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Abstract: The classification of galaxies has significantly advanced using machine learning techniques,
offering deeper insights into the universe. This study focuses on the typology of galaxies using
data from the Galaxy Zoo project, where classifications are based on the opinions of non-expert
volunteers, introducing a degree of uncertainty. The objective of this study is to integrate Fuzzy
C-Means (FCM) clustering with explainability methods to achieve a precise and interpretable model
for galaxy classification. We applied FCM to manage this uncertainty and group galaxies based on
their morphological characteristics. Additionally, we used explainability methods, specifically SHAP
(SHapley Additive exPlanations) values and LIME (Local Interpretable Model-Agnostic Explanations),
to interpret and explain the key factors influencing the classification. The results show that using
FCM allows for accurate classification while managing data uncertainty, with high precision values
that meet the expectations of the study. Additionally, SHAP values and LIME provide a clear
understanding of the most influential features in each cluster. This method enhances our classification
and understanding of galaxies and is extendable to environmental studies on Earth, offering tools for
environmental management and protection. The presented methodology highlights the importance
of integrating FCM and XAI techniques to address complex problems with uncertain data.

Keywords: Fuzzy C-Means; explainable AI; XAI; SHAP values; LIME; citizen science; astronomy;
machine learning (ML)

MSC: 85A35; 62H30

1. Introduction

Galaxy Zoo is a citizen science project that has revolutionized the way we classify
galaxies [1]. Through the collaboration of volunteers worldwide, we have been able
to analyze and classify millions of galaxy images obtained by telescopes like the Sloan
Digital Sky Survey (SDSS) [2]. This approach popularizes science, allowing individuals
without specialized training to contribute significantly while addressing the immense
task of processing astronomical data that would otherwise be impossible for professional
astronomers to manage alone.

The drive behind this type of galaxy classification is the need to better understand
the universe we live in. Galaxies are the fundamental building blocks of the cosmos,
and studying their shapes, structures, and distributions provides critical insights into
the formation and evolution of the universe. However, classifying galaxies is not a
trivial task; it requires detailed and careful analysis, traditionally dependent on human
visual perception.

Human perception of the real world and what we visualize in cosmic images becomes a
highly effective resource when properly channeled. In Galaxy Zoo, thousands of volunteers
observe and classify galaxies according to various criteria, such as shape, presence of bars,
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orientation, and more. Each galaxy is evaluated by multiple individuals, introducing a
degree of uncertainty into the data, as not all observers perceive the same characteristics in
the same way.

In this context, artificial intelligence (AI) and machine learning (ML) play a significant
role. We use advanced AI techniques to process these human classifications and convert
them into data that are actionable and understandable by computers. One of the approaches
we employ is Fuzzy C-Means (FCM) clustering [3], a technique that allows us to handle
the inherent uncertainty in data aggregated from multiple observers. FCM helps us group
galaxies into clusters based on their morphological characteristics, reflecting the diversity
and variability in human perceptions.

Furthermore, to achieve greater interpretability of AI models, we implement explain-
ability methods such as SHAP (SHapley Additive exPlanations) values [4]. These values
enable us to better understand the key factors influencing galaxy classification, providing
a clear and comprehensible explanation of how and why certain decisions are made by
the model.

Furthermore, to achieve greater interpretability of AI models, we implement explain-
ability methods such as LIME (Local Interpretable Model-agnostic Explanations) [5]. LIME
enables us to understand the key factors influencing specific predictions by approximating
the model locally around the prediction of interest, providing a clear and comprehensible
explanation of how and why certain decisions are made by the model at a local level.

Human–machine collaboration in models of this type is key to obtaining explainability.
While human intelligence allows us to offer interpretations and identify fundamental
features in images, AI can support the classification of hundreds of thousands of images,
making the process more efficient and scalable. This interaction is important for the future
development of AI ethics, which combines human expertise with predictive modeling.

The novelty of this work lies in providing a methodology that unifies the processing of
information collected through the opinions of individuals with diverse profiles, effectively
mitigating the noise introduced by any single person’s opinion. Essentially, this approach
leverages a group-based assessment to average the weight of each identified variable.
Additionally, the use of FCM aids in obtaining a clear classification, enabling the analysis
of trends and deviations relative to the most popular selections. Finally, the application
of Explainable AI (XAI) techniques allows for a comprehensive understanding of the
model’s classification process, utilizing SHAP values for global predictions and LIME for
local predictions.

The primary purpose of this work is to demonstrate how human perceptions can be
channeled and processed through AI techniques to generate actionable insights. By doing
this, we enhance our understanding of the cosmos and illustrate how these methodologies
can be applied to other fields, including sustainability and environmental management
on Earth. This interdisciplinary approach highlights the importance of combining human
perception with the power of automated data analysis to tackle complex problems and
generate deep and practical insights.

In the remainder of this paper, we will develop and implement the Fuzzy C-Means
(FCM) and Explainable AI (XAI) model, following the structure outlined below: In Section 2,
we will review the current state of studies on galaxy classification using machine learn-
ing (ML) techniques, focusing specifically on Fuzzy C-Means. We will delve into studies
that apply a combination of clustering metrics and explainability techniques. Section 3
will describe the Fuzzy C-Means and Explainable AI (FCM-XAI) methodological frame-
work, which enhances both the accuracy and transparency of the classification models. In
Section 4, we will apply the methodological framework, FCM-XAI, to galaxy classification
based on the data provided by Galaxy Zoo. The analysis will demonstrate how the devel-
oped methodology can be used in various contexts that integrate human perception with
AI. Finally, Sections 5 and 6 will present the discussions, conclusions, and future work.
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2. Related Work

In the related work review, we will follow a structured approach to explore the relevant
work in this domain. First, we will examine the studies that have utilized Fuzzy C-Means
(FCM) as a clustering tool, providing a broad overview of its applications across various
fields. Next, we will focus on the studies that incorporate Explainable Artificial Intelligence
(XAI) techniques, emphasizing the remarkable increase in the use of XAI in recent years.
Following this, we will explore the integration of XAI with FCM and discuss the related
works that have combined these two methodologies. Subsequently, we will analyze the use
of machine learning and deep learning techniques in the context of galaxy classification,
identifying trends and gaps in this field. Finally, it will be observed that the methodology
combining FCM with XAI has not been previously employed in the specific context of
galaxy identification, highlighting the novelty of our proposed approach.

