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Abstract: We propose a novel distributed method for non-convex optimization problems with
coupling equality and inequality constraints. This method transforms the optimization problem
into a specific form to allow distributed implementation of modified gradient descent and Newton’s
methods so that they operate as if they were distributed. We demonstrate that for the proposed
distributed method: (i) communications are significantly less time-consuming than oracle calls, (ii) its
convergence rate is equivalent to the convergence of Newton’s method concerning oracle calls, and
(iii) for the cases when oracle calls are more expensive than communication between agents, the
transition from a centralized to a distributed paradigm does not significantly affect computational
time. The proposed method is applicable when the objective function is twice differentiable and
constraints are differentiable, which holds for a wide range of machine learning methods and
optimization setups.
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1. Introduction

In modern society, digital technologies play an essential role in organizing our work
and daily routine. Ubiquitous computing and digital technologies enable us to solve a wide
range of complex problems in such important fields as ecology [1,2] and medicine [3,4].

The complexity of creating decision support systems in a digital environment requires
the use of advanced technologies for designing and optimizing intelligent information
processing systems. For example, within a holistic approach to integrating computational
intelligence systems and human expert knowledge [5], it is possible to automatically design
machine learning models with self-tuning adaptive stochastic optimization algorithms [6,7].
In this case, the processed data can remain on the problem owner’s servers, which ensures
trust and allows us to remain within a federated approach to learning, and the resulting
models will be interpretable and explainable [8]. However, very large-scale optimiza-
tion problems arising under such conditions require special computations decomposition
methods [9]. At the same time, in many cases, optimization problems of this kind have
properties that allow the use of rigorous mathematical methods in their solution, which
makes it possible to effectively use hybrid approaches [10]. In this regard, along with the im-
provement in adaptive methods of computational intelligence, the evolution of traditional
optimization methods is of great importance. The aim of such advancements could be
focused on adaption to problems of extremely high dimensionality and federated learning
through the decentralization of work and to use such properties of theirs as guaranteed
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convergence to the optimum at high speed, which is fundamentally important in the tasks
under consideration.

Specifically, in the following, we propose a novel decentralized optimization method
for non-convex optimization problems with a separable objective function and coupling
equality and inequality constraints. Under standard assumptions for distributed optimiza-
tion [11,12], the problem has to be solved by a set of agents communicating over a connected
graph. These agents are expected to communicate synchronously and can transmit real-
valued numbers to adjacent agents. Communications are performed synchronously, and
communication delays and packet losses are ignored. In addition to standard conditions,
agents cannot share their decision variables and objective functions as they are considered
to be private information.

Decentralized optimization already proved to be an essential instrument in a wide
variety of applications. Namely, application in optimal transport [13] including coordination
of mobile autonomous agents [14,15] and railway traffic [16,17], power systems control [18,19]
with demand response [20] as well as data analysis in sensor networks [21,21]. Finally,
decentralized optimization gains increasing popularity in federated learning [22] and support
vector machines [23].

1.1. Related Work

While decentralized optimization has many applications of practical relevance, most
of the corresponding results are dedicated to convex or strictly convex optimization. A
comprehensive survey covering these areas can be found in [24]. The majority of these
methods can be separated into primal [13,25], dual [26] or ADMM-based approaches [27,28].
Additionally, there exists a set of works utilizing the primal–dual approach [29,30].

The literature dedicated to non-convex or non-linear constraints is significantly more
scarce. One of the proposed approaches is the application of SQP with the inner ADMM
method [31]. However, in this work, coupling constraints are linear. Lagrangian methods
for polynomial objective and equality constraints are presented in [32], and non-linear
coupling constraints are considered. However, each constraint is associated with one of the
agents and coupling is present only with the variables of adjacent agents.

Finlay, there exist several works that consider convex optimization problems with
separable objective functions such that decision variables and corresponding summands of
objective functions are considered private for each agent and cannot be exchanged with
other participants [19,33]

1.2. Contribution

Here, we propose a novel distributed optimization algorithm for non-convex opti-
mization problems with equality and inequality constraints. It is assumed that the objective
function is twice differentiable and the constraints are differentiable. In addition, communi-
cations are significantly less time consuming than oracle calls. Under these assumptions,
we show that

1. The proposed method can be applied to any optimization problem with non-convex
separable objective function and coupling constraints.

2. Its convergence rate is equivalent to the convergence of Newton’s method with respect
to oracle calls.

3. Decision variables, cost and constraint functions are not exchanged between agents.

The theoretical results are supported by numerical experiments.

