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1. Introduction and the Main Results

Let X1, X2, . . . be independent random variables (r.v.s) taking values in a separable
Banach space (B, ∥ · ∥) with respective distributions P1, P2, . . . . In the i.i.d. case, we will
denote by P the common distribution.

Pois(µ) denotes the compound Poisson distribution with Lévy measure µ:

Pois(µ) := e−µ(B)
∞

∑
k=0

µ∗k

k!
, (1)

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the Dirac
measure with the atom at zero. Sn := Σi≤nXi, where S0 = 0 by definition. The compound
Poisson distribution with Lévy measure µ ≡ µn := ∑i≤n Pi is called the accompanying
infinitely divisible law for L(Sn) (see [1]); here and everywhere in the future, the symbol
L(ξ) denotes the distribution of a random variable (r.v.) ξ. We denote by τµn a r.v. having
this distribution.

For every natural m ≤ n, let {Xm,i; i ≥ 1} be independent copies of the random
variable Xm. We assume that all the sequences {Xi}, {X1,i}, {X2,i}, . . . are independent.
Additionally, let π(t), π1(t), . . . , πn(t), t ≥ 0 be independent Poisson random processes
with unit intensity which do not depend on the sequences of r.vs above. From (1), it
follows that

Pois(P) = L
(

Sπ(1)

)
. (2)

The characteristic functional of a B-valued r.v. ζ is defined as follows:

φζ(l) := Eeil(ζ), l ∈ B∗,

where l(·) is a bounded linear functional on B, i.e., it is an element of the conjugate space B∗.
So, one obtains

φτP(l) := Eeil(τP) = exp
{

φX1(l)− 1)
}

.
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Next, the characteristic functional of the accompanying infinitely devisable law is
calculated by the formula

φτµn (l) := Eeil(τµn ) = exp

{
n

∑
i=1

(
φX1,i (l)− 1

)}
. (3)

In other words,

L(τµn) = L
(

n

∑
m=1

Sm,πm(1)

)
, (4)

where the sums Sm,πm(1) :=
πm(1)

∑
i=1

Xm,i, m = 1, . . . , n (with
0
∑

i=1
= 0) are independent, and

L
(

Sm,πm(1)

)
= Pois(Pm) by virtue of (1). In the i.i.d. case, from (3), we obtain that

Formula (4) can be rewritten as follows:

Pois(µn) ≡ Pois(nP) = L
(

Sπ(n)

)
. (5)

The main goal of this paper is to obtain upper and lower moment inequalities for
some measurable functions of Sn or of the collection S1, . . . , Sn via the analogous moments
of the accompanying compound Poisson laws as well as to obtain upper bounds for the
probability tail of these functionals. Results of this kind are related to Kolmogorov’s
problem of approximating sums of independent r.vs by various infinitely divisible laws,
in particular, by the accompanying ones, as well as with an improvement of the classical
probability inequalities for these sums.

In what follows, we consider functions of one or several (say, n) B-valued arguments.
In the latter case, we consider functions of the n-variate argument z̄ := (z1, . . . , zn) from
the new Banach space Bn := B × · · · × B with the norm ∥z̄∥∗ :=

(
∥z1∥2 + . . . + ∥zn∥2)1/2.

So, for arbitrary Borel functions f (z), G(z̄) and F(z̄), with z ∈ B and z̄ ∈ Bn, introduce the
following notation under appropriate moment conditions:

ϕ(n) := E f (Sn), (6)

ΦF(k̄n) := EF(S1,k1 , . . . , Sn,kn), (7)

gn := EG(S1, . . . , Sn), (8)

where k̄n := (k1, . . . , kn), with k j ∈ Z+ (Z+ is the set of all nonnegative integers). It is clear
that the function ϕ(n) is a particular example of the function gn. In turn, the latter function
is a particular case of ΦF(k̄n) if k1 = . . . = kn = 1.

We say that a function ψ : Z+ → R is convex (concave) if the difference
∆ψ(n) := ψ(n + 1)− ψ(n) is a nondecreasing (nonincreasing, respectively) function in n.

The following two theorems, in particular, contain some results from [2] together with
some new results.

Theorem 1. The following assertions are valid:
1. For all z ∈ B and naturals m, let the functions ϕm,z(n) := E f (Sm,n + z) be convex. Then,

E f (Sn) ≤ E f (τµn) (9)

provided that the expectation on the right-hand side of this inequality exists.
In the i.i.d. case, inequality (9) holds if only the function ϕ(n) is convex.
2. Let the function ΦF(k̄n) be convex with respect to each coordinate k j ∈ Z+. Then, for every

vector k̄ ∈ Zn
+,

ΦF(k̄n) ≤ EF(τ(1)
k1P1

, . . . , τ
(n)
knPn

) (10)
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if the expectation on the right-hand side of (10) exists, where {τ
(j)
kjPj

, j = 1, . . . , n} are independent

r.v-s with respective distributions {Pois(k jPj), j = 1, . . . , n}.

Remark 1. If the functions ΦF(k̄n) and ϕm,z(n) in Theorem 1 are concave, then, inequalities (9)
and (10) are changed to the opposite. It follows from the well-known connection between convex and
concave functions: concave = −convex.

For a r.v. ζ with values in B, supp ζ denotes the minimal closed subset of B such that
ζ ∈ supp ζ with probability 1. We need the notion of convexity in the direction determined
by a subset of B. We say that a measurable function f is convex in direction

⋃
i≥1 suppXi if

for all x ∈ ⋃i≥1 supp Si and all z, h ∈ ⋃i≥1 suppXi, this function satisfies the inequality

f (x + h)− f (x) ≤ f (x + h + z)− f (x + z). (11)

Notice that, in the one-dimensional case, convexity in direction R+ (nonnegative sum-
mands) or Z+ (integer-valued nonnegative summands) is the classical convexity. But in the
multivariate case, the convexity of f does not imply the relation (11). As a counterexample,
we consider the three-dimensional case and the convex function f (x1, x2, x3) = maxi≤3 |xi|.
Put x = (1, 0, 0), h = (0, 2, 0) and z=(0,0,3). It is clear that inequality (11) for these parame-
ters is false. However, this function satisfies the relation (11) in the direction determined by
any one-dimensional subspace of R3.

Proposition 1. In the i.i.d. case, let a measurable function f satisfy (11). Then, under the moment
conditions above, inequality (9) holds.

Example 1. If Xi ≥ 0 a.s., and f is an arbitrary convex function on [0, ∞), then, inequalities (9)
and (11) are valid.

