. The legend
containing B, G, and P indicates the type of distribution used to model the PMF of the
number of passengers.
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Figure 2. Plot of the mean of the boarding event with the LD rate under various scenarios.

Figure 3. Plot of the mean of the boarding event using truncated binomial probabilities under various
scenarios.

One can clearly notice the patterns in these plots, indicating significant changes to the
mean as N and PLF are varied, as well as the type of probability vector (either truncated
binomial or truncated geometric). However, we do not see a significant difference between
the truncated binomial and truncated Poisson. As is to be expected, the mean increases as
the average boarding time is increased under both values of PLF considered. This behavior
indicates that an increase in the rate calls for additional resources or additional strategies
to quicken the process of boarding. For example, this can be achieved by increasing the
number of gate attendants (based on the value of PLF, which should be known ahead
of time). Among the four types of rate vector considered, it appears that a quadratically
decreasing rate gives the smallest mean (for X3 and X7), indicating that the system can
dynamically provide gate attendants to help the passengers to board the aircraft.



Mathematics 2024, 12, 2795 15 of 22

Figure 4. Plot of the mean of the boarding event using truncated geometric probabilities under
various scenarios.

Illustrative Example 1: In this example, we use Erlang distributions for all underlying
random variables. Recall that an Erlang of order m with parameter γ, denoted as E(m, γ),
has the PDF given by

f (t) =
γm

(m− 1)!
tm−1e−γt, t ≥ 0. (42)

Note that the mean and the variance are, respectively, given by
m
γ

and
m
γ2. One

advantage of using this probability function is that by choosing the order to be a large
positive integer, we can model a random variable that has very minimal variation.

Using the notation µi =
1
µ′i

, 1 ≤ i ≤ 8, the order and the parameter values for this

example are as follows.

X1 ∼ E(5, 5µ1), X2 ∼ E(50, 50µ2), X3 ∼ E(5, 5µ3), X4 ∼ E(100, 100µ4),

X5 ∼ E(5, 5µ5), X6 ∼ E(50, 50µ6), X7 ∼ E(5, 5µ7), X8 ∼ E(100, 100µ8).
(43)

The parameters N and µ′W3
= µ′W6

are varied, respectively, from 50 to 400 and from
25 to 30 min in increments of 1 min. In Figures 5 and 6, respectively, we display the key
measures for probability vectors labeled B and G under a linearly decreasing (LD) rate
vector. Since we saw similar behavior for the other types of theta vectors, namely QD, SD,
and LG, we display the results here only for the LD case.

It is clear by looking at these figures (as well as the ones not provided here due to the
similarity of the plots) that the following occurs.

• Only the type of probability vector (whether it is truncated binomial or truncated
geometric) and the type of theta vector (LD through LG) appear to have an impact on
the percentiles.

• Comparing the truncated binomial probability (B) and the truncated geometric (G)
schemes, we notice that (a) scheme G gives small values for the 50th percentile for both
values of PLF; (b) for the 75th percentile, while scheme G gives small values when
PLF = 0.55, the values are similar for both schemes when PLF = 0.85; (c) scheme B
gives small values for the 95th percentile for both values of PLF. This indicates that
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scheme G starts with small values for the percentiles (as compared to scheme B) and
then yields progressively larger values for higher percentiles.

Figure 5. Plot of the measures of the boarding event with truncated binomial probabilities and LD
rates under various scenarios.

Figure 6. Plot of the measures of the boarding event with truncated geometric probabilities and LD
rates under various scenarios.

Finally, we look at the percentage reduction in the percentiles when decreasing the
average boarding time. We denote by P(i)

(j) the value of the ith percentile when the average

boarding time is j. Thus, P(50)
(25) stands for the 50th percentile when the average boarding

time is 25 min. The reduction percentage, for a given ith percentile and a given average
boarding time j, is calculated as

100

[
P(i)
(30) − P(i)

(j)

P(i)
(30)

]
. (44)
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The reduction percentages do not appear to be significant when the probability vec-
tors, the rate vectors, or PLF are changed. Hence, in Figure 7, we display the reduction
percentages for the case of a truncated binomial and LD rate.

Figure 7. Plot of the reduction percentages for the percentiles under various scenarios.