1.3. Paper Organization

The remainder of this article is organized as follows. Section 2 introduces the problem
statement. Section 3 is dedicated to the reformulation of optimization problems with
equality constraints. Section 4 outlines the distributed gradient descent algorithm. In
Section 5, a problem with equality and inequality constraint and its equivalent formulation
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is presented. Section 6 outlines the distributed Newton method. Finally, Section 7 presents
the Arrow–Hurwicz method and a numerical example.

1.4. Notations

Let 1K denote the vector of ones of the size K; Iq is the identity q × q matrix. Operator
vec is the vectorization operator for a matrix A; ker A is the matrix kernel. For two matrices
A and B, the Kronecker product is denoted by A ⊗ B, and diag(A, B) means the extended
matrix of the corresponding size with A and B as the blocks on the main diagonal. For a
twice differentiable function f : Rn → R, ∇ f and ∇2 f are the gradient and Hessian matrix,
respectively. For a vector function g : Rn → Rm, its Jacobian matrix is denoted by Jg. For a
vertex (agent) i in a communication graph, a set of adjacent vertices is defined by Adj(i).

2. Problem Statement

Let us consider a non-convex optimization problem with a coupling objective function
and constraints that must be solved by a multi-agent connected network with N vertices
(agents). The optimization problem has the following form:

min
x

{
F(x) =

N

∑
i=1

f i(xi)

}
, (1a)

subject to

G(x) =
N

∑
i=1

gi(xi) = 0, (1b)

H(x) =
N

∑
i=1

hi(xi) ≤ 0. (1c)

Here, the vector of objective variables x ∈ Rn is separated into subvectors of local variables
xi ∈ Rni , i ∈ {1, . . . , N}, n1 + n2 + · · ·+ nN = n. All functions f i : Rni → R, gi : Rni → Rm̃

and hi : Rni → Rm̂, i ∈ {1, . . . , N} are smooth.
Here, we postulate that the Problem (1) has to be solved in the distributed way, which

brings the following perspective. It is assumed that each subvector xi belongs to an agent i
and cannot be shared with the other agents, and the agent network is defined by a connected
graph with the Laplacian matrix L ∈ RN×N . Every node in the graph represents some agent.
Communication in the network is allowed only between neighboring vertices (agents).
An agent i is characterized by its objective function f i, equality constraint function gi and
inequality constrain function hi. The objective function F is separable, so the main difficulty
in deriving a distributed version of problem (1) is given by constraints (1b) and (1c). They
are coupling (non-local) even though the constraint functions G and H are also separable.

Subsequently, we set the goal to develop an algorithm and present a reduction, which,
for an arbitrary problem (1), creates an auxiliary problem, such that

1. The auxiliary problem has the same solution as (1);
2. Methods of gradient descent, gradient projection and quasi-Newton methods will

operate as distributed optimization methods when applied to the auxiliary problem
without any modification (1):

3. Optimization Problem with Equality Constraints

Let us first introduce a simplified version of the problem (1);

min
x∈Rn

{
F(x) = f 1(x1) + f 2(x2) + · · ·+ f N(xN)

}
, (2a)

subject to
g1

1(x1) + g2
1(x2) + · · ·+ gN

1 (xN) = 0, (2b)

g1
2(x1) + g2

2(x2) + · · ·+ gN
2 (xN) = 0, (2c)
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· · ·
g1

m̃(x1) + g2
m̃(x2) + · · ·+ gN

m̃ (xN) = 0, (2d)

i.e., the problem defined as in (1) without the inequality constraints. We introduce into consid-
eration an auxiliary vector y ∈ RNm̃ consisting of subvectors yi ∈ Rm̃, yi = (yi

1, yi
2, . . . , yi

m̃)
⊤,

i = 1, . . . , N. Each subvector yi is connected to the constraint function gi of the vertex i.
Consider the j-th scalar equality constraint from (2):

N

∑
i=1

gi
j(xi) = 0. (3)

It can be reformulated to the following form:

g1
j (x1) +

N
∑

i=1
L1iyi

j = 0,

g2
j (x2) +

N
∑

i=1
L2iyi

j = 0,

...

gN
j (xN) +

N
∑

i=1
LNiyi

j = 0,

(4)

where Lsi, s, i = 1, . . . , N are elements of the Laplacian matrix L. Such a transition is
performed for all m̃ equality constraints. Thus, in the further consideration, we use the
following notation:

g̃ = vec
(

g1, g2, . . . , gN
)

, (5)

L̃ =
(

L ⊗ Im̃
)

, (6)

where L ⊗ Im̃ is the Kronecker product of the Laplacian matrix L and the identity matrix
Im̃. The interpretation of representation (5) is given in Figure 1.
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Figure 1. The agent network with information available at each node.