We now consider some particular cases of the scheme described in Proposition 1.
Let F∗

n (t) be the empirical distribution function based on a sample ω1, . . . , ωn from the
[0, 1]-uniform distribution. Then, the normalized empirical process νn(t) := nF∗

n (t) can

be represented as the nth partial sum
n
∑

i=1
Xi of the indicator-type i.i.d. random processes

Xi := I{s: s≤t}(ωi) taking values in a Banach space, say, L2[0, 1]. It is well known that the
accompanying compound Poisson r.v. Sπ(n) for this sum is a Poisson random process
with intensity n, which coincides in distribution with the Poisson random process π(nt),
t ∈ [0, 1]. Notice that the finite-dimensional distributions of the random process νn(·) are
multinomial. In particular, for each t ∈ (0, 1), the distribution L(νn(t)) is binomial with
parameters (n, t).

As consequences of Proposition 1, we obtain the following two assertions.

Corollary 1. Let f : Z+ → R be a convex function. Then, for any t ∈ [0, 1],

E f (νn(t)) ≤ E f (π(nt)), (12)

whenever the right-hand side in (12) is well-defined.

Corollary 2. Let G and f be nondecreasing convex functions on R. Then,

EG

 1∫
0

f (νn(t))λ(dt)

 ≤ EG

 1∫
0

f (π(nt))λ(dt)


if the right-hand side of this inequality is well defined, where λ(·) is an arbitrary finite measure
on [0, 1].
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One can slightly weaken the convexity property in Corollary 1 by studying power
moments of the r.vs under consideration.

Proposition 2. For every t ∈ [0, 1] and any naturals n and m, the following inequalities hold:

E(νn(t) + x)2m−1 ≤ E(π(nt) + x)2m−1, ∀x ≥ −n, (13)

and
|E(νn(t) + x)2m−1| ≤ E(π(nt) + x)2m−1, ∀x ≥ −nt. (14)

Remark 2. It is worth noting that, from Corollary 2, one can easily obtain similar inequalities for
all even moments and x ∈ R. Additionally, for all x ≥ 0, inequalities (13) and (14) coincide and also
follow from (12). So, the only nontrivial cases in (13) and (14) are x ∈ [−n, 0) and x ∈ [−nt, 0),
respectively. We note that, for x < −nt, the right-hand sides in (13) and (14) may be negative (say,
for m = 1).

A direct consequence of Proposition 2 is as follows.

Corollary 3. Let f (x) be an entire function on [0, ∞).
1. Assume that there is a point x0 ≥ 0 such that, for all k ≥ 2, the values of k-th derivatives

f (k)(x0) at the point x0 are nonnegative. Then, for every t ∈ [0, 1] and all n ≥ x0,

E f (νn(t)) ≤ E f (π(nt)) (15)

provided that the expectation on the right-hand side of (15) is well defined.
2. Assume that there is a point x∗ ≥ 0 such that

f ∗(x) := ∑
k≥0

| f (k)(x∗)|
k!

(x − x∗)k

is an entire function on [0, ∞) as well. Then, for every (0, 1] and all n ≥ x∗/t,

E f (νn(t)) ≤ E f ∗(π(nt)) (16)

provided that the expectation on the right-hand side of (16) is well defined.

Example 2. Let f (x) := x3 − 3rx2, x ≥ 0, where r > 0. Put x0 = r. Then, the conditions in
item 1 of Corollary 3 are fulfilled, and inequality (15) is valid for all n ≥ r. But the function f (x) is
convex only for x ≥ r; otherwise, it is concave.

Theorem 2. Suppose that at least one of the following two conditions is fulfilled:
1. The function f is continuously differentiable in the Fréchet sense (i.e., f ′(x)[h] is continuous

in x for each fixed h), and for each x ∈ ⋃i≥1 supp Si and all z, h ∈ ⋃i≥1 supp Xi,

f ′(x + th)[h] ≤ f ′(x + z + th)[h] ∀t ∈ [0, 1]; (17)

2. EXk = 0 for all k, f is twice continuously differentiable in the Fréchet sense, and f ′′(x)[h, h]
is convex in x for each fixed h ∈ ⋃i≥1 supp Xi.

Then, the function ϕ(n) is convex, i.e., inequality (9) is valid.

Corollary 4. If Xi ≥ 0 a.s. and f : R+ → R is a convex function, then, inequality (11) is valid.
If Xi are random vectors in Rk, k ≥ 2, or in the Hilbert space l2, with nonnegative coordinates,
then, the function f (x) := ∥x∥2+α, where ∥ · ∥ is the corresponding Euclidean norm and α ≥ 0,
satisfies inequalities (11) and (17). For the zero-mean Hilbert-space-valued r.vs Xi, the function
f (x) := ∥x∥β, where β = 2, 4 or β ≥ 6, satisfies condition 2 of Theorem 2. Therefore, in these
cases, inequality (9) holds under the restriction E| f (τµn)| < ∞.
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Remark 3. There exist functions f (x) which do not satisfy the conditions of Theorem 2 but the
corresponding function ϕ(n) is convex. For example, in the i.i.d. one-dimensional case, let us
consider the function f (x) := x5 and the centered summands {Xi}. It is clear that the conditions of
Theorem 2 are not fulfilled. In this case, we have

ϕ(n) = E(
n

∑
i=1

Xi)
5 = nEX5

1 + 10n(n − 1)EX3
1EX2

1 ,

i.e., it is a quadratic function with respect to the variable n. Thus, if EX3
1 ≥ 0, then, the function

ϕ(n) is convex; otherwise, it is concave. In other words, in this case, we obtain upper and lower
Poissonization inequalities in dependence on the sign of the moment EX3

1 .

The exactness of inequality (9) is characterized by the following two assertions.

Corollary 5. For independent one-dimensional centered r.v.s {Xi}, consider the function f (x) := x3.
Since, for any fixed z ∈ R, the second derivative of the function Fz(x) = (z + x)3 is convex and
concave simultaneously, then, by item 2 of Theorem 2,

ES3
n = Eτ3

µn . (18)

Given a finite measure µ on B satisfying the condition µ({0}) = 0, we denote by ϕµ(n)
the function ϕ(n) in (6) defined in the i.i.d. case for the summand distribution µ(·)/µ(B).

Theorem 3 ([2]). In the i.i.d. case, let the function ϕµ(k) be convex. Then,

sup
n, P

E f (Sn) = E f (τµ) (19)

whenever the expectation on the right-hand side of (5) is well defined, where L(τµ) = Pois(µ),
and the supremum is taken over all n and P such that nP(A \ {0}) = µ(A) for all Borel subsets
A ⊆ B.