It is very clear from this figure that the reduction percentages are almost identical for
all three percentiles. Further, a 5 min reduction in the average boarding time results in
a more than 16% reduction in the percentile value. This translates into a guarantee that,
for at least 95% of the time, the boarding time will not exceed between 45 and 69 min
depending on the value of N. The average 95% guarantee time across the board is about
50 min. If one were to give a guarantee at a 50% level, the boarding time will not exceed
anywhere between 21 and 26 min depending on the value of N. The average 50% guarantee
time across the board is about 25 min.

Illustrative Example 2: In this example, we use Erlang as well as hyperexponential distri-
butions for the underlying random variables. Recall that a hyperexponential of order m
with parameters γ1, · · · , γm, with the corresponding mixing probabilities, q1, · · · , qm, has
the PDF given by

f (t) =
m

∑
k=1

qjγje
−γjt, t ≥ 0. (45)

Note that the mean and the variance are, respectively, given by
m
∑

k=1

qk

γk
and 2

m
∑

k=1

qk

γ2
k
−( m

∑
k=1

qk

γk

)2
. This probability function can be used when there is large variability in the

underlying random variable. We will denote this hyperexponential by HE{(q1, · · · , qm),
(γ1, · · · , γm)}. The order and the parameter values for this example are as follows.
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X1 ∼ E(5, 5µ1), X2 ∼ E(50, 50µ2),

X3 ∼ HE{(0.50, 0.30, 0.15, 0.04, 0.01), µ3(10, 5, 2.5, 1.25, 0.625)},

X4 ∼ E(100, 100µ4), X5 ∼ E(5, 5µ5), X6 ∼ E(50, 50µ6), X8 ∼ E(100, 100µ8),

X7 ∼ HE{(0.50, 0.30, 0.15, 0.04, 0.01), µ7(10, 5, 2.5, 1.25, 0.625)}.

As in the previous example, we vary the parameters N and µ′W3
= µ′W6

, respectively,
from 50 to 400 and from 25 to 30 min in increments of 1 min.

In Figures 8 and 9, respectively, we display the key measures for probability vectors
labeled B and G under a linearly decreasing (LD) rate vector.

Figure 8. Plot of the measures of the boarding event with truncated binomial probabilities and LD
rates under various scenarios.

Figure 9. Plot of the measures of the boarding event with truncated geometric probabilities and LD
rates under various scenarios.
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It is clear by looking at these figures (as well as the ones not provided here due to the
similarity of the plots) that the following occur.

• Only the type of probability vector (whether it is truncated binomial or truncated
geometric) and the type of theta vector (LD through LG) appear to have an impact on
the percentiles. This observation is similar to the one seen in the previous example.

• Comparing the truncated binomial probability (B) and the truncated geometric (G)
schemes, we notice that (a) scheme G gives small values for the 50th percentile for both
values of PLF; (b) for the 75th and the 95th percentiles, while scheme G gives small
values when PLF = 0.55, the values are rather similar for both schemes when PLF =
0.85. This indicates that the large variability in the boarding times appears to nullify
any significant differences in the PLF value, especially when the percentiles increase.

The plot of the reduction percentage for this example is almost identical to the one seen
in the previous example and hence the figure is not displayed here. However, the guarantee
times differ and the details are as follows. A 5 min reduction in the average boarding time
results in a more than 16% reduction in the percentile value. This translates to a guarantee
that, for at least 95% of the time, the boarding time will not exceed between 73 and 79 min
depending on the value of N. The average 95% guarantee time across the board is about
75 min. If one were to provide a guarantee at a 50% level, then the boarding time will not
exceed between 9 and 11 min depending on the value of N. The average 50% guarantee
time across the board is about 10 min.

It is worth pointing out that, comparing the two illustrative examples, while the
guarantee times at the 50% level are much smaller for the boarding times with large
variability, at a 95% level, the guarantee times are small for the boarding times with small
variability. This is probably due to the long tail of the probability distribution associated
with the boarding time event.

Illustrative Example 3: Here, we provide a brief discussion of the PDF of the time to travel
by looking at the case when N = 200, PLF = 0.85, with the truncated binomial probabilities
and LD rates for the above-mentioned two illustrative examples. In Figure 10, we plot the
representative PDF of the time to travel from city C1 to city C2 and then back to city C1;
moreover, the PDF of the travel time from city C1 to city C2 under three scenarios is plotted
in Figure 11.