Repeating the transition from (3) to (4) for all j = 1, . . . , m̃ yields the following reformulation
of problem (2):

min
(x,y)∈Rn×RNm̃

F(x), (7a)

g̃(x) + L̃y = 0. (7b)

Lemma 1. The following statements are correct:

1. Problem (2) is feasible if and only if problem (7) is feasible.
2. A pair (x∗, y∗) is the solution to problem (7) if and only if x∗ is the solution to (2).

Proof. 1. Consider system (4) as a system of linear equations with respect to variables
(y1

j , y2
j , . . . , yN

j ) for fixed x and right-hand side vector (−g1
j (x1),−g2

j (x2), . . . ,−gN
j (xN)).
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According to the Fredholm Alternative [34] and due to the symmetricity of L, this system is
consistent if and only if

vec
(

g1
j (x1), . . . , gN

j (xN)
)
⊥ ker L, (8)

where ker L = {v ∈ RN : Lv = 0} is the kernel of the Laplacian matrix L. Since the agent
graph is connected, ker L = {v ∈ RN : v = ρ1N , ρ ∈ R, ρ ̸= 0}. Then, (8) is equivalent to

vec
(

g1
j (x1), . . . , gN

j (xN)
)⊤

1N =
N

∑
i=1

gi
j(xi) = 0. (9)

Repeating this consideration for all j = 1, . . . , m, we find that problems (2) and (7) are
feasible simultaneously.
2. The correctness of the second statement follows from the fact that both problems have
the same objective function.

Let us consider the main property of system (4). Since L is the Laplacian matrix, this
system can be rewritten in the following form:

g1
j (x1) + ∑

i∈Adj(1)
(y1

j − yi
j) = 0,

g2
j (x2) + ∑

i∈Adj(2)
(y2

j − yi
j) = 0,

...

gN
j (xN) + ∑

i∈Adj(N)
(yN

j − yi
j) = 0.

(10)

In order to evaluate the ℓ-th constraint in (10), it is necessary to know the local variables xℓ,
yℓj , local function gℓj and variables yi

j from the neighboring vertices i ∈ Adj(ℓ) only. This is
the main advantage of system (10) in comparison to constraint (3), for which it is necessary
to know information from all vertices of the agent network.

If we fix vector y, for example, y = ỹ, then, due to the separability of function
F (see (2a)) and property (10), optimization with respect to the remaining vector x in
problem (7) can be performed separately, i.e., each agent ℓ independently solves the corre-
sponding problem:

min
xℓ

f ℓ(xℓ), (11)

gℓj (xℓ) = − ∑
i∈Adj(ℓ)

(ỹℓj − ỹi
j), j = 1, . . . , m̃. (12)

Assume that problems (11) and (12) are solvable for all ℓ = 1, . . . , N, and x̃ℓ is the correspond-
ing solutions. The vector x̃ = vec(x̃1, . . . , x̃N) provides the solution of problem (7) for fixed
y = ỹ.

4. Gradient Descent in Variables y

Variables y are called communication variables. If we set ỹℓ = y0,ℓ = 0, ℓ = 1, . . . , N,
and problems (11) and (12) are solvable with x0,ℓ as the corresponding solutions, then
the pair (x0, y0) is a feasible starting point for problem (7), and F0 = F(x0) is a starting
objective function record value.

Let us write down the Lagrange function for problem (7) as

V(x, y, λ) =
N

∑
i=1

f i(xi) + λ⊤
(

g̃(x) + L̃y
)

, (13)
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where λ ∈ RNm̃ is the vector of Lagrange multipliers consisting of subvectors
λi = (λi

1, λi
2, . . . , λi

m̃)
⊤, i = 1, . . . , N. Each subvector λi corresponds to constraint vector-

function gi of the agent i. The corresponding necessary optimality conditions

∂V
∂x

= vec
(
∇ f 1(x1), . . . ,∇ f N(xN)

)
+ Jg̃(x)⊤λ = 0, (14a)

∂V
∂y

= L̃λ = 0, (14b)

∂V
∂λ

= g̃(x) + L̃y = 0, (14c)

where Jg̃(x) = diag
(

Jg1(x1), Jg2(x2), . . . , JgN(xn)
)

is the Jacobian of g̃(x). If we again fix
y = y0 and solve the corresponding problem (7) for y = y0, obtaining the corresponding
primal solution x0 and dual solution λ0, then conditions (14a) and (14c) will be satisfied
with x = x0 and λ = λ0. Condition (14b) can be violated ∂V

∂y = L̃λ0 ̸= 0, since we do not

perform optimization in y. Hence, we correct y0 by the gradient descent step in y

y1 = y0 − ρ0 L̃λ0.