Remark 4. Taking inequality (9) into account, we can easily reformulate Theorem 2 for the non-i.i.d.
case. The idea of employing compound Poisson distributions for constructing upper bounds for the
moments of the sums was first proposed by Prokhorov ([3,4]). In particular, relations (9) and (19)
were obtained in [4] for the functions f (x) := x2m (m is an arbitrary natural) and f (x) := ch(tx),
t ∈ R, in the case of one-dimensional symmetric {Xi}. Moreover, in the case of zero-mean one-
dimensional summands, these relations for the functions f (x) := exp(hx), h ≥ 0, can be easily
deduced from [3] (see also [5]).

A more general result in this direction was obtained by Utev [6]. Under condition 2
of Theorem 2, he proved extremal equality (19) for nonnegative functions f (x) having an
exponential majorant, using a technique by Kemperman [7]. In our opinion, the proof of
item 2 of Theorem 2 (see Section 3) is much simpler than that in [6] and needs no additional
restrictions on f (x) and the sample space.

Relations like (9) and (19) can also be applied for obtaining sharp moments and the
tail probability inequalities for sums of independent r.vs (for details, see [5–12]).

We now consider the centered empirical point process ν̄n(t) := νn(t)− nt, t ∈ [0, 1],
that one can interpret as a sum of n i.i.d. centered r.vs Xi := I{s: s≤t}(ωi)− t taking values,
say, in the Hilbert space L2([0, 1], λ), where λ(·) is an arbitrary finite measure on [0, 1].
The accompanying compound Poisson random process can be represented in the form
πo

n(t) := π(nt) − tπ(n), t ∈ [0, 1], which may be called as a “Poissonian bridge” with
intensity n on the unit interval. By Corollary 5, we then obtain
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E

 1∫
0

(ν̄n(t))2λ(dt)

γ

≤ E

 1∫
0

(πo
n(t))

2λ(dt)

γ

, (20)

where γ = 1, 2 or γ ≥ 3. If λ(·) is the Dirac measure with atom at a point t, then, a
univariate analog of inequality (20) is as follows:

E|ν̄n(t)|γ ≤ E|πo
n(t)|γ, (21)

with an arbitrary γ ≥ 3 or γ = 2 and any t ∈ [0, 1]. But compared to (20), we have here
less restrictive conditions on γ due to item 2 of Theorem 2. It is clear that we can replace
the power functions in (21) with any function f having a convex second derivative under
appropriate moment conditions:

E f (ν̄n(t)) ≤ E f (πo
n(t)). (22)

It is interesting to compare inequalities (21) and (22) with (12) and (13) taking Remark 2
into account and setting x = −nt in (13). Put π̄(t) := π(t)− t.

Proposition 3. For every t ∈ [0, 1] and any even convex function f on R, the following two-sided
inequality is valid:

max{E f (tπ̄(n(1 − t)), E f ((1 − t)π̄(nt))}

≤ E f (πo
n(t)) ≤ max{E f (π̄(n(1 − t)), E f (π̄(nt))} (23)

if only the Poissonian moments exist. Moreover, if t ∈ [1/2, 1], then,

E f (πo
n(t)) ≤ E f (π̄(nt)). (24)

Proposition 4. For any x ≥ 0, t ∈ [0, 1] and every natural number m,

E(πo
n(t) + x)m ≤ E(π̄(nt) + x)m. (25)

Thus, inequalities (21)–(25) improve the estimates (12)–(15).
We supplemented Corollary 2 and Theorem 2 with an example of an infinitely dimensio-

nal function space B. Let B = C[0, 1], with ||x|| := sup0≤t≤1 |x(t)|. Consider an integral-
type functional of the form

f (x) :=
∫ 1

0
g(x(t))λ(dt), x ∈ C[0, 1],

where g(z) is a smooth function on R. In this case, the first two Fréchet derivatives of f are
defined as follows:

f (1)(x)[h] :=
∫ 1

0
g′(x(t))h(t)λ(dt),

f (2)(x)[h1, h2] :=
∫ 1

0
g′′(x(t))h1(t)h2(t)λ(dt), h, h1, h2 ∈ C[0, 1].

For example, if the continuous random processes Xi = Xi(t), t ∈ [0, 1], are nonnegative
and the function g is convex (or the first derivative g′(x) is nondecreasing in the positive
direction), then, item 1 of Theorem 2 will be fulfilled. On the other hand, if Xi(t) are
centered random processes on [0, 1] and the second derivative g′′(z) is convex on R, then,
item 2 of Theorem 2 will also be satisfied.

We can easily reformulate condition (11) and Theorem 2 for the functions F(z̄) in (7) if
for any j = 1, . . . , n and fixed zi ∈ B, we put

Fz̄,j(x) := F(z1, . . . zj−1, x, zj+1, . . . , zn) (26)
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and, under the conditions of Theorem 2, replace the function f (x) with Fz̄,j(x) for z̄ from
an appropriate subset.

Corollary 6. For every fixed j = 1, . . . , n, let the functions Fz̄,j(x) satisfy (11) for all
x, h ∈ ⋃

i≥1 supp Sj,i and zk ∈ ⋃
i≥1 supp Sk,i, k ̸= j. Then, under the moment conditions

above, inequality (10) holds.

In (7), put
F(z̄) := G(z1, z1 + z2, . . . , z1 + . . . + zn). (27)

Corollary 7. Let the functions Fz̄,j(x), defined in (26) by the function F(z̄) in (27), satisfy the
conditions of Theorem 2. Then,

gn ≤ EG(τ
(1)
P1

, τ
(1)
P1

+ τ
(2)
P2

, . . . ,
n

∑
i=1

τ
(i)
Pi
), (28)

where the independent r.v-s {τ
(i)
Pi
} are defined in Theorem 1.

The above results deal with some type of convexity. However, one can obtain mo-
ment inequalities close to those mentioned above without any convexity conditions. The
following result is valid for the r.vs {Xi} such that 0 < Pr(Xi = 0) < 1 for all i.

Theorem 4. In the i.i.d. case, for every nonnegative measurable function f , the following inequality
holds:

E f (Sn) ≤
1

1 − p
E f (τµ), (29)

where p := Pr(X1 ̸= 0).

Corollary 8. For any measurable nonnegative function F(z̄) in (7),

ΦF(1̄) ≤ AnEF(τ(1)
P1

, . . . , τ
(n)
Pn

), (30)

with An := exp{∑n
i=1 pi}, where pi := Pr(Xi ̸= 0). In particular, in the non-i.i.d. case, the factor

(1 − p)−1 in (29) may be replaced with An.
For an arbitrary vector k̄n ̸= 1̄,

ΦF(k̄n) ≤ A∗
nEF(τ(1)

k1P1
, . . . , τ

(n)
knPn

), (31)

where A∗
n := ∏n

i=1(1 − pi)
−1 < exp

{
∑n

i=1 pi(1 − pi)
−1}.