2.1. Fuzzy C-Means and XAI

Fuzzy C-Means (FCM), introduced by Bezdek in 1981 [3], is a versatile and widely
used technique that assigns data points to clusters with varying degrees of membership.
Unlike traditional hard clustering methods, which rigidly allocate each data point to a
single cluster, FCM allows for more flexibility by enabling each point to belong to multiple
clusters, with specific membership values assigned. This approach offers a more realistic
representation of data, particularly in situations where overlapping clusters and uncertainty
need to be managed.

FCM has found significant application in various fields due to its capability to handle
complex, uncertain data. In medical imaging, for instance, FCM is extensively used for
segmenting medical images, helping to identify and delineate regions of interest such as
tumors, tissues, and organs [6]. An example is its role in brain MRI segmentation, where
it distinguishes between different brain tissues, such as gray matter, white matter, and
cerebrospinal fluid, aiding in the diagnosis of neurological conditions [7]. In remote sensing
and environmental monitoring, FCM is applied to classify land cover types using satellite
imagery to segment features such as forests, water bodies, and urban areas [8]. Similarly,
in image processing and pattern recognition, FCM helps improve tasks like image com-
pression, enhancement, and feature extraction [9]. It plays a key role in face recognition
systems by grouping facial features [10]. FCM is also used in market segmentation, where
companies use it to identify different groups of customers based on their behavior, pref-
erences, and demographic characteristics. This segmentation allows companies to create
targeted marketing strategies, increasing customer satisfaction and engagement [11,12].

Lastly, in bioinformatics, FCM is applied to gene expression data analysis, clustering
genes with similar expression patterns. This clustering contributes to understanding
gene functions and interactions, further advancing genetic research and personalized
medicine [13].

Figure 1 shows a preliminary review of research related to Fuzzy C-Means (FCM) in
the Web of Science Core Collection, identifying a total of 1282 publications.

As data storage, management, and information processing speed continue to multiply,
the successes achieved by AI in predictive models, along with occasional issues arising
from the misuse of AI, such as biased data or noise, have made it imperative to approach
AI projects with a focus on the interpretability and explainability of machine learning
algorithms, with special emphasis on the ethical processes involved in decision-making. It
is evident that research on interpretability has evolved significantly in recent years, with a
notable increase in the most recent periods, as illustrated in Figure 2 and Table 1.
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2023 1023 32.19
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To further refine the search, we included the use of Explainable AI (XAI) techniques in
conjunction with FCM. Figure 3 provides a graphical representation, followed by a detailed
breakdown of the referenced publications.
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In the study by V. V. Saradhi et al. [14], the techniques used are based on non-agnostic
robust regression models for fuzzy models, providing a global approach to interpretability.
I. Ghosh et al. [15] applied agnostic techniques based on feature importance, offering a
general view of the most influential variables in the prediction. Additionally, the inter-
pretability methods used are global rather than focused on local explanations. On the
other hand, Kmita et al. [16] employ non-agnostic techniques using Semi-Supervised Fuzzy
C-Means. While this approach combines labeled and unlabeled data, it lacks an explainable
component that connects the model’s decisions with human-provided data. Sevas et al. [17]
implement agnostic techniques using feature importance, providing a global view and
explanation of the predictions. The study by Sirapangi et al. [18] uses global interpreta-
tion techniques such as Deep SHAP, offering detailed global explanations of the model.
Arabikhan et al. [19] employ non-agnostic techniques based on fuzzy networks, allowing
for a mathematical global interpretation of the model. In the work of Priya et al. [20],
non-agnostic techniques like Long Short-Term Memory combined with polynomial kernels
are used, focusing on temporal prediction. Finally, Akpan et al. [21] use artificial neural
networks (ANNs) and non-agnostic techniques for classification and prediction but lack
global and local explainable dimensions.

These studies predominantly employ global interpretability techniques such as feature
importance, deep SHAP, and fuzzy networks, with no direct human interaction for data
collection. In contrast, our study uniquely integrates human opinions through Galaxy Zoo
to guide the fuzzification process, combining both global and local interpretability methods
(SHAP and LIME) for a more comprehensive understanding of galaxy classifications using
FCM. This human–AI hybrid approach offers a novel perspective not explored in the
studies mentioned.
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2.2. Galaxy Classification

The number of studies related to galaxy classification using machine learning algorithms is
depicted in Figure 4. A total of 53 studies have been conducted over the past 10 years. However,
as evidenced, none of these studies incorporate algorithm interpretability.
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Among the studies presented in Figure 4, those from the past two years have been
selected, each focusing on different methods for galaxy classification. However, there are
key distinctions when compared to our work.

Y. Wu et al. [22] utilize convolutional neural networks (CNNs) for galaxy spectral
classification, focusing on deep learning without incorporating interpretability methods,
unlike our approach, which uses Fuzzy C-Means (FCM) clustering combined with ex-
plainability techniques like SHAP and LIME. Similarly, S. Ndung’u et al. [23] address
the morphological classification of radio galaxies but do not integrate explainability or
human-driven data. Ma et al. [24] employ hierarchical data learning for galaxy image
classification, while our study emphasizes the combination of FCM and XAI to handle
uncertainty in user classifications, providing greater transparency. Stoppa et al. [25] use
CNNs for galaxy classification without focusing on explainability, whereas our model adds
interpretability layers to the classification process. Schneider et al. [26] apply pretraining for
galaxy classification, but their approach is purely algorithmic, lacking the human–machine
collaboration seen in our study. Lastly, Senel [27] explores hyperparameter optimization
for galaxy classification, whereas we prioritize the integration of XAI with FCM to make
the classification process understandable, highlighting the unique contributions of human
observations in our methodology.