In general, we obtain the following recalculation formula for yk:

yk+1 = yk − ρk L̃λk. (15)

From (14b), we have the following element-wise representation at step k due to the structure
of the Laplacian matrix L and the structure of vector λ :

∂V(xk, yk, λk)

∂yi
j

= ∑
s∈Adj(i)

(
λk,i

j − λk,s
j

)
, j = 1, . . . , m̃. (16)

Therefore, the calculation of ∂V
∂yi

j
satisfies the distributed form, since λi

j is a local dual variable

and all λk
j are dual variables from adjacent agents.

The main computational scheme for solving problem (7) is presented in Algorithm 1.
We assume here that problem (7) is solvable for y = 0.

Since we do not make any convexity assumptions, Algorithm 1 is suggested for finding
a strict local saddle point in the Lagrange function in the sense of [35]. In [36], it is pointed
out that values ρ at Step 4 must be chosen small enough in order to achieve convergence
to a strict local saddle point. One of the recommended choices for ρk is the following:
ρ0 = 1, ρk =

1√
k

for k > 1.

Example 1. Consider the problem with N = 4, ni = 1, i = 1, . . . , 4, m̃ = 1 and

f 1(x1) = (x1)4 + 3(x1)3 − (x1)2 − 3x1, f 2(x2) = − sin(x2) + 0.1(x2)2,

f 3(x3) = (x3)2 − 4, f 4(x4) = x4,

g1(x1) = (x1)3 − 8, g2(x2) = (x2)2 − 7x2 + 10, g3(x3) = x3 − 1, g4(x4) = (x4)2 − 9.

The network is described by the Laplacian matrix

L =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


.

The starting solution of the corresponding problem (7) with y = y0 = 0 is the following x0 =
(−2, 2, 1,−3)⊤, λ0 = (0.417, 0.272, 2.000, 0.167)⊤, F(x0) = −12.509. The tolerance ε = 0.1.
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The ε-solution was obtained after 294 iterations of Algorithm 1: x294 = (−2.131,−1.954, 0.098,
−2.877)⊤, F(x294) = −13.972, ρk =

1√
k
. The optimal solution x∗ = (−2.182, 1.831,−0.093,−2.678)⊤,

F(x∗) = −14.013. Algorithm 1 generated a sequence of feasible points with decreasing objective
function values.

Algorithm 1 Gradient descent method (for agent ℓ)

Input: f ℓ,gℓ, ε > 0.
Output: xℓ,∗

Algorithm steps:
Step 1. Set y0,ℓ = 0 and k = 0;
Step 2. Obtain yk,i, i ∈ Adj(ℓ) from neighboring agents;
Step 3. Solve problem (11) and (12) for ỹℓ = yk,ℓ, ỹi = yk,i, i ∈ Adj(ℓ). Let xk,ℓ, λk,ℓ be the
corresponding primal and dual solutions;
Step 4. Obtain λk,i, i ∈ Adj(ℓ) from neighboring agents;
Step 5. If ∣∣∣∣∣

∂V(xk, yk, λk)

∂yℓj

∣∣∣∣∣ =

∣∣∣∣∣∣ ∑
s∈Adj(ℓ)

(
λk,ℓ

j − λk,s
j

)
∣∣∣∣∣∣
< ε ∀j = 1, . . . , m̃,

then go to Step 8;
Step 6. Calculate yk+1,ℓ:

yk+1,ℓ = yk,ℓ − ρk
∂V(xk, yk, λk)

∂yℓj
;

Step 7. Set k = k + 1 and go to Step 2;
Step 8. Stop: xk,ℓ is an ε-stationary point of problem (2).

5. Problem with Equality and Inequality Constraints

Similarly to the equality constraints, let us introduce vector-function ĥ : Rn → Nm̂:

ĥ =




h1(x1)
...

hN(xN)


 (17)

and expansion of the Laplacian matrix

L̂ = L ⊗ Im̂. (18)

Then, the new optimization problem has the form

min
x∈Rn ,y∈RNm̃ ,z∈RNm̂

N

∑
i=1

f i(xi), (19a)

g̃(x) + L̃y = 0, (19b)

ĥ(x) + L̂z ≤ 0. (19c)

Firstly, let us prove the following lemma.