In Theorem 4 and Corollary 8, we do not require the existence of the expectations
considering their values on the extended real line. It is clear that, in the non-i.i.d. case,
inequalities (29) and (30) provide a sufficiently good upper bound under the so-called
Poissonian setting when the summand distributions have large atoms at zero, i.e., the
probabilities pi are such that the constant An is not too large.

Notice that some particular cases of inequality (29) are contained in [1,13].

Remark 5. In the case n = 1, there exists a slightly better upper bound than that in (29). In
this case, the factor (1 − p)−1 on the right-hand side of (29) can be replaced with ep. However, in
the special case when Sn = ∑i≤n ν

(i)
1 (pi), where {ν

(i)
1 (pi)} are independent Bernoulli r.vs with

respective parameters {pi}, there exists a better upper bound than that in (29). In this case, we can
replace the factor An with (1 − p̃)−2, where p̃ = max{pi; i ≤ n} (see [14,15]).
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Corollary 9. Let g be a nonnegative function satisfying the condition Eg(π(λ)) < ∞ for some λ.
Then, for every n and p satisfying the condition np ≤ λ, the following inequality holds:

Eg(νn(p)) ≤ eλ−np

1 − p
Eg(π(λ)). (32)

Moreover,
lim

n→∞, np→λ−0
Eg(νn(p)) = Eg(π(λ)). (33)

Remark 6. It is worth noting that, under the minimal moment condition above, we cannot replace
the one-sided double limit in (33) with the classical double limit, and the condition np ≤ λ in (32)
cannot be omitted. Moreover, there exists a nonnegative function g(k) (see Section 3) such that
Eg(π(λ)) < ∞ and

lim sup
n→∞, np→λ+0

Eg(νn(p)) = ∞. (34)

2. Applications to Empirical Point Processes

In this section, we formulate some consequences of the above theorems as well as
some new similar results for empirical point processes indexed by subsets of a measurable
space. These processes generalize the scheme of univariate empirical point processes νn(t)
from the previous section. These results are a basis for the so-called Poissonization method
for generalizing empirical point processes. Sometimes, it is more convenient to replace an
empirical point process under study with the corresponding accompanying Poisson point
process having a simpler structure for analysis (for example, independent “increments”).
Some versions of this sufficiently popular and very effective method can be found in
many papers. In particular, some probability inequalities connecting the distributions of
empirical processes (in various settings) and those of the corresponding Poisson processes
are contained in [13,16–18], etc.

Let x1, x2, . . . be i.i.d. r.vs taking values in an arbitrary measurable space (X,A) and
having a common distribution P. The empirical point process is introduced as

Vn(A) :=
n

∑
i=1

IA(xi), A ∈ Ac,

and the accompanying Poisson point process

Πn(A) :=
π(n)

∑
i=1

IA(xi), A ∈ Ac,

where Ac ≡ {Ai} is a countable family of measurable sets, and a standard Poisson random
process π(·) is independent of the collection {xi}.

We will consider these processes as r.vs taking values in the separable Banach space
Bq(Ac) of all functions Y(·) on Ac such that ∑i≥1 |Y(Ai)|q2−i < ∞ for some q ≥ 1, endowed
with the norm

∥Y∥q =

(
∑
i≥1

|Y(Ai)|q
2i

)1/q

.

In the case q = ∞, we deal with the supnorm ∥Y∥∞ := supi |Y(Ai)|. It is clear that
the Banach space Bq(Ac) is isomorphic to the Banach space Lq[N, λ], where N is the set of
natural numbers, and λ is a discrete probability measure on N with λ({k}) = 2−k. So, the
point process Πn(·) is the accompanying compound Poisson process for the point process
Vn(·) in the Banach space Bq(Ac).

As a direct consequence of Proposition 1, the following assertion is valid.
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Corollary 10. Let Φ(·) be a measurable functional on B1(Ac), which is convex in the positive
direction with respect to the standard pointwise partial order in function spaces. Then, under
appropriate moment conditions, the following inequality holds:

EΦ(Vn) ≤ EΦ(Πn). (35)

As examples, one can consider functionals of the form

ΦG, f (Y) := G

(
∑
i≥1

fi(Y(Ai))

)
,

where G and { fi} are nondecreasing convex functions on R provided that ∑
i≥1

| fi(x)| < ∞

for all x ∈ R. For such functionals, it is easy to verify the conditions of Corollary 10 (see the
proof of Corollary 2).

By analogy with the univariate case, the centered empirical point process
Vo

n (A) := Vn(A)− nP(A) and the corresponding accompanying compound Poisson point
process Πo

n(A) := Πn(A)− nP(A)Πn(X) are introduced. For such processes, the second
assertion of Theorem 2 can be reformulated as follows:

Corollary 11. Let Φ(x) be a measurable functional on B1(Ac) having a convex second Fréchet
derivative. Then,

EΦ(Vo
n ) ≤ EΦ(Πo

n), (36)

whenever the expectation on the right-hand side of this inequality exists.

As examples of such functionals, one can cite ΦG, f (Y).
We now introduce the so-called restricted empirical point processes. Let A0 ∈ A and

p := P(x1 ∈ A0) ∈ (0, 1). Consider the restrictions of the point processes Vn(A) and Πn(A)
on the set A0 := {A ∈ Ac : A ⊆ A0}, which is denoted by V∗

n (A) and Π∗
n(A), respectively.

We call these processes A0-restricted point processes. In this case, V∗
n (A) ≡ Sn = ∑n

i=1 Xi,
where Xi := {IA(xi); A ∈ A0}, i = 1, . . . , n, are i.i.d. stochastic processes indexed by the
elements from the family A0, with p := P(X1 ̸= 0) ∈ (0, 1). We may consider {Xi} as i.i.d.
r.vs taking values in the Banach space B∞(Ac). As a direct consequence of Theorem 4, we
then obtain

Corollary 12. The following inequalities are valid:

L(V∗
n ) ≤

1
1 − p

L(Π∗
n), (37)

EF(V∗
n ) ≤

1
1 − p

EF(Π∗
n),

where F(·) ≥ 0 and the expectations take their values on the extended real line.