Overall, while the studies focus on improving classification accuracy, they do not
address the interpretability and human-driven aspects that our work integrates.

2.3. Conclusion

The review of related work highlights the novelty and distinctiveness of the approach
taken in this study. Previous research utilizing Fuzzy C-Means (FCM) clustering and
Explainable AI (XAI) techniques has been applied in various fields, such as medical imaging,
environmental monitoring, and financial forecasting. However, these studies typically
focus on algorithmic precision and theoretical models, with little emphasis on integrating
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human-driven data into the clustering process. Moreover, while some research applies XAI,
it is often limited to global interpretability methods, such as feature importance, without
addressing the local interpretability needed for individual predictions.

In the domain of galaxy classification, most studies rely heavily on deep learning
techniques, focusing on machine-based image analysis. These approaches, while accurate,
lack the interpretability that XAI methods provide. They also fail to incorporate the
uncertainty introduced by human classification, which is key for a dataset like Galaxy Zoo,
where non-expert volunteers provide classifications based on visual assessments.

Through the integration of FCM and XAI, this work bridges the gap between human
decision-making and AI, providing a transparent and ethically informed framework for
galaxy classification that can be extended to other domains.

3. Methodology

The methodology used in this study is based on the Knowledge Discovery in Databases
(KDD) process [28], which is foundational for structuring data analysis and mining tasks.
The KDD process involves several key stages, as depicted in Figure 5:
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The data collected in this study originates from the Galaxy Zoo project [1]. After selecting
this data source, we proceed to develop each of the stages that constitute the model:

3.1. Data Processing

In the field of galaxy classification, the objectives should be clearly defined, including
the identification of the key features that influence the classification of galaxies based
on their morphological features. Once the objectives have been defined, the next step
involves selecting relevant data by focusing on important features from the dataset, such as
galaxy shape, the presence of spiral structures, and bulge prominence, which are likely to
impact galaxy classification and align with the study’s goals. An Exploratory Data Analysis
(EDA) is then conducted, which includes analyzing the distribution of galaxy shapes and
structures, as well as studying the correlations between features to identify relationships
and redundancies. Lastly, a standard scaler is applied to normalize the data, ensuring that
each feature has a mean of 0 and a standard deviation of 1 for proper processing.

3.2. Data Mining
3.2.1. Fuzzy C-Means (FCM)

Fuzzy C-Means (FCM) is adept at handling scenarios where data points exhibit char-
acteristics of multiple clusters [3]. This is particularly pertinent in the context of galaxy
classification, where morphological features may not be distinctly categorized (Table 3).
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FCM allows galaxies to possess varying degrees of membership across multiple clusters,
thereby offering a more nuanced classification approach.

In practical applications, including astronomical datasets, entities frequently display a
blend of characteristics from distinct categories. FCM’s capability to manage overlapping
memberships makes it an appropriate choice for such intricate datasets.

The objective of FCM clustering is to group galaxies into clusters based on their
morphological characteristics. This method allows for overlapping clusters, meaning each
galaxy can belong to multiple clusters with varying degrees of membership.

1. Initialization:

To begin the clustering process, the number of clusters (c) must first be set, representing
the desired number of groups into which the data will be partitioned. The next step involves
initializing the cluster centers (vj), where initial cluster centers are randomly selected as
starting points for the algorithm to iterate upon.

v(0)j , for j = 1, 2, . . . , c

2. Membership Calculation:

Degree of Membership (u {ij}) of each galaxy xi to each cluster vj is calculated using
the distance between xi and vj. The membership degree is calculated as follows:

uij =
1

∑c
k=1

( dij
dik

) 2
(m−1)

(1)

In the given context, where u{ij} is the membership degree of galaxy xi in cluster vj,
and d{ij} is the distance between galaxy xi and cluster center vj, typically, the Euclidean
distance is as follows:

dij = |xi − vj| (2)

m is the fuzziness parameter (typically m = 2), which determines the level of
cluster fuzziness.

3. Cluster Center Update:

Update the cluster centers
(
vj
)

based on the weighted average of the galaxies’ features,
with weights given by their membership degrees:

v(t+1)
j =

∑n
i=1 um

ij xi

∑n
i=1 um

ij
(3)

In the given context, where v(t+1)
j is the updated cluster center, and um

ij is the member-
ship degree raised to the power of m.

4. Iteration:

Continue iterating between membership calculation and cluster center update until
convergence is achieved. Convergence is typically defined as the point where the changes in
membership degrees and cluster centers are below a predefined threshold. Mathematically,
this can be represented as follows:

|v(t+1)
j − v(t)j | < ϵ and |u(t+1)

ij − u(t)
ij | < ϵ (4)

where ϵ is a small positive constant representing the convergence threshold, v(t+1)
j and

v(t)j are the cluster centers at iterations t + 1 and t, respectively, and u(t+1)
ij , u(t)

ij are the
membership degrees at iterations t + 1 and t, respectively.
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FCM clustering allows galaxies to be grouped based on their morphological character-
istics. It allows for overlapping clusters, providing a more flexible and nuanced clustering
approach compared to traditional hard clustering methods. By iterating through mem-
bership calculations and cluster center updates, FCM can accurately reflect the inherent
uncertainty and variability in galaxy data.

3.2.2. Random Forest (RF) for Predictive Modeling

Random Forest (RF) is an ensemble learning method known for its high accuracy and
robustness in classification tasks [29]. It operates by building multiple decision trees during
training and providing the most frequent class as the output for classification. This method
reduces overfitting and improves the generalizability of the model.

RF can effectively manage datasets with many features, which are common in as-
tronomical data. Its ability to manage a diverse set of input features without requiring
extensive preprocessing makes it an ideal choice for our problem.