Lemma 2. The following statements are correct:

1. Problem (19) is feasible if problem (1) is feasible.
2. Triplet (x∗, y∗, z∗) is the solution to problem (19) if and only if x∗ is the solution to (1).
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Proof. In Lemma 1, it was shown that linear constraints in both problems have the same
solution in x. Let us now consider inequality constraints in both problems. As before, we
consider the constraint j from (1c)

N

∑
i=1

hi
j(xi) ≤ 0 (20)

and the set of corresponding constraints c(j) from (19c)

vec
(

h1
j (x1), . . . , hN

j (xN)
)
+ Lz ≤ 0. (21)

The sum of the rows of L is zero. Thus, the sum of the inequalities (21) yields (20). Let
us now show that if for some x equation (21) is correct, then there always exists x such
that (20) holds. Vector vec

(
h1

j (x1), . . . , hN
j (xN)

)
can always be decomposed using some

orthogonal basis 1N , q2, . . . , qN :

vec
(

h1
j (x1), . . . , hN

j (xN)
)
= α1N +

N

∑
i=2

βiqi = α1N + q. (22)

Vector q is orthogonal to 1N and, consequently, is orthogonal to ker L. Thus, there always
exists z such that Lz = −q. Substitution of such z into left-hand side of (21) gives

vec
(

h1
j (x1), . . . , hN

j (xN)
)
+ Lz = α1N + q + Lz = α1. (23)

Additionally,

N

∑
i=1

hi
j(xi) = vec

(
h1

j (x1), . . . , hN
j (xN)

)⊤
1 = (α1N + q)1 = α. (24)

Thus, from (20) α ≤ 0 and (21), since this statement holds for all j ∈ {1, . . . , m̂}, the lemma
is proven.

6. Newton’s Method

Here we adapt a Newton-type approach to distributed optimization [37]. In order to
carry this out, we have to derive algorithms for the initial problem (1) and the distributed
problem (19) in parallel. Due to the similar structure of these problems, all variables and
functions of the initial problem will be denoted with an upper index c, which stands
for centralized.

Let us introduce Lagrange functions for problem (19):

V(x, y, λ, µ) = f (x) + λ⊤(g̃(x) + L̃y) + µ⊤(ĥ(x) + L̂z). (25)

The corresponding Karush–Kuhn–Tuckker conditions have the form

∂V
∂x

= ∇ f (x) + (Jg̃(x))⊤λ + (Jĥ(x))⊤µ = 0, (26a)

∂V
∂y

= L̃λ = 0 (26b)

∂V
∂µ

= L̂z = 0, (26c)

g̃(x) + L̃y = 0, (26d)

(ĥ(x) + L̂z)iµi = 0, µ ≥ 0. (26e)
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In order to replace the complimentary slackness conditions with equations suitable for
the Newton method, the complementarity function ψ : R2 → R is introduced. It has the
following property: ψ(x, y) = 0 if and only if x ≥ 0, y ≥ 0 and xy = 0. It can be chosen in
multiple ways. Here, we use the following form:

ψ(x, y) =
{

y, if x > 0 or y ≥ 0,
−x, otherwise.

(27)

Then, the KKT conditions (26) can be replaced with

ϕ(x, y, z, λ, µ) = 0, (28)

where

ϕ(x, y, z, λ, µ) =




∂V
∂x
L̃λ

L̂µ

g̃(x) + L̃y
ψ
(

µ, ĥ(x) + L̂z
)




. (29)

Next, we introduce diagonal matrices A(x, µ) with elements

Aii(x, µ) =

{
1, ψi(µ, ĥ(x) + L̂z) = ĥ(x) + L̂z,
0, otherwise;

and B(x, µ) with elements

Bii(x, µ) =

{
1, ψi(µ, ĥ(x)) = −µ,
0, otherwise.

Then,

Φ(x, y, z, λ, µ) =




∂2V
∂x2 0 0 (Jg̃(x))⊤ (Jĥ(x))⊤

0 0 0 L̃ 0
0 0 0 0 L̂

Jg̃(x) L̃ 0 0 0
AJĥ(x) 0 B L̂ 0 B




(30)

and the values xk+1, yk+1, zk+1, λk+1, µk+1, corresponding to the k-th Newton iteration step,
are calculated as the solution to the following system:

Φk
(

vec(x, y, z, λ, µ)− vec(xk+1, yk+1, zk+1, λk+1, µk+1)
)
= ϕk, (31)

where
Φk = Φ(xk, yk, zk, λk, µk), ϕk = ϕ(xk, yk, zk, λk, µk). (32)

Let us introduce the same Newton step equations for initial problem (1). For the Lagrange
function, we have

Vc(xc, λc, µc) = f (xc) + λc⊤g(xc) + µc⊤h(xc) (33)

and the corresponding parameters have the form

ϕc(xc, λc, µc) =




∂Vc

∂xc

G(xc)