We now introduce a class of additive statistics of the empirical point processes. Let
∆1, ∆2, . . . be a finite or countable measurable partition of the sample space. We assume
that pi := P(∆i) > 0 for all i and p1 ≥ p2 ≥ p3 ≥ . . .. Denote νin := Vn(∆i). We study a
class of additive functionals of the form

Φ f (Vn) := ∑
i≥1

fin(νin), (38)

where { fin} is an array of functions on Z+, with ∑
i≥1

| fin(0)| < ∞.

Example 3. We now give a few examples of additive statistics.
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(1) Given a finite partition {∆i; i = 1, . . . , m}, put fin(x) := (x−npi)
2

npi
, i = 1, . . . , m. Then,

we deal with a χ2-statistic of the form

Φχ2(Vn) =
m

∑
i=1

(νin − npi)
2

npi
.

(2) The log-likelihood function can be represented as the following linear functional:

Φl(Vn) :=
N

∑
i=1

νin log pi.

(3) Fix a countable partition {∆i; i ≥ 1}. Let fin(x) ≡ f (x) := IA(x). (For countable
partitions, we assume that 0 /∈ A). Then, the functional

ΦI(Vn) = ∑
i≥1

IA(νin) (39)

is the number of cells ∆i, each of them contains a number of the sample points Xi from the range
defined by a subset A of naturals. It is the so-called infinite multinomial scheme of placing particles
(balls) in cells (boxes) (for example, see [19–24]).

For additive functionals (38), one can also obtain Poissonization inequalities using the
above mentioned inequalities for restricted empirical point processes. The next theorem is
related to estimating the distribution tails of additive functionals (38) via the probability
tails of the same functionals of the accompanying Poisson point process Πn(·). The main
property of the functionals Φ f (Πn) is that they have a structure of sums of independent r.vs.

Theorem 5. Let fin̄(·) ≥ 0 for all i. Then, for any x > 0,

P(Φ f (Vn) ≥ x) ≤ 2C∗P(Φ f (Πn) ≥ x/2), (40)

where C∗ := min
k≥1

max
{(

∑i≤k pi
)−1, (∑i>k pi)

−1
}

. If, additionally,

sup
x

∑
i≤m

fin̄(x) ≤ Cm,n

for some natural number m, then,

P(Φ f (Vn) ≥ x) ≤
(

∑
i≤m

pi

)−1

P(Φ f (Πn) ≥ x − Cm,n). (41)

Remark 7. It is worth noting that, in (41), the constant Cm,n may be interpreted as a level of trunca-
tion for the r.v. ∑i≤m fin̄(νin). In this case, we should add the probability P

(
∑i≤m fin̄(νin) > Cm,n

)
to the right-hand side of inequality (41).

Integrating both sides of inequality (40) in x on the positive half-line, we obtain

Corollary 13. Under the conditions of Theorem 5, let F be a nondecreasing function defined on
R+, continuous at zero and F(0) = 0. If EF(2Φ f (Πn̄)) < ∞, then,

EF(Φ f (Vn)) ≤ 2C∗EF(2Φ f (Πn)). (42)

As an example, consider the functional ΦIB(Vn) defined in (39). Then, as a consequence
of (41) and Chernoff’s upper bound (see [25]) for the probability tail of a sum of independent
nonidentically distributed Bernoulli r.vs (the transition from finite sums to series in this
case is obvious), we obtain the following result.
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Corollary 14 ([24]). Put Mn(B) := EΦIB(Πn̄) = ∑i≥1 P(πin ∈ B). Then, the following
inequality holds for any ε > (Mn(B))−1:

P
(∣∣∣∣ΦIB(Vn)

Mn(B)
− 1
∣∣∣∣ > ε

)
≤ 2p−1

1 e−
δ2 Mn(B)

2+δ , (43)

where δ := ε − 1
Mn(B) .

Remark 8. We note that one can replace the Poissonian mean Mn(B) in (43) with the mean
EΦIB(V n̄), which differs from Mn(B) by no more than 1 due to Barbour–Hall’s estimate of the Pois-
son approximation to a binomial distribution (see [24,26]). Further, if the condition Mn(B) → ∞ is
met as n → ∞, then, from (43), we obtain not only the law of large numbers (already formulated in
Corollary 2) but at a certain growth rate of the sequence Mn(B), the strong law of large numbers
(SLLN). In particular, if pi = Ci−1−b, then, Mn(B) ∼ C(B)n

1
1+b for any subset of natural num-

bers B (see [24]). If in the case m = 1, we consider the infinite intervals B ≡ Bk := {i : i > k} for
any k ∈ Z+, then, the SLLN is valid only under the condition pi > 0 for all i. This follows from
estimate (43), monotonicity of the functions IBk (x) and simple arguments in proving SLLN in [27]
(see also [21]). Moreover, inequality (43) allows us to estimate the rate of convergence in SLLN. If
Mn(B) → ∞, this rate of convergence has the order O(M−1/2

n (B) log1/2 n).

3. Proofs

In this section, we prove some key assertions formulated in the previous two sections.

Proof of Proposition 1. In the i.i.d. case, the convexity of ϕ(k) directly follows from (11):

ϕ(k + 1)− ϕ(k) ≤ E( f (Sk+1 + Xk+2)− f (Sk + Xk+2)) = ϕ(k + 2)− ϕ(k + 1).

Proof of Corollary 2. Denote

Fx,h,z :=
1∫

0

f (x(t) + h(t) + z(t))λ(dt),

where x(t), h(t) and z(t) are nonnegative measurable bounded functions. Due to the
convexity and monotonicity of f , one has

Fx,0,0 ≤ Fx,0,z, Fx,h,0 − Fx,0,0 ≤ Fx,h,z − Fx,0,z.

From these inequalities and convexity of G, we immediately obtain

G(Fx,h,0)− G(Fx,0,0) ≤ G(Fx,h,z)− G(Fx,0,z).

So, condition (11) is fulfilled.

Proof of Proposition 2. First, we consider the case n = 1. In other words, we deal here
with the Bernoulli r.v. ν1(t) with parameter t.

Lemma 1. For every natural m, the following inequalities hold:

E(ν1(t) + x)2m−1 ≤ E(π(t) + x)2m−1, ∀x ≥ −1, (44)

and

|E(ν1(t) + x)2m−1| ≤ E(π(t) + x)2m−1, ∀x ≥ −t. (45)
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Proof. In order to prove (44), we first study the case x = −1.. We have

E(ν1(t)− 1)2m−1 = t − 1,

E(π(t)− 1)2m−1 = −e−t +
∞

∑
k=2

(k − 1)2m−1

k!
tke−t

> −e−t +
1
2

∞

∑
k=2

(k − 1)2m−3

(k − 2)!
tke−t = −e−t +

t2

2
E(1 + π(t))2m−3

> t − 1 − t2

2
+

t2

2
E(1 + π(t))2m−3 > t − 1, (46)

where m ≥ 2 (in the case m = 1, the assertion is trivial). We have proved inequalities of
the form (44) for even moments and all x ∈ R (see Corollary 1). Therefore, inequality (44)
remains true after derivation of both its sides with respect to x. So, inequality (44) follows
from this fact and (46).