One of the key advantages of RF is its ability to measure the importance of each
feature in making predictions. This factor is key for understanding which morphological
characteristics of galaxies are most influential in determining their cluster memberships.

RF determines the intrinsic cluster membership of a galaxy based on its features. While
FCM assigns degrees of membership across multiple clusters, RF provides a definitive
prediction of the most likely cluster for a new galaxy, using its morphological characteristics.

Let X be the feature matrix and y be the response vector. The steps are as follows:

1. Bootstrapping and Bagging: Bootstrapping is a statistical technique in which multiple
datasets are generated by sampling with replacement from the original dataset. This
method forms the basis for Bagging (Bootstrap Aggregating), where each decision tree
is trained on a different bootstrapped dataset. Specifically, B bootstrapped datasets,
denoted as

(
X*

b, y*
b
)
, are created from the original dataset (X, y). This approach

enhances the stability and accuracy of machine learning models by reducing variance
and improving generalization.

2. Tree Construction: At each node, a random subset of features is chosen, and the best
possible split is determined from within this subset. The tree continues to grow until
a specified stopping condition is reached, such as a maximum depth or a minimum
number of samples per leaf. For each bootstrapped dataset

(
X*

b, y*
b
)
, a decision tree

Tb is constructed by selecting the best split from a random subset of features at
every node.

3. Voting and Prediction: For classification tasks, each tree in the forest casts a vote for
the predicted class. The final prediction is the class with the majority vote across
all trees. For regression tasks, the overall prediction is derived by averaging the
predictions from each tree. Given a new input x, the Random Forest prediction ŷ is
calculated as follows:

ŷ = mode{Tb(x)} for classification (5)

ŷ =
1
B

B

∑
b=1

Tb(x) for regression (6)

The use of RF to predict galaxy cluster membership is justified by its robustness, accu-
racy, and ability to manage high-dimensional data. Its non-linear nature and feature impor-
tance measures further enhance its suitability for this task. The inherent non-interpretability
of RF paves the way for the application of XAI techniques, ensuring that we can obtain
deterministic information about the model’s decision-making process and build confidence
in its predictions.

3.3. Interpretable Machine Learning

Explainability techniques are necessary because Random Forest, although robust
and accurate, is considered a “black-box” model. This means that, although it can make
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accurate predictions, the internal decision-making process is not inherently transparent or
interpretable. Therefore, Explainable AI (XAI) techniques are used to understand and trust
the model’s predictions [30].

1. Inherently Interpretable Models [31] are designed to be simple and transparent, mak-
ing their decision-making process easy to understand. Examples include linear re-
gression, decision trees, and logistic regression. These models are often used when
interpretability is crucial, such as in regulatory environments or when stakeholder
trust is paramount.

2. Black-box Models [32] are complex, and their internal workings are not easily inter-
pretable. Examples include Random Forest, neural networks, and support vector
machines. These models are often favored for their high predictive power, especially
when handling large and complex datasets.

3. Model-agnostic Explainability [33] techniques can be applied to any machine learn-
ing model, regardless of its internal complexity. Examples include SHAP (SHap-
ley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explana-
tions), which work by approximating or analyzing the model’s output rather than its
internal structure.

4. Model-dependent Explainability [34] techniques are specific to certain types of models
and leverage their internal structure to provide explanations. Examples include
decision tree feature importances and neural network saliency maps. These methods
are often more efficient but less generalizable than model-agnostic approaches.

3.3.1. SHAP (Shapley Additive exPlanations)

Derived from cooperative game theory, SHAP values offer a standardized measure of
feature importance [35]. They explain the contribution of each feature to the prediction for
each individual data point.

Calculating the Shapley value for a feature involves taking the average of its marginal
contributions over all possible feature combinations.

Mathematically, it is given by the following:

ϕj = ∑
S⊆F∖{j}

|S|!(|F| − |S| − 1)!
|F|!

(
fS∪{j}

(
xS∪{j}

)
− fS(xS)

)
(7)

where F is the set of all features, S is a subset of features excluding j, and fS(xS) is the
prediction from the model using the feature subset S.

SHAP values help in understanding the overall importance of each morphological
feature in determining galaxy cluster memberships. This provides insights into the key
factors that drive the clustering process.

3.3.2. LIME (Local Interpretable Model-Agnostic Explanations)

LIME provides local explanations by approximating the model’s behavior in the
vicinity of a particular instance with a simple interpretable model [36].

For a given instance x, LIME perturbs x to generate a set of new instances
{

x′i
}

and
obtains predictions

{
f
(
x′i
)}

from the original model.
Weights are assigned to these instances based on their proximity to x:

π(xi) = exp
(
−|x − xi|2

σ2

)
(8)

A simple linear model (g) is then fit to the weighted instances to approximate the
complex model’s behavior locally:

g
(
z′
)
= argmin

g∈G
∑

i
π(xi)

(
f (xi)− g

(
z′i
))2 (9)
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where z′ is the binary vector representing the presence or absence of features in x.
LIME can be used to explain why a particular instance belongs to a certain cluster by

showing the contribution of each feature to the prediction. This is achieved by analyzing
the weights and coefficients of the locally fitted linear model.

LIME allows for explaining individual predictions, showing why a particular galaxy is
assigned to a specific cluster. This helps validate the model’s decisions on a case-by-case basis.

3.4. FCM–XAI

The integration of Fuzzy C-Means for clustering and Random Forest for predictive
modeling, complemented by SHAP and LIME for interpretability, establishes a comprehen-
sive and robust framework for galaxy classification. This approach harnesses the strengths
of both FCM and RF, ensuring that model predictions are transparent and interpretable,
thus enhancing confidence and reliability in the classification results.

Moreover, the employed methodology is adaptable to various environments where
information from multiple sources is processed. By making classification decisions under-
standable and explainable, this approach increases the robustness and trustworthiness of
the outcomes.