Figure 10. PDF of the travel time from city C1 and back to city C1.
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Figure 11. PDF of the travel time from city C1 to city C2.

It is evident from the above plots that, for all Erlang cases (see Illustrative Example 1),
the PDF of the total travel time from city C1 to city C2 and back is a bell-shaped curve.

Thus, one can try to fit a normal PDF with mean
19
3

h and standard deviation 0.488975 h.
For the PDF of the total travel time from city C1 to city C2 in the Erlang case (see Illustrative
Example 1), the normal curves for the three schemes, B, G, and P, have the same mean of
19
6

h but the standard deviations are, respectively, 0.343545 h, 0.430563 h, and 0.374347 h.
This normal fit approximation will be helpful to managers seeking a quick solution using
Excel or Excel-type worksheets in workplaces. Hence, we point out the possibility to
implement the model proposed here.

In the case of Illustrative Example 2, wherein we used a hyperexponential distribution
to model the boarding times, we notice a long-tailed distribution for the PDF. One can try
to fit a three-parameter gamma, a three-parameter Weibull, or even a three-parameter log-
normal distribution to approximate the PDF when dealing with a long-tailed distribution
such as the one seen in the PDF plots. For example, we fitted a three-parameter gamma
distribution with the shape, scale, and threshold parameters, respectively, of 29.0, 0.153,
and 1.5 for the total travel time from city C1 and back to city C1.

5. Concluding Remarks

In this paper, we sought to address the boarding time, one of the major issues facing
commercial airlines, using phase type distributions. While there is research on the study of
boarding strategies that minimize the average boarding time, in this paper, our aim was to
study the boarding time (as part of the process of traveling from one city to another) given
a boarding strategy already in place. We used well-known probability distributions for the
number of passengers boarding, as well as different schemes for the rates of processing
of the passengers. We used the passenger load factor information from the Bureau of
Labor Statistics [24]. However, there were no data available on the time to board, clean, or
de-board or the actual flying time. Hence, we used hypothetical values based on personal
experience in traveling, and this is a limitation of this model. However, when actual
data are made available, one can use PH to fit the data and then apply the methodology
suggested here. Through the qualitative analysis of the modeling of aircraft boarding, we
found that a 5 min reduction in the average boarding time resulted in a more than 16%
reduction in the values of the percentiles. This translates to a guarantee that, for at least
95% of the time, the boarding time will not exceed between 73 and 79 min depending on
the value of the capacity of the aircraft. The average 95% guarantee time across the board is
about 75 min. If one were to give a guarantee at a 50% level, then the boarding time will
not exceed between 9 and 11 min depending on the value of of the capacity of the aircraft.
The average 50% guarantee time across the board is about 10 min. Understanding the
percentiles of the boarding times, as opposed to relying only on the average boarding times,
will help management to adopt a better boarding strategy, which in turn will lead to an
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increase in the number of trips that an aircraft can make. For example, when looking at the
95th percentile of the boarding time, there is a good understanding of how many trips an
aircraft can make, as opposed to looking only at the average boarding time. Management
can only incur a 5% error regarding the times in their estimations, as opposed to the error
rate being unknown when using the mean, unless the boarding times are symmetric, in
which case the error rate will be 50%. Thus, the use of percentiles to estimate and schedule
the number of trips for an aircraft to make is more beneficial.

The model studied can be extended to include a variety of other aspects, such as
(a) adding another random variable to model the time between the gate closing and the
plane taking off (currently, we include this as part of the flying time); (b) the incorporation
of catastrophic events (due to weather, a lack of aircraft personnel, or the mechanical failure
of the aircraft), leading to the cancellation of a flight from a particular city; (c) extending
from two cities to more than two cities; and (d) using practical data to fit the probability
function for (i) the number of passengers boarding; (ii) the time to clean the aircraft; and
(iii) the time taken from the moment that the gate closes to the aircraft’s landing in another
city. Another task of interest for future work is to compare different boarding processes
and identify which one will contribute to reducing the boarding times; then, this boarding
process can be used in the model studied here to estimate the increase in the average
number of trips that can be made.
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