Taking inequality (44) into account, we conclude that, to prove (45), it suffices to
deduce only the inequality

E(t − ν1(t))2m−1 ≤ E(π(t)− t)2m−1. (47)

Denote gm(t) := E(π(t)− t)m. We need the following recurrent relation for gm(t) (for
details, see [16,28]):

gm(t) = t
m−2

∑
k=0

Ck
m−1gk(t), (48)

where m ≥ 2, g0(t) ≡ 1 and g1(t) ≡ 0. From (48), we conclude that, for all naturals m, the
functions gm(t) are nonnegative and nondecreasing on [0, 1].

First, we assume that t ≤ 1/2. Then, we have

E(t − ν1(t))2m−1 = t(1 − t)(t2m−2 − (1 − t)2m−2) ≤ 0,

and (47) holds because of the nonnegativity of the functions gm(t).
In the case t > 1/2, we consider another Bernoulli r.v. ν̃1(t̃) := 1 − ν1(t), with

t̃ := 1 − t. By (44), we then obtain

E(t − ν1(t))2m−1 = E(ν̃1(t̃)− t̃)2m−1 ≤ g2m−1(t̃) ≤ g2m−1(t)

due to the monotonicity of the functions gm(t). The lemma is proven.

Since νn(t) coincides in distribution with the sum of independent copies of the r.vs
νn−1(t) and ν1(t), the further proof of the theorem can be continued by induction on n
(using (22) and the binomial formula). The proposition is proven.

Proof of Corollary 3. Due to Fubini’s theorem and the Taylor expansion of the function f
at the point x0, the existence of the moment E f (π(nt)) implies the equality

E f (π(nt)) = ∑
k≥0

f (k)(x0)

k!
E(π(nt)− x0)

k.

So, for all n ≥ x0, one can apply inequality (13) for every summand with k ≥ 2 of the
series on the right-hand side of the above identity that yields inequality (15). Here, we have
taken into account the fact that

E(π(nt)− x0) = E(νn(t)− x0),

i.e., the first two summands in the series representations of the expectations E f (π(nt)) and
E f (νn(t)) coincide.
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Inequality (16) is proved similarly, using the estimate (14).

Remark 9. Inequality (53) is a part of a more general result in [15]. It is worth noting that this
upper bound is an estimate for the so-called Radon–Nikodym derivative of a binomial distribu-
tion with respect to the accompanying Poisson law. This problem was studied by a number of
authors ([14,29,30], and others). In particular, under some additional restriction on n and p, a
slightly stronger estimate is contained in [29]. However, in general, the upper bound (53) cannot
be essentially improved. Under some restrictions on n and p, a lower bound for the left-hand side
of (53) has the form (1 − cp)−1, where c < 1 is an absolute positive constant. For example, for
n = 1, an unimprovable upper bound in (53) equals ep < (1 − p)−1. It is easy to check that
ep > (1 − p/2)−1 for all p ≤ 1/2.

Proof of Corollary 8. Taking Remark 9 into account, we have a refinement of estimate (53)
in the case n = 1, and as a consequence, we obtain

Eg(ν1(p)) ≤ epg(π(p))

for any nonnegative function g. The further arguments of proving estimate (30) are quite
similar to those in the proof of Theorem 1 below.

Estimate (31) is a direct consequence of estimate (53) and the arguments above.

Proof of Corollary 9. Inequality (32) follows from Lemma 2 and the simple estimate

sup
j

P(π(np) = j)
P(π(λ) = j)

= sup
j

(np
λ

)j
eλ−np ≤ eλ−np

if np ≤ λ only. Otherwise, there are no uniform upper bounds for the Radon–Nikodym
derivative under consideration.

Relation (33) follows from the classical Poisson limit theorem and inequality (32), which
provides fulfillment of the uniform integrability condition. The corollary is proven.

To prove relation (34), we consider the function g(k) := (1 ∨ (k − 2)!)λ−k. It is clear
that Eg(π(λ)) < ∞. Otherwise, we have

Eg(νn(p)) >
1

kn(kn − 1) ∏
j≤kn−1

(1 − j/n)
(np

λ

)kn(
1 − np

n

)n−kn
,

where n ≥ 4 and kn := [
√

n]. Further, it easy to see that, as n → ∞ and np → λ,

∏
j≤kn−1

(1 − j/n) = exp

{
− ∑

j≤kn−1
j/n + O(k3

n/n2)

}
∼ exp{−k2

n/2n} ∼ e−1/2

and (
1 − np

n

)n−kn
∼ e−λ.

We now suppose that np/λ = 1 + n−α for some α < 1/2. Then,(np
λ

)kn
∼ eknn−α → ∞,

which must be proved. □

Proof of Theorem 1. In the i.i.d. case, inequality (9) is a simple consequence of relation (5)
and the classical Jensen inequality:

E f (τµn) = Eϕ(π(n)) ≥ ϕ(n) = E f (Sn).
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In order to prove inequality (9) in the non-i.i.d. case, taking formula (4) into account,
we put

τµn :=
n

∑
m=1

Sm,πm(1). (49)

The further reasoning is quite analogous to the above. Put z1 := ∑n
m=2 Sm,πm(1). Using

the above arguments, we have

E f (τµn) = EEz1 ϕ1,z1(π(1)) ≥ EEz1 ϕ1,z1(1) = E f (X1 + z1),

where the symbol Ez1 denotes the conditional expectation given z1. Now, we put
z2 := X1 + ∑n

m=3 Sm,πm . Then, repeating the same calculation, we obtain the estimate

E f (X1 + z1) = EEz2 ϕ2,z2(π2) ≥ EEz2 ϕ2,z2(1) = E f (X1 + X2 +
n

∑
m=3

Sm,πm).

Continuing calculations in this way, we obtain inequality (9). Theorem 1 is proven.