4. FCM-XAI Methodology for Galaxy Classification
4.1. Data Collection, Processing, and Transformation

The methodology presented in this study aids in the development of classification
models based on specific characteristics. For our research, the Galaxy Zoo data model was
employed. The characteristics detailed in this model are summarized in Table 2.

Table 2. Features of the Galaxy Zoo dataset.

Features

Class1.1 Probability that the galaxy is smooth (featureless).
Class1.2 Probability that the galaxy has features or a disk.
Class1.3 Probability that the image is a star or an artifact.
Class2.1 Probability that the galaxy is edge-on.
Class2.2 Probability that the galaxy is not edge-on.
Class3.1 Probability that the galaxy has a bar.
Class3.2 Probability that the galaxy does not have a bar.
Class4.1 Probability that the galaxy is spiral.
Class4.2 Probability that the galaxy is not spiral.
Class5.1 Probability that the galaxy has no prominent bulge.
Class5.2 Probability that the galaxy’s bulge is just noticeable.
Class5.3 Probability that the galaxy’s bulge is obvious.
Class5.4 Probability that the galaxy’s bulge is dominant.
Class6.1 Probability that the galaxy has odd features.
Class6.2 Probability that the galaxy does not have odd features.
Class7.1 Probability that the galaxy is completely round.
Class7.2 Probability that the galaxy’s shape is in-between.
Class7.3 Probability that the galaxy is cigar-shaped.
Class8.1 Probability that the galaxy has a ring.
Class8.2 Probability that the galaxy has a lens or arc.
Class8.3 Probability that the galaxy is disturbed.
Class8.4 Probability that the galaxy is irregular.
Class8.5 Probability that the galaxy has some other strange feature.
Class8.6 Probability that the galaxy is merging.
Class8.7 Probability that the galaxy has a dust lane.
Class9.1 Probability that the galaxy’s bulge is round.
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Table 2. Cont.

Features

Class9.2 Probability that the galaxy’s bulge is boxy.
Class9.3 Probability that the galaxy has no bulge.
Class10.1 Probability that the galaxy’s spiral arms are tightly wound.
Class10.2 Probability that the galaxy’s spiral arms are moderately wound.
Class10.3 Probability that the galaxy’s spiral arms are loosely wound.
Class11.1 Probability that the galaxy has one spiral arm.
Class11.2 Probability that the galaxy has two spiral arms.
Class11.3 Probability that the galaxy has three spiral arms.
Class11.4 Probability that the galaxy has four spiral arms.
Class11.5 Probability that the galaxy has more than four spiral arms.
Class11.6 Probability that the number of spiral arms cannot be determined.

The selection of the following features from the Galaxy Zoo model was guided by their
relevance to galaxy classification based on morphological properties [37]. These features
capture essential aspects of a galaxy’s shape, structure, and specific characteristics that are
determinant for accurate and interpretable classification (Table 3).

Table 3. Selected features of Galaxy Zoo dataset.

Selected Features

GalaxyID Unique identifier for each galaxy.
Class1.1 Probability that the galaxy is smooth (featureless).
Class2.1 Probability that the galaxy is edge-on.
Class3.1 Probability that the galaxy has a bar.
Class4.1 Probability that the galaxy is spiral.
Class5.1 Probability that the galaxy has no prominent bulge.
Class5.2 Probability that the galaxy’s bulge is just noticeable.
Class5.3 Probability that the galaxy’s bulge is obvious.
Class5.4 Probability that the galaxy’s bulge is dominant.
Class7.1 Probability that the galaxy is completely round.
Class7.2 Probability that the galaxy’s shape is in-between.
Class7.3 Probability that the galaxy is cigar-shaped.
Class8.1 Probability that the galaxy has a ring.

The first step in the process involves conducting an Exploratory Data Analysis (EDA).
After selecting the features that will determine the cluster types, a correlation matrix is
constructed, as shown in Figure 6.

The conclusions that can be drawn from this correlation matrix are as follows:

• Smooth Galaxies: There is a strong negative correlation between “smooth” and
“has_signs_of_spiral” (−0.67) as well as “spiral_barred” (−0.48). This indicates that
galaxies classified as smooth are less likely to exhibit spiral characteristics. Addition-
ally, a positive correlation is observed between “smooth” and “completely_round”
(0.63), suggesting that smooth galaxies tend to have a round shape.

• Edge-On Galaxies: “On_edge” has a moderate positive correlation with “cigar_shaped”
(0.50), indicating that edge-on galaxies are often cigar-shaped. Furthermore, there is a
negative correlation between “on_edge” and “completely_round” (−0.33), suggesting
that edge-on galaxies are less likely to be completely round.

• Spiral Barred Galaxies: “Spiral_barred” is strongly positively correlated with
“has_signs_of_spiral” (0.55), indicating that barred spiral galaxies often show signs of
spiral arms. Additionally, the negative correlation with “smooth” (−0.48) suggests
that barred spirals are less likely to be smooth.

• Bulge Prominence: A progression of positive correlations is observed from “no_bulge”
to “dominant_bulge,” through “just_noticeable_bulge” and “obvious_bulge.” This
indicates a spectrum of bulge prominence, ranging from none to dominant.
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• Roundness: “Completely_round” has a strong positive correlation with “smooth”
(0.63), supporting the observation that round galaxies are often smooth. Negative
correlations with “on_edge” (−0.33) and “cigar_shaped” (−0.34) indicate that round
galaxies are less likely to be viewed edge-on or to have a cigar shape.

• Presence of a Ring: “Ring_present” shows a moderate positive correlation with “obvi-
ous_bulge” (0.41), suggesting that galaxies with rings often have an obvious bulge.
Negative correlations with “smooth” (−0.25) and “on_edge” (−0.09) suggest that
ringed galaxies are less likely to be smooth or edge-on.