ψ(µc, H(xc))


, (34a)
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Φc(xc, λc, µc) =




∂2Vc

∂xc2 (JG(x))⊤ (JH(x))⊤

JG(xc) 0 0

A(xc, µc)JH(xc) 0 B(xc, µc)


. (34b)

Finally, with
Φc,k = Φ(xc,k, λc,k, µc,k), ϕc,k = ϕ(xc,k, λc,k, µc,k) (35)

for a given Newton step, we have

Φc,k
(

vec(x, y, z, λ, µ)− vec(xc,k+1, yc,k+1, zc,k+1, λc,k+1, µc,k+1)
)
= ϕc,k. (36)

Let us now prove the following result.

Theorem 1. If the following conditions hold

1. x0 = xc,0;
2. λ0

c(i) = 1λc,0
i /N for i ∈ {1, . . . , m̃};

3. µ0
c(i) = 1µc,0

i /N for i ∈ {1, . . . , m̂};

4. For all i ∈ {1, . . . , m̂} z0
c(i) is solution of the following optimization problem

min
t∈R,zc(i)∈RN

1
2

t⊤t, (37a)

ĝc(i)(x0,i) + Lzc(i) + t = 0, (37b)

then the convergence of (31) coincides with the convergence of (36).

Proof. If, for the iteration k, conditions 1–4 hold, then, from (31), we arrive at a system of
linear equations. Using ∆ to denote the difference between variables at the k-th iteration,
Equation (31) can be rewritten as

∂2V
∂x2 ∆x + (JG(xk))⊤∆λ + (JH(xk))⊤∆µ =

∂V
∂x

, (38a)

L̃∆λ = L̃λk, (38b)

L̂∆µ = L̂µk, (38c)

Jg̃(xk)∆x + L̃∆y = g̃(xk) + L̃yk, (38d)

A(xk, µk)Jĥ(xk)∆x +A(xk, µk)L̂∆z + B(xk, µk)µk = ψ(µk, ĥ(xk) + L̂zk). (38e)

This set of equations describes a stationary point in the optimization problem

min
∆x∈Rn ,∆y∈Rm̃N ,∆z∈Rm̂N

1
2

∆x⊤
∂2V
∂x2 ∆x + ∆x⊤

∂V
∂x

, (39a)

Jg̃(xk)∆x + L̃∆y = g̃(xk) + L̃yk, (39b)
(

Jĥ(xk)∆x + L̂∆z
)
J
=
(

ĥ(xk) + L̂zk
)
J

, (39c)

where J = {i ∈ {1, . . . , m̂N} | Aii(xk, µk) = 1}.
Likewise, for the centralized Equation (36), we can obtain a similar optimization problem:

min
∆xc∈Rn

1
2

∆xc⊤ ∂2Vc

∂xc2 ∆xc + ∆xc⊤ ∂Vc

∂xc , (40a)

Jg̃(xc,k)∆xc = g̃(xc,k), (40b)
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(
Jĥ(xc,k)∆xc

)
I
=
(

ĥ(xc,k)
)

I
, (40c)

where I = {i ∈ {1, . . . , m̂} | Aaii(xc,k, µc,k) = 1}. Let us now show that (39) is an expansion
of problem (40). Consider objective functions in both problems, which have first and second
derivatives of the corresponding Lagrange functions. For the first derivative, we have

∂V
∂x

= ∇ f (xk) + (Jg̃(xk))⊤λ + (Jĥ(xk))⊤µ. (41)

Note that due to condition 2,

(
(Jg̃(xk))⊤λk

)
i
=

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi λ
j
k =

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi

λc
k

m̃
= λc

k

m̃

∑
k=1

∑
j∈c(i)

∂gk

∂xi =
(
(Jg(xk))⊤λk,c

)
. (42)

The same equality holds for ((Jĥ(xk))⊤µk. Thus,

∂V
∂x

=
∂Vc

∂xc (43)

and, consequently,
∂2V
∂x2 =

∂2Vc

∂xc2 . (44)

As a result, the objective functions in problems (40) and (39) are equivalent. Let us now
consider the relation between sets J and I. Firstly, we focus on the optimization problem (37).
It can be shown that in its optimum, zc(i) and t are chosen so that ti = tj, since it is the only
case, where t ∈ ker L. Thus, for each i, the corresponding inequality constraints from (40)
and (39),

N

∑
j=1

gj
i(xc,j) ≤ 0 (45)

and
g̃c(i)(x) + Lzc(i) ≤ 0 (46)

are all active or inactive simultaneously. Thus,

J =
⋃

i∈I
c(i). (47)