Proof of Theorem 2. The first assertion is trivial because, under condition 1, from Taylor’s
formula, we have

f (x + h)− f (x) =
∫ 1

0
f ′(x + th)[h]dt ≤

∫ 1

0
f ′(x + z + th)[h]dt

= f (x + z + h)− f (x + z)

for every x ∈ G and z, h ∈ ⋃i≤n suppXi,, that is, inequality (11) is fulfilled.
To prove the second assertion, we only need to prove this in the i.i.d. case because,

using the arguments in proving Theorem 1 above, we can reduce the problem to the i.i.d.
case. It remains to observe that, under condition 2 and given z, the function f (x + z) has
a convex second derivative with respect to x. So, we prove the assertion in the i.i.d. case.
Taking into account continuity in x of the function f ′′(x)[h, h] for any fixed h and using
Taylor’s formula, we have

f (Sk+1)− f (Sk) = f ′(Sk)[Xk+1] +
∫ 1

0
(1 − t) f ′′(Sk + tXk+1)[Xk+1, Xk+1]dt. (50)

First, we average both sides of (50) with respect to the distribution of Xk+1 and use the fact
that, for any centered (in Bochner sense) r.v. X and an arbitrary linear continuous functional
l(·), the equality El(X) = 0 holds. Averaging both sides of this identity with respect to the
other distributions, we then obtain the equality (with a probability interpretation of the
remainder in (50))

ϕ(k + 1)− ϕ(k) =
1
2

E f ′′(Sk + ζXk+1)[Xk+1, Xk+1] = E f ′′(Sk + ζXk+2)[Xk+2, Xk+2] (51)

due to the i.i.d. condition of {Xk}, where ζ is a r.v. with the density 2(1 − t) on the unit
interval, which is defined on the main probability space and independent of the sequence
{Xk} (we may assume here that this space is reached enough). It is worth noting that,
because of the integrability of the left-hand side of (50), the expectation on the right-hand
side of (51) is well defined due to Fubini’s theorem. In the i.i.d. case, by Jensen’s inequality
(for the conditional expectation Eζ,Xk+2

), we finally obtain from (51) the inequality we need:

ϕ(k + 1)− ϕ(k) =
1
2

EEζ,Xk+2
f ′′(Sk + ζXk+2)[Xk+2, Xk+2]

≤ 1
2

E f ′′(Sk+1 + ζXk+2)[Xk+2, Xk+2] = ϕ(k + 2)− ϕ(k + 1).
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The theorem is proven.

Proof of Theorem 4. First, we prove two important lemmas which play a key role in
proving the theorem. For the initial r.vs which are nondegenerate at zero, let {X0

i } be
independent r.vs with respective distributions

L(X0
i ) := L(Xi|Xi ̸= 0),

with p := Pr(X1 ̸= 0) ∈ (0, 1). Denote S0
m := ∑i≤m X0

i .

Lemma 2 ([2,31]). In the i.i.d. case, under the above notation, the following relations hold:

L(Sn) = L(S0
νn(p)), Pois(nL(X1)) = L(S0

π(np)), (52)

where L(νn(p)) is the binomial distribution with parameters n and p; the pair (νn(p), π(np))
does not depend on the sequence {X0

i }.

The equalities in (52), which are very convenient in studying the accuracy of the
Poisson approximation of the sums, are contained in various forms in many papers (see,
for example, Refs. [29–35], and others). Actually, these relations also represent versions of
the total probability formula and are easily proven.

Taking into account the representations in (52), we can reduce the problem to the
simplest one-dimensional case when we estimate moments of a binomial distribution
using, for example, convexity arguments as above. However, in this case, we can obtain
sufficiently exact inequalities for the moments of arbitrary functions without convexity
using the following lemma from [15] (see also [2]). For the convenience of the reader, we
reproduce the proof of this assertion.

Lemma 3. For each p ∈ (0, 1),

sup
n,j

L(νn(p))(j)
L(π(np))(j)

≤ 1
1 − p

. (53)

Proof. For every nonnegative integer j ≤ n, we have

P(νn(p) = j)
P(π(np) = j)

=
n(n − 1) · · · (n − j + 1)

nj(1 − p)j (1 − p)nenp

= exp

{
n(p + log(1 − p))− j log(1 − p) +

j−1

∑
i=0

log
(

1 − i
n

)}

≤ exp
{
− log(1 − p) + n(p + log(1 − p))− (j − 1) log(1 − p)

+n
∫ (j−1)/n

0
log(1 − x)dx

}
≤ exp

{
− log(1 − p)− nHp

(
j − 1

n

)}
,

where Hp(x) = −p + x + (1 − x) log((1 − x)/(1 − p)). The following properties of Hp
are obvious:

Hp(1) = 1 − p, Hp(p) = 0,
d

dx
Hp(p) = 0,

d2

dx2 Hp(x) = 1/(1 − x),

which implies Hp(x) ≥ 0 for all x ≤ 1 due to the convexity of H(x), i.e., inequality (13) is
proven.
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Finally, as a consequence of Lemmas 1 and 2, we obtain the following moment inequal-
ity for any nonnegative function g(·):

Eg(νn(p)) ≤ 1
1 − p

g(π(np)),

and apply this inequality for the conditional expectation E{X0
i }

f (S0
νn(p)), given the sequence

{X0
i }. Theorem 4 is proven.

Remark 10. Inequality (53) is a part of a more general result in [15]. It is worth noting that
this upper bound is an estimate for the so-called Radon–Nikodym derivative of a binomial distri-
bution with respect to the accompanying Poisson law. This problem was studied by a number of
authors ([14,29,30] and others). In particular, under some additional restriction on n and p, a
slightly stronger estimate is contained in [29]. However, in general, the upper bound (53) cannot
be essentially improved. Under some restrictions on n and p, a lower bound for the left-hand side
of (53) has the form (1 − cp)−1, where c < 1 is an absolute positive constant. For example, for
n = 1, an unimprovable upper bound in (53) equals ep < (1 − p)−1. It is easy to confirm that
ep > (1 − p/2)−1 for all p ≤ 1/2.

Proof of Corollary 8. Taking Remark 9 into account, we have a refinement of estimate (53)
in the case n = 1, and as a consequence, we obtain

Eg(ν1(p)) ≤ epg(π(p))

for any nonnegative function g. The further arguments of proving estimate (30) are quite
similar to those in the proof of Theorem 1, applying formulas (52) for n = 1 and the
above inequality for the corresponding conditional expectations. Estimate (31) is a direct
consequence of estimate (53) and the arguments above.

Proof of Corollary 9. Inequality (32) follows from Lemma 2 and the simple estimate

sup
j

P(π(np) = j)
P(π(λ) = j)

= sup
j

(np
λ

)j
eλ−np ≤ eλ−np

if np ≤ λ only. Otherwise, there are no uniform upper bounds for the Radon–Nikodym
derivative under consideration.

Relation (33) follows from the classical Poisson limit theorem and inequality (32), which
provides fulfillment of the uniform integrability condition. The corollary is proven.