Once the conclusions are drawn from the Exploratory Data Analysis (EDA), the next
step involves scaling the features. This is accomplished using the ‘StandardScaler‘ function
from Python. This process involves standardizing the features by removing the mean and
scaling to unit variance, which ensures that all features contribute equally to the analysis
and are on the same scale.
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4.2. Galaxy Classification

Before proceeding with the classification of galaxies, the optimal number of clusters must be
determined. This step ensures that the clustering algorithm accurately captures the underlying
structure of the data. An effective method to achieve this is to use the Silhouette Index.

The Silhouette Index is a widely used metric for assessing the quality of clustering
results. It measures how similar an object is to its own cluster (cohesion) compared to other
clusters (separation). The silhouette value ranges between −1 and 1, where values close to
+1 suggest that the object is well matched to its own cluster, a value of 0 indicates that the
object is near the boundary between clusters, and values near −1 suggest that the object
may be misclassified and better suited to a different cluster.

A range of possible cluster numbers is defined, usually starting from 2 up to a maximum
value, which can be 10 or higher depending on the size and complexity of the dataset.

The optimal number of clusters identified is 3, as shown in Figure 7. This number
maximizes the average silhouette score across all points in the dataset.
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The next step involves visualizing the centroids of these clusters to understand the
distinguishing features of each cluster (Figure 8).

Based on the resulting centroids, the main characteristics of each cluster can be inter-
preted. The centroids show the average values of the features for each cluster, allowing for
a better understanding of the distinctive characteristics of each group of galaxies.

Cluster 0 is characterized by galaxies that are mostly smooth, with a smooth value of
0.393019. A considerable proportion of galaxies appear edge-on, indicated by an on_edge
value of 0.208261. Some galaxies in this cluster have a spiral bar (spiral_barred: 0.074008),
and others show signs of spirals (has_signs_of_spiral: 0.128044). Additionally, some galax-
ies have a just noticeable bulge (just_noticeable_bulge: 0.155726) or an obvious bulge
(obvious_bulge: 0.168610). The cluster also contains galaxies with a shape that is intermedi-
ate between completely round and cigar-shaped (in_between: 0.201720). Overall, Cluster 0
groups galaxies that are primarily smooth, with a mix of spiral and bulge characteristics.
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Cluster 1 is composed mainly of galaxies that are predominantly smooth, with a
smooth value of 0.685219. Many galaxies in this cluster are completely round (com-
pletely_round: 0.368346), while a significant fraction has an intermediate shape (in_between:
0.292676). Some galaxies have obvious bulges (obvious_bulge: 0.131435), and others have
just noticeable bulges (just_noticeable_bulge: 0.076257). Overall, Cluster 1 groups galaxies
that are mostly smooth, either completely round or with intermediate shapes, with rela-
tively few complex internal structures, although some have bulges that are either obvious
or just noticeable.

Cluster 2 consists of galaxies that frequently exhibit signs of spirals, with a
has_signs_of_spiral value of 0.579736. Many galaxies in this cluster have a just noticeable
bulge (just_noticeable_bulge: 0.393652), while others have obvious bulges (obvious_bulge:
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0.326246). A significant fraction of the galaxies have a spiral bar (spiral_barred: 0.230096),
and some galaxies are smooth (smooth: 0.149425). Overall, Cluster 2 groups galaxies that
typically display spiral features and bulges, with some galaxies also being smooth.

Figures 9–11 display a sample of galaxy images from the Galaxy Zoo dataset, display-
ing the cluster memberships as determined by the Fuzzy C-Means clustering algorithm.
Each image is annotated with the GalaxyID and the degrees of membership to three differ-
ent clusters (Cluster 0, Cluster 1, and Cluster 2).
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4.3. Prediction Model Random Forest (RF)

After classifying galaxies based on the previously discussed criteria, the next step
involves creating a predictive model to assess the accuracy of our classification and predict
the cluster membership for new galaxies. For this purpose, the RF algorithm has been
chosen due to its robustness and efficiency in handling complex, non-linear relationships
between features.

RF is an ensemble learning method that constructs multiple decision trees during
training and outputs the mode of the classes for classification tasks. This approach helps
improve the model’s accuracy and controls overfitting.

In the data preparation stage, the dataset with labeled clusters from the Fuzzy C-
Means clustering is split into training and testing sets. During model training, the Random
Forest model is trained on the training set, learning the patterns and relationships between
the features (such as smoothness, edge-on probability, presence of spiral structures, etc.)
and the cluster labels. Finally, in the model testing phase, the trained model is tested on the
testing set to evaluate its predictive performance.

To evaluate the model’s performance, a confusion matrix is generated (Figure 12). This
matrix provides a detailed breakdown of the model’s predictions compared to the actual
cluster labels, showing the number of true positives, true negatives, false positives, and
false negatives for each cluster.

The Random Forest model can be used to predict the cluster membership of new
galaxies based on their morphological characteristics. When a new galaxy is detected,
its features are input into the model, which then predicts the probability of the galaxy
belonging to each cluster. The cluster with the highest probability is assigned to the
new galaxy.

To calculate the precision of the Random Forest model, the following equation is used:

Precision =
True Positives

True Positives + False Positives
(10)

From the confusion matrix, the precision for each cluster can be calculated as follows:
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Cluster 0: (true positive: 6416; false positive: 73 + 107)

[Precision0 =
6416

6416 + 73 + 107
=

6416
6596

≈ 0.973]

Cluster 1: (true positive: 6900; false positive: 63 + 0)

[Precision1 =
6900

6900 + 63
=

6900
6963

≈ 0.991]

Cluster 2: (true positive: 4850; false positive: 65 + 0)

[Precision2 =
4850

4850 + 65
=

4850
4915

≈ 0.987]
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The model demonstrates high precision across all clusters, with Cluster 1 showing
the highest precision at 99.1%, followed by Cluster 2 at 98.7%, and Cluster 0 at 97.3%.
This indicates that the model is highly effective at correctly classifying galaxies into their
respective clusters with minimal false positives.