As a result, problem (39) is an expansion of problem (40), and according to Lemma 1, has
the same solution in x. Moreover, it means that for k + 1, item 1 of the lemma is satisfied.
Let us now demonstrate that the values xk+1, yk+1, zk+1, λk+1, µk+1 satisfy items 2–4 of the
Lemma. From (38b), for each i ∈ {1, . . . , m̃}, all components of ∆λk+1

c(i) are equal to each

other, which gives item 2. The same approach applies for all µk+1
c(i) , i ∈ I, and for all other

i µk+1
c i = 0, which means that item 3 holds. Finally, for zk+1

c(i) , i ∈ I, the corresponding

constraint is active, and problem (37) is solved with t = 0. For all other i, we have zk+1
c(i) ,

and therefore, item 4 holds.

Corollary 1. The convergence speed of Newton’s method applied to problem (19) is equal to the
convergence speed of Newton’s method applied to problem (1).

Corollary 2. Assume that

• functions f , g and h are twice differentiable in some neighborhood of the solution x∗ of
problem (1), and their second derivatives are Lipshitz-continuous in the neighborhood of
the x∗.

• the constraints’ gradients are linear independent in the optimum (linear independence con-
straint qualification);
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• solution x∗ has unique corresponding dual variables λc,∗ and µc,∗ in problem (1);
• for x∗, λc,∗ and µc,∗ we have

u⊤ ∂2Lc

∂x2 (x∗, λc,∗, µc,∗) > 0 ∀u ∈ K+(x∗) \ {0}, (48)

where

K+(x∗) =
{

u ∈ ker(Jh(x∗)) | (Jg(x∗))iu = 0 ∀i : gi(x∗) = 0 and µc,∗
i > 0

}
. (49)

Then, in problem (19), for any starting point (x, λ, µ) sufficiently close to (x∗, λ∗, µ∗), where
λ0

c(i) = 1λc,0
i /N for i ∈ {1, . . . , m̃} and µ0

c(i) = 1µc,0
i /N for i ∈ {1, . . . , m̂}, Algorithm 2

converges to the solution with quadratic rate.

This corollary result is based on the estimation of Newton’s method convergence rate
for problem (1) given in [37].

Finally, Algorithm 2 requires the exchange of information only in steps 6 and 8.
However, during this step, the gradient descent method is used with its distributed imple-
mentation shown in the previous section. Thus, operations in Algorithm 2 are performed
in the distributed form.

Algorithm 2 Newton’s method
Input: f ,g,L, ε > 0.
Output: x∗

Algorithm steps:
Step 1. Set y0 = 0;
Step 2. For each i ∈ {1, . . . , N} set zc(i) as a solution of (37) using gradient descent;
Step 3. Set λ0 = 0 and µ0 = 0;
Step 4. Set k = 0;
Step 5. Solve optimization problem (39) using the gradient descent method;
Step 6. Assign 



xk+1

yk+1

zk+1

λk+1

µk+1




=




∆xk

∆yk

∆zk

∆λk

∆µk




+




xk

yk

zk

λk

µk




(50)

Step 7. For all inactive constraints i ∈ {1, . . . , m̂}, solve problem (37) using gradient
descent and assign its solution to zk+1

c(i) ;

Step 8. If ∥xk − xk+1∥ > ε, then set k = k + 1 and go back to step 5;
Step 9. Stop: xk+1 is an ε-stationary point.

Example 2. Consider the initial problem with the following components: N = 4, m̃ = 1, m̂ = 0,
n1 = n2 = n3 = n4 = 1, f 1(x1) = (x1

1 − 5)2, f 2(x2) = (x2
1 − 4)2, f 3(x3) = (x3

1 − 3)2,
f 4(x4) = (x4

1 − 2)2, g1(x1) = (x1
1)

2 − 3, g2(x2) = (x2
1)

2 − 3, g3(x3) = (x3
1)

2 − 3, g4(x4) =
(x4

1)
2 − 3. The network is described by the Laplacian matrix (as in example 1):

L =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


.

Starting points x1,0
1 = 2, x2,0

1 = 2, x3,0
1 = 2, x4,0 = 2, y1,0

1 = 0, y2,0
1 = 0, y3,0

1 = 0, y4,0
1 = 0,

λ1,0 = 0.4, λ1,0
2 = 0.4, λ3,0 = 0.4, λ4,0

1 = 0.4. The tolerance ε = 0.01. Then, in four iterations,
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Algorithm 2 finds an ε-optimal solution with components x1,4
1 = 2.357, x2,4

1 = 1.886, x3,4
1 = 1.414,

x4,4
1 = 0.943, y1,4

1 = −1.083, y2,4
1 = −0.472, y3,4

1 = 0.694, y4,4
= 0.861, λ1,4

1 = λ2,4
1 = λ3,4

1 =

λ4,4
1 = 1.121. The objective function value F(x4) = 15.088.