To prove relation (34), we consider the function g(k) := (1 ∨ (k − 2)!)λ−k. It is clear
that Eg(π(λ)) < ∞. Otherwise, we have

Eg(νn(p)) >
1

kn(kn − 1) ∏
j≤kn−1

(1 − j/n)
(np

λ

)kn(
1 − np

n

)n−kn
,

where n ≥ 4 and kn := [
√

n]. Further, it is easy to see that, as n → ∞ and np → λ,

∏
j≤kn−1

(1 − j/n) = exp

{
− ∑

j≤kn−1
j/n + O(k3

n/n2)

}
∼ exp{−k2

n/2n} ∼ e−1/2

and (
1 − np

n

)n−kn
∼ e−λ.

We now suppose that np/λ = 1 + n−α for some α < 1/2. Then,(np
λ

)kn
∼ eknn−α → ∞,
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which was to be proved. □

Proof of Theorem 5. For any natural k, we denote

Φ(k)
f (Vn) := ∑

i≤k
fin(νin).

It is clear that

P
(

Φ f (Vn) ≥ x
)
≤ P

(
Φ(k)

f (Vn) ≥
x
2

)
+ P

(
Φ f (Vn)− Φ(k)

f (Vn) ≥
x
2

)
. (54)

In the notation of Theorem 1, let V∗
n be the restriction of the point process Vn to the set

A0 :=
⋃

i≤k
∆i with a hit probability p := ∑

i≤k
pi. Under the sign of the first probability of

the right-hand side of inequality (54), we replace the point process Vn with V∗
n and use

inequality (37) for the distributions of the restrictions of the corresponding point processes
under consideration.

The difference
Φ f (Vn)− Φ(k)

f (Vn) = ∑
i>k

fin(νin)

is an additive functional of the restriction of Vn to the set A0 :=
⋃

i>k
∆i with hitting prob-

ability p := ∑
i>k

pi. For this functional, we also use estimate (37). As a result, taking into

account the nonnegativity of all fin(·), from (54) and Theorem 1, we easily obtain

P
(

Φ f (Vn) ≥ x
)
≤
(

∑
i>k

pi

)−1

P
(

Φ(k)
f (Πn) ≥

x
2

)

+

(
∑
i≤k

pi

)−1

P
(

Φ f (Πn)− Φ(k)
f (Πn) ≥

x
2

)
≤ 2C∗P

(
Φ f (Πn) ≥

x
2

)
.

Inequality (41) is proved similarly:

P
(

Φ f (Vn) ≥ x
)
≤ P

(
∑

i>m
fin(νin) ≥ x − Cm,n

)
≤
(

∑
i≤m

pi

)−1

P
(

Φ f (Πn) ≥ x − Cm,n

)
.

The theorem is proven.

Proof of Proposition 3. First, taking into account the fact that the increments of Poissonian
processes are independent, we note that the r.v. πo

n(t) = π(nt) − tπ(n) coincides in
distribution with the r.v.

Y := (1 − t)π̄(nt)− tπ̄1(n(1 − t)). (55)

Since the r.vs π̄(nt) and π̄1(n(1− t)) are independent and centered, the lower bound in (23)
immediately follows from Jensen’s inequality. The upper bound follows from the convexity
and evenness of the function f .

Since the centered random process π̄(t) has independent increments, the expectation
E f (π̄(t)) is a nondecreasing function in t in virtue of Jensen’s inequality. So, for t ∈ [1/2, 1],
the right-hand side of (23) coincides with E f (π̄(nt)).

Proof of Proposition 4. It is clear that it suffices to consider the case x = 0. Moreover,
taking inequality (24) into account, we prove estimate (25) for every t ∈ [0, 1/2] only. The
characteristic function of Y has the form

φY(s) := exp{g(s)},
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where g(s) := ntei(1−t)s + n(1 − t)e−its − n. So, the mth moment of Y is calculated by the
formula EYm = i−m φ(m)(0). We need the multiple differentiation formula of products:

(uv)(n) =
n

∑
k=0

Ck
nu(k)v(n−k),

with ψ(0) = ψ. We then obtain

φ
(m)
Y (0) = (g′(s)φY(s))

(m−1)
s=0 =

m−1

∑
k=0

Ck
m−1g(k+1)(0)φ

(m−1−k)
Y (0). (56)

A similar representation is valid for the characteristic function of π̄(nt):

φ
(m)
π̄(nt)(0) =

m−1

∑
k=0

Ck
m−1 f (k+1)(0)φ

(m−1−k)
π̄(nt) (0), (57)

where f (s) := nt(eis − 1)− isnt and φπ̄(nt)(s) := e f (s).
We now compare the coefficients in the sums in (56) and (57). One has

g(k)(0) = iknt(1 − t)[(1 − t)k−1 + (−1)ktk−1],

f ′(0) = 0, f (k)(0) = iknt, ∀k ≥ 2.

Moreover, for each t ∈ [0, 1/2] and all naturals k,

0 ≤ (1 − t)[(1 − t)k−1 + (−1)ktk−1] ≤ 1.

In other words, for all naturals k,

0 ≤ i−kg(k)(0) ≤ i−k f (k)(0). (58)

Since

i−m φ
(m)
Y (0) =

m−1

∑
k=0

Ck
m−1i−k−1g(k+1)(0)ik+1−m φ

(m−1−k)
Y (0) (59)

then, all the values i−k φ
(k)
Y (0) are nonnegative. Therefore, the inequalities

i−m φ
(m)
Y (0) ≤ i−m φ

(m)
π̄(nt)(0)

are easily proved by induction on m using the relations (56)–(59).
Thus, the proposition is proven.

4. Conclusions

In the present paper, some inequalities were obtained for the distributions of sums of
independent B-space-valued r.vs in terms of the accompanying infinitely divisible laws. As
consequences of these results, similar inequalities were obtained for the distributions of
empirical and accompanying Poisson point processes.

It is worth noting that the above arguments for additive statistics are also transferred to
more general additive functionals of the U-statistic structure of empirical group frequencies:

U f ,n(Vn) := ∑
1≤i1<...<im

fn,i1,...,im(νn,i1 , . . . , νn,im),

where { fn,i1,...,im(·)} is an array of finite functions defined on Zm
+ and satisfying only the

restriction
∑

1≤i1<...<im

| fn,i1,...,im(0, . . . , 0)| < ∞ ∀n,
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with νn,i := Vn(∆i) and finite or countable measurable partition {∆i} of B. In this case, the
problem is reduced to studying the distribution of the Poissonian version U f ,n(Πn) where
one can use a martingale approach for estimating its moments and probability tail.
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