Each cluster represents a group of galaxies with similar characteristics. Based on the
cluster membership, specific actions can be taken:

1. Cluster 0 (Predominantly Smooth Galaxies): For galaxies predicted to belong to this
cluster, further investigation into their formation and evolution can be conducted.
These galaxies may be less likely to exhibit complex structures, making them ideal
candidates for studying early galaxy formation.

2. Cluster 1 (Round and Intermediate Shapes): Galaxies in this cluster often have round
or intermediate shapes. Research can focus on understanding the factors contributing
to their shape and how they evolve over time. This cluster may also include galaxies
in various evolutionary stages.

3. Cluster 2 (Spiral and Bulge Structures): This cluster includes galaxies with prominent
spiral features and noticeable bulges. These galaxies can be studied to understand
spiral arm formation, star formation rates, and the dynamics of bulge development.
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4.4. Interpretable Machine Learning

To ensure the transparency and interpretability of our predictive model, we incor-
porated explainability techniques into the RF algorithm used for predicting the cluster
membership of new galaxies. While RFs are algorithms that excel in accuracy and the ability
to manage complex, non-linear relationships between features, they are often considered
“black-box” models due to their lack of inherent interpretability.

By employing Explainable AI (XAI) methods such as SHAP, we can gain insights into
the decision-making process of the Random Forest model. SHAP values provide a global
understanding of feature importance by assigning each feature an importance score based
on its contribution to the model’s predictions. This allows us to interpret the influence of
individual features on the classification of galaxies into specific clusters.

LIME, on the other hand, offers a local perspective by creating interpretable models
around individual predictions. This enables us to understand the reasons behind a par-
ticular galaxy’s assignment to a specific cluster, providing a clearer and more actionable
explanation for each decision made by the model.

The integration of these XAI techniques with the RF model ensures that the deci-
sions made by the model are accurate and understandable, thereby increasing the con-
fidence in the results obtained from the classification of new galaxies based on their
morphological characteristics.

4.4.1. SHAP

The application of SHAP allows for an understanding of which features are most
influential in the model’s predictions for each cluster. By analyzing feature importance
with SHAP, one can validate that the model behaves consistently with prior knowledge
about galaxy classification and detect if the model uses irrelevant or biased features for
predictions. Providing explanations about how the model arrives at its predictions increases
trust in the system, especially for end-users who may not have deep technical expertise.
Furthermore, the SHAP technique helps identify which features might be missing or
misinterpreted by the model, allowing for adjustments and improvements in the model’s
design (Figures 13–15).
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Figure 15. Feature importance for Cluster 2.

It is important to compare the feature importance derived from SHAP with the central
features of each cluster obtained previously. This allows us to validate that the Random
Forest model aligns with the definitions of the clusters established by Fuzzy C-Means.

1. In Cluster 0, it is observed that the smooth feature is the most influential, aligning
with the prior interpretation that galaxies in this cluster are predominantly smooth.

2. In Cluster 1, the “completely_round” feature stands out, consistent with the interpre-
tation that many galaxies in this group are completely round.
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3. In Cluster 2, the “has_signs_of_spiral” feature emerges as the most significant, cor-
responding with the interpretation that galaxies in this cluster frequently display
spiral signs.

This correspondence between feature importance and cluster definitions reinforces
the validity of the model and provides a deeper understanding of the factors driving the
model’s decisions.

4.4.2. LIME

LIME operates by creating locally accurate explanations. It takes a specific data
point and constructs a dataset of similar but slightly altered instances, then produces a
simpler, interpretable surrogate model (such as linear regression) to elucidate the complex
model’s predictions near the selected data point. This method is particularly useful for
comprehending the factors affecting specific predictions, especially when the original
model is a “black box” like Random Forest [5].

The LIME result shown in Figure 16 provides an explanation for the classification of a
galaxy (Galaxy ID = 553402) into Cluster 2 with a 100% probability.
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Figure 16. Local cluster prediction (cluster = 2).

The galaxy is classified into Cluster 2 with high certainty due to its morphological char-
acteristics. The noteworthy features influencing this decision include a low “smooth” value,
a high “has_signs_of_spiral” value, and the absence of a “completely_round” shape. Spe-
cific characteristics, such as low values of “cigar_shaped” and moderate “obvious_bulge”,
“dominant_bulge”, and “just_noticeable_bulge”, also contribute to this classification.

The image corresponding to Galaxy ID = 553402 is shown in Figure 17.
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The LIME result shown in Figure 18 provides an explanation for the classification of a
galaxy (Galaxy ID = 236126) with a 68% probability for Cluster 0, 0% for Cluster 1, and 32%
for Cluster 2.
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Figure 18. Local cluster prediction (cluster = 0).

The galaxy is primarily classified into Cluster 0 with a 68% probability based on its
morphological characteristics. Key features influencing this decision include moderate
values for smoothness and the absence of “has_signs_of_spiral” and “cigar_shaped” traits.
Additionally, low values for “dominant_bulge” and “just_noticeable_bulge”, along with
moderate values for “on_edge”, “spiral_barred”, and “obvious_bulge”, further support
this classification.

The image corresponding to Galaxy ID = 236126 is shown in Figure 19.
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Figure 19. Galaxy ID 236126, Cluster 0.

The LIME result shown in Figure 20 provides an explanation for the classification of a
galaxy (Galaxy ID = 113992) with a 100% probability for Cluster 1.

The galaxy is classified into Cluster 1 with a 100% probability, primarily due to its high
values for smooth (0.90) and “completely_round” (0.64), which are the most significant con-
tributors to this classification. The absence of spiral characteristics (“has_signs_of_spiral”:
0.00), cigar shape (“cigar_shaped”: 0.00), and edge-on view (“on_edge”: 0.00) also support
this result. Additionally, low values for “just_noticeable_bulge” (0.00), “spiral_barred”
(0.00), “obvious_bulge” (0.08), and “ring_present” (0.02) further reinforce the classification
into Cluster 1. The feature “in_between” has a moderate value (0.25), slightly contra-



Mathematics 2024, 12, 2797 23 of 27

dicting the overall classification, but is outweighed by the stronger contributions from
other features.
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The image corresponding to Galaxy ID = 113992 is shown in Figure 21.
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5. Discussion

The present study has developed a comprehensive model for galaxy classification by
integrating Fuzzy C-Means (FCM) clustering and predictive modeling, validated through
Explainable AI techniques such as SHAP and LIME.