7. Application of the Arrow–Hurwicz Algorithm to Problems with
Inequality Constraints

We consider here problem (19) without equality constraints

min
x∈Rn ,z∈RNm̂

N

∑
i=1

f i(xi), (51a)

ĥ(x) + L̂z ≤ 0. (51b)

The Lagrange function is given by

V(x, z, µ) = f (x) + µ⊤
(

ĥ(x) + L̂x
)

. (52)

Assume that starting vectors (x0, z0, µ0) are given. The Arrow–Hurwicz algorithm can be
described by the following relations ([38]):

xk+1 = xk − ρ
∂V(xk, zk, µk)

∂x
, (53)

zk+1 = xk − ρ
∂V(xk, zk, µk)

∂z
, (54)

µk+1 = max{0, µk + ρh(xk)}. (55)

As was shown above, the computational scheme (53)–(55) with V defined in (52) has the
distributed form. The algorithm stops when ∥xk − xk+1∥ ≤ ε, where ε > 0 is the tolerance.
The following strategy of choosing the step size ρ was used. We set the initial value ρ = 1.
If, during the iterations, the deviation h(xk) is becoming large enough, for example, greater
than the practically chosen value h, then ρ is reset: ρ = ρ

2 , and the algorithms restart from
the initial starting set (x0, z0, µ0). The explanation of such a restarting is the following. If
the deviation ĥ(xk) is big enough, then the point xk is too far from the feasible domain in
contrast to starting point x0, which is assumed to be chosen close enough to the feasible
domain. The first and main reason of using this algorithm is due to the fact that it pro-
vides a minimization procedure in the non-convex case. The second reason consists of
the following. In some neighborhood of the point of minimum, the Lagrange function is
usually locally convex, and if the algorithm managed to get into this neighborhood, then it
determines this point of minimum.

Example 3. Problem (51) has the following components: N = 4, m̂ = 2, n1 = 2, n2 = 1, n3 = 3,
n4 = 2, f1(x1

1, x1
2) = (x1

1)
2(x1

2)
2, f 2(x2

1) = 2 sin((x2
1 − 3)x2

1), f 3(x3
1, x3

2, x3
3) = (x3

1)
2 + (x3

2)
2 +

(x3
3)

2, f 4(x4
1, x4

2) = (x4
1 − x4

2 − 1)2, h1
1(x1, x1

2) = x1
1 + x1

2 − 3, h1
2(x1, x1

2) = (x1
1)

2 + (x1
2)

2 − 5,
h2

1(x2
1) = (x2

1)
2 − 4, h3

1(x3
1, x3

2, x3
3) = x3

1 + x3
2 + x3

3 − 3, h3
2(x3

1, x3
2, x3

3) = x3
3 − 2, h4

1(x4
1, x4

2) =
x41 − x4

2, h4
2(x4

1, x4
2) = (x4

1)
2 + (x4

2)
2 − 1.

The interpretation of the agent network is shown in Figure 2. The Laplacian matrix is

L =




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


.
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All components of the starting vectors x0, z0, µ0 were equal to 2. Tolerance ε = 0.001. After 69 iterations,
the algorithm determined point x69 = (−0.162,−0.162, 0.676, 0, 0, 0,−0.119, 1.119), which happened
to be optimal, y69 = (3.108, 3.296, 2.525, 2.466, 1.940, 1.446, 0.427, 0.791), F(x69) = −1.999.
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8. Conclusions

A novel approach for the decentralized solution of non-convex optimization problems
was proposed. It is based on the reformulation of optimization problems to a specific form
that allows the distributed implementation of modified gradient descent and Newton’s
methods. The main strength of the modified Newton’s method is in having the same
number of oracle callers as a standard Newton’s method applied to the initial problem
formulation. Thus, in the cases when oracle calls are more expensive than communication
between agents, the transition from centralized to distributed paradigm does not signifi-
cantly affect computational time. Moreover, if the convergence speed for Newton’s method
in application to centralized problems is quadratic, the same speed will remain for the
modified decentralized algorithm.

Such properties of the proposed approach are extremely useful in solving optimization
problems that arise when automating the design of decision support systems and digital
twins based on a holistic approach that uses mathematical and machine learning models
in conjunction with human expert knowledge [5], especially in the context of ubiquitous
computing and digitalization [1].
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