As observed in the related work (Section 2.2), most studies in galaxy classification
primarily rely on convolutional neural networks and other deep learning techniques. These
methods often achieve high classification accuracy but lack transparency and interpretabil-
ity. Our study, in contrast, integrates Explainable Artificial Intelligence (XAI) methods,
specifically SHAP and LIME, to provide both global and local interpretability, ensuring
that the decision-making process behind the classification is understandable, unlike the
studies analyzed in Section 2.1 that predominantly use global explanations. Furthermore,
while many studies focus exclusively on algorithmic data classification, our work incor-
porates human-generated data from the Galaxy Zoo project, where non-expert volunteers
contribute to the labeling of galaxies. This human interaction introduces an element of
uncertainty, which we address through Fuzzy C-Means (FCM) clustering.
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The model development and integration process began with employing Fuzzy C-
Means (FCM) clustering to identify natural groupings within the galaxy dataset based on
their morphological characteristics. This method allowed for the classification of galaxies
into overlapping clusters, effectively accommodating the inherent uncertainty and vari-
ability in the data. Following this clustering step, a Random Forest model was trained
to predict the cluster membership of new galaxies. By leveraging the identified clusters,
the Random Forest model provided a robust predictive framework capable of accurately
classifying new galaxy data.

Cluster characterization involves examining the centroids of the clusters to identify the
key morphological features that define each group. These centroids represent the average
values of the features for galaxies within each cluster, providing a clear understanding of the
distinguishing characteristics of each cluster. SHAP values were then utilized to quantify
the importance of each feature in the model’s predictions for each cluster, confirming that
the model’s behavior aligns with prior knowledge about galaxy classification and ensuring
relevant features were appropriately weighted. Additionally, LIME was used to provide
local explanations for specific predictions, offering insights into how individual features
influenced the model’s decisions for particular galaxies.

Model validation and interpretation revealed a strong correspondence between the
defined clusters and the morphological types of galaxies through the combination of FCM
clustering and SHAP/LIME analysis. This correspondence validates the effectiveness of
both the clustering method and the predictive model. The predictive model also demon-
strated a high degree of accuracy in assigning new galaxies to the appropriate clusters,
extending its application to real-time galaxy classification tasks, thereby enhancing the
efficiency and accuracy of astronomical research.

The utility and future improvements of this study highlight the potential for combining
human visual analysis with AI-driven image analysis. By leveraging the strengths of
both approaches, the model achieves a higher level of precision and reliability in galaxy
classification. The enhanced interpretability provided by SHAP and LIME ensures that
the model’s predictions are transparent and easily understandable, which is important
for building trust in AI systems, particularly in scientific research where understanding
the rationale behind decisions is critical. Additionally, the methodology developed in
this study has broader applications and could be applied to other domains requiring the
classification of complex data.

6. Conclusions and Future Work

The developed framework provides a robust and transparent approach to galaxy
classification, which provides insight into the complex morphological characteristics
of galaxies.

The integration of Fuzzy C-Means clustering with the Random Forest predictive
model has proven to be highly effective in classifying galaxies based on their morphological
characteristics, particularly when working with the Galaxy Zoo dataset, which is built
upon non-expert opinions. The successful clustering of these images, despite the inherent
variability introduced by the non-expert input, demonstrates a notable achievement in
extracting meaningful clusters from the data.

Moreover, the application of Explainable AI (XAI) techniques such as SHAP and LIME
further enhances our ability to assign new galaxy images to the appropriate clusters with
high confidence. By utilizing user-generated data from Galaxy Zoo, the model successfully
predicts the cluster to which a galaxy belongs, leveraging both the non-expert input and
sophisticated clustering and prediction techniques.

The precision achieved in the Random Forest classification for each cluster further
reinforces the accuracy of the methodology. The precision values obtained are as follows:
Cluster 0 = 0.973; Cluster 1 = 0.991; and Cluster 2 = 0.987.

It can be noted that after applying SHAP to analyze feature importance for each
cluster, the results aligned perfectly with the observations made through the Fuzzy C-
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Means classification. Additionally, using LIME, we conducted an in-depth analysis of three
specific galaxy examples from each cluster, which allowed us to understand clearly why
each galaxy was assigned to its respective cluster.

These results highlight the high level of precision achieved in classifying galaxies based
on user-labeled data from Galaxy Zoo. The combination of Fuzzy C-Means and Random
Forest, supported by XAI, allows for transparent and accurate classification, making it
possible to incorporate human-driven insights into automated clustering models with
great success.

In future work, it is proposed to advance in the following lines of research:

• Integration with Other Datasets: Future work will focus on integrating this methodol-
ogy with other astronomical datasets to validate its robustness across several types of
galaxy data.

• Refinement of Features: Further refinement of the features used in the model could
enhance classification accuracy. Exploring additional morphological and contextual
features will be a key area of research.

• Real-Time Classification: Developing a real-time classification system that can process
and classify galaxies as new data becomes available will be a significant advancement.

• Expanding Interpretability Techniques: While SHAP and LIME have proven effective,
exploring other interpretability techniques could provide deeper insights and improve
model transparency further.

• Application to Other Domains: The methodology could be adapted for use in other
domains where image classification and interpretability are important, such as medical
imaging and remote sensing.

The results of this study demonstrate the potential of combining advanced clustering
and predictive techniques with interpretability methods to achieve both high accuracy
and transparency in complex classification tasks. This approach sets the stage for future
advancements in galaxy classification and other scientific and technical fields requiring
robust and Explainable AI models.
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